Matchmaking of Web Services Based on the DAML-S
Service Model

Sharad Bansal
University of South Carolina
Computer Science and Engineering
Columbia, SC, 29208

bansal@cse.sc.edu

ABSTRACT

DAML-S provides the means for a web service to adver-
tise its functionality to potential users of the service. This
brings to fore the issue of discovering an advertisement that
best matches a request for a particular service—a process
referred to as matchmaking. The algorithms that have thus
far been proposed for matchmaking are based on compar-
isons of the requested and offered inputs and outputs. In
this project, we extend these algorithms by taking into ac-
count the detailed process description of the service, thus
leading to more accurate matchmaking.

Categories and Subject Descriptors

1.2.11 [Computing Methodologies|: Artificial Intelligence—

multiagent systems

General Terms
Algorithms

Keywords
DAML-S, UDDI, Service Discovery

1. INTRODUCTION

The semantic web vision calls for a transformation of the
world wide web from a provider of information to a pur-
veyor of services. Matchmaking agents would, upon receiv-
ing a request from a consumer of a web service, search their
database of advertisements to come up with a set of adver-
tisements that best meet the requested requirements. This
process is referred to as matchmaking.

The DARPA Agent Markup Language for Services (DAML-
S) has been developed to serve as the medium of expression
for web service capabilities. A DAML-S advertisement con-
sists of three parts: the Service Profile, the Service Model,
and the Service Grounding. The matchmaking algorithms
proposed thus far have been based on the Service Profile,
and operate by comparing the requested inputs and outputs
against the advertised inputs and outputs. It is our con-
tention, however, that exclusive use of the Service Profile
does not allow users to fully exploit the information avail-
able in a DAML-S advertisement.

Copyright is held by the author/owner.
AAMAS’03 July 14-18, 2003, Melbourne, Australia.
ACM 1-58113-683-8/03/0007.

José M. Vidal
University of South Carolina
Computer Science and Engineering
Columbia, SC, 29208

vidal@sc.edu

The limitations of Service Profile based matchmaking arise
due to the logical relationships underlying the inputs and
outputs of a process. To put this in perspective, one can en-
vision a simple choice process which produces two outputs,
say o1 and oz. If a request for a service providing both these
outputs were to be matched by simply comparing the Ser-
vice Profile outputs, the result would be a positive match.
In reality however, the process is not capable of providing
both these outputs. This simple example illustrates the need
for taking into account the logical nature of processes com-
prising a service in order to arrive at an accurate match.
We have developed and implemented algorithms for such
matchmaking based on the process model and present these
algorithms in this paper.

2. SERVICE MODEL MATCHMAKING

The Process Model, the main subclass of the Service Model,
decomposes the service into its constituent processes. A pro-
cess can, in turn, consist of other processes, in which case it
is said to be a Composite Process. Various types of compos-
ite processes are: Split, Sequence, Unordered, Split+Join,
Choice, If-then-else, Iterate and Repeat-Until. Processes
that are not decomposable any further are known as Atomic
Processes. The algorithms that follow employ a tree data
structure to represent the DAML-S Process Model adver-
tisement.

The algorithms developed are recursive in nature. Each
type of composite node as well as atomic node has a corre-
sponding matchmaking algorithm. The matchmaking pro-
cess commences by initiating the matchmaking algorithm
for the root node of the advertisement, which in turn in-
vokes the matchmaking process for its child nodes, and so
on until the process bottoms out at the leaf nodes of the
advertisement tree.

The algorithm for matching outputs for the Split-Sequence
node, which corresponds to a Split or a Sequence composite
process is described below. We will be using the following
data structure to represent a DAML-S node:

struct Node {
Node[] children;
set matchSet;
list outputs;
list inputs; }

where children is an array of child nodes, matchSet is a
set of outputs that are currently matched against this node,



outputs is the list of outputs provided by the node and in-
puts is the list of inputs of the node. The outputs and inputs
are specified only for Atomic Nodes, that is, nodes with no
children. The matchSet of all the nodes in the tree are ini-
tially empty.

The query consists of the inputs provided by the user and
the outputs expected by her. Formally, we define a query
as a pair of lists: @ = (1,0), where I = i1,i2,...,0m I8
the list of inputs to be matched against the node and O =
01,02, ...,0y is the list of outputs to be matched against the
outputs of the node.

2.1 Split Node/Sequence Node

The components of a Split process are a bag of process
components to be executed concurrently. A Sequence pro-
cess consists of a list of processes which are to be done in
order. The algorithm to match outputs of either a split or a
sequence node is as follows:

matchOutputs(List I, List O, split-seq-Node N)

if O is empty then

return true

end if

01 < head(O)

for all k € N.children do

k.matchSet « k.matchSet U{o1}
if matchOutputs(I, k.matchSet, k) then
if matchOutputs(I, tail (O), N) then
return true
end if
end if
k.matchSet < k.matchSet - 01
end for
return false

The above algorithm works by distributing the outputs
required from a sequence/split node over its children. If
the desired outputs can be satisfied by all the children col-
lectively, the match is a success, otherwise a failure. The
algorithm employs backtracking to find such a distribution
of outputs over the children. It thus tries all possible distri-
butions of outputs before returning a failed match.

Since this algorithm examines the possible placements of
the n outputs to be matched among the ¢ process nodes
in the advertisement, in the worst case all the ¢" possible
placements will be tried. Thus the worst case asymptotic
time complexity of the algorithm is O(c™). This time as-
sumes that all the calls to matchOutputs are recursive calls
to this algorithm and not calls to the other algorithms pre-
sented in the next sections, except for the last call, which is
assumed to be to an atomic node. That is, the time com-
plexity is based on the assumption that the whole adver-
tisement consists only of split or sequence nodes. The basic
algorithm presented above can be modified to take into ac-
count negated outputs. This would enable the request to
specify that the matched advertisement should not produce
a particular output.

2.2 Choice Node

The algorithm for a choice node matching is:
matchOutputs(List I, List O, choice-Node N)
for all k£ € N.children do
if matchOutputs(I,0,k) then
return true
end if

end for
return false

To determine the worst case time complexity of this algo-
rithm, we consider a tree of Choice nodes of height h with
each node having c children. Let T'(h) be the time complex-
ity of the algorithm for such a tree. Then, T'(h) = ¢-T'(h—1).
This equation has a solution for T'(h) = ¢" . Hence, the
worst case time is O(c"), assuming that all the calls to
matchOutputs are to this algorithm.

This basic algorithm has also been extended to identify
the type of match based on the hierarchy of outputs, as
well as to account for negative terms in the user’s query.
The matchmaking algorithms for other process nodes have
also been formulated, but are not described here for sake of
brevity. The interested reader should contact the authors
for the complete set of algorithms.

3. IMPLEMENTATION AND TESTING

We have implemented the above algorithms in Java and
performed a series of tests to determine the feasibility of
our approach. In our implementation the DAML-S adver-
tisement was read using the DAMLJessKB package, which
converts a DAML file into a set of equivalent Subject-Verb-
Object (SVO) triples. These triples are then asserted into
the JESS knowledge base and the rules of the DAML lan-
guage are then applied by JESS. Our matchmaking agent
then queries JESS to obtain the information necessary for
building the advertisement tree. Finally, the request query
is parsed and the matchmaking process is executed on the
basis of the above algorithms. The use of the JESS and
DAMLJessKB reduced our development time and facilitated
the matching based on the subsumption hierarchy.

4. CONCLUSION

The Service Model provides a far richer description of a
service than the Service Profile. The algorithms presented
in this paper exploit the additional information available in
the Service Model to provide matchmaking capabilities in
situations where the conventional IOPE-based matchmak-
ing algorithms are unable to determine suitable matches for
a request. Our use of the Service Model also affords more
flexibility since changes in the underlying Service Model do
not necessarily have to be reflected in the Service Profile to
support matchmaking. While these algorithms have a worst
case timing analysis of exponential order, the average case
performance is actually much better since most of the possi-
ble distributions of outputs over the advertisement process
nodes are not explicitly examined.

While the algorithms presented above are applicable to
the simplest case, we have extended them to incorporate
queries with negative terms and also matchmaking based
on the subsumption hierarchy of outputs, thus making it
possible to distinguish the quality of match as well. Hence
our algorithms use the subsumption hierarchy to distinguish
among an exact, plug-in, subsumes or failed match.

We believe that matchmaking based on the Service Model
is a prerequisite for the automatic composition of web ser-
vices as envisioned by the Semantic Web vision. Our algo-
rithms form a first step towards the automatic construction
of sophisticated aggregate web services.



	1 Introduction
	2 Service Model Matchmaking
	2.1 Split Node/Sequence Node
	2.2 Choice Node

	3 Implementation and Testing
	4 Conclusion

