Preparing for Service-Oriented Computing: a
composite design pattern for stubless
Web service invocation

Paul A. Buhler®, Christopher Starr*, William H. Schroder*, and José M. Vidal?

1 College of Charleston, Dept. of Computer Science,
66 George Street, Charleston, SC 29424, USA
{buhlerp, starrc, schroderw}@cofc.edu

2 University of South Carolina, Computer Science and Engineering
Columbia, SC 29208, USA
vidal@sc.edu

Abstract. The ability to dynamically bind to Web services at runtime is becom-
ing increasingly important as the era of Service-Oriented Computing (SOC)
emerges. With SOC selection and invocation of Web service partners will oc-
cur in software at run-time, rather than by software developers at design and
compile time. Unfortunately, the marketplace has yet to yield a predominate
applications programming interface for the invocation of Web services. This re-
sults in software that is deeply ingrained with vendor-specific calls. This is
problematic because Web service technology is changing at a rapid pace. In or-
der to leverage the latest developments, code often needs to be heavily refac-
tored to account for changing invocation interfaces. This paper explores the
mitigation of this problem through the application of software design patterns.
Specifically, it details how a Web service architectural pattern, based upon the
composition of software design patterns, provides for implementations that in-
sulate the application code from the peculiarities of any specific vendor’s inter-
face.

1 Introduction

Distributed computing is undergoing revolutionary change as the worlds of Service-
Oriented Computing (SOC), Multiagent Systems (MAS), and Business Process Man-
agement (BPM) converge. Web services will be the foundational technology that will
underpin future distributed, internet-based computing systems. As the Semantic Web
matures, Web services will routinely advertise a semantically rich description of their
capabilities. These descriptions will likely be encoded in OWL-S, a semantic markup
language designed for Web services [1]. Exploitation of these trends will require
agile software structures that support the loosely coupled interaction of services that
are found and bound at run-time. Much theoretical and practical work remains to
transform this vision into reality, as change needs to occur at both the infrastructure
and application levels.



It has been said that the only thing constant is change. The only consistency in the
Web services space is provided by the reliance on a core set of open standards:
HTTP, SOAP, WSDL, and UDDI. Fortunately, the activities of most application
developers do not occur at the level of the standards themselves. Software developers
generate robust software systems by harnessing the power of software toolkits, which
insulate them from the standards. Unfortunately, the marketplace has yet to yield a
predominate toolkit represented by a standard Applications Programming Interface
(API) for dynamic, fully stubless invocation of Web services.

The lack of a standard API results in software that is deeply ingrained with ven-
dor-specific API’s. Generally, when working with stable technologies this does not
present a problem; however, Web service technology is changing at a rapid pace with
new tools and techniques frequently becoming available. In order to take advantage
of these latest developments, code often needs to be significantly refactored to ac-
count for changing interfaces. To compensate for this problem, we have used soft-
ware engineering principles and software design patterns to create an composite pat-
tern, which insulates Web service client code from the peculiarities of any specific
vendor interface. This approach enhances code stability while providing the flexibil-
ity to experiment with various approaches to the dynamic invocation of Web services.

This paper motivates the discussion of our design with an example of a typical dy-
namic invocation interface. It continues by providing a brief introduction to software
design patterns, followed by a discussion of their applicability to Web service tech-
nologies. Interestingly, just as meta-services can be achieved through the aggregation
of more primitive Web services, software design patterns can also be composed to
form larger abstractions. These aggregates can be recursively composed and ana-
lyzed, resulting in resilient software architectures. This background information is
used to facilitate a discussion of our prudent use of software design patterns in a suc-
cessful attempt at increasing the genericity of Web service client code. The paper
proceeds with an examination of an instantiation of our architectural pattern and
briefly reports on the use of Axis, WSIF, and JROM as a collective Web service
invocation toolkit. Finally, the conclusion summarizes our contribution and discusses
the pedagogical utility and future directions for this work.

2 A Motivating Example

Web service invocation follows the traditional Remote Procedure Invocation (RPI)
integration pattern as described in [2]. When viewed generically, RPI is an integration
style that achieves Application to Application (A2A) integration by allowing one
application to invoke a function published by a second application. The function in
application two, appears as a local function to application one. The underlying
mechanism which generates this transparency is based upon providing a function stub
to application one, that when called accesses a middleware layer which transports the
call and its associated data to application two. The generation of stub functions is
typically automated, with tools consuming an interface description of the target func-
tion and creating the stub veneer. From a Java Web service perspective, the interface
description is the WSDL file and the generation of stubs occurs with a tool such as



WSDL2JAVA. The stubs are typically generated during the coding stage of applica-
tion development. The reason for this is intuitive; the stubs are called directly from
the application code and need to be resolved at compile time.

SOC is based upon an underlying Service-Oriented Architecture (SOA). Figure 1
provides a description of the relationship amongst the major components of a SOA.
The SOA provides the mechanisms for Web service partners to be located and in-
voked at run-time. This obviously requires that more flexible integration styles be
developed to support the dynamic publish-find-bind pathways. Functionally, most
Web service toolkits provide some capability for late, run-time binding to Web ser-
vices. For example, the Glue toolkit from WebMethods [3] provides an IProxy class
that can bind to a WSDL description and invoke operations. Similarly, the Web Ser-
vices Invocation Framework from the Apache project [4] allows for dynamic invoca-
tion, as does the JAX-RPC package which is part of the J2EE Web services Devel-
oper Package [5].

Service Brokers maintain directories of service advertisements.

Broker

Publish Find Providers offer services and advertise them with a broker.

Requestors interrogate a service broker in order to
Service Service discover services that match a dgsircd specification.
. < The requester retrieves information from the broker
Provider | Bind |Requestor that allows it to bind to the provider's service. Once

bound, the requester can invoke the service.

Fig. 1. An illustration of the major functional components of a Service Oriented Architecture.

Unfortunately, seamless dynamic invocation is beyond the capability provided by
these toolkits for the simple reason that they are incapable of handling complex types
returned from the invoked service. This limitation is due to the fact that the returned
data must be unmarshalled from the SOAP message, which in Java is not possible
without having a compatible class that implements the serializable interface. In the
absence of appropriate classes, the Java run-time environment generates a
java.rmi.UnmarshalException. Ironically, the stub generation tools that are not re-
quired for dynamic invocation provide these missing classes.

By way of example, a publicly available Web service provides the current weather
forecast for a US zip code via a complex type [6]. Without generating a stub to hold
the returned WeatherInfo, code that invokes the Web service will generate an unmar-
shall exception. Ideally, there would be a uniform mechanism for handling this prob-
lem; however, each toolkit has its own workaround. A singular solution will not be
developed until there is broad realization of this problem. Statements such as, “The
benefits of using dynamic proxies instead of generated stubs are not clear — it’s
probably best to stick with generated stubs”[7, pg 339] only exacerbate the situation.
Ultimately, the net result is that Web service client code becomes highly dependent
upon specific toolkit APIs, which leads to tighter coupling between the code and
toolkit than is desirable. The following Java code snippet illustrates a typical work-
around utilizing the webMethods Glue toolkit.



public class dynamiclnvocationExample

public Document dynamiclnvocationWithGlue()
throws Throwable {
String wsdIName =
“http://www.ejse.com/WeatherService/Service.asmx?WSDL";
String operation = "GetWeatherinfo™;
String args[] = { "29424" };

// create a SOAP interceptor
SOAPInterceptor responseHandler = new SOAPInterceptor();

// register the interceptor to catch incoming responses
ApplicationContext.addlInboundSoapResponselnterceptor(
(1SOAPINnterceptor)responseHandler );

try {
// obtain a proxy to the Web service via its WSDL
IProxy proxy = Registry.bind( wsdIName );

// stubless invoke of the operation
proxy.invoke( operation, args );

catch( java.rmi.UnmarshalException e ) {
// do nothing, the UnmarshalException is expected

}

// generate an XML document containing the SOAP body
return new Document( responseHandler.getResponse() );

}
}

class SOAPInterceptor implements ISOAPInterceptor {
private Element soapBody;

public void intercept( SOAPMessage message,
Context messageContext ) {

try {
soapBody = message.getBody();

catch( Exception e ){
System.err._printin( e.toString());

}
}

public Element getResponse(){
return soapBody;

}
}

In the above code sample, it can be seen that the code negates the effect of the un-
marshall exception by catching it. The SOAP interceptor captures the result of the
Web service invocation. The dynamiclnvocationWithGlue() method, returns a stand-
alone XML document which contains the body of the SOAP response message. The
application can access the returned data via standard XML processing functions by



loading the document into a DOM tree. It is worth noting that this sample Glue-based
client uses the toolkit at two levels of abstraction, the Glue level for the dynamic
invocation, and the SOAP level for the capture and handling of the response. It
should be apparent that this code is not portable to another toolkit and would need to
be heavily refactored if a toolkit change was required.

In order to complete the explanation of what transpires, a sample of a returned
XML document follows:

<?xml version='1.0' encoding='UTF-8'?>
<soap:Body>
<GetWeatherInfoResponse
xmlns="http://ejse.com/WeatherService/'>
<GetWeatherInfoResult>
<Location>Charleston, SC</Locations>
<IconIndex>11</IconIndex>
<Temprature>43°F</Temprature>
<FeelsLike>35°F</FeelsLike>
<Forecast>Light Rain</Forecast>
<Vigibility>Unlimited </Visibility>
<Pressure>29.99 inches and falling</Pressure>
<DewPoint>40°F</DewPoint>
<UVIndex>2 Minimal</UVIndex>
<Humidity>89%</Humidity>
<Wind>From the Northeast at 18 gusting to 23 mph</Wind>
<ReportedAt>Charleston, SC</ReportedAts>
<LastUpdated>Wednesday, February 25, 2004, at 2:56 PM
Eastern Standard Time.</LastUpdateds>
</GetWeatherInfoResults>
</GetWeatherInfoResponse>
</soap:Body>

Since the application needs to handle the XML directly, it is pertinent to question
how the application knows what types are represented by the returned data. The an-
swer to this question is found in the Web service’s WSDL file, which provides an
XSD definition for the response message. The definition of the of the GetWeatherIn-
foResult is found below:

<s:complexType name="WeatherInfo'>
<s:seguence>
<s:element name="Location" type='s:string" />
<s:elementname="I1conlndex" type="s:int" />
<s:element name=""Temprature"™ type="s:string"” />
<s:element name="FeelsLike" type='s:string" />
<s:element name="Forecast" type='s:string" />
<s:element name="Visibility" type="s:string"” />
<s:element name="Pressure™ type="s:string" />
<s:element name="DewPoint" type="'s:string" />
<s:element name="UVIndex" type='s:string" />
<s:element name="Humidity" type="s:string" />
<s:element name="Wind" type="s:string” />
<s:element name=""ReportedAt" type="'s:string" />
<s:element name="LastUpdated" type="'s:string" />
</s:sequence>
</s:complexType>



This example illustrates the need for a Java-typed, in-memory representation for
instances of XML Schema typed data. The Java Record Object Model (JROM) [8]
provides an intermediate in-memory representation that is not object-based, provides
more convenience than dealing with XML directly, and most importantly supports
Java’s type system. As pointed out in [9] JROM can be used to hold XSD-defined
XML data in memory. JROM utilizes a tree structure and is able to accommodate
both simple and complex schema definitions. Simple JROM values map Schema
types onto Java types, similar to the Java Architecture for XML Binding (JAXB). To
illustrate the intermediate nature of a JROM representation, consider that a JROM-
FloatValue is used to link the Schema type float to Java’s float primitive-type. Thus
the left-hand side of an assignment operator needs to be typed as a Java primitive
float when storing the contents of a JROMFloatValue.

All complex types are mapped to the JROMComplexValue, a tree structure which
contains simple JROM values at its leaves. The key to leveraging JROM within the
context of dynamic Web service invocation is to ensure the appropriate serializers
and deserializers are available to transform input and output data to JROM represen-
tation. To extend the example, the XML document containing the SOAP response
message is mapped to a JROM structure, which contains Java typed data extracted
from the response with the aid of the WeatherInfo XML Schema definition. At the
design level the example illustrates the need for an architectural pattern that decoup-
les the call-response system from the client invoking the Web service.

3 Software Design Patterns

Obiject oriented design patterns are design solutions to commonly occurring software
design problems, codified and cataloged for reuse. The design pattern specifically
names, abstracts, and identifies the key aspects of a common design problem that
make it useful for creating a re-usable software component design. Patterns identify
the participating classes or objects, their roles and collaborations, and the distribution
of responsibilities with a focus on a particular object-oriented design problem or
issue.

Design patterns are discovered through the experiences of well-practiced architects
and designers, who in collaboration engage in the process of documenting and cata-
loging new patterns to be shared with the software community. In doing so, the set of
software design patterns continues to grow, capturing elegant solutions and forming a
richly expressive language for communicating designs.

The software design pattern movement was inspired by the civil architect, Christo-
pher Alexander [10] in the early works of Eric Gamma and subsequently in the now
revered Gang of Four text by Eric Gamma, Ralph Johnson, John Vlissides and Rich-
ard Helm, Design Patterns: Elements of Reusable Object Oriented Software [11]. The
design patterns community has proliferated and continues to expand as people con-
tinue to discover and document both new design patterns and find new abstractions in
which to apply the patterns concept.

Design patterns are intended to be reusable and adaptable to new applications in
which similar design problems exist. As such, design patterns could be incorrectly



construed as reusable software components, which they are not. Both their elegance
and their practical value are attributable to the abstraction of a salient solution from
the source code that inspired the discovery of the pattern. The documentation of a
new pattern describes the solution it provides without the details of a specific applica-
tion or a programming language.

In addition to the utility of design patterns as solutions to commonly occurring de-
sign problems, design patterns tend to support certain design philosophies, which
tend to be a reflection of the current consensus of the design community. Within the
original 23 design patterns cataloged by the Gang of Four, the design philosophies of
low coupling, high cohesion, pure typing, polymorphism over inheritance and the
class substitution principle pervade. In some instances, the consequences of using a
design pattern can bring about conflicts among competing design goals. For example
the use of a design pattern can require the user to select between object transparency
and object safety. The conflicts and tension in both design solutions and design phi-
losophies exposed by the use of design patterns should be relished as an added benefit
of patterns and not as an unnecessarily complicating issue.

Structurally an object oriented design pattern is a collection of interrelated classes
or objects that provide a possible solution to a set of problems that match the intent of
the pattern. The intent of the pattern provides the meaning for the pattern’s structure
and the realization of the pattern’s motivation. The codification of each design pat-
tern follows a template to clearly document, classify and communicate the pattern to
the software community. A process of mining and polishing new design patterns is
well documented and used regularly by members of the pattern community at both the
PloP (Pattern Languages of Programs) and EuropeanPLoP conferences. The Hillside
Group also provides a distribution mechanism for software design patterns to the user
community [12].

Since their introduction to the software community as software design patterns, the
pattern concept has been applied with coarser granularity at the architectural level as
architectural patterns [13] and the application domain level as framework patterns
[14]. The application of patterns to software development process has also seen in
analysis patterns [15] and in the POAD method [16].

The utility of software design patterns for Web service design has matched particu-
lar patterns such as Adapter, Facade and Proxy to the Web service design issues of
control, availability, performance, security and scalability [17]. There is an underly-
ing assumption that design patterns can allow developers to reduce the gap between
development and deployment during these times of rapid technology change.

4 Trends Toward Composition

Just as Web services are components intended to be composed, there is a growing
realization that design patterns can be composed or aggregated into larger units. As
early as 1997, it was shown that composite patterns could possess a set of characteris-
tics that exceeded those of the individual contributing patterns [18].

In the composition of two design patterns, one pattern may use or refine the second
to form a desired composite behavior, else it is said to conflict with the other pattern.



The Uses Relation, Refines Relation and Conflicts Relation, form a classification of
the relationships in pattern composition [19]. It is expected that the majority of suc-
cessful pattern compositions will exploit the Uses Relation in the composition of
larger design elements.

For an engineering approach to pattern composition, a methodology for pattern
composition was needed to systematically produce composites to leverage composite
patterns as the building blocks of design artifacts. Behavioral and structural ap-
proaches to design pattern composition have been suggested, providing methodolo-
gies for the composition of patterns [16, p 19]. The behavioral approach is accom-
plished using object interaction specifications. The structural approach uses the class
diagrams for each pattern to be composed. In both methods, care must be taken to
ensure that the result of the composition does not introduce unexpected behaviors
from the composite pattern. A correctness proof of composition can demonstrate that
the expected behaviors of the contributing patterns exist in the composite and that the
composition does not introduce new and unexpected behaviors [20].

Examples of the trend toward composition include enterprise integration patterns,
which emphasize the architecture and design of enterprise information systems from
collections of patterns relevant to that domain, and application frameworks, which
contain multiple patterns with extension points for application development [21]. In
these and other examples, the use of patterns and pattern compositions has catalyzed a
shift in the design paradigm from OOD to a pattern-oriented design.

4.1 Pattern-Oriented Design

The composition of patterns provides flexible and arguably elegant design solutions,
which can be used as primary design components and not just refinement for solu-
tions during refactoring. The Pattern Oriented Technique is an object oriented design
approach which introduces patterns into the design process after designers recognize
in the class diagram the need for the solution a pattern will provide [22]. The notion
that patterns and pattern compositions can be used as premier design components for
design creation, changes the design approach to use larger-grained design compo-
nents. This approach is used in the Pattern-Oriented Analysis and Design (POAD)
technique [16].

4.2 \Web Service Patterns

Design patterns specific to Web service architectures are emerging to form the basis
for a POAD approach within the emerging paradigm of SOC. Specific patterns for
Web services and Web service architectures have been documented to facilitate the
rapid deployment of Web services in the support the communication pathways of
“publish-find-bind” [23]. Addressing the problems of communication in service ori-
ented applications is the major contribution of the Web service pattern collection. The
Architecture Adapter pattern, solveing the communication problem, is one such pat-
tern that creates a connection between layered (tiered) and service-oriented architec-
tures.



Using an Architecture Adapter it is possible to decouple the interface dependencies
between a Web service and the users of that service. The deployment of Architecture
Adapters is also trivial using tools such as WSDL2Java, relieving the designer from
specifying a hand-coded solution to convert the WSDL interface and methods to
handle the conversion of a language-specific request to a SOAP request. [23, p69]
The Architecture Adapter demonstrates the utility of design patterns in achieving
loosely coupled designs in a Web service environment.

4.3 Stubless Web Service Invocation Architecture

The development of a truly dynamic Web service invocation implementation has
been driven by the design goals of simplicity, flexibility, and extensibility. It is desir-
able to develop this capability based upon existing, open industry-standard Internet
technologies without adding unnecessary layers of complexity. To isolate the appli-
cation interface from its implementation, a Composite Pattern for Web service Invo-
cation (CPWSI) was constructed using a composition of design patterns.

The CPWSI was designed, then initially implemented in Java as a thin-layer atop
the Axis engine encapsulating the engine’s client invocation details and providing a
simple interface to make dynamic service calls. Knowing that the Axis platform is
only one of many different platforms in the Web services space, it was important to
separate this prototype’s interfaces from its implementation so that various other Web
service APIs could be plugged-in as needed to maximize its flexibility. To function
as a generic interface for Web service invocation, the CPWSI was designed to be
extensible to accommodate changing Web service invocation APIs without compile
time dependencies for the application.

To achieve the desired level of flexibility and extensibility for the CPWSI, the
overall class structure of the design Java code is provided by the Bridge pattern. The
Bridge is a structural pattern with the intent to decouple an abstraction from its im-
plementation so the two can vary independently [11]. The decoupling avoids a per-
manent binding between an abstraction and its implementation allowing the imple-
mentation to be selected or switched at runtime. In the Bridge the abstraction and the
implementation are maintained in independent generalizations (inheritance hierar-
chies), allowing each to be arbitrarily extended without impacting the other. The
Bridge provides the structure for run-time selection of Web service invocation for
existing and future API implementations, bringing design stability to Web service
applications in a rapidly changing technology environment.

Figure 2 illustrates the classes, associations and dependencies of the Bridge pat-
tern, separating interface from implementation. The two distinct inheritance hierar-
chies are rooted by the Abstraction and the Implementor classes. The Abstraction is
represents the public interface to the entity being implemented. The client class deals
only with this Abstraction. As shown, it is possible to extend and refine the abstrac-
tion as needed. The Abstraction can be represented through an abstract class which
provides a mechanism to aggregate references to one or more implementations pro-
vided by the Implementor class. The Abstraction’s methods may be public, protected
or abstract depending upon the specific context. The Implementor encapsulates



within its hierarchy all the specifics of a particular implementation of the abstraction.
The implementation remains encapsulated but supports the semantics of the public
interfaces of the abstraction. The flexibility of this approach is clear as several Im-
plementors could exist and be switched in and out at runtime as needed. The Imple-
mentor can be represented through an interface with possibly many other classes
realizing that interface with concrete implementations.

Client [--> Abstraction AL Iﬁzl;[te;zlmfor
Operation( ) Operation( )
? | |
Refined Abstraction Concrete Concrete
Implementor A Implementor B

Factory Method( )

Operation() Operation()

Fig. 2. The Bridge pattern separates the abstraction of the Web service invocation from its
implementation, eliminating compile time dependencies of the APIs from the Web service
application. The Bridge provides the core architectural element for the Web service invocation
architecture pattern.

Additional flexibility can be derived by introducing a Factory Method pattern, il-
lustrated in Figure 3. The Factory Method is a creational design pattern which defers
the instantiation of a product to subclasses localized external to the client application
[11]. The pattern has applicability when the client cannot anticipate the class of ob-
jects it needs until runtime, which is integral to the CPWSI.

) Creator
Client |------------ e >
Vi Create()
| Product Factory Method( )
<<creates>> Concrete Creator
| Concrete Product [&-----------
Factory Method( )

Fig. 3. The Factory Method pattern delegates responsibility for class creation to subclasses
external to the client application, allowing the client to defer binding to a particular Web ser-
vice invocation class until runtime.

The composition of the Factory Method and the Bridge further decouples clients
from the concrete implementations and enables the choice of implementation to be



made based upon some runtime condition. Figure 4 shows the composite of the
Bridge and Factory Method patterns. The Bridge provides the separation of responsi-
bilities of interface specification from a potential set of implementations, allowing
each to vary independently. The Factory Method provides the mechanism for isolat-
ing the instantiation mechanism of each implementation class so the client application
can remain compile-time independence from all implementations, requesting a par-
ticular implementation class at runtime.

In the composition the Implementor interface of the Bridge pattern is analogous to
the Product interface of Factory Method since the products of the Factory Method
pattern are the implementations of the interaction represented in the Bridge pattern.
Without the Factory Method the client would be more tightly bound to the implemen-
tation selection of the Abstraction. The Factory Method pattern isolates the client
from the concrete implementors.

ettt Clent f----=-=====--=-=----5
: i
= ¥
v - <<interface>> Cf”@ﬂ Tor
Abstraction 1.+ Implementor
Operation( ) Operation( ) Create()
Factory Method(')

S

. Concrete N N
Refined Abstraction Implementor A | S<cfeates>> [Concrete Creator A
Factory Method( ) Opemﬁon( ) Factory Method( )
Concrete

Implementor B | S<creates>> [ Concrete Creator B

R )
Operation() Factory Method( )

Fig. 4. The composition of the Bridge and Factory Method patterns produce the design archi-
tecture for stubless Web service invocation. The Bridge separates the choice of Web service
APIs from a client interface for Web service invocation. The Factory Method separates the
instantiation classes from the client for runtime dispatching of a particular API binding.

The structural composition of Factory Method into the Bridge also exploits the
parallel class hierarchies. The class hierarchy, Implementer, of the Bridge Pattern
defines the implementation classes. The class hierarchy, Creator, of the Factory
Method selects the Factory Method for instantiating a particular implementation of
the Product abstraction. The behavioral composition of the Factory Method with the
Bridge decouples the client from the concrete implementations and enables the choice



of implementation to be made based upon some runtime condition. The create method
of creator would be parameterized for the selection of a particular implementation.

5 An Architectural WS Invocation Pattern

The resulting composite of the Bridge and Factory Method patterns provides an agile
software design for the decoupling of the invocation services that are found and
bound at run-time. The composition maintains the separation between the Web ser-
vice invocation technologies and the client application. Figure 5 illustrates the realiza-
tion of the CPWSI.

oo mmmmmmmmmmm— o Client f-------====-=------- \
i i
[} 1
i A4
¥ =cnterface>> WS InvokerImpFactory
WSInvoker 1.* WSInvokermp! R E
e ; WSInvokerEngine()
Operation( ) Operationlmp( ) W' STnn /ewﬂm‘o(y? )
DynamicWSInvoker WSInvokerImpA | S<creates>> WSInvokerImpAFactory
Operation() Operationlmp() WSInvokerFactory( )

Fig. 5. The composite design pattern for stubless Web service invocation.

5.1 WS Invocation Pattern Instantiation

The abstract class WSInvoker fulfills the role of the Abstraction in the Bridge pat-
tern with the concrete class DynamicWSInvoker as the RefinedAbstraction by extend-
ing WSInvoker. The interface WSInvokerimpl forms the root of the implementation
hierarchy fulfilling the role of the Implementor in the Bridge pattern. For this
particular prototype, the concrete class WSInvokerlmplA, which implements the
WSInvokerlmpl interface, provides a Concrete Implementor. An abstract Factory
Method class, WSInvokerimplFactory, encapsulates the creational details of the
specific implementation, decoupling DynamicWSInvoker from the WSInvokerimplA.
The WSInvokerImplFactory also provides a Concrete Creator class to dynamically
select among a set of possible factory methods to bind one of potentially many
WSInvokerimpl implementations. The WSInvokerimplFactory requires an instance of
a Properties bundle, which it uses to lookup the desired implementation at runtime.



The client code need only concern itself with the public interface of DynamicWS-
Invoker. Clients which utilize the CPWSI provide a Properties instance that contains
the property WSI_IMPL, which specifies the desired runtime implementation. The
client is also responsible for supplying the URL for the WSDL of the desired Web
service, the Service Name, Port Name, and Operation Name. These last three pa-
rameters form a tuple, which uniquely identify a specific service endpoint within the
given WSDL specification. The last input to the DynamicWSInvoker is an array of
Obijects that contains the input parameters to the Web service. The order of the Ob-
jects in the array is defined by the parameterOrder attribute in the WSDL file. Upon
return, the client is presented with a JROM structure that contains the Web service
response. The CPWSI has been successfully used with Axis, WSIF, and JROM as a
collective Web service invocation toolkit.

6 Conclusion

This paper has presented an engineered solution for completely stubless Web service
invocation. As discussed, stubless Web service invocation will become more preva-
lent as the SOC paradigm is widely adopted. The CPWSI described in the paper has
been used for rpc/literal Web services; work remains to be done to support doc/literal
service partners. During the design process, a variety of Web service toolkits were
examined in an effort to construct a minimal, yet inclusive interface for the Dy-
namicWSInvoker. We anticipate that the composite design pattern will prove durable
as technologies change underneath it.

From a pedagogical perspective, the CPWSI is appropriate case study material for
a graduate-level software design patterns course. The CPWSI leverages the latest
research on the composition of design pattern and presents a reasoned solution to an
easily demonstrated problem. Our experience indicates that students are more apt to
become engaged in discussions of software design patterns when they are grounded
in practical problems.

Lastly, we anticipate integrating our development efforts with others who are
working in the semantic web services community. To date, the activities of this group
have been top-down and focused on generating the mechanisms for encoding seman-
tically- rich descriptions of Web services. As more robust semantic matching capabil-
ity emerges, the need for a stubless invocation mechanism will become obvious.

7 Acknowledgements

This work is supported by the U.S. National Science Foundation under grant IIS
0092593 (CAREER award).



References

(1]
(2]
(3]
(4]
(5]
(6]

[7]
(8]

(9]

[10]
[11]

[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]
[22]

[23]

The OWL Services Coalition. OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

Hohpe, G. and Woolf, B. Enterprise integration patterns : designing, building, and
deploying messaging solutions. Addison-Wesley, Boston, 2003.

webMethods, Inc. Glue Overview, http://www.webmethods.com/solutions/wM_Glue/.
Apache <Web Services /> Project. Introduction to WSIF, http://ws.apache.org/wsif/.
Sun Microsystems, Inc. Java Web Services Developer Pack,
http://java.sun.com/webservices/webservicespack.html.

EJSE, Inc. Weather XML Web services,
http://www.ejse.com/services/weather_xml_web_services.htm.

Monson-Haefel, R. J2EE Web services. Addison-Wesley, Boston, 2004.

IBM Alphaworks. Java Record Object Model (JROM),
http://www.alphaworks.ibm.com/tech/jrom.

Mukhi, N., Khalaf, R. and Fremantle, P. Multi-protocol Web Services for enterprises and
the Grid. In Proceeding of Euroweb 2002, 2002.

Alexander, C. The timeless way of building. Oxford University Press, New York, 1979.
Gamma, E. Design patterns : elements of reusable object-oriented software. Addison-
Wesley, Reading, Mass., 1995.

The Hillside Group. Patterns Library, http:/hillside.net/patterns.

Buschmann, F. Pattern-oriented software architecture : a system of patterns. Wiley,
Chichester ; New York, 1996.

Johnson, R.E. Documenting frameworks using patterns. In Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), ACM Press, 63-70, 1992.

Fowler, M. Analysis patterns : reusable object models. Addison Wesley, Menlo Park,
Calif., 1997.

Yacoub, S.M. and Ammar, H.H. Pattern oriented analysis and design : composing pat-
terns to design software systems. Addison-Wesley, Boston, MA, 2004.
Hewlett-Packard. Applying Design Issues and Patterns in Web Services,
http://www.devx.com/enterprise/Article/10397.

Riehle, D. Composite Design Patterns. In Proceedgins of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM Press,
218-228, 1997.

Noble, J. Classifying relationships between object-oriented desgin patterns. In Austri-
alian Software Engineering Conference (ASWEC), 1998.

Dong, J. Representing the Applications and Composition of Design Patterns in UML. In
Proceedings of the 2003 ACM Symposium on Applied Computing, ACM Press, 1092-
1098, 2003.

Larsen, G. Designing component-baed frameworks using patterns in the UML. Commu-
nications fo the ACM, 42(10):38-45, 1999.

Ram, D.J., Raman, K.N.A. and Gururasad, K.N. A pattern oriented technique for soft-
ware desgin. ACM SIGSOFT Software Engineering Notes, 22(4):70-73, 1997.

Monday, P.B. Web Service Patterns: Java Edition. APRESS, 2003.




