
Enacting BPEL4WS Specified Workflows with
Multiagent Systems

Paul A. Buhler
Computer Science Dept
College of Charleston

Charleston, SC 29424 USA

pbuhler@cs.cofc.edu

José M.Vidal
University of South Carolina

Computer Science and Engineering
Columbia, SC 29208, USA

vidal@sc.edu

ABSTRACT
This paper describes our development of a distributed,
functionally equivalent agent-based workflow enactment
mechanism from a BPEL4WS specification. This work
demonstrates that BPEL4WS can be viewed as a description of the
social order of a collection of agents, where the agents serve as
proactive proxies for the underlying passive Web services.
Although the Semantic Web initiative is working toward
semantically rich descriptions of Web services, which can be
reasoned about by agents, the current state-of-the-art does not yet
allow for collections of agents representing semantic Web services
to organize themselves to enact workflows. Therefore, this work is
critically important as it serves as a bridge from existing, static
views of workflow enactment to future, agent-based, dynamic
workflow engines.

1. INTRODUCTION
This paper details the design and development of an open,
distributed, agent-based workflow enactment mechanism utilizing
BPEL4WS [2] as the specification of the Multiagent System
(MAS). The impact of this work is broad, as it cuts a swath across
many existing and emerging technologies; for example, Business
Process Management Systems, Web services, Internet Agents,
application integration, and XML-based coordination mediums.
Currently, two trends are changing the way businesses interact
with their environments. The first of these trends is the
incorporation of real-time data into business processes. Corporate
leaders believe that having the ability to adapt their processes in
near real-time will provide a competitive edge; however, the
introduction of environmental dynamics may simply destabilize
business processes because the sociality of the business process is
not typically recognized. The second trend is the dynamic

realignment of business partners enabled by advances in
information technology. The need for adaptive processes is being
driven by the demands of e-commerce in both B2B and B2C
spaces.
Initial B2B automation activities were centered on Electronic Data
Interchange (EDI) initiatives. More recent work in the B2B space
has focused on the development and deployment of ebXML
(electronic business XML). With both EDI and ebXML the
collaborating business partners predefine the terms of their
electronic interaction. As discussed by Jenz, these technologies
enforce regulated B2B interaction and as such, they create closed
communities of business partners. [18]. In comparison, views
toward virtual organizations require flexible, on-the-fly alignment
of business partners; in other words, adaptive workflow
capabilities. These loose collaborations of business partners
operate in open, non-regulated B2B/B2C scenarios where pre-
negotiated collaboration agreements are a hindrance in these
environments [18].
Business process management software is gaining momentum due
to the emergence of a de facto standard for describing a business
process as compositions of Web services. This standard is named
BPEL4WS, which is an acronym for Business Process Execution
Language for Web services. In our earlier works [13],[12],[24],
[11] we have explored the relationship between Web services,
Multiagent Systems (MAS), and workflows. Our vision is to
create adaptive workflow capability through decentralized
workflow enactment mechanisms that combine Web service and
agent technologies.
The applicability of MAS to workflow enactment has previously
been noted, for example [23]; however, it is only recently that the
notion of using passive Web services as externally defined
behaviors of proactive agents has become palatable. Besides
differentiating Web services and agents based upon a measure of
proactivity, there are several other important distinctions worth
noting. Some of the distinguishing characteristics provided by
Huhns are: Web services know only about themselves, they do not
possess any meta-level awareness; Web services are not designed
to utilize or understand ontologies; and Web services are not
capable of autonomous action, intentional communication, or
deliberatively cooperative behavior [17]. In contrast, agents
possess all of these capabilities.
Agents can be viewed as independent applications that provide

services to one another through loosely coupled, asynchronous
message exchange. Agents are able to take advantage of the non-
blocking nature of their messaging by overlapping other
processing with their communicative acts. The agent uses its
autonomy to determine what work to perform; however, we can
envision an agent searching for ways to optimize the workflow in
which it is engaged. This might occur through finding other
service partners that provide better quality of service, or learning
from its interaction histories with existing partners so as to
maximize the utility of their future interactions.
This paper will first detail a sample BPEL4WS workflow that will
serve as a running example throughout the remainder of the paper.
Next, a discussion of the architecture and design of the distributed
enactment mechanism is presented. This is followed by an
examination of the hybrid coordination model used. The
discussion proceeds with detail about the design of the workflow
agents. The paper provides information on how the enactment
mechanism is configured, including an examination of the
configuration data that is consumed by the workflow agents.
Finally, the paper concludes with a discussion of lessons learned,
insights gained, and future work.

2. A SAMPLE BPEL4WS WORKFLOW
BPEL4WS is an XML-based defacto standard that allows the
specification of a workflow where the activities are defined by
Web service invocations. BPEL4WS has been submitted to
OASIS for standardization and in the future will be known as WS-
BPEL. A complete description of BPEL4WS is beyond the scope
of this paper; however, the following discussion should provide
enough background to enable understanding of the sample
workflow.
BPEL4WS files specify the coordination of control and data
between service partners that represent underlying Web services.
Control constructs such as sequence and split-join are represented
by XML tags that delineate control blocks. For example, the
actions found between a <flow>, </flow> tags are to be executed
concurrently. BPEL4WS defers to the underlying WSDL for the
specification of the data that is exchanged by the service partners.
The messages exchanged with a Web service are designated by
variables within the BPEL4WS file. Assignment and copy
operations between variables allows data to be manipulated and
passed between Web services.
Often initial research efforts are directed toward solving “toy”
problems. The example workflow described below serves this
purpose. Abstractly, the workflow consumes two parameters, a
stock symbol and a country name. The result of the workflow is a
quote for the stock localized into the currency of the given
country. For example, providing ‘CSC’ and ‘Switzerland’ will
return the price for a single share of Computer Sciences
Corporation stock in Swiss Francs.
The example workflow encoded in BPEL4WS follows. A few
items to note, bold-face text is used to designate the control
constructs and workflow activities, the remaining text describes
the data-centric coordination of messages exchanged between the
partners and their Web services. The BPEL4WS has been
simplified by removing attributes that do not help clarify the
example.

<process>
 <partners>
 <partner name="requestor"/>
 <partner name="stockQuoteProvider"/>
 <partner name="currencyExchangeProvider"/>
 <partner name="simpleFloatMultProvider"/>
 </partners>
 <variables>
 <variable name="request"/>
 <variable name="response"/>
 <variable name="stockQuoteProviderRequest"/>
 <variable name="stockQuoteProviderResponse"/>
 <variable name="currencyExchangeProviderRequest"/>
 <variable name="currencyExchangeProvidrResponse"/>
 <variable name="simpleFloatMultProviderRequest"/>
 <variable name="simpleFloatMultProviderResponse"/>
 </variables>
 <sequence>
 <receive name="request"
 partner="requestor"
 operation="requestLookup"
 variable="request"
 createInstance="yes">
 </receive>
 <assign>
 <copy>
 <from variable="request" part="symbol"/>
 <to variable="stockQuoteProviderRequest"
 part="symbol"/>
 </copy>
 <copy>
 <from expression="'usa'"/>
 <to variable="currencyExchangeProviderRequest"
 part="country1"/>
 </copy>
 <copy>
 <from variable="request" part="country"/>
 <to variable="currencyExchangeProviderRequest"
 part="country2"/>
 </copy>
 </assign>
 <flow>
 <invoke name="getStockQuote"
 partner="stockQuoteProvider"
 operation="getQuote"
 inputVariable=
 "stockQuoteProviderRequest"
 outputVariable=
 "stockQuoteProviderResponse">
 </invoke>
 <invoke name="getExchangeRate"
 partner="currencyExchangeProvider"
 operation="getRate"
 inputVariable=
 "currencyExchangeProviderRequest"
 outputVariable=
 "currencyExchangeProviderResponse">
 </invoke>
 </flow>
 <assign>
 <copy>
 <from variable="stockQuoteProviderResponse"
 part="Result"/>
 <to variable="simpleFloatMultProviderRequest"
 part="f1"/>
 </copy>
 <copy>
 <from variable=
 "currencyExchangeProviderResponse"
 part="Result"/>
 <to variable="simpleFloatMultProviderRequest"
 part="f2"/>
 </copy>
 </assign>
 <invoke name="multiplyFloat"
 partner="simpleFloatMultProvider"
 operation="multiply"
 inputVariable=
 "simpleFloatMultProviderRequest"
 outputVariable=
 "simpleFloatMultProviderResponse">
 </invoke>
 <assign>
 <copy>
 <from variable="simpleFloatMultProviderResponse"
 part="multiplyReturn"/>
 <to variable="response" part="Result"/>

 </copy>
 </assign>
 <reply name="response"
 partner="requestor"
 operation="requestLookup"
 variable="response">
 </reply>
 </sequence>
</process>

Internally, the workflow definition coordinates the interaction of
the four workflow partners named: requestor, stockQuoteProvider,
currencyExchangeProvider, and simpleFloatMultProvider. Figure
1, provides a graphical view of the structure of the workflow in
Use Case Maps (UCM) notation [14].

Figure 1. A UCM diagram for the example workflow
UCM is intuitive; the line represents the thread of control, which
passes through the partners of the workflow. The workflow
process starts at the end of the line designated with a ball. Tracing
this line from start to finish provides an accurate account of the
temporal ordering of the workflow’s activities. Notably, the line
splits and joins in the middle of the process, this corresponds to
the <flow>, </flow> tags respectively.

3. ARCHITECTURE AND DESIGN
Web services and the BPEL4WS have created a resurgence of
interest in workflow technologies and process-oriented views of
software systems. Traditionally, workflow engines have been
based upon the static enactment of workflows under centralized
control. This classic approach is at odds with current trends
towards real-time enterprises, which closely monitor changing
marketplace conditions and events. The ultimate goal is to have
this data fed back into the business processes, increasing process
responsiveness by allowing adaptive changes to occur. To achieve
this type of workflow agility, new enactment mechanisms are
required.
Distributed systems possess three dimensions of distribution:
computation, control, and data. With BPEL4WS, the Web services
are the computational activities, and the control and data
dimensions specify the coordination required to manage the
process. The BPWS4J Engine is a BPEL4WS enactment engine
available from IBM’s AlphaWorks site [1]. BPWS4J provides
central coordination of the workflow, while the computation is
potentially distributed across the Internet. In BPWS4J, each
workflow instance has its own thread of control with simulated
parallelism, thus the engine enacts the workflow as a distributed
application [15]. Distributed applications typically posses a single

thread of control and use synchronous communications to transfer
control from one component to the next.
Our perspective is that the application integration paradigm
provides a more appropriate model of Internet based workflow
enactment, particularly when inter-organizational workflows are
considered. Application integration considers the components to
be independently executing applications that are integrated via the
asynchronous exchange of data and control. Since Web services
are passive entities that don’t execute until called, we wrap them
in proactive agents that possess their own thread of control. The
agents are then integrated to enact the workflow. The agents are
coordinated with a shared data space and the asynchronous
exchange of messages. This architecture is flexible and loosely
coupled.
Our goal is to create an open architecture, built atop open
standards, for increased interoperability. The primary Web service
standards of SOAP, WSDL and UDDI allow for language and
platform neutral Web service invocation. In the agent space, the
FIPA standards [3] define the basic services that need to be
supplied by compliant agent platforms. Adherence to the FIPA
standards enables agents from heterogeneous sources to assemble
in open systems. Additionally, we chose to use open source or
freely available software whenever possible.
Another design goal worth mentioning was the desire to preserve
the compositional completeness property inherent to BPEL4WS.
In this context, compositional completeness means that the
composition of Web services is itself published and accessed as a
Web service that can participate in other compositions [22]. Since
complex workflows are often viewed as a hierarchy of workflows,
the compositional completeness property allows agent-based
workflows to be incorporated via BPEL4WS into other workflow
definitions.
Based upon our architectural desires and design constraints, the
following software components were used in the creation of the
distributed enactment mechanism: BPWS4J Editor for the
graphical creation of BPEL4WS specified workflows;
webMethod’s Glue [4] as a high level Web service invocation
toolkit; JADE [5] as a FIPA compliant agent development
environment; the Web Service Agent Gateway (WSAG) [6] as a
bridge between synchronous Web service calls and asynchronous
agent messaging; and Xindice [7] a networked, native XML
database used as a coordination medium.

4. HYBRID COORDINATION MODEL
As previously discussed, the domain of coordination encompasses
issues of both data and control. The distributed workflow
enactment mechanism utilizes a hybrid coordination model, which
means that it combines separate data-centered and control-
centered coordination mechanisms [16]. The data is managed via a
shared, network addressable XML repository, while the control of
the workflow activities is driven by asynchronous message
exchange between the agents. The message exchange pattern for
the control messages is derived from a Colored Petri Net (CPN)
model of the workflow.

4.1 Xindice as a Coordination Medium
Xindice facilitates the storage, retrieval, and sharing of XML data.
Xindice is a networked native XML database that complies with
the XML:DB API specification. Xindice stores XML documents
in logical groupings called collections. Data is retrieved from a
collection via the evaluation of an XPath [8] query that is

evaluated against the documents in a collection. Xindice’s features
make it an ideal choice as a coordination medium.
Tuple spaces are often the coordination medium of choice for
agent-based systems. Tuple spaces allow processes to
communicate across space and time, e.g. a process running on one
machine can write information to a shared tuple space which is to
be read by another process, running on a different machine the day
after tomorrow. Tuple spaces provide a form of associative
memory. Associative memory is accessed by content, not by
address. By way of analogy, SQL is used to retrieve records from
a RDBMS that match criteria specified in the ‘where’ clause of the
query. In the same way, a query against a tuple space retrieves
records that match criteria specified in a template. With Xindice,
XPath can be viewed as a template mechanism that can retrieve
specific elements, attributes, or even collections of nodes from an
XML document.
An example will provide some insight into how Xindice and
XPath are used as a coordination medium for the sharing of data
across the distributed workflow agents. In our workflow example,
the stockQuoteProvider partner interacts with a stock quote Web
service. This interaction occurs with XML-based SOAP messages,
which are intercepted and stored in Xindice. A sample of a
captured SOAP Response message appears below.

<soap:Envelope>
 xmlns:soap="http://schemas.xmlsoap…
 xmlns:xsi="http://www.w3.org/2001/…
 xmlns:xsd="http://www.w3.org/2001/…
 xmlns:soapenc="http://schemas.xmls…
 soap:encodingStyle="http://schema… >
 <soap:Body>
 <n:getQuoteResponse
 xmlns:n="urn:xmethods-delayed-quotes">
 <Result xsi:type="xsd:float">
 40.35
 </Result>
 </n:getQuoteResponse>
 </soap:Body>
</soap:Envelope>

Downstream in the workflow, the returned stock quote needs to be
multiplied against the currency exchange rate to localize the price.
For this to occur, the quoted price needs to be extracted from the
XML document presented above. The following XPath query
retrieves the quote as a string, which can then be converted into its
numeric equivalent.

string(//n:getQuoteResponse/Result)

Requests for the execution of the workflow generate unique
collections within the Xindice repository. This allows for the clean
separation of data between individual workflow cases.
Additionally, it assures efficient XPath queries since the number
of documents in a given collection remains small.

4.2 CPNs as a Flow Control Mechanism
Petri Nets (PNs) have been used for workflow control since the
mid 1990’s [9]. PNs, also known as place-transition nets, provide
a deceptively simple, yet rigorous, way to model finite state
machines. PNs are represented as directed graphs with two types
of nodes, places and transitions, which are graphically represented
as circles and squares respectively. The state of execution is
maintained by tokens that reside in the place nodes of a PN. A

transition is enabled if each of its input places is marked by a
token. When a transition is enabled it fires, removing a token from
each of the input places and depositing a token in each of the
output places. From a workflow perspective, the activities of the
process occur at the transition nodes in the net. Figure 2 presents
the example workflow in PN form, where the transitions
correspond with the following activites: A – receive request, B –
invoke getStockQuote, C – invoke getExchangeRate, D – invoke
multiplyFloat and E – reply response.

Figure 2. A PN Model for the example workflow
A comparison of the UCM diagram in Figure 1 with the PN model
in Figure 2 reveals that they are equivalent.
CPNs are an extension of basic PNs and include the notion that the
tokens carry data. The different colored tokens equate to different
data types. The demonstration system utilizes two different
colored tokens. The first is used for messaging between the
WSAG and the agent-based enactment mechanism. The second is
used to communicate control information between the agents as
they process a workflow instance. The following is a sample
message sent by the WSAG:

WSAG:stockLookupProcess:requestor|request:csc:
 Switzerland

The message has a signature indicating that it is being sent by the
WSAG. Next, the message identifies the name of the workflow,
followed by the partner name the message is intended for. The
vertical bar separates the message header from the payload. The
payload of the message indicates that a request is being made for a
quote for CSC stock localized into Swiss currency.
An example of a control message exchanged between two agents
during workflow enactment follows:

DWfA:stockLookupProcess:simpleFloatMultProvider
 :1080665330511:currencyExchangeProvider

This message carries the Distributed Workflow Agent (DWfA)
signature, identifies the workflow name, and the partner name the
message is intended for. The numeric value is a unique ID that is
assigned to each workflow instance. This ID is also used to
identify the appropriate collection in the Xindice database. The
final piece of information is the name of the partner role that sent
the message; in this example the message is from the
currencyExchangeProvider. Given the PN shown in Figure 2, it
should be apparent that before the simpleFloatMultProvider can
invoke the multiplication Web service, it would need to receive
messages from both the currencyExchangeProvider and the
stockQuoteProvider for the same workflow instance.
It is not hard to imagine using a PN within a centralized workflow
enactment mechanism to control the execution order of the
workflow activities. However, an interesting question arises
regarding the use of a PN for distributed workflow enactment.
This question is how is it possible to separate the net into pieces

that can be distributed while retaining equivalent behavior. The
answer is illustrated in Figure 3, which depicts the refinement of a
place between two transitions with a simple PN consisting of two
places and one transition. After the refinement of the net,
Transition T1 now writes a token to place P2.1, which enables the
subsequent transition. This transition writes its output token to
place P2.2, which may reside across a network. Place P2.2 in turn
enables transition T2.
More concretely, the transitions in the PN model are agents and
the transition labeled DF/MTS represents FIPA compliant
Directory Facilitator (DF) and Message Transport Service (MTS)
components. When an agent in the workflow completes its task, it
utilizes the DF to locate the address of the agent that has registered
itself as playing the next partner role that needs to receive control.
The agent generates an ACL Request message, loads the content
area with DWfA signed data, and sends the message to the address
returned by the DF. The MTS in turn facilitates the message
delivery. Thus the distribution of the CPN is effectively managed
by the DF acting as a middle-agent [19]. Figure 4 presents a UML
sequence diagram, which illustrates the message exchange pattern
for an instance of the example workflow.

Figure 3. Refinement of P2 with a subnet

__

Figure 4. A UML sequence diagram showing the message exchange pattern derived from the CPN model, and sample data.

5. AGENT DESIGN
There are two types of agents that enact the workflow: target
agents and distributed workflow agents. A target agent
interfaces the distributed workflow agents to the WSAG. The
distributed workflow agents are the proactive proxies for the
passive Web services they represent. Both types of agents are
implemented with JADE and are thus FIPA compliant.
One of the design goals for the distributed workflow enactment
mechanism was to have the ability to externally configure the
agents at run time. Thus the agents are generic and are
differentiated through an instantiation of their behavioral
characteristics, which are defined by the partner roles in the
BPEL4WS file. Section 6.2 provides a detailed discussion of
the external configuration data and its use.

5.1 Target Agents
Figure 5 illustrates the structure of a target agent in UCM
notation. The agent is represented with a parallelogram, which
indicates it is an active component in the system. Target agents
receive messages from both the WSAG and other distributed
workflow agents; the two distinct execution paths in Figure 5
denote this. The boxes found on the execution path simply
designate that some processing is occurring, while the two
squiggly lines note a “layer fold” in UCM notation. A layer
fold is an abstraction that indicates that some complexity is
hidden or collapsed along the path. In this case, the layer fold is
used to indicate the interaction of the target agent with the
middle-agents.

5.2 Distributed Workflow Agents
Figure 6 reflects the implementation of the distributed
workflow agents. The only new UCM notation is the dashed
rounded rectangle, which is a placeholder symbol for a passive
component. The distributed workflow agents share the same
code base; they are simply instantiated with different workflow
partner information. This is consistent with the fact that the
primary distinction between these agents is the Web service
they represent.

6. SYSTEM CONFIGURATION
The architecture for the distributed enactment mechanism relies
upon many different components that must be properly

configured. Figure 7, provides a high-level diagram that shows
the interaction between the major components. Note that the
solid lines tipped with arrows indicate synchronous message
exchange, while the dashed variation designates asynchronous
messaging. The following sections will describe the
configuration of the components shown in Figure 7.

Figure 5. UCM diagram of a Target Agent

Figure 6. UCM diagram of a Distributed Workflow Agent

__

Figure 7. Illustration of the interaction between the components of the distributed enactment mechanism

6.1 Configuring the WSAG
The WSAG provides a Web service interface for services
provided by a target agent. In our example, the target agent
plays the requestor partner role. As defined in the BPEL4WS,
the requestor receives requests from end users and responds
with a reply after the workflow runs.
Use of the WSAG requires that a gateway agent is generated
and deployed. It is critical that the interface for the gateway
agent aligns with the workflow’s SOAP request and response
message structure. The gateway agent’s interface is specified
with a Java interface. The WSAG provides tools that facilitate
the generation of gateway agents. These tools consume the Java
interface and produce a skeletal gateway agent. The skeletal
code is then edited to comply with the messaging interface of
the target agent. The gateway agent is then compiled and
packaged for deployment. For the example workflow, the
following Java interface was used to generate the gateway
agent.

package stockLookupProcess;

public interface StockLookupProcess
{
 Float request(String symbol,
 String country);
}

Once the gateway agent is built and installed, it needs to be
deployed. The deployment step publishes a WSDL interface for
the gateway agent, and associates the gateway agent with the
target agent. The WSAG management console provides the
means to accomplish this task. Figure 8 shows the
configuration of the stockLookupProcess gateway agent. When
the WSAG receives a SOAP request for the
stockLookupProcess, the gateway sends an ACL request to the
specified target agent running on the target agent platform.
When the workflow is complete the target agent sends an ACL
Inform back to the gateway agent, which in turn sends a SOAP
response to the workflow consumer.

Figure 8. Configuration of the Gateway Agent

6.2 Configuring the Workflow Agents
The workflow agents in the system share a single configuration
file, expressed in XML, that is conveniently stored in Xindice.
The configuration data is derived from the BPEL4WS file and
the underlying WSDL files for the individual Web services.
Currently, the configuration data is manually generated;
however, we believe that much of this process can be
automated.
A portion of the configuration data for the example workflow
process is provided and discussed below.

<configData workflow="stockLookupProcess">

<messages>
 <message name="request">
 <part name="symbol" type="xsd:string"/>
 <part name="country" type="xsd:string"/>
 </message>
 <message name="response">
 <part name="Result" type="xsd:float">
 q:string(//agent[@role='simpleFloatMultProvider']
 /response//ns1:multiplyReturn)
 </part>
 </message>
<message name="simpleFloatMultProviderRequest">
 <part name="f1" type="xsd:float">
 q:string(//agent[@role='currencyExchangeProvider']
 /response//Result)
 </part>
 <part name="f2" type="xsd:float">
 q:string(//agent[@role='stockQuoteProvider']/
 response//Result)
 </part>
 </message>
 <message name="simpleFloatMultProviderResponse">
 <part name="multiplyReturn" type="xsd:float"/>
 </message>
</messages>

<partners>
 <partner name="requestor">
 <inputPlaces/>
 <service>
 <wsdl> </wsdl>
 <operation> </operation>
 <messageName>response</messageName>
 </service>
 <outputPlaces>
 <place>stockQuoteProvider</place>
 <place>currencyExchangeProvider</place>
 </outputPlaces>
 </partner>
<partner name="simpleFloatMultProvider">
 <inputPlaces>
 <place>stockQuoteProvider</place>
 <place>currencyExchangeProvider</place>
 </inputPlaces>
 <service>
 <wsdl>
 http://…/axis/SimpleFloatMult.jws?wsdl
 </wsdl>
 <operation>multiply</operation>
 <messageName>
 simpleFloatMultProviderRequest
 </messageName>
 </service>
 <outputPlaces>
 <place>requestor</place>
 </outputPlaces>
 </partner>
</partners>

</configData>

The configuration file contains both data-centric and control-
centric coordination information relevant to the enactment of
the workflow. The data-centric portion is identified with the
<messages> tag, while the control-centric section is identified
with the <partners> tag.
The <messages> section defines the messages that the
individual partners use when interacting with their associated
Web service. The message names come directly from the
BPEL4WS file, while the message parts are specified in the
underlying WSDL files for each Web service. Each message

part has an optional value that is either a constant, designated
by “c:”, or an XPath query designated by a "q:". The associated
XPath queries inform the agent how to obtain the data from
Xindice. For example, the target agent sends an ACL Inform
message to the gateway agent, the contents of this response
message is defined in the configuration file. The response
message contains one part named Result, whose type is
xsd:float. The associated XPath query specifies how to obtain
the data from the SOAP response message stored into Xindice
by the simpleFloatMultProvider.
The <partners> section contains the control-centric
coordination information relevant to each of the partners in the
workflow. The partner names are the same as those specified in
the BPEL4WS file. Each partner is bound to a specific Web
service, specified by a wsdl, operation, messageName triplet.
The messageName corresponds with a message found in the
<messages> section of the configuration file.
The agents track each DWfA signed message they receive
against the individual workflow cases. When an agent receives
a message for a workflow instance from each of the partners
specified in the <inputPlaces> section, the agent invokes the
Web service. This directly corresponds to the enabling of a
transition in a PN, since each of its input places are marked.
Next, the intercepted SOAP request/response pair from the
Web service interaction is stored in Xindice. The agent then
sends a DWfA message to each of the workflow partners found
in the <outputPlaces> section. For example, the
simpleFloatMultProvider will not call the multiplication Web
service until it has received messages from both the
stockQuoteProvider and the currencyExchangeProvider. Once
these messages are received, the multiplicationWeb service is
invoked, the SOAP messages are stored, and the requestor role
is notified.

6.2.1 Command Line Parameters
The workflow agents are provided the name of the workflow in
which they are participating and the name of the partner role
they are performing via command line parameters. As
previously mentioned, the distributed workflow agents are each
instances of the same Java class. It is the command line
parameters that distinguish them. The parameters provide the
agent enough information to retrieve partner specific
information from the workflow’s global configuration file. The
agent uses the partner information when registering with the
DF, so that other agents can identify it as playing a specific
partner role.
For example, the following shows the command line used to
establish the stockQuoteProvider agent:

java jade.Boot –container
 stockQuoter:DistributedWfAgent
 (stockLookupProcess stockQuoteProvider)

The target agent utilizes a different class file; however, it is
established in a similar fashion. The command line to establish
the target agent is:

java jade.Boot
 -container-name Target-Container

 -gui requestor:TargetAgent
 (stockLookupProcess requestor)

Figure 9 shows a screen shot of the JADE Remote Agent
Management console with the entire complement of workflow
agents running.

Figure 9. JADE’s Remote Agent Management console
showing the full complement of workflow agents

7. CONCLUSION AND FUTURE WORK
One of the most important points to make about the distributed
workflow enactment mechanism is that it is functional and
provides a research platform upon which further refinement
and experimentation can be performed. Throughout its
development, we have grappled with many issues and found
reasonable and scaleable solutions. Although not discussed in
this paper, one of the challenges that must be overcome when
dynamically binding to Web services in a stubless manner is
how to deal with the returned data. It was our conscious
decision to forgo the unmarshalling of the SOAP response.
Keeping the data in XML format insulates the code from
differences between rpc/literal and doc/literal Web service
styles. Additionally, it becomes transparent that a native XML
database is the coordination medium of choice.
We have learned many valuable lessons and there remains
much work to do. Importantly, our demonstration system does
not support <switch> and <pick> BPEL4WS constructs. These
constructs support selective routing, which can be thought of as
the business rules of the workflow process. For example, if the
response from the previous Web service was less than 50, pass
control to partner A, otherwise use partner B. We believe that
we can still maintain code genericity by augmenting the
<outputPlaces> section of the configuration file with RuleML.
The rules will then be processed as conditional logic scripts in a
manner inspired by [21].
The hybrid coordination model has proven its relevance with
the demonstration system. If for example a Linda-like tuple
space were used to convey control messages, the first agent to
consume the message does the work. Our use of the DF and

asynchronous messaging opens up interesting research
opportunities regarding task allocation. For example, consider
what might happen when a workflow agent utilizes the DF to
locate an agent playing the role identified by an outgoing place
and it is discovered that multiple agents are returned. The agent
might use a reputation mechanism to select one of the partners,
or engage in a bidding scenario managed with a contract net
protocol, et al. The point is that the individual agents maintain
the opportunity to do something intelligent and potentially
optimize the execution of the workflow at run-time.
The conversion of BPEL4WS into PN form is another area that
requires further study. Currently, we generate PNs based upon
the replacement property that exists with workflow nets [10];
however, while sufficient for modeling positive flow control, it
is difficult to capture fault and exception handling.
Additionally, the fact that BPEL4WS inherits the calculus-
based approach of XLANG presents difficulty when being
expressed with PN’s graph-based constructs. We will further
pursue our work with Humboldt University where ongoing
work is developing a PN semantic for BPEL4WS. An initial
description of this approach can be found in [24].
Other opportunities exist to demonstrate the advantages of
agent-based workflow enactment. As more semantic Web
services become available, we would like to integrate the
Semantic Discovery Service (SDS) [20] as an basic agent
service available to the workflow agents. To accomplish this
integration, the <partner> description in the configuration file
would need to be augmented with a semantic description of the
Web service the partner represents. At run-time, the workflow
agent can use its autonomy to locate other potential Web
service partners with the aid of the SDS. This integration would
allow the agents to heal the workflow in the event that their
primary Web service becomes unresponsive. Likewise, various
Web services would likely provide different QOS levels, which
would provide opportunities to explore self-optimizing
algorithms.
Finally, the work described in this paper opens up a new
avenue of research regarding Agent-Oriented Software
Engineering (AOSE). We have demonstrated that it is possible
to take a BPEL4WS file that was created in graphical workflow
design tool, and use it to instantiate a MAS. This opens the
possibility that a more general MAS design methodology and
toolset can be formalized from advancements occurring in the
Business Process Management space. This is a natural fit
because a workflow essentially represents the sociality of the
business process, that is, the relationships between the
workflow participants, the necessary conversations they have
while processing the work, and the work product itself. It is
worth exploring if an end-to-end AOSE process can be
formalized consisting of the Gaia Agent-Oriented Analysis and
Design methodology [25], graphical workflow design tools
which emit BPEL4WS, and the distributed workflow
enactment mechanism described in this paper.

8. ACKNOWLEDGEMENTS
This work is supported by the U.S. National Science
Foundation under grant IIS 0092593 (CAREER award).

9. REFERENCES
[1] IBM. BPWS4J,

http://www.alphaworks.ibm.com/tech/bpws4j.
[2] XML Cover Pages. Business Process Execution

Language for Web Services (BPEL4WS),
http://xml.coverpages.org/bpel4ws.html.

[3] The Foundation for Intelligent Physical Agents,
www.fipa.org.

[4] webMethods, Inc. Glue Overview,
http://www.webmethods.com/solutions/wM_Glue/

[5] Telecom Italia Lab. JADE (Java Agent
DEvelopment Framework),
http://sharon.cselt.it/projects/jade/.

[6] Whitestein Information Technology Group AG.
Web services Agent Integration Project,
http://wsai.sourceforge.net/index.html.

[7] The Apache XML Project. Xindice Homepage,
http://xml.apache.org/xindice.

[8] World Wide Web Consortium. XML Path
Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath.

[9] Aalst, W.v.d. The Application of Petri Nets to
Workflow Managment. Journal of Circuits,
Systems, and Computers, 8(1):21-66, 1998.

[10] Aalst, W.v.d. and Hee, K.M.v. Workflow
management : models, methods, and systems. MIT
Press, Cambridge, Mass., 2002.

[11] Buhler, P. and Vidal, J.M., Integrating Agent
Services into BPEL4WS Defined Workflows,
USC CSE TR-2004-003,
http://jmvidal.cse.sc.edu/papers/buhlertr04a.pdf.

[12] Buhler, P., Vidal, J.M. and Verhagen, H. Adaptive
workflow = web services + agents. In Proceedings
of the First International Conference on Web
Services, 131-137, 2003.

[13] Buhler, P.A. and Vidal, J.M. Towards the
Synthesis of Web Services and Agent Behaviors.
In Proceedings of the Agentcities: Challenges in
Open Agent Environments Workshop, 25-31,
2002.

[14] Buhr, R.J.A. and Casselman, R.S. Use case maps
for object-oriented systems. Prentice Hall, 1996.

[15] Curbera, F. and Khalaf, R. Implementing
BPEL4WS: The Architecture of a BPEL4WS
Implementation. In Proceedings of the Grid
Workflow Workshop at GGF-10, 2004.

[16] DeLoach, S.A. Analysis and Design of Multiagent
Systems Using Hybrid Coordination Media. In
Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, 2002.

[17] Huhns, M.N. Agents as Web Services. Internet
Computing, 6(4):93-95, 2002.

[18] WebServices.Org. The 'big boys' unite forces -

What does it mean for you?,
http://www.webservices.org/index.php/article/arti
cleview/633/1/24/.

[19] Klusch, M. and Sycara, K. Brokering and
Matchmaking for Coordination of Agent
Societies: A Survey. in Omicini, A., Zambonelli,
F., Klusch, M. and Tolksdorf, R. eds.
Coordination of Internet agents : models,
technologies, and applications, Springer, Berlin ;
New York, 2001, 197-224.

[20] Mandell, D.J. and McIlraith, S.A. Adapting
BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation. In
Proceedings of the Second International Semantic
Web Conference, 227-241, 2003.

[21] Nadelson, M. Stay Flexible with Logic Scripts.
JavaPro, 7(9), 2003.

[22] Schneider, J.-G., Lumpe, M. and Nierstrasz, O.
Agent Coordination via Scripting Languages. in
Omicini, A., Zambonelli, F., Klusch, M. and
Tolksdorf, R. eds. Coordination of Internet Agents
: Models, Technologies, and Applications,
Springer-Verlag, New York, NY, 2001, 153-175.

[23] Singh, M.P. and Huhns, M.N. Multiagent Systems
for Workflow. International Journal of Intelligent
Systems in Accounting, Finance and Management,
8:105-117, 1999.

[24] Vidal, J.M., Buhler, P. and Stahl, C. Multiagent
Systems with Workflows. Internet Computing,
8(1):76-82, 2004.

[25] Wooldridge, M., Jennings, N.R. and Kinny, D.
The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and
Multi-Agent Systems, 3:285-312, 2000.

