
Adaptive Workflow = Web Services + Agents

Paul A. Buhler
College of Charleston

Department of Computer Science
66 George Street

Charleston, SC 29424, USA
pbuhler@cs.cofc.edu

José M. Vidal

University of South Carolina
Computer Science and

Engineering
Columbia, SC 29208, USA

vidal@sc.edu

Harko Verhagen

Department of Computer and
System Sciences

Stockholm University / KTH
Forum 100

16400, Kista, Sweden
verhagen@dsv.su.se

Abstract

Workflow management systems exactly enact business
processes described in a process description language.
Unfortunately, such strict adherence to the prescribed
workflow makes it impossible for the system to adapt to
unforeseen circumstances. In this paper we propose that
workflow description languages and their associated
design tools can be used to specify a multiagent system.
Specifically, we advance the idea that the Business
Process Execution Language for Web Services can be
used as a specification language for expressing the initial
social order of a multiagent system, which can then
intelligently adapt to changing environmental conditions.

keywords: workflow enactment, coordination technology,
multiagent systems, process description languages

1. Introduction

Advances in Information Technology (IT) are creating
opportunities for business enterprises to redesign their
information and process management systems. The
refinement of service-oriented architectures and the
emergence of web-enabled, semantically described
services allow us to envision a future where these Web
services become the next generation of enterprise
components. This new enterprise software vision places
new demands on software architectures because they will
need to support computing with “dynamically-formed,
task-specific, coalitions of distributed autonomous
resources” [1, pg 99]. These changes are a logical
consequence of the seminal work in coordination
technology done by Gelertner.

It is now generally accepted that Gelertner was correct
when he theorized that computation was orthogonal to
coordination [2]. This orthogonality was implied by
DeRemer, who wrote in 1976, “Structuring a large
collection of modules to form a ‘system’ is an essentially
distinct and different intellectual activity from the

construction of the individual modules [themselves]” [3].
From these perspectives, a software system is viewed as
an ensemble of coordinables and their orchestrated
interactions. Coordinables are entities that function as
independent units of computation. The coordinated
interaction of the computational units produces the
desired behavior of the system. Obvious parallels to
workflow systems exist; the workflow activities are the
coordinables and business processes coordinate their
interaction.

Leymann asserts that workflow construction can be
viewed as a two-level programming problem [4, pg 217].
His view is that the implementation of workflow activities
is akin to traditional programming, or programming in the
small. Activities encapsulate well-defined functionality
that typically involves low-level data access routines and
algorithmic processing. In contrast, the building of the
workflow’s process model is akin to programming in the
large. The process model prescribes coordination rules by
providing a means to express the sequencing of the
activities and the flow of data amongst them.

We advocate the synthesis of Gelertner’s and
Leymann’s points of view. We believe that the statements
applications = computation + coordination and workflow
= activities + processes are equivalent. This paper
presents our vision that multi-agent systems are a required
ingredient for the flexible enactment of enterprise
workflows. Our view can be summarized by the aphorism
Adaptive Workflow = Web services + Agents. In this
context, the Web services provide the computational
resources and the Agents provide the coordination
framework. We propose the use of the Business Process
Execution Language for Web Services (BPEL4WS) as a
specification language for expressing the initial social
order of a multiagent system.

2. Adaptive Workflow Enactment

Traditionally, workflow management systems have not
been designed for dynamic environments requiring

adaptive response. Currently, the need for adaptive
workflow is being driven by the demands of e-commerce
in both B2B and B2C space. Initial B2B automation
activities were centered on Electronic Data Interchange
(EDI) initiatives. More recent work in the B2B space has
focused on the development and deployment of ebXML
(electronic business XML). With both EDI and ebXML
the collaborating business partners need to predefine the
terms of their electronic interaction. As discussed by Jenz,
these technologies enforce regulated B2B interaction and
as such, they create closed communities of business
partners. [5]. In comparison, views toward virtual
organizations require flexible, on-the-fly alignment of
business partners; in other words, adaptive workflow
capabilities. These loose collaborations of business
partners operate in open, non-regulated B2B/B2C
scenarios [5]; pre-negotiated collaboration agreements are
a hindrance in these environments.

As businesses integrate across organizational
boundaries, it becomes important to separate the ‘public’
process logic from the ‘private’ business logic. The
process logic specifies the order and conditions under
which things get done; whereas, the business logic
specifies what gets done. Business Process Management
(BPM) software is an emerging classification of
integration software that treats business processes as first-
class entities.

Figure 1. Characterization of adaptive change

Adaptive workflows need to react to changing
environmental conditions. Currently, businesses change
their workflows through two primary mechanisms:
Business Process Reengineering (BPR) and Continuous
Process Improvement (CPI). Figure 1, adapted from [6,
pg 239], illustrates the difference between BPR and CPI.
BPR is the periodic analysis and subsequent redesign of
the intra- and inter- business processes used by an

organization. BPR is used to overhaul processes in order
to create operational efficiencies that improve quality and
save time and cost. Conversely, CPI focuses on
continuous improvement through the application of small
and orderly changes. Workflows are continuously
examined in order to find ways to increase quality and
reduce waste. Adaptive workflows respond to changing
conditions through adaptive change. As shown in Figure
1, adaptive change should not constrained by measures of
frequency or impact.

Current workflow initiatives have embraced the Web
service model. Given the current state of technology,
Web service based workflows typically are deployed
behind corporate firewalls and are used for intra-
organizational workflow. The reason for this is that Web
service specifications are weak in regards to issues of
security, transaction management, internationalization, et
al. Inevitably, as standards evolve to address these
deficiencies, workflows will transition from the domain
of intranets to that of the Internet. This transition will be
accompanied by a new set of problems.

When an intranet-based workflow system executes, it
does so with a collection of services that are owned and
managed by the same organization. In this environment,
service interruptions are infrequent and typically
scheduled due to consolidated system management. In
contrast, Internet-based workflows must be designed for
resilient operation as service partners periodically become
unavailable due to decentralized system management and
the lack of network service guarantees. The evolution
from intra- to inter- net based workflows will increase the
design and run-time complexity, since the coordination
mechanism must become more fault tolerant.

3. BPEL4WS

Recently, IBM, Microsoft and BEA released a new

Process Description Language (PDL) named BPEL4WS
[7]. BPEL4WS represents the merger of IBM’s Web
Services Flow Language (WSFL) and Microsoft’s
XLANG. This merger has created the market
consolidation necessary to make BPEL4WS the de-facto
standard for expressing workflows consisting of Web
services. IBM, Microsoft and others will be releasing
retooled versions of their enterprise integration product
suites that will use BPEL4WS as the PDL for workflows.
IBM has recently released BPWS4J on their Alphaworks
site [8]. BPWS4J provides a preview of the capabilities
that will be released in WebSphere Studio and
WebSphere Application Server. BPWS4J consists of an
Eclipse based graphical editor and a workflow engine that
are BPEL4WS compliant.

BPEL4WS was designed to combine the features of
IBM's WSFL and Microsoft's XLANG. As such, it

provides both graph-based and block-based control
structures, making it capable of representing a wide range
of control flows. Aalst has compared the expressiveness
of several PDLs and has confirmed that BPEL4WS
represents the union of WSFL and XLANG [9].
BPEL4WS can be used to describe executable business
processes and abstract processes. Abstract processes are
not typically executable but are used to create behavioral
specifications consisting of the mutually visible messages
exchanged between transacting parties executing a
business protocol. BPEL4WS utilizes the following
XML-based specifications: WSDL 1.1, XML Schema
1.0, and XPath 1.0. Importantly, WSDL is used to model
both the process and the participating Web services.
BPEL4WS is compositionally complete, which means
that a composition of Web services is exposed as a Web
service eligible to participate in other compositions [10].

Structurally, a BPEL4WS file describes a workflow by
stating whom the participants are, what services they
must implement in order to belong to the workflow, and
what are the various orders in which the events must
occur. The BPEL4WS process model is built on top of
the WSDL 1.1 service model and assumes all primitive
actions are described as WSDL portTypes. That is, a
BPEL4WS description describes the orchestration of a set
of messages all of which are described by their WSDL
definitions.

4. Multiagent Systems

Multiagent systems emerged as a new research area in

the early 1990’s. It developed partly from distributed
processing and partly from artificial intelligence and its
modern incarnation as agents. Since its early days, one
facet of multiagent systems research has been focused on
coordination mechanisms. An example of such a system
is TÆMS [11], which is a framework for the analysis and
design of coordination mechanisms with a special focus
on task dependencies and uncertainty about the
environment. Systems like TÆMS can be seen as
building upon the seminal work of Malone [12, 13].
Sichman further developed the analysis of dependency
relations as an input for coordination between agents [14],
[15]. In this work, coordination issues are dealt with at
the level of the agent, resulting in systems that exhibit
decentralized flow control. Central control however is not
only contrary to the whole idea of agents, it is also of no
use in building the adaptive systems we aim at.

An application area for multiagent systems research is
the simulation of systems, specifically social systems.
Here the focus is upon the interplay of individual
decision-making and the resultant system level
consequences. Concomitantly, consideration must also be
given to how system level properties constrain the

individual’s decision-making ability. The intertwining of
the individual and the system is commonly described as
micro-macro linkage. By varying parameters, simulation
experiments sweep the universe of possible
configurations, attempting to find desired and sustainable
system level behaviors. Such experiments often lead to
new insights and understanding of the system’s micro-
macro linkage. Often these discoveries are unanticipated,
due to the inherent complexity of the system being
modeled.

Recently, several large corporations have successful
used agent-based modeling and simulation to optimize
their operations. Companies such as Procter & Gamble,
Southwest Airlines, Merck, and Ford Motor Company
have all benefited from agent-based simulations. In these
simulations, software agents represent the individual
components of the system. The agent’s behaviors are
modeled after their real-world counterparts. After
validating the accuracy of the simulation, by comparing
its performance to the real-world system, individual
agent’s behavior rules can be modified to assess the
impact of the change on the system. Procter & Gamble
claims that changes instituted in its supply chain, based
upon the results of agent-based simulations, are saving
the company $300 million dollars annually [16]. We
believe that resilient workflows can be achieved by
moving agents out of the simulation and into the actual
executing system.

5. BPEL4WS for Multiagent Systems

In our earlier work [17], we established a relationship

between Web services and agents. Our vision was that of
using passive Web services as external behaviors for
proactive agents. Huhns further distinguishes between
Web services and agents. Some of the distinctions he
provides are: Web services know only about themselves,
they do not possess any meta-level awareness; Web
services are not designed to utilize or understand
ontologies; Web services are not capable of autonomous
action, intentional communication, or deliberatively
cooperative behavior [18]. In contrast, agents possess all
of these capabilities.

Workflow enactment by a multiagent system can be
viewed as an act of cooperative problem solving.
“Cooperative problem solving occurs when a group of
autonomous agents choose to work together to achieve a
common goal” [19]. For cooperative problem solving to
occur, an agent in the multiagent system must recognize
that the best path to achieving a goal is to enlist the help
of other agents. Social commitments arise when one agent
makes a commitment to perform work for another agent.
Thus for a multiagent system to engage in cooperative
problem solving, the relationships between the agents

must be discovered. Since BPEL4WS describes the
relationship between the Web services in the workflow
and if an agent represented each Web service, then the
relationship between the agents would be known a priori.
In other words, BPEL4WS could be used to establish the
initial social order of the multiagent system.

5.1. BPEL4WS and FIPA

The work of The Foundation for Intelligent Physical

Agents (FIPA) can be thought of as creating a component
model that allows agents from heterogeneous origins to
collaborate in open agent environments. The leading
method for representing multiagent interactions is the
FIPA Interaction Protocol (IP) standard. FIPA has
defined several IP's that describe the most common agent
interactions, such as auctions, iterated contract-net,
purchasing, etc. Each IP is given a unique name. If an
agent claims to be complaint with a certain IP then it must
obey the published specifications. FIPA defines IPs in
order to facilitate the development of new agents. That is,
FIPA envisions a time when most agents are sophisticated
enough to be able to carry out unscripted conversations
and, in order to enable that goal, it provides a quick and
easy way to develop simple reactive agents that can still
participate in an agent society. IPs fulfill that role. FIPA
IPs are described in the standard documents and are
largely defined with the use of UML diagrams.

FIPA IP's are a close equivalent to workflow
description languages, but with some differences.
Specifically, BPEL4WS and FIPA IPs share many of the
same goals. They are both languages for representing a
series of structured communications among a set of
actors. BPEL4WS uses the concept of a "partner" which
is identical to the "roles" in IPs. Both of them have
complex flow mechanism (flow, pick, while) which
support all desired iterative behaviors. Still, there are
many significant differences between them, including:

BPEL4WS uses WSDL PortTypes, which makes it
easy to convert a BPEL4WS description into executable
code since the atomic actions are all well-defined
interfaces. In an agent-based approach, the WSDL
information would be used to specify the interaction
between the agent and the Web service.

BPEL4WS provides fault handlers. IPs do not have an
explicit concept of fault handling. However, existing IPs
could be extended to handle faults. These fault-handling
messages would not be differentiated from the existing
messages.

Since BPEL4WS was designed for Web services, and
since Web services are stateless, the designers had to find
a way to add state information to the ongoing workflow.
They did this with the use of "containers" which provide
persistent storage that holds past messages and can be

queried to determine the current state of the workflow.
This is in stark contrast to IPs, which avoid the
complexities of explicitly modeling state because agents
are stateful.

BPEL4WS has the concept of "links" which allow it to
express precedence constraints that are more complex
than those that can be expressed with UML. For example,
a BPEL4WS description can express the fact that a
certain message will be sent only after three out of a set of
messages have been received.

Partners in BPEL4WS are assumed to be completely
reactive. That is, the only actions they ever take are those
prescribed by the BPEL4WS description and all those
actions are reactions to other actions, namely, they are
triggered by arriving messages and might depend on the
partner's current state. Agents are generally assumed to be
pro-active. That is, agents can take actions based on their
own internal "deductions" about the world at large.

The last point reflects the key difference between
BPEL4WS (and other workflow description languages)
and multiagent systems. Workflows prescribe exactly
what can be done by each of the participants at any
moment in time. The participants, therefore, do not need
to understand the whole workflow. They can be
implemented as simple reactive agents. While this
limitation makes it much easier to implement the agents it
also eliminates the robustness and opportunistic behavior
that are landmark advantages of multiagent systems.

For example, imagine a contract-approval workflow,
which is instantiated every time a consulting company
seeks to get a new contract approved. A new multi-
million contract arrives which is very important to the
company. As this contract works its way through the
workflow it could get stuck if the accounting office fails
to validate the budget on time. However, in a standard
workflow description the accounting agent has no
knowledge of the significance of this particular contract
and might give some other contract precedence. The
accounting agent could also be inoperable that day. It is at
these times---when things go wrong---that pro-active
agents can use their high-level understanding of the
whole process in order to take the action that is best for
the company.

There is much that multiagent researchers can learn
from workflow descriptions. It seems clear that business
demand predictable emergent processes. That is, when
everything is working fine then everything should be
working as the workflow stipulates. It is only when things
break or change that agents have an opportunity to show
superior performance over purely reactive processes. We
envision a merger of these two complementary
approaches. Multiagent systems can be built starting with
a workflow description that defines the most common
scenario and fault conditions. Once this basic system is

tested and deployed the agents could be extended to
understand the whole workflow so they can adapt to
unforeseen circumstances, reduce unneeded work, and
automatically handle the extension of the workflow
description.

6. Multiagent Workflow Enactment as an
Autonomic System

We believe that IBM’s Autonomic Computing
initiative provides an interesting vantage point from
which to consider adaptive workflow. As noted in IBM’s
Autonomic Computing Manifesto [20], complexity itself
is a byproduct of automation; workflow management
systems by their very definition are the automation of a
business process. One of the tenants of the autonomic
computing initiative is to remove the complexity from the
end-user and embed it in the infrastructure of the system.
Sophisticated self-governing processes then manage the
infrastructure. These processes possess several key
characteristics; among them are: self-configuration, self-
optimization, self-healing, and self-preservation. Each of
these characteristics speaks to the need for adaptation that
is designed to achieve specific goals.

Using multiagent systems for workflow enactment is
the first step in creating an architecture that will allow the
exploration of many fundamental questions. As noted in
[21] autonomic systems will consist of autonomic
elements that will have policy driven relationships with
one another. If the BPEL4WS workflow description is
interpreted as a strict policy statement, then a static
enactment mechanism like BPWS4J would be
appropriate; however, if interpreted as a policy guideline,
multiagent enactment mechanisms provide a greater
degree of flexibility. Some of the questions to be
answered are:

How might the concept of adjustable autonomy be
used to enable multiagent enactment across the spectrum
of workflow types, from collaboration to production? In
production workflows, multiagent implementation may
provide execution-monitoring advantages; even without
the agents possessing a high-degree's of autonomy. On
the other end of the spectrum, agents that monitor the
interaction of the participants in a computer-supported
cooperative work scenario could potentially discover
interaction patterns, formalize process rules and utilize
their autonomy to enact elements of the ad-hoc workflow
without manual intervention.

How might agents leverage a workflow design tool
that can capture the business logic and rationale for
service selection and flow? This meta-process
information could latter be utilized by the autonomous
agents for process redesign (self-optimization). Having a
design specification for the multiagent system provides

self-knowledge, which could be leveraged for self-
optimization. For example, agents can use the workflow
description to determine the impact of hypothetical
changes, or use it, along with knowledge of available
resources, to find under-utilized resources that can be
exploited.

How might BPEL4WS be extended to allow the
specification of multiple, functionally equivalent partners
at each end of the service link? In a supply chain
management scenario, the agents could use this
information to tailor the workflow to deliver different
QOS levels based upon cost, time or quality constraints
(self-configuring, self-optimizing). Likewise, the list of
partners might represent primary, secondary, and tertiary
service providers; in the event of primary partner failure,
the workflow could automatically engage the secondary
partner (self-healing).

How might an agent's active monitoring of service
invocation patterns be useful for the purposes of
detecting/correcting inappropriate service access? (self-
protection) Perhaps, agents could use a BPEL4WS
process description to identify normal behavior and signal
everything else as abnormal. Abnormal behaviors would
have to be further analyzed to determine if they are a real
threat or a legitimate deviation enacted by the agents in an
effort to optimize the system's behavior.

How might the abstract process notion be useful as a
specification that can be instantiated by agents? (self-
configuring) An abstract process definition is non-
deterministic and does not specify under what conditions
each branch is chosen. As such, it can be used by agents
to determine the set of "legal" actions and leaves the
choice to the agent's reasoning. Once can envision the use
of abstract specifications (if made very flexible) as very
high-level system behavioral limits. The agents would
then be free to implement any specific system behavior
that falls within this space.

7. Related Developments and Future Work

Adaptive workflow capabilities, achieved through

multiagent enactment mechanisms, will be influenced by
developments related to: BPM software and PDL
developments, Web services, the semantic web, and
Agent-Oriented Software Engineering (AOSE). The pace
of change in each of these areas is quickening as
commercial entities strive to capture early market share
and consortia like WfMC, BPMI, and W3C struggle to
maintain their relevance. In the BPM solution space, this
scramble is being driven by market analysis that predicts
the BPM market will be worth $6.32 billion in 2005, up
from $2.26 billion in 2001. Interestingly, evidence that
establishes the need for self-configuring, self-optimizing
BPM systems is found in this same research report, which

shows that for every dollar spent on BPM software in
2001, three dollars were spent on related professional
integration services [22].

In the domain of PDL development, we feel that
BPEL4WS will become the de-facto standard as soon as
Microsoft and IBM retool their product offerings for
release in the first half of 2003. Both the WfMC and
BPMI have release statements indicating that their own
process description languages, XPDL and BPML
respectively, are more capable than the BPEL4WS
specification; however, they embrace BPEL4WS as a
positive development for the BPM industry [23, 24].
BPMI asserts that BPML is a strict superset of BPEL4WS
and therefore it provides a natural target for an eventual
convergence of standards. Not to be outdone, in January
of 2003, the W3C started the Web services Choreography
working group and OMG anticipated the release of a RFP
for the specification of a unifying business process
definition metamodel.

Although not at the same frenetic pace, developments
are also occurring in the space of Web services, the
semantic web and AOSE. Regarding Web services, the
WSDL and SOAP specifications are completing an
update cycle. Currently, the semantic web initiative is
transitioning ontology languages from DAML+OIL to the
new Web Ontology Language (OWL). Notably, the field
of AOSE is beginning to pay close attention to the Web
service developments. FIPA has established a technical
committee that is proposing an integration strategy which
will allow FIPA compliant agents to interoperate with
Web services.

On the academic front, several researchers are working
at the intersection of agents and workflow. Specifically,
[25-27] have written about the potential benefits of
introducing agent technology into workflow enactment
mechanisms. In [26, pg 575], Marinescu discusses the use
of the Bond agent architecture to enact a workflow
description captured in XPDL. Most closely related to our
vision of using contemporary BPM tools and Web
services for multiagent system design is the work
described in [28]. In this paper, Korhonen, et al. describes
the creation of a workflow ontology that is used to
describe both agents and Web services. They hope to
build a workflow enactment mechanism that can utilize
the ontology to bridge the communications gap between
agents and Web services.

As we look forward, we have much work to do to
demonstrate an adaptive, multiagent-based workflow
engine. Our current activities are focused on several
fronts: the completion of a mapping of BPEL4WS
constructs onto a multiagent system decomposition;
understanding the interplay between BPEL4WS and other
associated specifications, namely WS-Transaction, WS-
Coordination, and WS-Security; and the definition of a

generic Web service/FIPA-compliant agent interface. We
anticipate having these tasks complete by the end of
2003.

8. Conclusion

In this paper, we have likely generated more questions

than answers. In part, our goal has been to contextualize
thoughts of multiagent systems as a workflow enactment
mechanism. We predict that the landscape of enterprise
integration will undergo dramatic changes in the next 3-7
years as Web services usher in a new era and BPM
applications replace traditional EAI efforts. Agent-
oriented researchers need to seriously investigate the use
of workflow design tools and PDLs for producing
multiagent system specifications. As we experiment in
earnest, we anticipate answering many of the open
questions we have raised.

9. References

[1] D. Garland, "Software Architecture: a Roadmap," presented
at The Future of Software Engineering, Limerick, Ireland, 2000.

[2] D. Gelernter and N. Carriero, "Coordination Languages and
their Significance," Communications of the ACM, 35(2), pp. 97-
107, 1992.

[3] F. DeRemer and H. Kron, "Programming in the Large versus
Programming in the Small," IEEE Transactions on Software
Engineering, 2(2), pp. 80-87, 1976.

[4] F. Leymann and D. Roller, Production Workflow: Concepts
and Techniques. Upper Saddle River, New Jersey: Prentice Hall
PTR, 2000.

[5] D. E. Jenz, "The 'big boys' unite forces - What does it mean
for you?," at http://www.webservices.org/index.php/article/
articleview/633/1/24/.

[6] W. v. d. Aalst and K. M. v. Hee, Workflow management :
models, methods, and systems. Cambridge, Mass.: MIT Press,
2002.

[7] CoverPages, "Business Process Execution Language for
Web Services (BPEL4WS)," at http://xml.coverpages.org/
bpel4ws.html.

[8] IBM, "BPWS4J," at http://www.alphaworks.ibm.com/tech/
bpws4j.

[9] W. v. d. Aalst, "Don't go with the flow: Web services
composition standards exposed," IEEE Intelliegent Systems,
18(1), 2003.

[10] J.-G. Schneider, M. Lumpe, and O. Nierstrasz, "Agent
Coordination via Scripting Languages," in Coordination of
Internet Agents : Models, Technologies, and Applications, A.
Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, Eds. New
York, NY: Springer-Verlag, 2001, pp. 153-175.

[11] K. S. Decker, "TÆMS: A framework for analysis and
design of coordination mechanisms," in Foundations of
distributed artificial intelligence, G. M. P. O'Hare and N.
Jennings, Eds. New York: Wiley-Interscience, 1996.

[12] T. W. Malone, "Modeling coordination in organizations
and markets," Management Science, 33(10), pp. 1317-1332,
1987.

[13] T. W. Malone and K. Crowston, "The interdisciplinary
study of coordination," ACM Computing Surveys, 26(1), pp. 87-
119, 1994.

[14] R. Conte and J. Sichman, "DEPNET: How to benefit from
social dependence," Journal of Mathematical Sociology, 20(2-
3), pp. 161-177, 1995.

[15] J. S. Sichman, "DEPINT: Dependence-Based Coalition
Formation in an Open Multi-Agent Scenario," Journal of
Artificial Societies and Social Simulation, 1(2), 1998.

[16] G. Anthes, "Agents of Change," Computerworld, January
27, 2003, pp. 26-27.

[17] P. Buhler and J. M. Vidal, "Semantic Web Services as
Agent Behaviors," in Agentcities: Challenges in Open Agent
Environments, LNCS/LNAI, B. Burg, J. Dale, et al., Eds.
Berlin: Springer-Verlag, 2003.

[18] M. N. Huhns, "Agents as Web Services," Internet
Computing, 6(4), pp. 93-95, 2002.

[19] M. J. Wooldridge, Reasoning about rational agents.
Cambridge, Mass.: MIT Press, 2000.

[20] IBM, "Autonomic Computing: IBM's Perspective on the
State of Information Technology," at http://www.research.ibm.
com/autonomic/manifesto/.

[21] J. O. Kephart and D. M. Chess, "The Vision of Autonomic
Computing," IEEE Computer, 36(1), pp. 41-50, 2003.

[22] S. Cowley, "BPM market primed for growth," in
InfoWorld, September 23, 2002.

[23] WfMC, "Press Release," September 12, 2002.

[24] BPMI.org, "BPML|BPEL4WS: A Convergence Path
toward a Standard BPM Stack," August 15, 2002.

[25] M. P. Singh and M. N. Huhns, "Multiagent Systems for
Workflow," International Journal of Intelligent Systems in
Accounting, Finance and Management, vol. 8, pp. 105-117,
1999.

[26] D. C. Marinescu, Internet-based workflow management :
toward a semantic web. New York: Wiley-Interscience, 2002.

[27] M. Griss, "Software Agents as Next Generation Software
Components," in Component-based software engineering:
putting the pieces together, G. T. Heineman and W. T. Councill,
Eds. Boston: Addison-Wesley, 2001, pp. 641-657.

[28] J. Korhonen, L. Pajunen, and J. Puustijarvi, "Using Web
Services and Workflow Ontology in Multi-Agent Systems,"
presented at Workshop on Ontologies for Multi-Agent Systems,
Siguenza, Spain, 2002.

