

Toward the Synthesis of Web Services and Agent
Behaviors

Paul A. Buhler
College of Charleston

Dept. of Computer Science
66 George Street

Charleston, SC 29424, USA

pbuhler@cs.cofc.edu

José M.Vidal
University of South Carolina

Computer Science and Engineering
Columbia, SC 29208, USA

vidal@sc.edu

ABSTRACT
Today’s software systems are becoming more net-centric,
distributed, and heterogeneous. Hardware, software and
networking technology will combine in a milieu in which they
become ubiquitous and inseparable. The acceleration of
technology and time-to-market pressures make it increasingly
difficult to produce software. In order to achieve the promise of
the information age, software developers will require new
abstractions that will allow them to manage the overwhelming
complexity of this digital landscape.
This short position paper describes a novel technique that will
imbue agent software with dynamically configured capabilities.
These capabilities, described with DAML-S, can represent atomic
or orchestrated Web Services. The DAML-S specification will be
transformed into an executable program written in a composition
language named Piccola. When executed, the composite service
will be available as a semantically described behavior within a
FIPA compliant agent. The proposed architecture is designed for
scalability, from mobile PDA devices with wireless connectivity
to resource-rich server class systems.

1. INTRODUCTION
In 1999, NSF sponsored a workshop to discuss software
engineering research strategies. The participants at the workshop
drew several conclusions about software engineering research,
one of which is particularly relevant to the vision of this thesis
proposal. This conclusion is summarized by the phrase “skate to
where the puck is going,” meaning researchers need to be more
forward thinking. “Heterogeneous distributed systems,
dynamically changing software structures, and interactions among
autonomous agents,” were explicitly mentioned as requiring
focused research [12].
Software development needs to progress from handcrafted, line-
at-a-time techniques to methodologies that support reuse of
existing software assets. In other words, software development
needs to shift from paradigms that are purely creational to others
that support compositional approaches. Traditional software
engineering methodologies are giving way to new software

development paradigms. Component-based software engineering
and agent-oriented software engineering are two paradigms that
are garnering attention. Although typically thought of as separate
disciplines, it is likely that they are not only related, but also
ultimately dependent upon one another. In the future, passive
software components will be liberated by the proactive and social
nature of agents. In effect agent-based technologies provide the
mechanism for components to seek work, enter into cooperative
agreements and thus otherwise address the requirements of
dynamic, heterogeneous environments.

2. SOFTWARE COMPONENTS
The range of component-based software engineering practice can
be constrained by the definition of a software component. The
definition of a software component is hotly debated; a sampling of
common definitions can be found in [21, 22, 34, 38]. For the
purposes of this paper, the definition presented in [21] will be
used. This definition was selected for several reasons: it has
undergone extensive review and revision; the definition is
architecturally neutral in that it does not favor any specific
implementation language or component model; and it is abstract
enough to be inclusive of the other commonly referenced
definitions of a software component. The software component
definition found in [21, pg 7] is:

A software component is a software element that conforms to
a component model and can be independently deployed and
composed without modification according to a composition
standard.

A component model defines specific interaction and
composition standards. A component model implementation
is the dedicated set of executable software elements required
to support the execution of components that conform to the
model.

2.1 Component Models
A component model provides standards that govern the
interaction and composition of software components that conform
to the model. Standards are essential to the concept of open
systems. An open system is a collection of interacting software
and hardware components. The interaction within the open system
is defined by interface specifications that are complete, publicly
available and non-proprietary [29].

2.1.1 Web Services as Components
Businesses are organizations whose participants collectively
perform work. This work usually occurs in the form of a
workflow. A workflow is a process “during which documents,
information or tasks are passed from one participant to another in

a way that is governed by rules or procedures”[5]. Businesses can
achieve efficiencies by analyzing and redesigning their
workflows; in fact this was a major focus in the early 1990’s
when Business Process Reengineering (BPR) was commonly
practiced [2]. From a workflow perspective, a composite software
system can be viewed as a sequence of services operating upon
data. Ideally these services should be language, platform and
location independent [17]. Such services would then be
interoperable, where interoperability is characterized by the
“ability of two or more software components to cooperate despite
differences in language, interface, and execution platform” [41].
A new class of interoperable, web-enabled software services is
emerging. These services are known as Web Services, which are
defined as:

A Web Service is a software application identified by a URI,
whose interfaces and binding are capable of being defined,
described and discovered by XML artifacts and supports
direct interactions with other software applications using
XML based messages via Internet-based protocols [40].

Several specifications have been developed that are forming the
basis of a component model for Web Services; specifically SOAP
(Simple Object Access Protocol), WSDL (Web Service
Description Language) and UDDI (Universal Description,
Discovery, and Integration) [16]. These specifications are used to
describe, publish, discover and invoke Web Services. These Web
Service specifications embrace an open systems viewpoint: XML
(Extensible Markup Language) is utilized to exchange data in a
neutral format and component communication occurs via a
transport protocol like HTTP. A comprehensive overview of the
industry players and their respective Web Service architectures is
found in [30].

3. WORKFLOW SPECIFICATIONS
There are several ongoing initiatives that are defining
compositional notations for Web Services. Large commercial
entities like IBM, Microsoft, and Hewlett-Packard are actively
participating because they believe that Web Service integration
presents an enormous business opportunity. Likewise, consortium
players like OASIS (Organization for the Advancement of
Structured Information Standards), and BPMI (Business Process
Management Initiative) have complementary efforts as well. Web
Service architectures are stack based; the lower layers contain
open networking and Web Service protocols, the higher layers are
comprised of proprietary integration and orchestration protocols
[30, 33]. The proprietary nature of the upper layers will allow
corporations to differentiate their products and services from one
another.
IBM has produced a markup language named Web Services Flow
Language (WSFL) [14] that is designed for the specification of
workflows that encompass multiple Web Services. Currently,
IBM is integrating WSFL-based technologies into their
WebSphere product. Microsoft’s XLANG [15] provides WSFL-
like capabilities. Microsoft’s BizTalk Application Designer is a
graphical tool that allows a business process to be flow-charted
and output in XLANG, whereupon it can be executed with
Microsoft’s BizTalk Server Orchestration Engine. Notably, it is
anticipated that WSFL and XLANG will be merged and submitted
to the W3C as a proposed web-standard. Hewlett-Packard has
produced Web Services Conversation Language (WSCL) [13] that
can be used to specify the conversation policies between Web
Services. It remains to be seen how the marketplace will react to

multiple, overlapped initiatives. The recently announced Web
Service Interoperability Organization (WS-I) [6], includes both
IBM and Microsoft as founding members. The goal of WS-I is to
speed adoption of Web Service technologies by maintaining the
interoperability of the lower layer protocols. A good overview of
workflow description standards, including ebXML BPSS and
BPML is found in [32].

3.1 Agent-based Workflow Approaches
As discussed in [36], it is anticipated that next generation
workflow systems will employ agent-based technologies. Others
share this view, specifically [18-20, 27]. To place this in
perspective, an agent is a system that exhibits properties like:
situatedness, autonomy, reactivity, pro-activeness, and social
ability [42]. These properties allow an agent to “perceive, reason,
and act in their environment, and communicate with other
agents”[36].
If a collection of sociable agents, representing individual services,
cooperate and coordinate they would have the capability to enact
any workflow that is composed of the represented services. In
other words, agents have the capability to dynamically form social
structures through which they share commitments to the common
goal of workflow enactment. The individual agents, through their
coordinated interactions achieve globally coherent behavior; they
act as a collective entity known as a multi-agent system.
The social metaphor gives power to the agent-oriented paradigm.
It is one of the characteristics that makes the agent abstraction
particularly suitability for developing complex, distributed
systems [24, 25]. The fields of sociology and organizational
theory provide valuable abstractions for multi-agent systems [23].
Recently the term socionics has been used to describe a new field
of research that is a combination of sociology and distributed
artificial intelligence [28]. The cross-pollination of these
disciplines has created useful vocabulary and framing for
describing the problems and issues that multi-agent systems
encounter.
Workflow enactment by a multi-agent system is an example of
cooperative problem solving. “Cooperative problem solving
occurs when a group of autonomous agents choose to work
together to achieve a common goal” [43]. For cooperative
problem solving to occur, an agent in the multi-agent society must
recognize that the best path to achieving a goal is to enlist the help
of other agents. Social commitments arise when one agent makes
a commitment to another. Typically a social commitment comes
about due to a social dependency. As defined in [23, pg 113] a
social dependence can be defined as:

(SocialDependence x y a p) ≡ (Goal x p) ∧ ¬(CanDo x a)
∧(CanDo y a) ∧ ((DoneBy y a) ⇒ Eventually p)

[Meaning] agent x depends on agent y with regard to act a
for realizing state p, when p is a goal of x and x is unable to
realize p while y is able to do so.

As indicated, for such a social dependency to be established,
agent x and agent y must be able to reason about their ability to
perform act a, and have knowledge that the performance of a will
establish state p. The concept of first-order ability, as introduced
in [43, pg 150], states that for agent x to have first-order ability
regarding the establishment of state p, it must know explicitly
whether ∃a((CanDo x, a) ∧ ((DoneBy x a) ⇒ Eventually p)). If

agent x desires to achieve state p, but knows ¬(FirstOrderAbility
x, p), then it must solicit assistance in order to attain the goal.

4. CONFLUENCE
The views of [18, 27, 36] share a common theme. This theme is
that cooperating agents, acting as workflow components, can self-
assemble in order to enact business processes. If agents are to be
treated as components, they should conform to a component
model. Adherence to a component model is necessary to allow
interoperability, but this is not a sufficient condition for
interoperability in open environments. The work of the
Foundation for Intelligent Physical Agents (FIPA) is essentially
creating a component model that allows agents from
heterogeneous origins to collaborate in open agent environments.
Open agent environments present many challenges. As previously
demonstrated, if agents are to determine conditions of social
dependency, they must have the ability to reason about their own
capabilities. Likewise, in order to effectively negotiate for the
services of another agent, an agent will need to reason about the
abilities of potential partners. In open environments a common
Agent Communication Language (ACL) facilitates message
exchange between the agents; however, for true communication to
occur the agents must understand the message contents.
Ontologies help provide meaning to the contents of the messages;
however, they are not a panacea for ontological mismatches can
take place. A potential solution to this problem is to define a
proprietary service description language as described in [37, chpt
3]; however, this solution has limited utility in open
environments.
It is the belief of the authors that the semantic web and the
emergence of a Web Services component model can facilitate
agent-based workflow management in open environments. If
agents are used to wrap semantically described Web Services,
then the semantic service descriptions become the basis for
determining the agent’s first-order abilities. Likewise, a common
semantic markup for Web Services will facilitate effective
communication between agents. We intend to build an
experimental system that will utilize DAML-S and a composition
language named Piccola.

4.1 DAML-S
The semantic web initiative is developing technologies for
locating web resources based upon their semantic content.
Included in this vision is DAML-S, a specification for providing
semantic markup for Web Services. DAML-S is being designed to
support the following Web Service related tasks: discovery,
invocation, composition and interoperation, and execution
monitoring [4]. DAML-S provides a machine-interpretable,
ontology-backed semantic description of both atomic and
composite web-services. For a discussion of the relationship of
DAML-S to other standards like UDDI, WSDL, and ebXML see
[3].
As previously described WSFL, XLANG, et al. are designed to
capture the flow of a composition of services. Likewise, DAML-S
has the expressive power to encapsulate the composition of
several services within a single service description. Likewise,
DAML-S has the expressive power to encapsulate the
composition of several services within a single service
description. If an agent could enact a composite service as a
behavior, it is intuitive that this will expand the agent’s first-order
abilities. Expanded first-order abilities will help the agent

preserve its autonomy by reducing its social dependencies. As
agents reduce their social dependencies, they create efficiencies
across the operating environment. In effect, this approach is
analogous to business process reengineering whose typical goal is
to reduce transactional costs while providing the same or better
service. Providing agents the capability to enact services
described in DAML-S streamlines the workflow, thereby
increasing the agent’s goal-attaining efficiency by reducing the
need for cooperative problem solving in multi-agent
environments.
In DAML-S, a composite service can be recursively decomposed
into a set of atomic services. Control constructs are provided by
DAML-S to orchestrate the services that compose the workflow.
These constructs are shown in Table 2.

Table 2. DAML-S Control Constructs [39].

Construct

Description

Sequence Execute a list of processes in a sequential order

Concurrent Execute elements of a bag of processes concurrently

Split Invoke elements of a bag of processes

Split+Join Invoke elements of a bag of processes and
synchronize

Unordered Execute all processes in a bag in any order

Choice Choose between alternatives and execute one

If-Then-Else If specified condition holds, execute Then else
execute Else

Repeat-Until Iterate execution of a bag of processes Until a
condition holds

Repeat-While Iterate execution of a bag of process While a
condition holds

An examination of Table 2 hints at the potential complexity that a
DAML-S described workflow might contain, including
capabilities for concurrent execution and synchronization.
Enactment of DAML-S described workflows is a difficult
problem that has not been extensively studied; however, some
initial work has been done. The DAML-S execution semantics
presented in [10], were inspired by Milner’s π–calculus. The π–
calculus is useful for modeling systems of concurrent,
communicating and mobile processes [35]. Fortunately, Milner’s
work has also been inspirational to the development of a
composition language named Piccola.

4.2 Piccola
The development of specialized programming languages for
expressing the composition of components is a recurring idea.
Early evidence is provided by the utility attributed to UNIX shell
scripting. The pipes and filters architecture of the UNIX shell in
combination with a scripting language demonstrate the power of
flexible composition via the pipelining of streams and commands.
In [31], the authors introduce the rationale and requirements for a
general purpose composition language. The authors describe a
composition language as providing the integration framework
between the computational and compositional views of a system.
The composition language requirements proposed by the authors
are designed to support open systems development, where
openness is characterized by the need for recomposability in the

face of changing system requirements. The authors propose the
development of a composition language using the π-Calculus as a
theoretical foundation. This requirements groundwork ultimately
results in the publication of [8, 9, 26], which describe the
composition language named Piccola. A platform neutral
implementation of the Piccola language exists, it is Java-based
and is named JPiccola.

5. AGENTCITIES RELATED RESEARCH
The Agentcities Initiative intends to provide a platform to
demonstrate the interoperation of independently authored agents
that are geographically dispersed and executing within
heterogeneous environments. The interoperation is accomplished
through the use of open systems technologies and protocols. The
protocols utilized in the Agentcities framework are those defined
by the FIPA standards. It is the intent of the authors to use
Agentcities as a research platform for the delivery of contextually
appropriate Web Services, where the context is defined by
geographic location. The proposed research overlaps well with the
research goals of Agentcities as defined in [1]; specifically listed
is the desire to investigate the “seamless interaction between
wireless and wire line agents to dynamically compose services
based on user location” [1, pg 14]. The proposed research also
aligns with the objectives of three of the proposed Agentcities
working groups. These three groups are: Engineering Self-
Organizing Applications WG, Service Description and
Composition in Agentcities WG, and Ontologies and Semantics
WG.
The architecture for the proposed research is found in Figure 1.
The architecture is designed for scalability, from mobile PDA
devices with wireless connectivity to resource-rich server class
systems. The architecture is designed to be compatible with
existing and emerging open standards; as such interoperability
within open agent societies and Web Services is maximized.

Figure 1. Proposed Architecture.
The major components of the architecture are:

• a Lightweight Mobile Agent implemented with LEAP [11]. The
platform is an IPaq 3675 with a dual slot expansion pack; the
expansion pack will hold an 802.11b wireless network card and
a GPS receiver.

• the Wherehoo server [44] will store DAML-S descriptions of
services associated with specific geographic locations.
Wherehoo will return contextually appropriate DAML-S

descriptions based upon the physical location of the mobile
device.

• a Home Server will provide a Charleston, South Carolina, USA
node to the Agentcities network, DAML-S to Piccola
translation services, and a Piccola execution.

• the web of services will provide a dynamic set of behaviors for
use by the mobile agent.

Operationally, the mobile agent will receive its absolute GPS
position from the onboard GPS receiver. The location will be
consumed by an internal behavior that will communicate with the
Wherehoo server. The Wherehoo server will return a set of
DAML-S descriptions for services that are appropriate within a
physical region. The region is defined as a circle with selectable
radius, whose center point is the current location. Each of the
DAML-S descriptions will be passed to the Home Server where
they will be transformed into Piccola programs. . It is anticipated
that the transformation will leverage the Transformation API for
XML (TrAX) [7]. A Piccola execution engine will execute the
programs on the Home Server. The executing Piccola programs
will communicate with the mobile agent via JXTA protocols and
unidirectional pipes; JXTA provides the discovery services to
allow the mobile agent to find the pipe end-points on the Home
Server. The result is the delivery of contextually appropriate Web
Services to the mobile agent who views them as semantically
described behaviors.
Alternatively, the Piccola processes could be wrapped in an agent
and registered with the Home Server’s Agent Management
System (AMS). The Home Server’s Directory Facilitator (DF)
could then be used to link the mobile agent with its agent-based
behavior. However, when the behavior is no longer required, the
mobile agent cannot teardown the remote agent without violating
its autonomy. It is also intended that the enacted DAML-S
descriptions are private, internal behaviors of the mobile agent.
Advertising their existence via the DF defeats this intent.
Although the mobile agent and Piccola processes communicate as
peers, a master-slave relationship exists between them. When the
mobile agent no longer requires a behavior, it will send a
teardown request to the Piccola process, which will end execution.

5.1 Limitations
The centerpiece of the research is the DAML-S to Piccola
transformation. A robust translation service would prove useful in
numerous domains; however, this work is focused on a subset of
DAML-S known as DAML-S Core [10]. It should also be noted
that the proposed architecture leverages the Wherehoo Server for
DAML-S discovery. Although this mechanism is suitable for the
described system, its usefulness will be limited in other domains.

6. REFERENCES
[1] AgentLink. AgentLink News, Issue 8, November 2001,

http://www.agentlink.org.
[2] searchEBusiness.com. Business Process Reengineering,

http://searchebusiness.techtarget.com/sDefinition/0,290660,
sid19_gci536451,00.html.

[3] The DAML Services Coalition. DAML-S Related Work,
http://www.daml.org/services/daml-s/2001/10/survey-f-
release.pdf.

[4] The DAML Services Coalition. DAML-S: A Semantic
Markup For Web Services,
http://www.daml.org/services/daml-s/2001/10/daml-s.pdf.

[5] Workflow Management Coalition. Introduction to the
Workflow Management Coalition,
http://www.wfmc.org/about.htm.

[6] Web Services Interoperability Organization. Introduction to
WS-I, http://www.ws-i.org/AboutUS.aspx.

[7] The Apache XML Project. Transformation API for XML,
http://xml.apache.org/xalan-j/trax.html.

[8] Achermann, F., Lumpe, M., Schneider, J.-G. and Nierstrasz,
O. Piccola - A Small Composition Language. in Bowman,
H. and Derrick, J. eds. Formal Methods for Distributed
Processing: A Survey of Object-Oriented Approaches,
Cambridge University Press, New York, NY, 2001, 403-
426.

[9] Achermann, F. and Nierstrasz, O. Application =
Components + Scripts - A tour of Piccola. in Aksit, M. ed.
Software Architectures and Component Technology, Kluwer
Academic Press, 2000.

[10] Ankolekar, A., Huch, F. and Sycara, K. Concurrent
Execution Semantics for DAML-S with Subtypes. In The
First International Semantic Web Conference (ISWC), 2002.

[11] Bergenti, F. and Poggi, A. LEAP: A FIPA Platform for
Handheld and Mobile Devices. In Workshop on Agent
Theories, Architectures, and Languages (ATAL-2001),
2001.

[12] Boehm, B. and Basili, V. Gaining Intellectual Control of
Software Development. IEEE Computer, 33(5):27-33, 2000.

[13] The XML Cover Pages. Web Services Conversation
Language (WSCL), http://xml.coverpages.org/wscl.html.

[14] The XML Cover Pages. Web Services Flow Language
(WSFL), http://xml.coverpages.org/wsfl.html.

[15] The XML Cover Pages. XLANG,
http://xml.coverpages.org/wscl.html.

[16] Curbera, F., Mukhi, N. and Weerawarana, S. On the
Emergence of a Web Services Component Model. In
Workshop on Component-Oriented Programming 2001,
2001.

[17] Glass, G. Web Services, Building Blocks for Distributed
Systems. Prentice Hall PTR, Upper Saddle River, NJ, 2002.

[18] Griss, M. Software Agents as Next Generation Software
Components. in Heineman, G.T. and Councill, W.T. eds.
Component-based software engineering: putting the pieces
together, Addison-Wesley, Boston, 2001, 641-657.

[19] Griss, M.L. My Agent Will Call Your Agent. Software
Development Magazine, 8(2), 2000.

[20] Griss, M.L. and Pour, G. Accelerating Development with
Agent Components. IEEE Computer, 34(5):37-43, 2001.

[21] Heineman, G.T. and Councill, W.T. Definition of a
Software Component and Its Elements. in Heineman, G.T.
and Councill, W.T. eds. Component-Based Software
Engineering : Putting the Pieces Together, Addison-
Wesley, Boston, 2001, 5-19.

[22] Herzum, P. and Sims, O. Business Component Factory : A
Comprehensive Overview of Component-Based
Development for the Enterprise. John Wiley, New York,
2000.

[23] Huhns, M.N. and Stephens, L.M. Multiagent Systems and
Societies of Agents. in Weiss, G. ed. Multiagent Systems: A
Modern Approach to Distributed Artifical Intelligence, MIT
Press, Cambridge, MA, 1999, 79-120.

[24] Jennings, N.R. An Agent-Based Approach for Building
Complex Software Systems. Communications of the ACM,
44(4):35-41, 2001.

[25] Jennings, N.R. On agent-based software engineering.
Artifical Intelligence, 177(2000):277-296, 2000.

[26] Lumpe, M., Achermann, F. and Nierstrasz, O. A Formal
Language for Composition. in Leavens, G. and Sitaraman,
M. eds. Foundations of Component-Based Systems,
Cambridge University Press, New York, 2000.

 [27] Maamar, Z. and Sutherland, J. Toward Intelligent Business
Objects. Communications of the ACM, 43(10):99-101, 2000.

[28] Malsch, T. Naming the Unnamable: Socionics or the
Sociological Turn of/to Distributed Artificial Intelligence.
Autonomous Agents and Multi-Agent Systems, 4(3):155-186,
2001.

[29] Meyers, B.C. and Oberndorf, P. Managing software
acquisition : open sytems and COTS products. Addison-
Wesley, Boston, 2001.

[30] Judith M. Myerson. Web Service Architectures: How They
Stack Up,
http://www.webservicesarchitect.com/content/articles/myers
on01.asp.

[31] Nierstrasz, O. and Meijler, T. Requirements for a
Composition Language. in Ciancarini, P., Nierstrasz, O.M.
and Yonezawa, A. eds. Proceedings of the ECOOP '94
Workshop on Models and Languages for Coordination of
Parallelism and Distribution, LNCS 924, Springer, New
York, 1995, 147-161.

[32] O'Riordan, D., Business Process Standards For Web
Services, Tect,

[33] Dan Ruby. XML and Web Services Magazine. Speaking Up
for Interop,
http://www.fawcette.com/smlmag/2002_04/magazine/depart
ments/ednote/.

[34] Sametinger, J. Software Engineering with Reusable
Components. Springer-Verlag, New York, 1997.

[35] Sangiorgi, D. and Walker, D. The pi -calculus : a theory of
mobile processes. Cambridge University Press, Cambridge,
England ; New York, 2001.

[36] Singh, M.P. and Huhns, M.N. Multiagent Systems for
Workflow. International Journal of Intelligent Systems in
Accounting, Finance and Management, 8:105-117, 1999.

[37] Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S.,
Ozcan, F. and Ross, R. Heterogeneous Agent Systems. MIT
Press, Cambridge, MA, 2000.

[38] Szyperski, C. Component Software : Beyond Object-
Oriented Programming. ACM Press, New York, 1998.

[39] The DAML Services Coalition. DAML-S: Web Service
Description for the Semantic Web. In The First
International Semantic Web Conference (ISWC), 2002.

[40] W3C Web Services Architecture Working Group. Web
Services Architecture Requirements, Working Draft 29
April 2002, http://www.w3.org/TR/2002/WD-wsa-reqs-
20020429.

[41] Wegner, P. Interoperability. ACM Computing Surveys,
28(1):285-287, 1996.

[42] Wooldridge, M. Agents and Software Engineering. AI*IA
Notizie, XI(3):31-37, 1998.

[43] Wooldridge, M.J. Reasoning about rational agents. MIT
Press, Cambridge, Mass., 2000.

[44] Jim Youll. Wherehoo Technical Overview,
http://www.wherehoo.org/about/wherehoo_technical.html.

