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ABSTRACT
We propose a heuristic for allocation in combinatorial auc-
tions. We first run an approximation algorithm on the lin-
ear programming relaxation of the combinatorial auction.
We then run a sequence of greedy algorithms, starting with
the order on the bids determined by the approximate lin-
ear program and continuing in a hill-climbing fashion using
local improvements in the order of bids. We have imple-
mented the algorithm and have tested it on the complete
corpus of instances provided by Vohra and de Vries as well as
on instances drawn from the distributions of Leyton-Brown,
Pearson, and Shoham. Our algorithm typically runs two to
three orders of magnitude faster than the reported running
times of Vohra and de Vries, while achieving an average
approximation error of less than 1%. This algorithm can
provide, in less than a minute of CPU time, excellent solu-
tions for problems with over 1000 items and 10,000 bids. We
thus believe that combinatorial auctions for most purposes
face no practical computational hurdles.

1. INTRODUCTION
In recent years we have seen a surge of interest in, so

called, combinatorial auctions. These are auctions in which
a multitude of non-identical items are sold concurrently. The
combinatorial nature of the auction comes from allowing
bidders to place bids on combinations of items and not just
on single items. Thus, for example, a bidder may offer $10
for the combination of a left sock and a right sock, but make
no offer at all for only a single sock. Similarly, a bidder may
make an offer of $10 for a blue shirt or for a red shirt, but
not be willing to pay more than $10 even if he gets both
shirts. In general, a combinatorial auction allows bidders to
express complementarities – where the bid for a combina-
tion of items is worth more than the sum of the separate
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items – or substitutabilities – where the bid for a combi-
nation of items is less than the sum of the separate items.
Such combinatorial auctions have been suggested for a host
of auction situations such as those for spectrum licenses, pol-
lution permits, landing slots, computational resources, and
others. See [14] for a survey.

When auctioning multiple related items, combinatorial
auctions are desirable as they allow bidders to express their
true valuation of combinations, and thus should lead to more
economically efficient allocations (as well as, likely, higher
seller revenue). However, several problems exist before com-
binatorial auctions can be used in a large scale. One of
the major problems is the computational difficulty of deter-
mining an optimal allocation for a given set of bids. This
problem is usually formalized as a packing problem and is
known to be NP-complete to solve, or even to approximate
[12]. The problem has received much attention lately [14,
3, 7, 13, 1, 4, 11, 10], with three approaches usually taken:
heuristics to improve the running time of finding the opti-
mal solution, heuristics to improve the solution quality of
efficient algorithms, or special cases that can be optimally
solved efficiently.

This paper follows the second approach: we present a
very fast heuristic that finds allocations that are close to
optimal. Our algorithm efficiently solves problems that are
large enough and provides allocations that are good enough,
as to suggest to us that the computational difficulty of allo-
cation is not an issue in most practical combinatorial auc-
tions! Obviously, more experimentation with real combina-
torial auctions should be done before this last statement can
be fully verified.

Our heuristic is based on the following simple strategy:
First, run the linear-programming relaxation of the packing
problem; then, use these results to re-order the bids; and, fi-
nally, run a greedy algorithm. Similar heuristics are common
in combinatorial optimization, and in the context of combi-
natorial auctions it was suggested in [7]. Our algorithm has
two novel elements that improve both its running time and
its approximation error: instead of solving the linear pro-
gram we only approximate it, and instead of performing a
single greedy algorithm we attempt local improvements in
the ordering of the bids.

Since solving a linear program may be quite costly for
large input sizes, we only approximate the solution. We
take advantage of the fact that combinatorial auctions fall
into the category of, so called, “positive linear programs”,
or “fractional packing problems” that can be approximated
efficiently. Our approximation algorithm finds a solution
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for the linear programming relaxation of the combinatorial
auction that is, provably, within a factor of 1 + ε from the
optimal one. This approximate result is sufficient for our
purposes since we are only using it to determine an order
on the bids to be used by the second stage. Optimality of
the LP solution neither guarantees, nor is required, for the
quality of solution produced by the second stage.

Instead of running a single greedy algorithm based on the
resulting order, we perform a hill-climbing process where we
repeatedly improve the solution quality by making a single
change in the order of the bids, and run a greedy algorithm
on the modified order.

We shortly present the main ideas of each of these phases,
leaving the details to section 2.

1.1 The Approximate Positive Linear Program
Algorithm

In [2, 9, 6] primal-dual approximation algorithms were
suggested for linear problems where all the coefficients are
non-negative. Variants of this type of algorithms were used
to obtain fast asymptotical sequential running times [9], as
well as parallel algorithms [6] and a distributed implemen-
tation [2]. The main idea in these algorithms is a certain
relaxation process where at each stage a primal variable is
increased and the dual variables are updated by an amount
that is exponential in the amount that they are “covered”.
We present our algorithm, which uses the same idea, in
terms of a price-adjustment process.

Assume that there are n goods and m input bids, each
offering a value vj for a bundle of goods Sj ⊆ 1...n 1.
We will be maintaining a (scaled) price pi for each good.
The key concept is the definition of a (scaled) fractional al-
location to a bid j at prices p1...pn to be, Aj(p1...pn) =
exp(−Pi∈Sj

pi
vj

). Thus if the offered price is small com-

pared to the item prices,
P

i∈Sj
pi >> vj , the allocation is

nearly zero, while if it is large,
P

i∈Sj
pi << vj , the alloca-

tion is nearly 1. The total demand for an item i at prices
p1...pn is the sum of the allocations for it: Di(p1...pn) =P

j|i∈Sj
Aj(p1...pn).

The algorithm repeatedly picks the item i with highest
demand Di(p1...pn) at the current prices, and increases its
price by a small (carefully chosen) quantity δ. It then up-
dates the values of Aj and Di and repeats. Feasible solu-
tions to the primal and dual problems can be obtained at
each stage by scaling the vector of prices and the vector of
fractional allocations.

We prove that the values these primal and dual feasible
solutions approach each other rapidly, thus yielding an ap-
proximate solution for the linear program.

The worst case asymptotic running time of our algorithm
(O(n3m log(m/ε)/ε3)) is rather similar to the asymptotic
running times of previous algorithms for approximate pos-
itive linear programs. However, our algorithm has two ad-
vantages that make it especially appropriate for implemen-
tation. First, we argue theoretically that on “normal” inputs
it will actually run in time O(nm log(m/ε)/ε2) (which, for
fixed ε, is nearly linear in the size of a matrix needed in order
to represent the input.) Second, the algorithm is very sim-
ple, and all the “hidden constants” are small. To the best
of our knowledge we are the first to implement an approx-

1As observed in [4, 7] this does not lose generality, since
more complicated bids may be expressed in this fashion.

imation algorithm for positive linear programs, and indeed
we can report significantly faster running times than com-
mercial exact solvers of linear programs. We believe that
our algorithm for approximate positive linear programs is of
independent interest.

1.2 Hill-climbing Using a Greedy Algorithms
The approximate linear programming phase provides a

fractional allocation 0 ≤ Ai ≤ 1 for every bid, and an item
price pj for every good. The basic intuition from [7] is that
we should attempt to allocate bids with larger Ai before bids
with lower Ai and, for those bids with Ai = 0, attempt allo-
cating bids with larger vj/

P
i∈Sj

pj first. Thus the greedy

algorithm first orders the bids according to this ranking. It
then greedily goes over the bids according to this order, sat-
isfying in turn each bid that does not request any item that
was previously allocated.

This greedy algorithm usually performs reasonably well in
experiments, but not very well – its distance from optimal is
usually in the range of 5%-50%. We thus attempt improving
the result using local improvements. The key idea here is to
define locality in terms of the order: a local improvement is
a modification of the order of the bids via moving a single
bid to first place and then re-running the greedy algorithm
on the modified order. The modified order is maintained
if the solution of the greedy algorithm has improved, and
another local improvement is attempted, until no more local
improvements are possible. We have found, in experiments,
that only a very small number of local improvements are
usually needed. In order to maintain simplicity, we have not
attempted fancier variants of hill-climbing such as simulated
annealing.

1.3 Experimental Results
We have performed a significant amount of experiments

on a C implementation of the algorithm (available on the
web at http://www.cs.huji.ac.il/~zurel). We have used
the complete data set of [14] which is available online to
evaluate our algorithms. This data set contains 22402 prob-
lems with numbers of items ranging between 25 to 400 and
number of bids ranging between 50 to 2000, drawn from five
different distributions. All our experiments were done on an
“old PC” (Pentium II 450 MHz with 128MB RAM running
Linux kernel 2.2.5). We compared our results to the optimal
results and to the running times reported in [14] which were
obtained using commercial (CPLEX) integer programming
software running on a rather strong computer (SGI Origin
200 with four MIPS R10000 processors at 225 MHz each
with 1GB RAM), and which compared favorably with other
programs for combinatorial auctions.

The bottom line is given in the following two sets of re-
sults showing the quality of the solution and the running
times of our algorithm on the complete data set of [14].
Each point in each of these graphs represents the average
taken over all instances from a specific distribution and a
specific problem size in the data set. We see that the so-
lution quality is usually less than 0.5% away from optimal,
where for no distribution and problem size it is more than
4% away (and on none of the 2240 instances tested, more
than 14% from optimal). The running times are shown as
a fraction of the running times of CPLEX reported by [14],

2The set actually contains 2560 problems, but [14] have only
provided the optimal solutions for 2240 of them.
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Figure 1: Approximation accuracy vs. problem size Figure 2: Speedup over CPLEX vs. problem size

and are usually between one and four orders of magnitude
faster. (Probably another order of magnitude is implied for
the algorithm itself since the reported times of CPLEX are
on a faster computer.) For the larger problems in the data
set this means reducing the time from about half an hour
to seconds. A more detailed analysis and breakdown of the
results appears in section 3.

We have performed a significant amount of experiments
to evaluate the different aspects of the performance of our
algorithm. We present the bottom line of these experiments
in the form of a FAQ, with details appearing in section 3.

Q: How well does the algorithm perform on larger
problem sizes and on other distributions?
A: We have also tried our algorithm on instances drawn from
the distributions of [5] for problem sizes as large as 32000
goods and 128000 bids. The running times remain very good
– under one minute for the largest problem which had a
total of over 700,000 items in bids. In fact, for some of the
larger problems, solving the problem was much faster than
generating the input using the code supplied by [5]. As [5]
do not provide the optimal solutions, we could not evaluate
the solution quality. Estimates for the approximation error
were obtained using the dual solution of the LP, providing
an upper-bound to the gap of about 2.85% on the average,
with less than 1% on the larger problems. Based on our
experience with the distributions of [14], even these small
numbers are likely serious over-estimates of approximation
error.

Q: Does the algorithm function well even when the
“integrality gap” is large?
A: A major issue in combinatorial optimization is the “inte-
grality gap” : how far away the fractional optimum is from
the integer one. The distributions of [14] exhibit integrality
gaps as small as zero and as large as 40%. The algorithm
tracks the optimal solution well, and runs quickly even in
the cases of a large integrality gap.

Q: Is approximate LP really faster than usual LP
algorithms?
A: Yes, getting an approximation to within 10% is about
one to two orders of magnitude faster than the LP Solver
in MATLAB, with the gap getting wider for larger prob-
lems. Furthermore, the actual running times do behave like
O(mn log(mn)), suggesting that the speedup should further
increase for yet larger problems.

Q: How is the running time of the Approximate LP

affected by the approximation error?
A: It seems that the reasonable limits of the approximate
LP algorithm are about 0.1%-1% approximation error, cor-
responding to the theoretical quadratic dependence on ε.

Q: How does the approximation error in the first
phase affect the final solution quality?
A: Not much. The final solution quality is hardly affected
by reducing the error in the first phase from 20% to 1%.

Q: Does the hill-climbing phase reduce the error sig-
nificantly?
A: The error is usually reduced by a factor of 5 – 20, de-
pending on distribution. For one distribution (“weighted
random”) the average error dropped from 44% to 0%. A
single local modification already provides a large improve-
ment.

Q: If allocation isn’t the problem with combinatorial
auctions, what is?
A: The communication cost of sending the auction inputs
over a T-1 (1Mb) line is comparable to the cost of solving
them. For certain distributions, the communication cost is
3 times larger than the solution cost. See section 3.6 for
details. The communication costs of combinatorial auctions
are further analyzed in [8].

Q: Can the solution quality be further improved?
A: We have also tried a variant where the hill climb at-
tempts 2 order changes and ran it on the distributions that
yielded the lowest accuracy. The solution error decreased
from 4% to 2%, and while the running time of the hill climb
stage was increased by a factor of O (n), it still maintained
a speedup of two order of magnitudes over CPLEX for the
large problem instances. See section 3.4 for details.

2. THE ALGORITHM

Input: The input of a combinatorial auction over items 1..n
consists of m bids, where each bid is described by an offer
vj ≥ 0 and the set of items Sj ⊆ 1..n.

Output: The output is a collection W of winning bids with
highest possible value

P
j∈W vj that are pairwise disjoint

(i.e. for all j 6= j′ ∈ W we have Sj ∩ Sj′ = ∅).
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Our algorithm proceeds in two phases: in the first phase a
linear programming relaxation is solved approximately and
in the second phase a hill climbing process is run using
greedy algorithms. We present these two phases in the next
two subsections.

2.1 The Approximate Positive Linear Program-
ming phase

The input to this phase includes besides the user inputs
described above, an allowed approximation error ε. This
phase provides an ε-error approximation to the following
linear problem, that is presented in both its primal and dual
forms:

The Primal LP Problem:
Find: p1...pn

Minimizing:
P

i pi

Subject to:

• ∀i = 1...n:
pi ≥ 0

• ∀j = 1...m:P
i∈Sj

pi ≥ vj

The Dual LP Problem:
Find: A1...Am

Maximizing:
P

j Ajvj

Subject to:

• ∀j = 1...m:
Aj ≥ 0

• ∀i = 1...n:P
j|i∈Sj

Aj ≤ 1

Basic Linear Programming theory implies that any feasible
primal has value no less than any feasible dual,

P
i pi ≥P

j Ajvj , with equality achieved for the optimal solutions.
The phase ends when the values are within ε from each other.

Phase Output: p1...pn and A1...Am such that
P

i pi ≤
(1 + ε) ·Pj Ajvj .

The algorithm is very simple:

Approx. Positive Linear Programming Algorithm

Initialize: ∀i pi ← 0 , ∀j αj ← 0 , ∀j Aj ← 1

Repeat:

1. ∀i Di ←
P

j|i∈Sj
Aj .

2. find b such that Db = maxi Di.

3. pb ← pb + δb (see below for choice of δ).

4. ∀j such that b ∈ Sj : αj ← αj + δb
vj

, Aj ← e−αj .

5. α ← minj αj .

Until
P

i pi

α
≤ (1 + ε)

P
j Ajvj

Db

Output: Scaled prices ∀i pi = pi
α

and scaled allocations

∀j Aj =
Aj

Db
.

Choice of δ: δb = ε

P
j|b∈Sj

AjP
j|b∈Sj

Aj
vj

The correctness of this algorithm is given by the following
theorem.

Theorem 2.1. The algorithm produces solutions with val-
ues that are within ε of each other. Its running time is

bounded by O
�

R|I| log(m/ε)

ε2

�
. Here R = τ∗/minjvj, where

τ∗ is the optimal solution value, and |I| is the total input
size.

Let us take a moment to analyze the running time. The
easiest way to interpret R is as the product of the number
of winning bids by the ratio of the average winning bid to
the smallest bid. For “normal” auctions we would expect
the ratio to be constant and the number of winning bids
to be equal to n divided by the average bid size. In the
worst case, the ratio can be bounded by O(n/ε) by throwing
away very small bids and the number of winning bids is
bounded by n. In the “normal case”, we get a running time
of O(mn log(m/ε)/ε2) (since the input size is equal to m
times the average bid size).

The proof of the theorem is given in the appendix.

2.2 The Hill Climbing phase
The input to this phase is the set of bids, (Sj , vj), as well

as the output of the approximate linear programming phase:
the scaled prices p1...pn and the scaled fractional allocations
A1...Am. The algorithm is simple:

Hill Climbing Algorithm:

1. Initialize π ← InitialOrder(p1...pn, A1...Am).

2. Repeat π ← LocallyImprove(π) Until no improve-
ment is made.

3. Return Greedy(π).

InitialOrder(p1...pn, A1...Am)

Order the bids by decreasing value of Aj ; bids with Aj = 0
are ordered with decreasing value of vj/

P
i∈Sj

pi.

Greedy(π):

1. W ← ∅, AllocatedItems ← ∅
2. For j = 1...m (where bids’ order is π), if Sj ∩

AllocatedItems = ∅ then

• W ← W ∪ {j}
• AllocatedItems ← AllocatedItems ∪ Sj

3. Return the set W , with value
P

j∈W vj .

LocallyImprove(π):

For j = 1...m (Where bids’ order is π)

1. π′ ← π, with element j moved to first place

2. If value of Greedy(π′) > value of Greedy(π) then re-
turn π′.

This algorithm can not be guaranteed to provide an opti-
mal result, of course, but clearly returns a feasible allocation:

Proposition 2.2. Hill Climbing always returns a feasible
allocation.
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In our implementation we have put an upper bound of
n on the number of times that the loop inside the Local
Improvement routine may execute. This upper bound sig-
nificantly reduces the time, and in experiments does not
seem to noticeably degrade the solution quality. A similar
upper bound may be put on the number of local improve-
ments allowed in the main loop, although experimentation
has showed that even without an upper bound the number
of improvements is very small. Both of these bounds do not
affect the feasibility of the solution.

The worst case running time of the hill climbing phase is
given by the running time of a single greedy pass times the
product of the two upper bounds chosen. In worst case, the
greedy algorithm takes O(|I|) time, where |I| is the total
input size. Typically, however, and somewhat surprisingly,
a greedy pass will only take O(m + n) time: If the order π
is good then we expect a constant fraction of the first bids
to be winning, where “first bids” are the bids encountered
until at least a constant fraction of the items are allocated.
Once a constant fraction of items are allocated, non-winning
bids are expected to be detected as such in constant time
per bid (since we expect one of the first items in the bid
to already be allocated). Thus the time for the “first bids”
should be O(n) and the time for the rest O(m). In our im-
plementation we put an upper bound of n on the loop inside
the Local Improvement routine. Since the number of local
improvements is usually constant, we get that the total run-
ning time of this stage is “normally” O(mn). Experimental
results shown in section 3 confirm this argument.

3. EXPERIMENTAL RESULTS
Most of our experimental result are on the corpus of in-

stances provided by Vohra and de Vries [14]. This corpus
uses five different distributions, where each distribution con-
tains a sequence of problem sizes, varying both the number
of items as well as the number of bids. The problem size is
defined as the total number of items in bids (i.e. the sum
of the bid sizes), which is different from the product of the
number of items and number of bids. The results in this
section are usually reported for each distribution separately,
with the graphs drawn according to the problem size. In
some cases we use a simple indexing of the parameters val-
ues of [14], indexed by increasing problem size, and in other
cases we use the problem size itself. Each data point in the
graphs below represents the average taken over all instances
from a given distribution and problem size. Unless specified
otherwise, the approximation error ε of the linear program-
ming phase was chosen to be 20%. The following list gives
a short description of the five distributions; further details
can be found in [14].

Distributions of Vohra and de Vries [14]

1. Random: For each bid, pick the number of items
randomly from 1..m. Randomly choose that many
items without replacement. Pick the bid offers ran-
domly from [0,1].
The number of items varies from 100 to 400 and the
number of bids varies from 500 to 1000.

2. Weighted Random: For each bid, pick the number
of items randomly from 1..m. Randomly choose that
many items without replacement. Pick the bid offers
randomly from [0,number of items in bid].

The number of items varies from 100 to 400 and the
number of bids varies from 500 to 2000.

3. Uniform: For each bid, pick a constant number of
items randomly from 1..n. Randomly choose that many
items without replacement. Pick the bid offers ran-
domly from [0,1].
The number of items varies from 25 to 100, the num-
ber of bids varies from 50 to 1100, and the bid size is
either 3,8, or 11.

4. Decay: For each bid, give it one random item. Then
repeatedly add a new random item with probability
α until an item isn’t added or the bid contains all n
items. Pick the bid offers randomly from [0, number
of items in bid].
The number of items varies from 50 to 200, the num-
ber of bids varies from 50 to 200, and the probability
ranges from 5% to 95%.

5. Quadratic Model: Each object k is assigned a value
Vk which is common to all bidders. For each bidder j
choose a subset Mj of objects at random, and a pa-
rameter µj . Mj represents the group of objects which
are viewed by bidder j as being complementary to each
other, and µj indicates the strength of the complemen-
tarities for this bidder. The value of bidder j of the
subset S of objects is

P
k∈S Vk + µj

P
k,q∈S∩Mj

VkVq.

The number of items is 100, and the number of bids
varies from 500 to 1100, while the bid size is fixed at
3. vk, µj , and Mj are not given by [14].

3.1 Solution Quality

Figure 3: Solution Quality by problem size

Figure 3 shows the solution quality of ALPH (Approxi-
mate LP followed by Hill Climb) as compared to the optimal
solution reported by [14], for each of the five distributions.
The x axis is the problem number where the problems are or-
dered by size, and the y axis is the percentage of the ALPH
solution out of the optimal solution. As can be seen the
approximation error depends on the distribution, is always
quite low, and for some distributions very low.

Comment: the problem sizes of different distributions are
not in the same scale in this figure. The same information,
but with all distributions on the same scale of problem size,
appears in figure 1.
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3.2 Running Time

Figure 4: ALPH and CPLEX running times for each
problem in distribution ordered by problem size

In figure 4, the X axis has the problem number, ordered by
the size of the input, and the Y axis is time (in milliseconds)
on a logarithmic scale. It’s clear that in random distribution
the running times of the ALPH (Approximate LP followed
by Hill Climbing) are one order of magnitude better than
CPLEX. In weighted random distribution ALPH is 14 to
50 times faster than CPLEX, and the gap increases with
problem size. In uniform distribution ALPH is usually at
least two orders of magnitude faster than CPLEX, where the
gap increases with problem size up to 4 orders of magnitude.
In decay distribution ALPH is usually more than 8 times
faster than CPLEX. In quadratic model distribution ALPH
is three orders of magnitude faster than CPLEX (in fact
about 2000 times faster).

3.3 Solution Quality and the Integrality Gap

Figure 5: ALP primal, ALP dual, optimal and hill
climb solutions as percent of optimal fractional so-
lution for each distribution against problem size
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It is well known that the gap between an optimal frac-
tional allocation (the solution of the LP) and an optimal
integer allocation is a critical factor in combinatorial opti-
mization. The charts in figure 5 compare the following four
values to the value of the optimal fractional solution: the
optimal integer solution, the solution found by the ALPH
algorithm, as well as the primal and dual solutions found
by the approximate linear programming stage. Each figure
describes the problems of a single distribution, where the x
axis is the problem number in the order of the problems as
defined by the problem input size, and the y axis is percent
(of the value of the optimal fractional solution for that prob-
lem instance). As expected, the ALP primal value is always
above 100%, and the ALP dual is always below it at a con-
stant distance from each other (ε was 20% for all problem
instances here). It seems that usually (but not always) the
primal solution is closer to optimal than the dual.

The integrality gap varies widely among the distributions
and the different problems sizes. Notice that the solution
provided by the ALPH algorithm is close to the optimal in-
tegral solution even when the gap is large. One can observe
that in random, weighted random, and decay distributions,
the Hill Climb value and Integral Optimal value are almost
completely aligned. In uniform distribution, it’s clear that
for small problem size the error is quite small, but it in-
creases for the large problem sizes. In the quadratic model
distribution, the error is consistent in size (around 4%).

3.4 Further Improvements on Hill Climbing

(a) Solution Quality Comparison

(b) ALPH and CPLEX time (in ms)

Figure 6: 1-jump and 2-jump hill climb for uniform
and quadratic model distributions

Our results indicate that for large instances of the uniform
distribution and all instance of the quadratic model distri-
bution, hill climbing is significantly less effective than for the

other distributions with an average error of around 4%. On
the other hand, it’s clear that for these problems we achieve
a huge speedup (3 orders of magnitude) over CPLEX solu-
tion time. Therefore it is logical to attempt to spend some
more time in the hill climb stage in order to achieve a higher
accuracy.

Recall that the LocallyImprove method in the Hill Climb-
ing Algorithm simply tries to move element j to the first
place, where j was limited to 1...n. We tried a simple vari-
ant of this, where two elements, i = 1...n, and j = 2...i + 3
are moved to the first and second position in the order ac-
cordingly. This resulted in an improvement of about 2%
over the results of the regular hill climbing, with a time cost
of about 5 seconds. In general, the two element variation
costs O (n) times more than the regular hill climbing phase,
so the time for normal run is O

�
n2m

�
instead of O (nm).

Figure 6(a) plots the accuracy of the different schemes (per-
cent of the optimal integral value) against different problem
sizes. 1 indicates regular hill climbing, and 2 indicates the
two element variation. Figure 6(b) plots the time cost of
the different schemes on a logarithmic scale against differ-
ent problem sizes.

3.5 Results on Other Distributions

(a) Approximation accuracy (percent of upper bound)

(b) ALPH time (in ms)

Figure 7: ALPH performance by problem size on
Leyton-Brown et. al. distributions

We have performed extensive experiments with the en-
gines provided by Leyton-Brown, Pearson, and Shoham [5]
for generating combinatorial auction problem instances. We
have tested our algorithm on several problems generated
from each of the five main distributions there: arbitrary,
matching, paths, regions, and scheduling. For details
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about these distributions see [5]. For each of the five dis-
tributions we generated 10 groups of problems with input
size varying from 100 to 1000000 items in bids. Each of
these groups consists of 10 problem instances, and overall
520 problems were generated. Note that these engines cre-
ate a problem input, but do not provide an optimal solution
value for it. For small instances (up to 5000 items in bids)
we used a branch and bound algorithm to calculate the exact
optimal solution (see table 1 for details on the performance
of ALPH on problems containing 200 bids).

For the larger instances, we used the primal solution value
of an ALP (run with ε = 1%) as an upper bound for the ac-
tual optimal solution. Figure 7(a) shows that an accuracy of
over 99% is achieved for most problem instances, with the
exception of small instances of the arbitrary distribution.
The running times reported in figure 7(b) were obtained us-
ing ε = 20% for the ALP stage. The chart plots running
time in milliseconds on a logarithmic scale against the prob-
lem size on a logarithmic scale. Its clear from the chart that
the algorithm solves under a minute even for problem sizes
of close to a million items in bids.

Two facts stand out: our algorithm runs quickly, and the
approximation error is always small and is tiny for large
problems. Extrapolating from the results of section 3.3, we
may assume that even these small upper bounds for the
approximation error are a serious over-estimate and that
the real error is even smaller.

Comment: The distributions of [5] were constructed to
mimic “real” bids in combinatorial auctions. The tiny gap
between the integer solution and the fractional solution in
these distributions suggests one of two explanations: either
the distributions simply missed the “hard cases” or real com-
binatorial auctions will usually exhibit a very tiny gap be-
tween the integer allocation and the fractional one.

Table 1: ALPH solution quality of 200-bid problems
from Leyton-Brown et. al. distributions

Distribution
Items Bids

Avg.
Bid
Size

gap
from LP
upper
bound

gap
from
opti-
mal

arbitrary 136.9 202.3 13.64 29.2% 4.0%
matching 74.0 200.0 3.00 0.7% 0.2%
paths 58.0 202.0 3.50 0.5% 0.0%
regions 58.2 202.4 9.39 2.8% 0.5%
scheduling 33.9 202.8 5.29 3.0% 0.3%

3.6 Communication and Solution of Combi-
natorial Auctions

Table 2 depicts the time cost of communicating and solv-
ing (using ALPH) the largest problem in each of the dis-
tributions in both Vohra and de Vries and Leyton-Brown,
Pearson, and Shoham. It’s clear from the table that if com-
munication is done over a T-1 line (1Mb), then the cost of
communication of the auction problem is comparable to the
cost of solving it. In fact, the communication time is 3 times
larger than the solution time in the weighted random and
uniform distributions.

Table 2: Time Comparison of problem communica-
tion and solution

Type
of
Distri-
bution

Items Bids
Size
(KB)

Time
to
Solve
(sec)

Time
to
send
over
1Mb
(sec)

random 400 1000 752 4.03 5.88
w. random 400 2000 1484 3.87 11.59
uniform 100 1100 24 0.06 0.19
decay 100 200 14 0.16 0.11
q. model 100 1100 23 0.17 0.18
arbitrary 6032 32001 1697 21.20 13.26
matching 32365 128001 2727 22.60 21.30
paths 32782 128000 2933 23.65 22.91
regions 11889 64000 2489 12.56 19.45
scheduling 9855 128011 3587 20.66 28.02

3.7 Approximate Positive Linear Programming
Algorithm

3.7.1 Speed relative to MATLAB
The ALP algorithm may itself be compared to other LP-

solvers. We have chosen to compare it to the LP-solver
supplied in MATLAB, although it should be noted that the
output of the ALP is NOT the optimal solution to the LP
but only an approximation to it. Figure 8 plots the ratio of

Figure 8: ALP time versus MATLAB time

ALP time (for error factor of 20%) to MATLAB time against
the input size. It’s clear that ALP is at least 10 times faster
than MATLAB for all input sizes in all distributions. Also,
it’s clear that for problems with size larger than 200000,
ALP is at least 30 times faster.

3.7.2 Approximation error as a function of number of
rounds

Figure 9 describes the ratio of the value of ALP primal
solution to the value of the ALP dual solution, as a func-
tion of the number of iterations run in the ALP. The figure
describes the run of a single typical instance of a problem
from the uniform distribution in [14]. The y axis is thereforP

i pi/αP
j Ajvj/Db

− 1 while the x axis is the number of iterations

divided by the number of bids in the problem. Note that ac-
cording to theorem 2.1, the relationship between the number
of iterations and the error ratio is quadratic. The figure con-
tains a regression line which tests this on the actual data,
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Figure 9: Ratio of primal to dual solutions against
(num of iterations)/(num of bids)

and indeed the exponent is very close to expected
�− 1

2

�
.

We have tested this on the other distributions, with similar
results.

3.7.3 Running Time Asymptotics
As previously mentioned, we expect that in most cases,

for fixed ε, the running time of ALP is O (nm ln m). We’ve
tested this on the problems in [14] by plotting the ratio
(ALP time)/(n ·m) on Y axis versus the matrix problem
size (n ·m) on X axis. Figure 10 contains this chart, with
X axis on a logarithmic scale. In this scale we would expect
to see a linear dependence of (time)/(n ·m) in log (n ·m),
which despite the noise seems to be the case for each dis-
tribution. Note that the running time behavior of Random
and Weighted Random distributions are different from the
others. This is due to the bid size, which is small in Uni-
form, Decay, and Quadratic Model, while in Random and
Weighted Random it is O (n).

Figure 10: ALPtime
m·n vs. m · n

3.8 Hill climbing

3.8.1 Effect of Local Improvement

Solution quality: Figure 11(a) describes the solution qual-
ity per distribution for each of the allocation decision mech-
anisms discussed : No Order Modification (regular greedy
algorithm), Single Modification (single local improvement),

(a) Quality Comparison

(b) Time Comparison

Figure 11: Comparison of Greedy, Single Modifica-
tion, and Hill Climbing

and Hill Climbing. The y axis is simply the accuracy (in
percent) of the solution as compared to the optimal integral
solution. The figure shows that there is a major improve-
ment from a single greedy algorithm to the case of a single
local improvement, and some further improvement for full
hill climbing.

Running time cost: Figure 11(b) gives the average time
cost per distribution for each of the allocation decision mech-
anisms. The y axis is milliseconds on a logarithmic scale.
The hill climb must cost at least as much as the single mod-
ification, since the last phase of the hill climb (where no
further improvements occur) is the same as a single modifi-
cation run. However, one can deduce from figure 11(b) that
most of the improvements occur quite early in the phase
from the fact that the overall cost of the hill climb is almost
identical to the cost of the single modification.

3.8.2 Solution Quality as a Function of ALP Approx-
imation Error

Figure 12 shows the accuracy of 10 instances (2 from each
distribution) of the hill climbing phase, when the ALP phase
was solved using ε = 20%, 5%, and 1%. There is no clear re-
lationship between ε of ALP stage, and the overall accuracy
achieved by the hill climb algorithm.
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Figure 12: Accuracy as function of ε

3.8.3 Running Time Asymptotics
As previously mentioned, we expect that in most cases,

the running time of the hill climbing phase is O (nm). We’ve
tested this on the problems in [14] by plotting the ratio Hill
Climbing time/n ·m on Y axis versus n ·m on X axis. Fig-
ure 13 shows that for all distributions, this ratio fluctuates
around a fixed constant, as expected. Running a linear re-
gression on the running time data yields a tiny coefficient
with absolute value smaller than 5E-9 for all distributions
confirming the expected constant relationship between the
hill climb time and n ·m.

Figure 13: HillClimbtime
n·m against (n ·m) on a logarith-

mic scale

4. CONCLUSION
We have implemented an allocation algorithm for combi-

natorial auctions that very rapidly obtains allocations that
are very close to optimal. We have tested it on many types
of problem instances and have found that the solution qual-
ity is usually within 1% of optimal, and in no case more
than 4% from optimal. The algorithm is fast enough to run
in less than a minute on problems with thousands of items
and tens of thousands of bids.

While more experimentation with instances coming from
real combinatorial auctions is clearly needed, we believe that
our algorithm is good enough to solve most practical com-
binatorial auctions. It seems that the real computational
hurdles in combinatorial auctions are thus not the allocation
problem, but rather the complexity of determining, express-
ing, and communicating the bids to the auctioneer.
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APPENDIX
Recall that the main theorem is: The approximate positive
linear programming algorithm produces solutions with values
that are within ε of each other. Its running time is bounded

by O
�

R|I| log(m/ε)

ε2

�
. Here R = τ∗/minjvj, where τ∗ is the

optimal solution value, and |I| is the total input size.
To prove this theorem, we’ll start with some notations:

Notation: The (un-scaled) primal value at iteration t is
denoted by φt =

P
i pt

i, where pt
i are the variable values at

iteration t.
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Notation: The (un-scaled) dual value at iteration t is de-
noted by σt =

P
j At

jvj where At
j are the allocation variables

at iteration t.

Notation: τ∗ is the value of the optimal fractional solution.

Proposition A.1. For all iterations t, pt
1..p

t
n is a primal

feasible solution.

Proof. Recall that α is the minimum αj , and

αj =
X
i∈Sj

pi

vj

Obviously all pt
i ≥ 0 , so it remains to prove that ∀j Pi∈Sj

pi ≥
vj . But

∀j
X
i∈Sj

pi =
X
i∈Sj

pi

α
≥
X
i∈Sj

pi

αj
=
X
i∈Sj

piP
i∈Sj

pi
vj

= vj

Proposition A.2. For all iterations t, A
t
1..A

t
m is a dual

feasible solution.

Proof. Obviously all A
t ≥ 0 so it remains to prove that

∀i P
j|i∈Sj

Aj ≤ 1 (i.e. no item is allocated more than

once). Recall that Db > 0 is the maximum Di and

∀iDi =
X

j|i∈Sj

Aj

But

∀i
X

j|i∈Sj

Aj =
X

j|i∈Sj

Aj

Db
≤
X

j|i∈Sj

Aj

Di
=
X

j|i∈Sj

AjP
j|i∈Sj

Aj
= 1

Corollary A.3. For all iterations t if α > 0 then σt

Db
≤

τ∗ ≤ φt

α
.

Proof. This follows immediately from propositions A.1
and A.2, since any primal feasible solution will have a value
greater or equal to the optimal solution, which in turn will
have a value greater or equal to any dual feasible solu-
tion.

Theorem A.4. For 0.5 > ε > 0, after T = O
�

R log(m/ε)

ε2

�
iterations we have that φT

α
≤ (1 + ε) τ∗, where R = τ∗/minjvj.

In order prove the theorem, we’ll first prove some helpful
lemmas.

Lemma A.5. For all i we have that
�
1− ε

2

�P
j|i∈Sj

Aj =P
j|i∈Sj

�
1− δi

2vj

�
Aj.

Proof. This is a direct corollary from the choice of δ

as δi = ε

P
j|i∈Sj

AjP
j|i∈Sj

Aj
vj

, which implies that δi
2

P
j|i∈Sj

Aj

vj
=

ε
2

P
j|i∈Sj

Aj . We thus haveX
j|i∈Sj

Ajδi

2vj
=
X

j|i∈Sj

Aj −
�
1− ε

2

� X
j|i∈Sj

Aj

⇒
�
1− ε

2

� X
j|i∈Sj

Aj =
X

j|i∈Sj

Aj −
X

j|i∈Sj

Ajδi

2vj

⇒
�
1− ε

2

� X
j|i∈Sj

Aj =
X

j|i∈Sj

Aj

�
1− δi

2vj

�

Fact A.6. ∀x: e−x ≤ 1− x + x2

2
= 1− x

�
1− x

2

�
Lemma A.7. σt+1 ≤ σt − δt+1

b

�
1− ε

2

�P
b∈Sj

At
j

Proof. In iteration t + 1, the price of chosen item b is
increased by δt+1

b . ∀j|b ∈ Sj the value Aj is updated and
so, using fact A.6, we have that

∀j|b /∈ Sj : At+1
j = At

j ,

∀j|b ∈ Sj : At+1
j = At

je
− δt+1

vj ≤ At
j

�
1− δt+1

vj

�
1− δt+1

2vj

��
.

But,

σt+1 =
X

At+1
j vj =

X
j|b∈Sj

At+1
j vj +

X
j|b/∈Sj

At+1
j vj ≤

≤
X

j|b∈Sj

At
jvj

�
1− δt+1

vj

�
1− δt+1

2vj

��
+
X

j|b/∈Sj

At
jvj ≤

≤ σt −
X

j|b∈Sj

At
jδ

t+1

�
1− δt+1

2vj

�
.

So, using A.5, we get

σt+1 ≤ σt − δt+1
b

�
1− ε

2

� X
b∈Sj

At
j .

Lemma A.8. σt+1 ≤ σt
�
1− δt+1

τ∗
�
1− ε

2

��
Proof. Recall that ∀iDi =

P
j|i∈Sj

Aj , so using A.7 we

substitute for Db and get

σt+1 ≤ σt − δt+1
b

�
1− ε

2

�
Db ≤ σt

�
1− δt+1

b

Db

σt

�
1− ε

2

��
But A.3 implies that σt

Db
≤ τ∗, and thus

σt+1 ≤ σt

�
1− δt+1

τ∗

�
1− ε

2

��
.

Lemma A.9. α ≥ − ln
�

σt

minj vj

�
Proof.

σt =
X

At
jvj =

X
e−αj vj ≥ min

j
vj

X
e−αj ≥ min

j
vje

−α

We thus have that e−α ≤ σt

minj vj
, and thus

α ≥ − ln
�

σt

minj vj

�
.

Fact A.10. ∀x : − ln (1− x) ≥ x

Lemma A.11. For all iterations T ,

α ≥ 1
τ∗
P

t∈1..T δt
�
1− ε

2

�− ln
�

σ0

minj vj

�
.
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Proof. We know from A.8 that

σt+1 ≤ σt

�
1− δt+1

τ∗

�
1− ε

2

��
So, by induction on t, we have

σt+1 ≤ σ0
Y

t=1..T

�
1− δt

τ∗

�
1− ε

2

��
.

Using A.9, we get

α ≥ − ln

�
σ0

minj vj

�
−
X

t=1..T

ln

�
1− δt

τ∗

�
1− ε

2

��
.

Using A.10 we get

α ≥ − ln

�
σ0

minj vj

�
+
X

t=1..T

�
δt

τ∗

�
1− ε

2

��
≥

≥ 1

τ∗
X

t=1..T

δt
�
1− ε

2

�
− ln

�
σ0

minj vj

�
.

Lemma A.12. After T iterations, we can bound from above
the primal solution of ALP by

φt

α
≤ τ∗

24 P
t=1..T δt�

1− ε
2

�P
t=1..T δt − τ∗ ln

�
σ0

minj vj

�35
Proof. According to the ALP algorithm, at stage t some

pi grew by δt, so

φT

α
=

P
i pT

i

α
=

P
t=1..T δt

α

Using A.11, we thus get:

φt

α
≤ τ∗

24 P
t=1..T δt�

1− ε
2

�P
t=1..T δt − τ∗ ln

�
σ0

minj vj

�35
Fact A.13. For 0 < ε < 0.5, we have that 3

3−2ε
≤ 1 + ε.

We are finally ready to complete the proof of A.4.

Proof. We start with the following claim.

Claim A.14. For T ≥ 6τ∗
minj vjε2

ln
�

σ0

minj vj

�
we have that

φT

α
≤ τ∗ (1 + ε).

Before proving the claim, let us see why it proves the theo-
rem. The ratio of the average offer and minimal offer is given

by:
1
m

P
j vj

minj vj
, and may be assumed to be bounded from above

by m/ε (since very small bids can be thrown out). At the
start of ALP, all allocations are set to 1 so: σ0 =

P
j vj and

thus T = 6τ∗
minj vjε2

ln
�

σ0

minj vj

�
= O

�
R ln(m/ε)

ε2

�
.

Now for the proof of claim A.14. Using Lemma A.12, we
only need to show that24 P

t=1..T δt�
1− ε

2

�P
t=1..T δt − τ∗ ln

�
σ0

minj vj

�35 ≤ (1 + ε) .

Denote: a =
P

t=1..T δt, and b = τ∗ ln
�

σ0

minj vj

�
. So we

wish to see when a

(1− ε
2 )a−b

≤ (1 + ε). For a = 6b
ε

, we have

a�
1− ε

2

�
a− b

=
6b
ε�

1− ε
2

�
6b
ε
− b

=
6
ε

6
ε
− 4

=
3

3− 2ε
≤ 1 + ε.

Where the last inequality uses fact A.13 and is what we
wanted. Now translating back, this means that we get to
1 + ε when

a =
X

t=1..T

δt =
6b

ε
=

6τ∗

ε
ln

�
σ0

minj vj

�
Recall that in the ALP algorithm,

δi = ε

P
j|i∈Sj

AjP
j|i∈Sj

Aj

vj

≥ ε min
j

vj

P
j|i∈Sj

AjP
j|i∈Sj

Aj
= ε min

j
vj

⇒ Tε min
j

vj ≤
X

t=1..T

δt =
6τ∗

ε
ln

�
σ0

minj vj

�
⇒ T ≤ 6τ∗

minj vjε2
ln

�
σ0

minj vj

�
.

To complete the proof of the main theorem we just need
to analyze the running time of each iteration.

Lemma A.15. Each iteration can be implemented in time
O(|I|) where |I| is the input size (i.e. the sum of all bid
sizes).

Proof. In a straight forward implementation of each step,
the running time is dominated by the time needed to update
all values of Di, which takes O(1) operations per each item
i in each set Sj .

Comment: A theoretically faster implementation can be
obtained by updating the Di’s as the Aj ’s are modified, and
storing the D values and the A values in heaps.
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