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Abstract

We study the problem of distributed workflow enact-
ment in which new job requests, each composed of a
workflow, a deadline, and a payment, arrive at a com-
pany at regular intervals. The company must decide
which services to perform in which workflows and with
which service agents. It must also provide the proper
monetary incentives to its selfish service agents so as to
align their interests with those of the company. In this
scenario we evaluate various pricing strategies and show
that an adaptive pricing mechanism is required because
it is a dominant strategy and it increases revenue.

Introduction
Workflow languages such as the Business Process Execu-
tion Language for Web Services (BPEL4WS) are becoming
the preferred method for specifying web services workflows.
These languages allow companies to state the order in which
web services are to be performed so as to achieve a particu-
lar business goal. However, current enactment tools employ
a centralized architecture that assumes all clients are slaves.
They consist of a workflow enactment engine who reads the
workflows and invokes the necessary web services on the
client machines who must perform as ordered. In contrast
to this traditional view, we envision a much more flexible
architecture in which the clients are autonomous agents that
decide, as a group, which workflows to enact (Vidal, Buhler,
& Stahl 2004).

For example, imagine a small company that generates rev-
enue by handling projects requested by clients. Like in most
small companies, the employees are versatile and can carry
out any of the many tasks required to complete a project.
The employees also want to maximize their salaries. The
clients pay the company only when the project is finished by
the requested deadline. Thus, any work done on a project
that was not completed by the deadline is wasted. We must
then determine how the company’s management rewards
employees for their work and how the employees decide
what work to do at any particular time. This scenario can be
translated to a distributed workflow enactment problem by
considering the project to be workflow requests with dead-
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lines and the employees to be autonomous agents that en-
capsulate web services.

Our goal is to develop scheduling mechanism that max-
imize a company’s revenue even in the presence of selfish
agents/employees and uncertainty about future job requests.
The mechanism should provide the right incentives to the
agents so that their selfish actions are aligned with the com-
pany’s goal of profit maximization. This distributed mecha-
nism has several advantages over the traditional centralized
workflow enactment systems.

• There is no central point of failure and no bottleneck.

• It should scale well as new agents are added or removed.

• Workflows spanning across multiple business units can
face privacy and security concerns. Distributed solutions
naturally resolve these issues by partitioning and allocat-
ing workflows to the concerned units.

• Agents and humans can cooperate. Since the system al-
ready works for selfish agents there is nothing a selfish
human can do to break it.

Note that we assume that the set of all possible workflows
is known a priori. As such, there is no need for the agents to
use AI planning techniques to create new workflow. Instead,
the problem becomes one of workflow (plan) scheduling and
mechanism design under uncertainty.

Related Work
This research builds on our previous work on distributed
workflow enactment (Vidal, Buhler, & Stahl 2004; Buhler
& Vidal 2005; Buhler & Vidal 2004; Buhler, Vidal, & Ver-
hagen 2003). While that work established the feasibility of
enacting workflows using cooperative agents, in this paper
we drop the cooperative assumption and instead focus on
selfish agents and on workflows that have deadlines and pay-
ments associated with them. Given the uncertainty in the en-
vironment our agents will need to use learning techniques.
The techniques we use are extensions on standard multia-
gent learning research (Vidal 2003).

The idea of using agents to enact business workflows is
not new. For example, in (Muthet al. 1998) the authors
present a technique for distributed workflow enactment us-
ing activity charts. (Singh & Huhns 1999) introduces the
idea of interaction-oriented programming as a technique for



engineering multiagent systems that enact workflows. The
ADEPT system (Jenningset al. 2000) implemented agent-
based process management for British Telecom. However,
these along with most other distributed workflow enactment
techniques assume cooperative agents/web services.

The pricing techniques we use here were inspired by those
in (Saha & Sen 2005) but differ from those in many respects,
mostly due to the fact that they studied supply chain pricing
while we are interested in distributed workflow enactment.

The Distributed Workflow Enactment
Problem

Formally, we define a distributed workflow enactment prob-
lem as consisting of a set of agentsA, a set of servicesS, and
a set of workflowsW . Each workfloww ∈ W is defined as
a sequence of services so thatw = (s1, s2, . . . , s|w|). Agent
setA = As ∪ m, whereAs is the set ofservice agentsand
m is themanager agentin the system. Each agenta ∈ As

can perform a set of services given byas ⊆ S. New jobs
arrive at the company randomly at each time step and are
managed by the manager agentm who is responsible for
allocating the service requests to agents and for paying the
agents. Each jobj has a workflowjw associated with it, a
deadlinejd by which the job must be finished, a timejt at
which it appears, and a paymentjp which will be given to
the company if the jobj is performed by its deadlinejd. We
assume that time is discrete and that each service takes one
time unit to execute.

The company maximizes its profit when the highest-
priced and shortest workflows are completed within their
deadlines, and when the slack time for all agents is the least.
As such, the manager should prioritize services such that
it maximizes the company’s revenue over time. In this pa-
per we compare several such schemes in order to determine
their relative merit. Note that the manager agent does not
know which job requests will appear in the future, therefore,
finding an optimal solution to this problem is impossible.
The best the manager can do is to use heuristics, preferably
adaptable heuristics, in order to prioritize the services. We
also have to be careful and make sure that the manager’s
payment scheme is not exploitable by the agents. For ex-
ample, if the manager decides to pay more for some ser-
vices than other and offers the lower-priced services first
then the agents would want to reject the initial offers in or-
der to get the higher paying services later (of course, this
strategy might backfire if all the agents did the same).

Service Allocation Mechanisms
In our mechanisms, we use the contract net protocol (Smith
1981) to allocate services to agents as follows:

1. The manager determines the candidate services for alloca-
tion across all available jobs for each time step and orders
them as described in the next section.

2. The manager then sends out a request for bids for the ser-
vice with the highest priority from the set of available
jobs.

3. The agents bid on the service.

4. The manager chooses the lowest bid and allocates the ser-
vice to that agent if the bid is below the manager’s reser-
vation price for that service.

5. The service’s job is removed from the list of available jobs
and we go back to step 2. This process is repeated until
either all jobs are allocated or all agents are busy.

We now present the various strategies that can be adopted
by the manager and the service agents under different cir-
cumstances in our system.

Manager agent strategies
The manager sets a reservation price for each service suit-
able for execution in the workflows across all active jobs.
This is the maximum price that it is willing to pay an agent
to get the concerned service performed.

More formally, the manager has a set of jobsJ that are be-
ing executed at any given instant in timet. For eachj ∈ J ,
it’s corresponding workflowjw is at some stage in its exe-
cution and needs to execute its next servicesjw

. Let ∆t be
the set of allavailableservices at timet, that is, all services
that are ready to execute. The manager examines each ser-
vice si ∈ ∆t and assigns it a reservation price, as described
in the section. The set∆t is then sorted by this reservation
price, with the highest price first. The manager then tries to
allocate the services in∆t in order.

The company can maximize its profit by paying as little
as possible to the agents for executing the jobs. One option
is for the manager to adopt thefixed strategy (FP)where it
sets its reservation price to a very small, fixed amount, say
ε, for all services. In this case, the rational strategy for all
agents is to accept that price because their only other alter-
native is to reject it in which case they do not get any pay-
ment. This is true for any fixed price that the manager might
choose to provide, such asjp/|jw|. This strategy is simple to
implement but fails to properly prioritize jobs. As such, we
expect that it will result in forfeited revenue. For example,
under these fixed price schemes a service for a job request
that has a deadline oft + 1 will be given the same priority
(price) as that of a job request with deadline oft + 100.

Alternatively, the manager can determine the reservation
price for a service dynamically at each time step by consid-
ering certain prevalent environmental characteristics such as
the expected utility from finishing the job, the deadline for
the job, and the current stage of execution in the workflow.
However, the manager’s payment scheme should not be ex-
ploitable by the agents. For example, if the manager de-
cides to pay more for some services than others and offers
the lower-priced services first then the agents would want to
reject the initial offers in order to get the higher paying ser-
vices later (of course, this strategy might backfire if all the
agents did the same). Based on these adaptation techniques
we devised two more manager pricing strategies.

The manager can use thevariable strategy (VP)to set the
reservation price for services. Here, the reservation pricesrp

for services is computed at its release time based on the ex-
pected paymentjp from the job, the amountjt

a already paid
by the manager to other agents for doing previous services
in the workflowjw until time t, and the number of services



yet to be enacted in the workflow, which can be given by
|jw|−jt

n, wherejt
n is the index of the next service injw that

the manager must enact at timet. The reservation price can
be computed as,

srp =
jp − jt

a

|jw| − jt
n

(1)

The computed reservation pricesr is then fixed. That is,
if the service fails to be allocated in the current round it will
again have the same reservation price in the next round. Un-
fortunately, this strategy also has its flaws. Consider a case
where the job length is 5, of which 4 services have already
been allocated for a total cost of 6 for the company. The job
yields a profit of 10 on completion. In this case, the reserva-
tion price for the final service will be set to 4 and will never
change even though the company can afford to raise it up to
10 without incurring a heavier net loss for the job.

We also define anadaptive strategy (AP) for the man-
ager agent. In this scheme the price is set to a very small
amountε at the service’s release timest but this price is in-
cremented by a constant factorα for each subsequent time
step until it is allocated to some agent or it reaches the max-
imum possible allocation for the service beyond which the
company potentially incurs a loss at performing the job. At
any given instant in timet, the minimum number of time
steps required to complete a jobj can be given by|jw|− jt

n,
while the maximum number of time steps available to finish
the job isjd−t. Thus, a very rough estimate of the probabil-
ity that the company will finish the jobj before its deadline
jd is given by

jt
s = max

(
1− |jw| − jt

n

jd − t
, 0

)
. (2)

Using this value we can approximate the company’s ex-
pected incomejt

ei for the jobj at timet as

jt
ei = jp · jt

s. (3)

The manager might also want to prioritize a service if it
is a part of a high-value job, and the company’s estimated
success for completing the job within its deadline is getting
precariously low. This can be done by presenting the com-
pany’s best offer for the service. The best offerst

bo that the
manager might want to present the agents for a services at
time t can be given as,

st
bo = max

(
jt
ei − jt

a

|jw| − jt
n

, 0
)

(4)

From the above equations, we can create the manager’s
strategy for assigning the reservation pricest

rp for a service
s at timet as follows:

st
rp =

 ε if (t = st)
st−1

rp + α else if((st−1
rp + α < st

bo) ∧ (jt
s > β))

st
bo otherwise.

(5)
for some constantα. That is, if the service has just be-

come available then we start with a price ofε otherwise

while the estimate of the probability of getting the job fin-
ished in time is greater thanβ we keep increasing the price
by α. If the probability for finishing ever dips belowβ then
we use the best offer price. We also make sure that the price
never exceeds the best offer. Theβ value implements a risk-
averse behavior where the company assigns more value to
less risky jobs. Settingβ = 0 results in a risk-neutral (there-
fore rational) manager agent.

Service agent strategies
Since the agents perform information services and the
marginal cost of reproduction for such services is zero, we
assume that they set a reservation price of zero for perform-
ing their services. That is, it does not cost an agent anything
to perform a service.

Given that the service agents are selfish we can expect
them to adapt their bidding behavior so as to maximize their
profit. Specifically, it is in their best interest to use adap-
tive bidding strategies that exploit prevalent environmental
conditions by raising their quotes when the competition for
securing services is less, and lowering them as competition
increases. We define three adaptive bidding strategies for the
service agents. In all three strategies, the agents raise their
bidding price for a particular service if they have won the
previous auction for that service and lower their quote up to
their reservation price if they were unsuccessful in securing
the previous contract for the service.

The agents can adopt thelinear strategy (LB) where if
they win the previous contract for a service then they in-
crease their bid for that service by a constantγ from the
previous bid. On the other hand, if they lose the previous
contract, then they decrease their next bid for that service
by γ as long as this new bid is higher than their reservation
price for the service. Formally, the new bidding price set by
an agent using the linear strategy will be,

bid =

{
b + γ

If it won the last contract
for the current service,

max (b− γ, rs) otherwise.
(6)

where,b is the agent’s bid for the previous contract andrs

is its reservation price for the services.
The agents might want to be more aggressive in their bid-

ding and exploiting the current conditions by adopting the
impatient strategy (IB). Here, the agents vary their bid
sharply after winning or losing contracts. Say an agent has
won or lostk successive contracts for some services. The
agent’s next bid for the same service will be,

bid =


b + (γ + (k · δ))

If it won the last
k contracts for the
current service

max (b− (γ + (k · δ)), rs)
If it lost the last
k contracts for the
current service

(7)
whereδ is some constant. The value fork is reset to zero

when the agent wins after losing (or vice-versa) the previous
bid for a service.



Alternatively, the agents can also use adefensive strategy
(DB) for bidding. In this case, the agents are more cautious
while setting their future bids. If an agent wins or losesk
successive bids for a services, then it’s next bid fors will
be,

bid =


b + max ((γ − (k · δ)), 0)

If it won the last
k contracts for the
current service

max (b− (γ − (k · δ)), rs)
If it lost the last
k contracts for the
current service

(8)

Performance Metrics
Our goal is to determine which combination of strategies
would work better for a company and what are the relative
tradeoffs in the various combinations. However, determin-
ing what is best is not as simple as maximizing revenue be-
cause we must also considers issues of solution stability and
fairness. As such, we use the following performance metrics
for evaluating the different algorithms:

Completed workflows This metric determines the number
of workflows that the agents decided to invest in and suc-
ceeded in completing. In our context, this is a very im-
portant property as businesses would want to fulfill the
promises they make while accepting the contracts.

Company revenue This represents the total revenue that
the company generates by performing the different work-
flows. This metric gives us insights on the choices made
by the algorithms about which workflows to perform.
Clearly, this is one of the most important metrics in our
context as businesses always strive to maximize their
profit.

Agent profit This is the amount that the service agents get
paid by the manager agent. The agents prefer the bid-
ding policies that maximize their profits irrespective of
whether they are in the best interests of the company or
not.

Company profit This is the company revenue minus the
agent profit. That is, it is the amount that is left over af-
ter paying the service agents. The company might prefer
the pricing schemes that maximize the company’s profit
as long as they do not affect the total revenue that is gen-
erated.

Wasted effort We define wasted effort as the number of ser-
vices performed by the agents for workflows that were not
completed successfully.

Load distribution among agents This measures the num-
ber of services performed by the various agents in the sys-
tem over a period of time. A mechanism that distributes
this load evenly among all agents is more preferable as it
will scale better.

Revenue distribution among agentsThis measures the
distribution of the total profit generated for the agents.

Experimental Framework
We implemented our simulation software using NetLogo
(Wilensky 1999), a programmable modeling environment
particularly suited for modeling complex systems that de-
velop over time. Our experiments evaluate the relative effec-
tiveness of the different pricing and bidding strategies under
varying environmental conditions, from market settings to
monopolistic settings.

We define a set of 5 services for our tests. Each work-
flow is a sequence of services selected from this set. We
use a Poisson distribution function for generating new work-
flows in the system. The workflows are selected from a pre-
defined but randomly generated set of service sequences.
Each workflow has an associated profit value that the com-
pany gains at its completion, and a deadline that has a small
chance of being very close to the release time. We define
5 agents that are capable of performing a certain set of ser-
vices, and assume that each service can be performed in one
time step without any chance of failure. We set the envi-
ronment parameters such that there are around 50 live work-
flows for the 5 agents to consider and vary the capabilities
of individual agents to study the performance of the different
algorithms.

In our simulations, we set a pricing scheme for the com-
pany and a bidding strategy for all the agents, and then run
the system for 300 cycles. We test all nine possible pair-
ings. To ensure the correctness of our results that compare
the various strategies, the same set of randomly generated
data is passed to all the pricing-bidding strategy pairings
during each simulation. In each cycle, we randomly gener-
ate some workflows (based on the workflow arrival rate set
for the simulation), determine the candidate services for al-
location, rank these services, and auction off the best ones to
the agents. For each of the bidding strategies, we allow the
agents to explore and randomly generate a bid 5 percent of
the time. We have averaged our results over 50 simulations
for each experiment.

Test Results
Our experiments are aimed at ascertaining the relative mer-
its of the different pricing and bidding schemes presented in
this paper for the workflow scheduling problem. We repre-
sent the fixed, variable, and adaptive pricing strategies used
by the manager asFP , V P andAP respectively. The differ-
ent bidding policies adopted by the agents, linear, impatient,
and defensive, are represented asLB, IB, andDB respec-
tively. Thus, strategy pairAP DB in our results refers to
a system where the manager uses adaptive pricing and the
service agents bid using the defensive strategy.

Market System
We start by allowing all agents to perform all the services,
so the manager has the option to substitute one agent with
any other agent to control prices. Figures 1, 2 and 3 show
the performance of the various strategy pairs in this setting.

We notice that theFP strategy does not perform well for
any performance metric used to evaluate our system. This is
because the agents are performing services randomly since
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Figure 1: Company revenue for various strategies for market
settings. The error bars represent one standard deviation in
the results.
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Figure 2: Completed workflows for various strategies for
market settings.

the company offers identical rewards for all services. The
end result is that although the agents perform almost identi-
cal number of services for all pricing strategies, most of the
effort is wasted as very few workflows manage to finish all
their services within their deadlines. Consequently, the total
revenue generated for the fixed strategy is very small.

AP has a better workflow completion ratio thanV P for
every bidding scheme that an agent chooses. This suggests
that the adaptive scheme provides better incentives to the
agents for selecting the services belonging to workflows that
are nearing completion. However, we notice that finishing
more workflows does not translate into proportionally more
revenue for the company. In fact, we notice that in spite of
finishing fewer workflows, theV P strategy performs nearly
as well as theAP scheme when agents useDB and com-
fortably outperforms theAP schemes when the agents use
LB or IB. This suggests a preference for smaller workflows
as they are most likely to finish and generate some revenue,
in spite of them being low paying, by theAP strategy. On
the other hand, theV P strategy adopts a more liberal ap-
proach and prefers high paying workflows. This approach
also results in the agents making a significantly higher profit
when the company adopts theV P strategy as compared to
AP . The side effect of theV P strategy is that it also leads
to a lot of wasteful service execution. By contrast, theAP
strategy results in extremely low wasted effort.

Considering the bidding strategies, theDB strategy con-
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Figure 3: Wasted effort for various strategies for market set-
tings.
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Figure 4: Load distribution between agents for various
strategies over all experiments.

sistently generates more revenue and successfully finishes
more workflows for the company than any other strategy, ir-
respective of the pricing scheme selected by the manager.
When all agents are defensive in their bidding they are less
aggressive in increasing or decreasing their bid, and this pa-
tient approach rakes in more profit for the company in the
long run. It sustains the phase where agent bids are at or
around the reservation prices for services as set by the man-
ager, thereby facilitating many successful auctions for those
services in succession. Unfortunately, this approach does
not allow the agents to exploit the situations when little or
no competition exists by bidding highly. Consequently, they
make significantly lower profit withDB as compared toLB
or IB.

The load and revenue distributions for the system are plot-
ted in figures 4 and 5 respectively. The rightmost cluster in
both graphs represents the market system where all agents
can provide all services. It shows the difference between the
agents receiving the maximum and the minimum values in
the distribution. Since all agents are homogeneous in every
aspect, the variance in load and revenue distribution between
agents is minimal for true markets. Figure 1 shows the share
of one agent (agent 1) from the total generated profit for all
agents.

In Figure 6 we have placed the company’s and the agents’
profits within a game matrix. Each cell in the matrix defines
the utilities gained by the agents and the company for their
respective choices of bidding and pricing strategies in the
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Figure 5: Revenue Distribution between agents for various
strategies over all experiments.

Agents

Manager
FP V P AP

LB 9, 111 1235, 893 680, 1391
IB 4, 105 1359, 463 642, 1015

DB 5, 128 479, 1782 196, 2145

Figure 6: Game theoretic analysis of the system for market
system.

given setting. We see thatAP is the dominant strategy for
the manager in this context and, given that choice for the
manager, the rational choice for the agents would beLB.
Thus,AP LB is the dominant solution in the above setting.
However, the social welfare solution for the current settings
is AP DB.

Monopolistic System
We now test the performance of our system in monopolistic
settings, where there is exactly one agent (agent 1) in the
environment that can perform a particular service (service
1). In this case, the manager is at a loss against agent 1 as
there is no substitute to this agent for service 1. Agent 1 can
exploit this situation and maximize its own profit. We now
study the characteristics of the system under such situations.
The results are shown in figures 7, 8 and 9.

As can be expected, the system-wide performance drops
in a monopolistic setting. The company completes fewer
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Figure 7: Company revenue for various strategies for mo-
nopolistic settings.
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Figure 8: Completed workflows for various strategies for
monopolistic settings.
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Figure 9: Wasted effort for various strategies for monopolis-
tic settings.

workflows and generates less revenue while the agents in-
dulge in a high wasted effort and yield less profit. The only
agent that gains from the monopolistic setting is the monop-
olist. However, the relative performance of the various strat-
egy pairs for the monopolistic setting is still the same as that
for the market system.

The biggest difference between monopolistic and market
settings is in the load and revenue distribution, as shown
in figures 4 and 5 respectively. Figure 7 shows agent 1’s
share from the total agent profit. Since one agent carries the
workload of performing service 1 for all the workflows it
is, as expected, busier than the other agents. Even though
the services are selected randomly, the proportion of avail-
able service 1 services keeps increasing over time and so
the agent’s probability of being selected for execution also
increases. However, we see that agent 1 does not gain signif-
icant revenue from performing more services inFP as the
compensation for performing the services is much smaller.
With V P , the aggressive approach of selecting the highest
paying services at each time step results in service 1 being
selected for execution only if it pays higher than the others.
Since all services in a workflow yield equal compensation in
V P , the preference for service 1 is only slightly higher than
other services due its larger presence in the available ser-
vices population. So, the load on agent 1 is not significantly
higher than in a true market. However, agent 1 plays a role
in most workflows that are completed and so its share of the
revenue is very high. TheAP scheme allows the company



Agents

Manager
FP V P AP

LB 4, 52 966, 520 556, 911
IB 2, 47 758, 243 415, 563

DB 3, 57 656, 1174 303, 1606

Figure 10: Game theoretic analysis of the system for mo-
nopolistic settings.
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Figure 11: Company revenue for various strategies over all
experiments.

to be very selective in its choice of workflows and invest
only in those workflows that are most likely to finish. Un-
der such situations, the agents are not functioning optimally
most of the time. While functional, the common services are
shared uniformly by all the agents, but all the service 1 calls
go to agent 1. Consequently, the variance in the distribution
of load is large for this scheme, with agent 1 performing a
lot more services than the other agents. Agent 1 also ac-
crues more profit than the other agents in this scheme but it
is not as pronounced as with theV P scheme. The reason
for this relatively low revenue gain for agent 1 is that with
AP the agents perform fewer services than withV P . Also,
the performedAP services pay lower than those withV P .
Considering the results from the perspective of agent choices
regarding their bidding strategy, we find thatIB produces
greater profit for the agents thanLB, which in turn is better
for the agents thanDB. So, agent 1 wins more than other
agents in that same order.

An analysis of the monopolistic setting from the game
theoretic perspective, shown in figure 10, shows that here
too the dominant strategy for this scenario isAP LB, while
the social welfare strategy isAP DB.

All Systems
In this section, we show the results from all five different sets
of experiments with the environment settings ranging from
monopolistic to market system. For every pricing-bidding
strategy pair in each experiment. Figure 11 shows the total
revenue generated by the company which, as we might ex-
pect, drops as the system goes from a market system to a
monopoly. Similarly, figure 12 shows the total profit made
by all agents and we can see that their profit also drops as
the system becomes a monopoly. It is interesting to note,
however, that some the lines cross which implies that certain
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Figure 12: Agent profit for various strategies over all exper-
iments.
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Figure 13: Completed workflows for various strategies over
all experiments.

strategies have an advantage in a market system and others in
a monopoly. Figures 13 and 14 continue the expected trend
showing that the number of completed workflows increases
in a market system while the wasted effort decreases.

Figures 15, 16 and 17 show the game matrices for the
other experiments. For these scenarios as well we find that
the dominant solution isAP LB, while the social welfare
solution isAP DB.

Conclusions and Future Work
We have presented our adaptive market-based solution for
the distributed workflow scheduling problem. We compared
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Figure 14: Wasted effort for various strategies over all ex-
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Agents

Manager
FP V P AP

LB 8, 100 1262, 827 686, 1332
IB 3, 94 1326, 426 629, 975

DB 5, 120 541, 1710 214, 2103

Figure 15: Game theoretic analysis of the system with 2
agents capable of performing service 1.

Agents

Manager
FP V P AP

LB 7, 90 1272, 776 684, 1300
IB 3, 82 1247, 376 616, 909

DB 4, 103 592, 1647 247, 2019

Figure 16: Game theoretic analysis of the system with 3
agents capable of performing service 1.

fixed-price mechanisms to various adaptive pricing mech-
anisms and showed that adaptive agents generally produce
greater profit for the company and lead to a scalable load
distribution and an acceptable revenue distribution. Further-
more, we showed that a population with adaptive agents is a
dominant equilibrium among the possible population com-
binations. These findings confirm that distributed workflow
enactment in an enterprise will require adaptive agents in
order to provide both stability and profit maximizations.

This work represents only a first step in the development
of distributed workflow enactment protocols. There are sev-
eral important issues which this work has only started to
address but which need to solved. We first need to verify
that the stable solutions are indeed immune to exploitation
by mutant strategies. We are currently running experiments
to verify that these are evolutionary stable strategies. The
decision-making abilities of the agents are crude (even if ef-
fective). We are developing more complex utility-based de-
cision functions that the agents can use to make their deci-
sions. However, given the large uncertainty in the system—
we do not know which new jobs will arrive—it is unclear if
more sophisticated decision-making will lead to better agent
or system performance.

We also hope to extend the model so as to make it more
realistic. We can add features such as: agent failures, the
ability to decommit with or without penalty, workflows that
parallel BPEL4WS with the use of “fork”, “join”, “paral-
lel”, and “loop” primitives, services of varying time spans,
etc. Finally, we are considering the possibility of eliminat-
ing the manager agent entirely and have the service agents

Agents

Manager
FP V P AP

LB 6, 72 1245, 670 657, 1145
IB 2, 64 1103, 331 556, 789

DB 4, 80 652, 1483 274, 1917

Figure 17: Game theoretic analysis of the system with 4
agents capable of performing service 1.

negotiate among themselves to decide who is going to do
which service and how the revenue is going to be divided.

We believe that our basic architecture for distributed
workflow enactments likely to see widespread implementa-
tion in the near future because it re-uses all the workflow
knowledge that companies have generated for themselves
over decades of work and it provides a clean mapping to
the incentives of the employees/services and the company.
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