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1. OVERVIEW

Network formation was originally studied by Jackson and
Wolinsky [1]. We analyze a constructive model of network
formation that is particularly suited to exhaustive compu-
tation.

Our model deals with a fixed-size network where each in-
dividual in the network wants to minimize its distance to
the other individuals. Distance is measured as simply the
number of hops between individuals, and is considered infi-
nite if they are not connected. Building a link has a fixed
cost () which is in the same units as the measure of dis-
tance. We assume an individual will want to build a link iff
their decrease in total distance to the rest of the network is
greater than or equal to the cost to them for the link.

The network formation process begins with an empty graph
on N vertices and at each step a random not-yet-existing
edge is added from the set deemed feasible by the payment
rule. This is repeated until there are no more feasible edges
to add. A payment rule is a rule for which vertices have
to pay for the edge, how they split the cost, and how they
decide whether or not to do it. The payment rule deter-
mines which edges can be added in a given situation. If a
graph can be reached through a network formation process
(i.e., can result from a series of feasible transitions), then
we say it is reachable. The probability that a reachable
graph will appear is its reachability. Finally, any reach-
able graph to which no further edges can be added (given
a payment rule and «) is called a sink-graph. Since every
network formation process will necessarily end with a sink-
graph, our primary strategy for comparing payment rules in
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Figure 1: Partial ordering on rules.

Section 3 is to compare the attributes of the sink-graphs for
each payment rule.

We consider six different payment rules. Two natural
choices are that the edge might be paid for by one of the two
vertices it connects (S), or by both of them equally (BE). It
also may be split equally among the whole network (AE). We
may also modify the second two so that the cost is divided
up fairly, in proportion to how much each vertex benefits
from the new edge (BP and AP, respectively). In all the pre-
vious payment rules we assume the edge is not built unless
all payers agree. Finally, since the AE rule turned out to be
trivial (see Section 2), we added a modified payment rule
that only requires a strict majority of the network to be in
favor of building the edge (Pv). In each of the global pay-
ment rules (AE, AP, and PV), we also assume that any edge
that connects previously disconnected components can be
added, for otherwise the process would never get past the
empty graph.

2. THEORETICAL ANALYSIS

We have proven several interesting facts about these pay-
ment rules. We showed that the AE rule always deadlocks
(and is therefore absent from Section 3). We then demon-
strated a partial ordering of the six rules under a certain
kind of subset relation. Finally, we proved the presence or
absence of a certain extreme sink-graph under different rules.

The AE payment rule requires that for an edge to be built
each node in the network should be willing to pay + for the
edge, which means that their expected immediate value for it
should be at least §-. However, we have proven that for any
minimally-connected graph and not-yet-existing edge there
must be a vertex that cannot benefit from adding that edge,
and so will not be willing to pay §. The result is that
once the network formation process reaches a tree it cannot
proceed further. Therefore AE is omitted in most of what
follows.

We have also been able to prove the partial ordering shown
in Figure 1. The partial order is a kind of subset relation.
Given two payment rules X and Y, we say that X C Y if
for all a the feasibility of any transition under X implies



its feasibility under Y. This implies that for a fixed «, any
graph reachable under X is also reachable under Y.

All the arrows in Figure 1 have been proven, and all the
pairs of payment rules that are incomparable in the diagram
have been shown to be incomparable by example.

Finally, we have shown that a certain extreme type of
graph is a sink graph for some of the rules but not others. We
use the term “Lollipop Graph” to refer to any graph for which
N — 1 vertices form a clique, and the remaining vertex has
only a single edge. This graph is the largest possible graph
that can still be disconnected by removing a single edge, and
so seems inefficient for most applications. Surprisingly, we
have shown that for BE lollipop graphs are never sink-graphs,
for pv they are never sink-graphs if N > 5, but for AP, BP,
and s the lollipop graphs are sink-graphs for certain ranges
of a. This is unexpected both because it is a sink-graph
at all, and also because there are local and global payment
rules in each category.

3. STATISTICAL TESTS

We also investigate the payment rules statistically by ex-
haustively computing properties of all graphs on ten or fewer
vertices, and try to identify patterns that seem most amenable
to extrapolation to larger graphs. Most of our experimen-
tation was done by treating the network formation pro-
cess as an acyclic Markov chain, where the Markov states
are graphs, the transitions represent adding an edge to the
graph, and the transition probabilities are conditioned on
a. We used the nauty program to populate our database
with all 12,293,431 unlabeled graphs for 3 < N < 10, and
all 251,463,867 transitions between them. Unlabeled graphs
were used as an optimization (there are over 35 trillion la-
beled graphs of the same orders), and extra calculation in-
volving symmetries was necessary to ensure we were comput-
ing the same probabilities as would be obtained with labeled
graphs.

We used dynamic programming to compute the feasibil-
ity thresholds for each transition and payment rule. Using
these we then computed the reachability probabilities for
each graph and payment rule, conditioned on «. Having
this data, it was easy to identify sink-graphs, and to com-
pute the expected value of various graph attributes given
a payment rule and a. We compared the total count of
reachable graphs for each payment rule as « varies, the ex-
pected connectivity and unfairness of the sink-graphs, and
the probability that the sink-graph reached is regret-free.

The number of reachable graphs for each payment rule for
N =1 is plotted in Figure 2. The subset relationship de-
scribed in Section 2 is evident in the dominance relationships
between the lines in the plot. The line for AP dominates the
BP line, which itself dominates both s and BE. The pairs
of payment rules that are incomparable in Figure 1 have
intersecting lines in Figure 2.

The connectivity of a graph is, formally, the minimum
number of vertices that must be removed to disconnect it,
so it measures the stability of the network against vertex
failures. A disconnected graph has connectivity 0, a mini-
mally connected graph (e.g., a tree) has connectivity 1, and
a complete graph has connectivity N — 1. When examining
the expected connectivity of the sink-graphs for each pay-
ment rule, we found that (not surprisingly) the connectivity
decreases as « increases (though there are curious slight ex-
ceptions for each payment rule). Furthermore we found that

1014

=
=
S
= 1012
[oN
]
O
2
—% 1010
)
5]
]
~
1087\\\\\ Ll Ll
10° 10" 10
(0%

Figure 2: Number of reachable order-10 graphs for
each payment rule as a changes. Since the x-axis is
plotted logarithmically, the lines extend infinitely to
the left; at a = 0 all lines meet at the same value.

the s rule gives reliably less connectivity than the other four
rules, which had mixed relationships amongst themselves.

We define unfairness as the maximum difference between
any two vertices’ total distances to the rest of the graph.
When analyzing the expected unfairness of the sink-graphs
for each payment rule, we found that the s rule was worst
for nearly all a. The other local payment rules (BE and BP)
were better for small o (< 6), while the global payment rules
(AP and PV) were better for large o (> 20).

The final characteristic we analyzed was one we called
“regret-free”, which describes a graph for which all of the
existing edges are still worth adding. That is, for all edges
ij of the graph g, the transition from (g — ij) to ¢ is feasi-
ble. We computed the probability that the sink-graphs for
each payment rule would be regret-free. We found that the
probabilities are quite low for small « (in fact as the order
increases, the minimum probability seems to approach zero
for all payment rules), and slowly build up towards 1 as
« increases (eventually the only reachable graphs are trees,
which are trivially regret-free). The probabilities for the
three local payment rules seem to rise much faster than the
two global payment rules.

We also noted the strange fact that all of the regret-free
sink-graphs for N < 10 for all of our payment rules have
some symmetry in them (i.e., there is a non-trivial permu-
tation of the vertices that produces the same graph), which
is a relatively uncommon attribute in general.

4. CONCLUSION

Our work has so far dealt with only a small set of pay-
ment rules, and only networks with relatively few individ-
uals. Future work could explore through sampling whether
the statistical results in Section 3 apply to larger networks,
and could try to characterize other payment rules or families
of payment rules.
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