

Location Dependent Service Delivery to Resource Limited
Mobile Devices

Paul A. Buhler
College of Charleston

Dept. of Computer Science
66 George Street

Charleston, SC 29424, USA

pbuhler@cs.cofc.edu

José M.Vidal
University of South Carolina

Computer Science and Engineering
Columbia, SC 29208, USA

vidal@sc.edu

ABSTRACT
This position paper describes a novel architecture that will imbue
agent software with dynamically configured capabilities. These
capabilities, described with DAML-S, can represent atomic or
orchestrated services. The DAML-S specification will be
transformed into an executable program written in a composition
language named Piccola. When executed, the composite service
will be available as a semantically described behavior within the
FIPA compliant agent. The proposed architecture is designed for
scalability, from mobile PDA devices with wireless connectivity
to resource-rich server class systems.

1. INTRODUCTION
It is the belief of the authors that the advent of the semantic web
and the emergence of a Web Services component model can
facilitate agent-based workflow management in open
environments. If agents are used to wrap semantically described
Web Services, then the semantic service descriptions become the
basis for determining the agent’s first-order abilities [13, pg 150].
Likewise, a common semantic markup for Web Services will
facilitate effective communication between agents. DAML-S and
Piccola are two emergent technologies that will be leveraged to
deliver Web Services to FIPA compliant agents.

2. DAML-S
Composing dynamic, distributed systems presents many
challenges. One of the greatest challenges is having accurate, just-
in-time, information about the existence, availability, composition
model and constraints that govern the use of a component [8, 11].
The semantic web initiative is developing technologies for
locating web resources based upon their semantic content.
Included in this vision is DAML-S, a specification for providing
semantic markup for Web Services. DAML-S is being designed to
support the following Web Service related tasks: discovery,
invocation, composition and interoperation, and execution
monitoring [1]. DAML-S provides a machine-interpretable,
ontology-backed semantic description of Web Services.
DAML-S has the expressive power to encapsulate the
composition of several services within a single service

description. If an agent could enact a composite service as a
behavior, it is intuitive that this will help the agent preserve its
autonomy when compared to multi-agent enactment strategies.
The wrapping of a DAML-S described composite service
empowers an agent with greater capability, while at the same time
creating efficiencies across the operating environment. One of the
goals of business process reengineering is to reduce transactional
costs while providing the same or better service. Since the agent
has expanded first-order abilities, it can reduce its social
dependencies along with the overhead associated with cooperative
problem solving.

3. PICCOLA
The development of specialized programming languages for
expressing the composition of components is a recurring idea.
Early evidence is provided by the utility attributed to UNIX shell
scripting. The pipes and filters architecture of the UNIX shell in
combination with a scripting language demonstrate the power of
flexible composition via the pipelining of streams and commands.
Neirstrasz, et al. introduce the rationale and requirements for a
general purpose composition language in [10]. The authors view
is that a composition language provides the integration framework
between the computational and compositional views of a system.
The resultant composition language, named Piccola, utilizes
Milner’s π-Calculus as its theoretical foundation [3, 4, 9].
JPiccola provides a Java-based, platform neutral implementation
of the Piccola language.

4. RESEARCH PLAN
Software architecture research is given to the understanding of the
structure of software systems, especially the relations among
subsystems and components [12]. Components are inseparable
from architecture in that their use is typically dependent upon
infrastructure services that constrain the compositional
relationships they can support [7]. The proposed architecture
integrates thoughts from both component-based software
engineering and agent-oriented software engineering.
The architecture for the proposed research is found in Figure 1.
The architecture is designed for scalability, from mobile PDA
devices with wireless connectivity to resource-rich server class
systems. The architecture is designed to be compatible with
existing and emerging open standards; as such interoperability
within open agent societies and Web Services is maximized. The
major components of the architecture are:

• a Lightweight Mobile Agent implemented with LEAP [6].
The platform is an IPaq 3675 with a dual slot expansion

pack; the expansion pack will hold an 802.11b wireless
network card and a GPS receiver.

• the Wherehoo server [14] will store a DAML-S description
of services associated with a particular geographic location.
Wherehoo will return contextually appropriate DAML-S
description based upon the physical location of the mobile
device. The Wherehoo server will provide service discovery
services, allowing the focus of the research to remain on the
DAML-S transformation process.

• a Home Server will provide a Charleston, South Carolina,
USA node to the Agentcities network, DAML-S to Piccola
translation services, and a Piccola execution engine.

• the web of services will provide a dynamic set of behaviors
to the mobile agent.

Figure 1. Proposed Architecture
Operationally, the mobile agent will receive its absolute GPS
position from the onboard GPS receiver. The location will be
consumed by an internal behavior that will communicate with the
Wherehoo server. The Wherehoo server will return a set of
DAML-S descriptions for services that are spatially appropriate.
Each of the DAML-S descriptions will be passed to the Home
Server where they will be transformed into Piccola programs. It is
anticipated that the transformation will leverage the
Transformation API for XML (TrAX) [2]. A Piccola execution
engine will run the programs on the Home Server. The executing
programs will communicate with the mobile agent via JXTA
protocols and unidirectional pipes; JXTA provides the discovery
services to allow the mobile agent to find the pipe endpoints on
the Home Server. The result is the delivery of contextually
appropriate Web Services to the mobile agent who accesses them
as semantically described behaviors.
Alternatively, the Piccola processes could be wrapped in an agent
and registered with the Home Server’s Agent Management
System (AMS). The Home Server’s Directory Facilitator (DF)
could then be used to link the mobile agent with its agent-based
behavior. However, when the behavior is no longer required, the
mobile agent cannot teardown the remote agent without violating
its autonomy. Although the mobile agent and Piccola processes
communicate as peers, a master-slave relationship exists between
them. When the mobile agent no longer requires a behavior, it will
send a teardown request to the Piccola process, which will end
execution.

4.1 Limitations
The centerpiece of the research is the DAML-S to Piccola
transformation and subsequent execution of the Piccola program.
A robust translation service would prove useful in numerous
domains; however, this work is focused on a subset of DAML-S
known as DAML-S Core, as defined in [5]. It should also be
noted that the proposed architecture leverages the Wherehoo
Server for DAML-S discovery. Although this mechanism is
suitable for the described system, its usefulness will be limited in
other domains.

5. REFERENCES
[1] The DAML Services Coalition. DAML-S: A Semantic

Markup For Web Services,
http://www.daml.org/services/daml-s/2001/10/daml-s.pdf.

[2] The Apache XML Project. Transformation API for XML,
http://xml.apache.org/xalan-j/trax.html.

[3] Achermann, F., Lumpe, M., Schneider, J.-G. and
Nierstrasz, O. Piccola - A Small Composition Language.
in Bowman, H. and Derrick, J. eds. Formal Methods for
Distributed Processing: A Survey of Object-Oriented
Approaches, Cambridge University Press, New York, NY,
2001, 403-426.

[4] Achermann, F. and Nierstrasz, O. Application =
Components + Scripts - A tour of Piccola. in Aksit, M. ed.
Software Architectures and Component Technology,
Kluwer Academic Press, 2000.

[5] Ankolekar, A., Huch, F. and Sycara, K. Concurrent
Execution Semantics for DAML-S with Subtypes. In The
First International Semantic Web Conference (ISWC),
2002.

[6] Bergenti, F. and Poggi, A. LEAP: A FIPA Platform for
Handheld and Mobile Devices. In Workshop on Agent
Theories, Architectures, and Languages (ATAL-2001),
2001.

[7] Brown, A.W. and Wallnau, K.C. The Current State of
CBSE. IEEE Software, 15(5):37-46, 1998.

[8] Garland, D. Software Architecture: a Roadmap. In The
Future of Software Engineering, ACM Press, 91-101,
2000.

[9] Lumpe, M., Achermann, F. and Nierstrasz, O. A Formal
Language for Composition. in Leavens, G. and Sitaraman,
M. eds. Foundations of Component-Based Systems,
Cambridge University Press, New York, 2000.

[10] Nierstrasz, O. and Meijler, T. Requirements for a
Composition Language. in Ciancarini, P., Nierstrasz, O.M.
and Yonezawa, A. eds. Proceedings of the ECOOP '94
Workshop on Models and Languages for Coordination of
Parallelism and Distribution, LNCS 924, Springer, New
York, 1995, 147-161.

[11] Nierstrasz, O., Schneider, J.-G. and Achermann, F. Agents
Everywhere, All the Time. In Workshop on Component-
Oriented Programming at ECOOP2000, 2000.

[12] Shaw, M. The Coming-of-Age of Software Architecture
Research. In Proceedings of the 23rd International
Conference on Software Engineering, IEEE Computer
Society, 657-664a, 2001.

[13] Wooldridge, M.J. Reasoning about rational agents. MIT
Press, Cambridge, Mass., 2000.

[14] Jim Youll. Wherehoo Technical Overview,
http://www.wherehoo.org/about/wherehoo_technical.html.

