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Abstract 

As distributed systems of computers play an increasingly important role in society, it will be 
necessary to consider ways in which these machines can be made to interact effectively. Especially 
when the interacting machines have been independently designed, it is essential that the interaction 

environment be conducive to the aims of their designers. These designers might, for example, wish 
their machines to behave efficiently, and with a minimum of overhead required by the coordination 
mechanism itself. The rules of interaction should satisfy these needs, and others. Formal tools and 
analysis can help in the appropriate design of these rules. 

We here consider how concepts from game theory can provide standards to be used in the 
design of appropriate negotiation and interaction environments. This design is highly sensitive to 
the domain in which the interaction is taking place. Different interaction mechanisms are suitable 
for different domains, if attributes like efficiency and stability are to be maintained. 

We present a general theory that captures the relationship between certain domains and nego- 
tiation mechanisms. The analysis makes it possible to categorize precisely the kinds of domains 
in which agents find themselves, and to use the category to choose appropriate negotiation mech- 
anisms. The theory presented here both generalizes previous results, and allows agent designers 
to characterize new domains accurately. The analysis thus serves as a critical step in using the 
theory of negotiation in real-world applications. 

We show that in certain task oriented domains, there exist distributed consensus mechanisms 
with simple and stable strategies that lead to efficient outcomes, even when agents have incomplete 
information about their environment. We also present additional novel results, in particular that 
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111 concave domains using all-or-nothin g deals. no lying by an agent can be beneficial, and that 

in subadditive domains. there often exist beneficial decoy lies that do not require lull information 

regarding the other agent’s goals. 

1. Machines controlling and sharing resources 

Computers arc making more and more decisions in a relatively autonomous fashion. 
Telecommunication networks arc controlled by computers that decide on the routing 

01‘ telephone calls and data packets. Electrical grids have decisions made by computer 

regarding how their loads will bc balanced at times of peak demand. Similarly, research 
is being done on how computers can react to. and control, automotive and airplane 

traffic in real time. 
Some of the decisions that these computcra are generating arc made in concert with 

other machines. Often. this inter-machine consultation is crucial CO the task at hand. FOI 
example. with personal digital assistants (PDAs), the individual’s palmtop computer 
will bc expected to coordinate schedules with others’ PDAs (c.g., my software agent 
determines whether my car has been fixed on time at the garage; if not, it contacts 

the taxi company, reschedules my order lor ;I cub. and updates my day’s schedule). 

No scheduling will take place without inter-machine communication. Rarely will it take 
place without the resolution of inter-machine conflict (because the humans that these 
machines represent have conflicting goals). 

Similarly. the concept 01‘ intelligent databases relies on sophisticated interactions 
among autonomous software agents. A user’s request for a piece of information may 

require collecting and synthesizin, 0 information from several distributed databases. Ma- 

chines need to li)rmulate the ncccssary collection of requests, arrange access to the data 
(which may be partially restricted), and cooperate to get the information where it is 

needed. 
Even when a computer‘s tasks do not lzcl~~ to involve other machines, it may be ben- 

eficial to involve them. Sometimes. for example. we find automated systems controlling 

resources (like the telecommunications network mentioned above). It is often to the 

benefit of separate resource-controlling systcrns to share their resources (e.g.. fiber optic 
lines, short and long term storage. switchin, ~7 nodes) with one another. 

All of this inter-machine coordination will be taking place within some kind 01‘ 

irlternctiorr envirannwrzt. There will inevitably be “protocols” for how machines deal 
with one another. What concerns us here are not the details of how to stuff information 
into a packet on the network; it’s not even the higher-level issue of how agents will 
communicate with one another (in a common language, or perhaps using translation 
filters) Rather, once WC assume that agents cm communicate and understand one 
another, how will they come to agreements? These “interaction rules” will establish the 
basis for inter-machine negotiation, agreement, coordination, and cooperation. 

If the inter-machine protocols are primitive and incapable of capturing the subtletics 
01‘ cooperative opportunities, the machines will act inefficiently. They will make the 
wrong decisions. The people who depend on those decisions will suffer. 
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1.1. Overview of the article 

This article is organized into three parts: 

(1) 

(2) 

(3) 

In the first part (Sections 1.2-9), we discuss the general approach of our frame- 
work for automated negotiation, along with its motivation and related research. 
We also give a very brief and informal overview of our results. 
In the second part (Sections lo-14), we present the formal details of our appli- 
cation of the framework to task oriented domains. This second part also includes 

a more formal discussion of some of the main issues raised in the first part of 

the article. 
In Appendix A, we present the proofs to all theorems contained in the second 

part of the article. 

197 

1.2. Heterogeneous, self-motivated agents 

In the field of distributed artificial intelligence (DAI), researchers explore methods 
that enable the coherent (e.g., coordinated, efficient) interaction of computers in dis- 
tributed systems. One of the major distinctions in DA1 is between research in distributed 
problem solving (DPS) [4,8,13,63], in which the distributed system has been cen- 
trally designed, and multiagent (MA) systems [ 18,38,40,68], in which the distributed 

system is made up of independently designed agents. In DPS, there is some global task 

that the system is performing, and there exists (at least implicitly) a global notion of 
utility that can constrain or direct agent activity. In DPS, there is assumed to be a single 

body who is able, at design time, to directly influence the preferences of all agents in 

the system. 
In multiagent systems, there is assumed to be no single body who is able, at design 

time, to directly influence the preferences of all agents in the system. The agents’ 
preferences arise from distinct designers. In MA systems, each agent is concerned only 
with its own goals (though different agents’ goals may overlap), and there is no global 
notion of utility. The MA system agent, concerned with its own welfare (i.e., the welfare 
of its designer [ 12]), acts accordingly to increase that welfare. 

The distinction between distributed problem solving and multiagent systems should 

really be seen primarily as a distinction between research agendas. 2 Certainly it will 
not always be obvious to an outside observer whether a given distributed system falls 
into one category or the other. A single designer may have built his agents to act 

competitively, believing it improves overall system efficiency. Similarly, individually 
motivated agents might be seen sharing information and helping one another, because 
they have determined that it is in their own best interests to act that way. However, 
the research questions asked by a researcher in DPS are sometimes distinct from those 
asked by an MAS researcher (despite a good deal of overlap). In particular, if a DPS 
researcher can show that acting in a particular way is good for the system as a whole, 

2 in fact, the use of these terms is itself undergoing a change. “Multiagent systems” is now sometimes used 

to refer to the entire field of distributed artificial intelligence. For more of a discussion about the DPS/MAS 

distinction, see [ 16 1. 



hc can i/rq~~sr this hchavior on a11 the agents in the system at design time. For the MAS 

rescarchcr, such an alternative is unavailable. At best, he might he able to design aspects 

of the environment that motivutc all the (scllish) agents to act in a certain way. This 

need for indir~~ incentives is one element that distinguishes MAS research f‘rom DPS 

research. 

The approach of MA system rcscarch IS particularly appropriate for the kinds of’ 

scenarios mentioned above. When AT&T and MCI computers communicate with the 

purpose of load balancing their mcssagc traf’fic. each is concerned with its own corn- 

pany’s welfiare. .4ny interaction environment must take into account that each of’ these 

software agents. in comin g to an agrccmcnt. uill hc primarily concerned with its own 

increased benefit from that agrecmcnt. WC are not looking for benevolent or altruistic 

behavior from these machines. Similarly. thchc systems of interacting machines tend to 

be “open” [ 261, in the sense that the system composition is not fixed. With PDAs, f’or 

cxamplc. new agents (and cvcn new typch 01’ agents) will constantly bc entering the 

environment. My PDA. to bc cl’lcctivc in negotiation and coordination. must be able to 

deal with these open, dynamic. conligurations 01’ agents. Kescarch in multiagent systems 

is thus the appropriate model with which to analy/.c these indcpcndent sol‘tware agents 

and their interactions. 

2. Related work in distributed artificial intelligence 

There have been several streams 01’ research In DA1 that have approached the problem 

01‘ multiagent coordination in diffcrcnt ways We hcrc briefly review some 01‘ this work, 

categorizing it in the general arcas 01‘ multiagcnt plannin,. 0 negotiation. social laws, and 

economic approaches. 

One locus 01. DA1 rcscarch has been that of “planning li)r multiple agents”, which 

considers issues inhcrcnt in centrally dircctcd multiagent execution. Smith’s contract 

net [ 63,641 falls into this category. as dots other DA1 work such as [ 35.51,55]. A 

second focus fijr research has hccn “distributed planning”, whcrc multiple agents ait 

participate in coordinating and deciding upon their actions 1 IO, IS. I8,53.56,58,78], 
The question ol’ whether the group activity is lashioned centrally or in a distributed 

manner is only one axis of comparison. Another important issue that distinguishes 

various DA1 research efforts is whether the goals themselves need to be adjusted, that 

is. whether there may be any fundamental conflicts among different agents’ goals. Thus. 

for example, GcorgefT’s early work on multiagent planning assumed that there was no 

basic conflict among agenl goals. and that coordination was all that was necessary to 

guarantee success [ X3,29,66 1. Similarly, planning in the context of’ Lcsscr. Corkill. and 

Durfcc’s research [ I I 1 often involves coordination of’ activities (e.g., sensor network 

computations) among agents that have no inherent conflict with one another (though 

surf’acc conflict may exist). “Planning” here means avoidance of’ redundant or distracting 

activity. clricient exploration 01‘ the starch space. etc. 
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Another important issue is the relationship that agents have to one another, e.g., 
the degree to which they are willing to compromise their goals for one another (as- 
suming that such compromise is necessary). Benevolent agents [ 581 are those that, 
by design, are willing to accommodate one another; they have been built to be co- 
operative, to share information, and to coordinate in pursuit of some (at least im- 
plicit) notion of global utility. In contrast, multiagent system agents will cooperate 
only when it is in their best interests to do so. Still another potential relationship 

among agents is a modified master-slave relationship, called a “supervisor-supervised’ 
relationship, where non-absolute control is exerted by one agent over another [ 19, 
201. 

The synthesis, synchronization, or adjustment process for multiple agent plans thus 
constitute some of the (varied) foci of DA1 planning research. Synchronization through 
conflict avoidance [ 28,29,66], distribution of a single-agent planner among multiple 
agents [ 91, the use of a centralized multiagent planner [ 551, and the use of consensus 
mechanisms for aggregating subplans produced by multiple agents [ 231, have all been 
explored. Other recent work includes [ 17,24,34,36,40,69-7 11. 

2.2. Axiomatic approaches to group activit) 

There exists a large and growing body of work within artificial intelligence that 

attempts to capture notions of rational behavior through logical axiomatization [6, 
7,30,3 1,37,46,47,54]. The approach usually centers on a formalized model of the 
agent’s beliefs, desires, and intentions (the so-called “BDI model”). The purpose of 
the formal model is to precisely characterize what constitutes rational behavior, with 
the intent of imposing such rational behavior on an automated agent. The formal ax- 
ioms might be used at run-time to directly constrain an agent’s decision process, or 
(more likely) they could be used at compile-time to produce a more efficient executable 
module. 

The focus of this research, coming as it does from a single-agent artificial intelligence 

perspective, is on the architecture of a single automated agent. For example, Cohen 
and Levesque [5,6] have explored the relationship between choice, commitment, and 
intention-an agent should commit itself to certain plans of action, and remain loyal to 
these plans as long as it is appropriate (for example, when the agent discovers a plan 
is infeasible, the plan should be dropped). 

Even when looking at multiagent systems, these researchers have examined how a 
member of a group should be designed-again, looking at how to design an individual 
agent so that it is a productive group member. For example, in [ 361 axioms are proposed 
that cause an agent, when he discovers that he will fail to fulfill his role in a joint plan, 
to notify the other members of his group. Axiomatizations, however, might need to 
deal with how groups of agents could have a joint commitment to accomplishing some 

goal [7], or how each agent can make interpersonal commitments without the use of 
such notions [ 3 11. Another use for the BDI abstractions is to allow one agent to reason 
about other agents, and relativize one’s intentions in terms of beliefs about other agents’ 
intentions or beliefs. 



2.2. Social laws ,fi?r nu.&iple qents 

Various researchers in distributed artificial intelligence have suggested that it would be 
worthwhile to isolate “aspects of cooperative behavior”, general rules that would cause 
agents to act in ways conducive to cooperation. The hypothesis is that when agents act in 

certain ways (e.g., share information. act in predictable ways, defer gfobally constraining 
choices). it will be easier for them IO carry out effective joint action [3,45,6:5]. 

Moses, Shoham, and Tenn~nh~~ltz [48.49.6 I .62]. for example, have suggested ap- 
plying the sociep metaphor to artificial systems to improve the performance of the 
agents operating in this society. The issues that are to be dealt with are synchronization, 
coordination of the agents’ activities, cooperative ways to achieve tasks, and how safety 

and fairness constraints on the system can be guaranteed. They propose coordinating 
agent activity to avoid conflicts; the system will be structured so that agents will not 
arrive at potential conflict situations. 

Thus these social laws are seen as a method to avoid the necessity for costly coor- 
dination techniques, like planning or negotiation. With agents following the appropriate 
social laws, the need for run-time coordination will be reduced. This is important, be- 
cause although agent designers may bc willin, (7 to invest a large amount of effort at 
design time in building effective distributed systems, it is important that the run-time 
overhead be as low as possible. 

There is a similarity between this USC of precompiled, highly structured social laws, 
and our development of pre-defined interaction protocols. However, the social laws 
approach assumes that the designer of the laws has full control over the agents; agents 
are assumed to follow the social laws simply because they were designed to, and not 
because they individually benefit from the social laws. Obeying the social laws may not 
bc “stable”; assuming that everyone else obeys the laws, an agent might do better by 
breaking them. Our approach is concerned with social conventions that are stable, which 

will be suitable for individually motivated agents. 

2.4. Ewnnnzic iq~ptwches 

There have been several attempts to consider market mechanisms as a way of ef- 
liciently allocating resources in a distributed system. Among the AI work is that of 
Smith’s contract net [ 63,641, Malone’s enterprise system 144J, and Wellman’s WAL- 
RAS system f 72,73 1. 

The contract net is a high-level communication protocol for a distributed problem 
solving system. It enables the distribution of the tasks among the nodes that operate in 
the system. A contract between two nodes is established so that tasks can be executed; 
each node in the net can act as a mmager and/or as a contracmr. A task that has 
been assigned to a node can be further decomposed by the contractor. A contract is 
established by a bidding scheme that includes the announcement of the task by the 
manager, and bids sent in by the potential contractors. 

Enterprise 144 J is a system that was built using a variation of the contract net protocol. 
The distributed scheduling pmtocnl locates the best available machine to perform a 
task. This protocol is similar to the contract net. but makes use of a more well-de~ned 
assignment criteria. 
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Another system that takes an economic approach in solving a distributed problem 
through the use of a price mechanism has been explored by Wellman in [ 72 1. Wellman 
uses the consumer/producer metaphor to establish a market pricing-based mechanism for 
task redistribution that ensures stability and efficiency. All agents act as both consumers 
and producers. Each distinct good has an auction associated with it, and agents can 
get the good by submitting bids in the auction for that good. The system developed by 
Wellman, WALRAS, computes for each market the equilibrium price. 

2.5. Negotiation 

Negotiation has been a subject of central interest in DAI. The word has been used in 
a variety of ways, though in general it refers to communication processes that further 
coordination [ 8,40,41,63]. These negotiating procedures have included the exchange 
of partial global plans [ 131, the communication of information intended to alter other 
agents’ goals [ 67,681, and the use of incremental suggestions leading to joint plans of 

action [ 381. 
Interagent collaboration in distributed problem solving systems has been explored in 

the ongoing research of Lesser, Durfee, and colleagues. Much of this work has fo- 
cused on the implementation and analysis of data fusion experiments, where systems 
of distributed sensors absorb and interpret data, ultimately arriving at a group conclu- 

sion [ 11,14,42]. Agents exchange partial solutions at various levels of detail to construct 
global solutions; much of the work has examined effective strategies for communication 
of data and hypotheses among agents, and in particular the kinds of relationships among 
nodes that can aid effective group analysis. For example, different organizations, and 
different methods for focusing node activity, can help the system as a whole be far more 

efficient. 
Sycara has examined a model of negotiation that combines case-based reasoning and 

optimization of multi-attribute utilities. In particular, while in our research we assume 
that agents’ goals are fixed during the negotiation, Sycara is specifically interested in how 
agents can influence one another to change their goals through a process of negotiation 

(information transfer, etc.). 
Kraus and her colleagues have explored negotiation where the negotiation time itself 

is an issue [ 38,391. Agents may lose value from a negotiation that drags out too long, 
and different agents are asymmetric with regard to the cost of negotiation time. Agents’ 
attitudes towards negotiation time directly influences the kinds of agreements they will 
reach. Interestingly, however, those agreements can be reached without delay. There is 
an avoidable inefficiency in delaying agreement. 

Gasser [27] has explored the social aspects of agent knowledge and action in mul- 
tiagent systems (“communities of programs”). Social mechanisms can dynamically 
emerge; communities of programs can generate, modify, and codify their own local 
languages of interaction. Gasser’s approach may be most effective when agents are in- 
teracting in unstructured domains, or in domains where their structure is continuously 
changing. The research we present, on the other hand, exploits a pre-designed social 
layer for multiagent systems. 



Ephrati and Roscnschein [ I X. 7 I, 22 ] used the Clarke Tax voting procedure as an II- 

agent consensus mechanism, in essence to crlloid the need for classical negotiation. The 

mechanism assumes the ability to transfer utility explicitly. The Clarke Tax technique 

in fact assumes (and requires) that agents arc able to transfer utility out of the system 

(taxcs that are paid by the agents). The utility that is transferred out oT the system is 

actually wasted, and reduces the cfficicncy of the overall mechanism. This, however. 

is the price paid IO ensure stability. The work WC present below does not assume the 

explicit transfer of‘ utility (though implicit transl‘er is possible, to a certain extent). Also, 

the negotiation mechanism cnsurcs stability without the inefficiency of transfering utility 

out 01‘ the aystcm. 

2.5. I. Kelationship 10 our prc~~i0u.s \wt.X oti tIcyytticltim 

In previous work [ 75. 77-W). WC considered various negotiation protocols in different 

domains, and examined their propcrtieh. Apcnts were assumed to have a goal that 

specified a set 01‘ acceptable linal states. Thcsc agents then entered into an iterative 

process 01‘ offers and counter-ofl‘crs. cxplorin, 1’ the possibility of achieving their goals at 

lower cost. and/or resolving conllicts bctm,cen their goals. 

The procedure for makin g ol‘l’cra was Ihrnializcd in a tzegoliation ttwchanism; it 

also specified the f’orm that the agents’ ofl’crs could take (deal types). A deal be- 

twecn agents was generally a joint plan. The plan was “joint” in the sense that the 

agents might probabilistically &arc the load. compromise over which agent does which 

actions. or even compromise over which agent gets which parts of its goal satis- 

fied. 

The interaction between agents occurs in two consecutive stages. First the agents 

negotiate. then they execute the entire joint plan that has been agreed upon. No diver- 

gence liom the agreed deai is aIlowed f i.e.. al‘ter the deal is publically agreed upon, 

appropriate hchavior can bc externally cnl’orced J. The sharp separation of stages has 

consequences. in that it rules out certain negotiation tactics that might be used in an 

interleaved process. 

At each step, both agents simultaneously ol’ltir a deal. Our “monotonic concession 

protocol” (introduced in [ 75) ) specified that at no point could an agent demand more 

than it did previously-in other words. each ol‘lcr either repeated the previous offer or 

conceded by demanding less. The negotiation ended in one of two ways: 

l mtrfiicr: if neither agent makes a concession at some step. they have by default 

agreed on the (domain dependent ) “conflicf deal”; 

0 ngreetmwt: if at some step an agent A 1. IOr example, offers agent A2 more than A? 

himself asks for. they agree on A 1 ‘s offer. and if both agents overshoot the other’s 

demands. then a coin toss breaks the symmetry. 

The result of these rules is that agents cannot backtrack, nor can they both simulta- 

ncously “stand still” in the negotiation more than once (since the first such occurrence 

causes them to reach a conflict ). Thus the negotiation process is strongly monotonic 

and ensures convergence to a deal. 

Deal types explored in our previous work included pure deals, all-or-tzothitzg deals, 

ttlixed deals. joitrtplmr~.r, mixedjoint plans. .semi-cooperative deals, and multi-plan deals. 

Each of’ these types of agrecmcnt proved suitable for solving different kinds of inter- 
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actions. For example, semi-cooperative deals proved capable of resolving true conflicts 
between agents, whereas mixed deals did not. Similarly, multi-plan deals are capable of 
capturing goal relaxation as part of an agreement. 

It was also shown that certain other properties were true of some deal types but not of 
others. In particular, different agent strategies were appropriate (“rational”) for different 

deal types and domains. Agents were shown to have no incentive to lie when certain 
deal types were used in certain domains, but did have an incentive to lie with other deal 

type/domain combinations. 
The examination of this relationship between the negotiation mechanism and the 

domain made use of two prototypical examples: the postmen domain (introduced 

in [ 75]), and the slotted blocks world (presented in [ 771). It was clear that these 
two domains exemplified general classes of multiagent interactions (e.g., the postmen 
domain was inherently cooperative, the slotted blocks world not). It was, however, not 

clear what attributes of the domains made certain negotiation mechanisms appropriate 
for them. Nor was it clear how other domains might compare with these prototypes. 
When presented with a new domain (such as agents querying a common database), 
which previous results were applicable, and which weren’t? The research lacked a 
general theory explaining the relationship between domains and negotiation mecha- 

nisms. 
In this article, we present the beginnings of such a general theory. The analysis makes 

it possible both to understand previous results in the postmen domain more generally, 
and to characterize new domains accurately (i.e., what negotiation mechanisms are 
appropriate). The analysis thus serves as a critical step in using the theory of negotiation 

in real-world applications. 

3. The aim of the research 

The purpose of the research described in this article is to consider how we might build 
machines that are capable of making constructive agreements. We want our machines 

to interact flexibly. We want them to represent our interests, and compromise when 
that is to our advantage. We may want them to be secretive at times, not revealing all 
their information, and we most likely want them to recognize duplicity on the part of 
others, when possible. In short, we want our agents to faithfully act as our surrogates in 
encounters with other agents. 

3. I. Social engineering for machines 

When humans interact, they do not do so in a vacuum. There are social conventions 
and laws that constrain their behavior; the purpose of social conventions and laws is 
to do exactly that. A tax levied on a company that pollutes the air is intended as a 
disincentive to a certain kind of behavior. Positive publicity showered on a philanthropic 
company provides it with benefit for its behavior. One can think of a complicated system 
of laws and conventions as a kind of social engineering, intended to produce certain 
behavior among people. 
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We are interested in social engineering for machines. We want to understand the 
kinds of negotiation protocols, and punitive and incentive mechanisms, that would mo- 
tivate individual designers to build machines that act in ways that all those designers 

find beneficial. As mentioned above the development of “social laws” has parallels 
with the work of [ 621. There, however, the social laws are for centrally designed sys- 

tems of agents (DPS). and will not necessarily make sense for independently designed 
agents. For example, a rule might encourage efficient behavior if everyone followed 

it, but if any single agent could benefit mot-c by not following the rule. the system 
as a whole will not be stable. Since each of our agents will do what is necessary to 

maximize its benefit, stability is a critical issue-we need rules that agents will inde- 
pendently find in their best interests to follow. We will return to this issue of stability 

below. 

3.2. The setting of‘ .rtctndards 

The scenario we consider is as follows. Imagine representatives of various companies 

(agent designers) coming together to agree on interaction protocols for their automated 
agents. Given a particular domain (such as balancing telecommunications traffic among 
wide area networks, or meeting scheduling), they are presented with various interaction 

mechanisms, and shown that each mechanism has certain provable properties. For exam- 
ple, one mechanism might arrive at guaranteed globally optimal solutions, but at the cost 
of one agent possibly doing very badly. Another mechanism might ensure that the gap 
between agents’ benefits are minimized, but at the cost of everyone doing a little worse. 
Moreover, it is shown to these company representatives that Protocol A is immune to 
deception: it will be in no one’s interest to design a cheating agent that deviates from 
the protocol in any way (e.g., by reportin g higher, or lower, network traffic than is 

actually present) The representatives consider the various options, and decide among 
themselves which protocol to build into their agents. The meeting adjourns, agents arc 
built. and beneficial agreements are reached among them. 

It turns out that the attributes of a given mechanism are highly sensitive to the domain 
in which the agents are operating. The rules of interaction that might be appropriate in 
one domain might be quite inappropriate in another. When those company representatives 
sit down at the meeting, they need to be told “In this domain, Protocol A has properties 
I, 2. and 3, and is immune to deception. Protocol B has properties 2, 4, and 5, and is 
not immune to deception.” Our research explores the space of possibilities, analyzing 
negotiation mechanisms in different domains. When the designers of automated agents 
meet, this is the kind of information they will need. The alternative to having this analysis 

is to wander in the dark, and to build negotiation modules without understanding their 
properties. Will they result in good deals? Could our machines do better? Will someone 
build a deceptive agent that takes advantage of mine? Should I, myself, design my agent 
to be secretive or deceptive? Will this further my own goals? Our research is intended 
to answer these kinds of questions. 

The builders of complex distributed systems, like interconnected networks, shared 
databases, assembly line monitoring and manufacturing, and distributed processing, can 
broaden the range of tools that they bring to bear on issues of interagent coordination. 
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Existing techniques generally rely on the goodwill of individual agents, and don’t take 
into account complex interactions of competing goals. New tools can be applied to 
the high-level design of heterogeneous, distributed systems through the creation of 
appropriate negotiation protocols. 

4. Protocol design 

How can machines decide how to share resources, or which machine will give way 

while the other proceeds? Negotiation and compromise are necessary, but how do we 
build our machines to do these things? How can the designers of these separate machines 
decide on techniques for agreement that enable mutually beneficial behavior? What 
techniques are appropriate? Can we make definite statements about the techniques’ 

properties? 
The way we have begun to address these questions is to synthesize ideas from artificial 

intelligence (e.g., the concept of a reasoning, rational computer) with the tools of game 

theory (e.g., the study of rational behavior in an encounter between self-interested 
agents). Assuming that automated agents, built by separate, self-interested designers, 
will interact, we are interested in designing protocols for specific domains that will get 
those agents to interact in useful ways. 

The word “protocol” means different things to different people. As used to describe 
networks, a protocol is the structure of messages that allow computers to pass informa- 
tion to one another. When we use the word protocol, we mean the rules by which agents 
will come to agreements. It specifies the kinds of deals they can make, as well as the 
sequence of offers and counter-offers that are allowed. These are high-level protocols, 
dealing not with the mechanisms of communication but with its content. Protocols are 
intimately connected with domains, by which we mean the environment in which our 
agents operate. Automated agents that control telecommunications networks are oper- 
ating in a different domain (in a formal sense) than robots moving boxes. Much of 
our research is focused on the relationship between different kinds of domains, and the 
protocols that are suitable for each. 

Given a protocol, we need to consider what agent strategy is appropriate. A strategy 
is the way an agent behaves in an interaction. The protocol specifies the rules of the 
interaction, but the exact deals that an agent proposes is a result of the strategy that 
his designer has put into him. As an analogy, a protocol is like the rules governing 
movement of pieces in the game of chess. A strategy is the way in which a chess player 

decides on his next move. 

4. I. The game theory/automated agent match 

Game theory is the right tool in the right place for the design of automated inter- 
actions. Game theory tools have been primarily applied to analyzing human behavior, 
but in certain ways they are inappropriate: humans are not always rational beings, nor 
do they necessarily have consistent preferences over alternatives. Automated societies, 
on the other hand, are particularly amenable to formal analysis and design. Automated 
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agents can exhibit predictability, consistency, narrowness of purpose (e.g., no emotions, 
no humor, no fears, clearly defined and consistent risk attitude), and an explicit measure- 

ment of utility (where this can have an operative meaning inside the program controlling 
the agent ) 

Even the notion of “strategy” (a specification of what to do in every alternative during 
an interaction), a classic game theory term, takes on a clear and unambiguous meaning 
when it becomes simply a program put into a computer. The notion that a human would 
choose a fixed strategy before an interaction, and follow it without alteration, leads to 
unintuitive results for a person. Moreover. it seems to be more a formal construct than 
a realistic requirement-do humans consider eve? alternative ahead of time and decide 

what to do? On the other hand, the notion that a computer is programmed with a fixed 
strategy before an interaction, and follows it without alteration, is a simple description 
of the current reality. 

Of course, neither humans nor computer programs are ideal game theory agents. Most 

importantly, they are not capable of unlimited reasoning power, as game theory often 
assumes. Nevertheless, it seems that in certain ways automated agents are closer to the 
game theory idealization of an agent than humans are. The work described here, the 
design of interaction environments for machines. is most closely related to the field of 

mechanism design in game theory [ 25). 

3.2. Comparison with game rheog 

4.2.1. Bargaining theory 

The approach taken in this article is strongly based on previous work in game theory, 
primarily on what is known as “Nash’s bargaining problem” [43] or “Nash’s model of 

bargaining” [ 601. 
Classic game theory [ 32,43,50,60.74] talks about agents reaching “deals”, which 

are defined as vectors of utilities (one for each agent). A bargaining game can end up 
in some possible outcome (i.e., a “deal”). Each player has a full preference order over 
the set of possible outcomes; this preference order is expressed by its utility function. 
For each deal, there is a utility vector which is the list of the utilities of this deal for 
every participant. There is a special utility vector called “conflict” (or sometimes the 
“status quo point”) which is the utility each player assigns to a conflict (lack of final 
agreement). Game theory assumes that the set of possible deals is a simplex, i.e., if 
~1 and u2 are two utility vectors for two possible deals, then every vector on the line 

connecting NI to ~2 is a utility vector of some possible deal (meaning that the domain 
of deals is continuous). Classic game theory deals with the following question: given 
a set of utility vectors (a simplex), what will be the utility vector that the players will 
agree on (under particular assumptions)? In other words, classic bargaining theory is 
focused on prediction of outcomes, under certain assumptions about the players and the 
outcomes themselves. 

Nash [50] showed that under some rational behavior and symmetry assumptions, 
players will reach an agreement on a deal that will be individual rational, pareto 

optimal, and will maximize the product of the players’ utility (see Section 13 for a 
more complete discussion). 
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Zeuthen [ 741 considered the two-player bargaining problem as a one-player decision 
process (deciding whether to concede or not), under the ~sumption that if none of the 
players concede at a particular step they will reach a conflict. Zeuthen evaluated how 
much risk each player would be willing to take when he decides not to concede (and 
thereby risks conflict). The player who is least. willing to risk will be the one who will 
make the next concession. 

Harsanyi [ 323 showed that the two approaches are equivafent in the sense that two 
players using Zeuthen’s criteria will reach the Nash solution. 

The above approaches furnish us with tools for our own design and evaluation of 
negotiation mechanisms, which is our primary concern. Game theorists are usually con- 
cerned with how games will be played, from both a descriptive and normative point 
of view. Game solutions consist of strategies in equilibrium; if somehow a social be- 
havior reaches an equiIibrium, no agent has any incentive to diverge from that equi- 
librium behavior. That equilibrium is considered to be a solution to the game. There 
may be one or more (or no) strategies in equilibrium, and there are also different 
notions of equilibrium (e.g., Nash [ 501, perfect equilibrium, dominant strategy equilib- 
rium). 

There are also groups of game theorists who consider the problem of how to design 
games that have certain attributes. It is this area of mechanism design that is closest to 
our own concerns for automated agents. 

4.22. Mechanism design and ~m~~erne~tation theory 
~~hanism design is also know in the game theory literature as the impleme~ta- 

tion problem. The impfeme~tation question [2,25j asks whether there is a mecha- 
nism, or game form, with a distinguishable equilibrium point (dominant strategy, or 
strong, or merely Nash) such that each social profile (i.e., group behavior) is as- 
sociated, when the players follow their equilibrium strategies, with the desired out- 
come. 

In other words, there are assumed to be a group of agents, each with its own utility 
function and preferences over possible social outcomes. There is also a social welfare 
function that rates all those possible social outcomes (e.g., a socially efficient agreement 
may be rated higher than a non-efficient one). The question is then, can one design a 
game such that it has a unique solution (~uilib~um strategies), and such that when 
each individual agent behaves according to this ~uilibrium strategy, the social behavior 
will maximize the social welfare function. If such a game can be designed, then it is 
said that the game implements the social welfare function. 

As an example of a social welfare function, consider minimization of pollution. 
While everyone may be interested in lowering pollution, everyone is interested in others 
bearing the associated costs. A m~h~ism to implement this social welfare function 
might include, for example, taxes on polluting industries and tax credits given for the 
purchase of electric cars. This is precisely the kind of mechanism that would cause 
agents, following an equilibrium strategy, to minimize pollution. 

4.2.3. l~centi~e Com~atibiLi~ 
The designer of a mechanism has to deal with every configuration of agent utility 



functions (which is precisely why he is designing a mechanism, or “game form”, and 
not a specific game). The agents themselves may or may not have complete information 
about one another’s utility functions, and thus may or may not know which concrete 
game they are playing. This complicates the problem of mechanism design. Usually. 
there is an assumption that the agents have certain limitations on the form of their 
utility functions. Thus there exists a known cct of all possible utility functions. Each 
agent can then be assigned a “type“ based on which of those utility functions it is 

currently using. 
A mechanism is called a direct mechanism if the agents arc asked straight out what 

their type is. Then, based on the agents’ declared types, the mechanism generates some 
outcome. If the agents are not asked their type, the mechanism is called an indirect 

mechanism. The revelation principle states that whatever can be done with an indirect 
mechanism can also be done with a direct mechanism. In other words, any social 

function that is implementable by an indirect mechanism can also be implemented by a 
direct mechanism, where agents will have an incentive to declare their true type. This 

is called an incentive compatible mechanism. 
The advantage of a direct mechanism whcrc the agents have an incentive to declare 

their true type over an indirect mechanism is the simplicity of the agents’ strategies. 

However, the simplicity on the part of the agents may be offset by the need for a 
complicated mechanism. While we prefer a direct mechanism, it is also important to us 

that it bc a simple enc. 
One can look at the work described in this article as a kind of mechanism design, 

where the social welfare function that is being implemented is “efficiency”, i.e., the sum 
of agents’ utilities. Requiring that the sum be maximized c1 priori rules out many social 
behaviors, but still may allow multiple sum maximization behaviors. In other words, 

even when the sum is being maximized, the way in which utility is divided among 
agents may differ. Since each agent wants a bigger share of this group utility, we have 
a typical negotiation scenario. Either the agents agree on a division, or they reach a 
conflict. 

Since we are talking about automated agents. we depend on their designers to reach 
a consensus about the mechanism and its associated strategies. Therefore, our mech- 
anism design is simpler than that of game theory. In contrast to classic mechanism 
design, we are not concerned with the uniqueness of the equilibrium strategies. What 
is important to us is the existence OT an equilibrium strategy that maximizes the so- 
cial welfare function. We are satisfied with the existence of even one such maximizing 
equilibrium social behavior, even though there may be other social behaviors in equilib- 
rium that do not maximize the social welfare function. The designers of our automated 
agents can choose a mechanism that has many equilibrium points (some of which 
maximize the social welfare function and some of which don’t). but then coordinate 
themselves (by jointly choosing a strategy) so that their agents reach a particular equi- 
librium point that maximizes the social welfare function. By relaxing our requirement 
of the mechanism, we may discover social welfare functions that can be implemented 
using our approach, but cannot be implemented using game theory’s (stricter) ap- 
preach. 
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5. Attributes of standards 

What are the attributes that might interest those company representatives when they 
meet to discuss the interaction environment for their machines? This set of attributes, 
and their relative importance, will ultimately affect their choice of interaction rules. 

We have considered several attributes that might be important to system designers. 
( 1) Eficiency: The agents should not squander resources when they come to an 

agreement; there should not be wasted utility when an agreement is reached. For 
example, it makes sense for the agreements to satisfy the requirement of pareto 
optimality (no agent could derive more from a different agreement, without some 
other agent deriving less from that alternate agreement). Another consideration 
might be global optimality, which is achieved when the sum of the agents’ bene- 
fits are maximized. Neither kind of optimality necessarily implies the other. Since 
we are speaking about self-motivated agents (who care about their own utilities, 
not the sum of system-wide utilities-no agent in general would be willing to 
accept lower utility just to increase the system’s sum), pareto optimality plays 
a primary role in our efficiency evaluation. Among pareto optimal solutions, 
however, we might also consider as a secondary criterion those solutions that 
increase the sum of system-wide utilities. 

(2) Stability: No designer should have an incentive to deviate from agreed-upon 
strategies. The strategy that agents are programmed with can be proposed as part 
of the interaction environment design. Once these strategies have been proposed, 
however, we do not want individual designers (e.g., companies) to have an 
incentive to go back and build their agents with different, manipulative, strategies. 

(3) Simplicity: It will be desirable for the overall interaction environment to make 
low computational demands on the agents, and to require little communication 
overhead. This is related both to efficiency and to stability: if the interaction 
mechanism is simple, it increases efficiency of the system, with fewer resources 
used up in carrying out the negotiation itself. Similarly, with stable mechanisms, 
few resources need to be spent on outguessing your opponent, or trying to 
discover his optimal choices. The optimal behavior has been publicly revealed, 

and there is nothing better to do than just carry it out. 
(4) Distribution: Preferably, the interaction rules will not require a central decision 

maker, for all the obvious reasons. We do not want our distributed system to have 

a performance bottle-neck, nor collapse due to the single failure of a special node. 
(5) Symmetry: No designer wants the negotiation process to be arbitrarily biased 

against his agent. Thus, no mechanism should treat agents differently because 
of inappropriate criteria. Exactly what constitutes inappropriate criteria depends 
on the specific domain, While the mechanism may be asymmetric, for example 
because one agent has many more tasks to carry out than the other, it should 
maintain strict impartiality when irrelevant aspects of the agents differ (e.g., the 

agents’ manufacturers). 
These attributes need not be universally accepted. In fact, there will sometimes be 

trade-offs between one attribute and another (for example, efficiency and stability are 
sometimes in conflict with one another [ 831). But our protocols are designed, for 



specific classes of domains, so that they satisfy some or all of these attributes. Ultimately, 
these are the kinds of criteria that rate the acceptability of one interaction mechanism 
over another. 

As one example, the attribute of stability assumes particular importance when we 
consider open systems, where new agents are constantly entering and leaving the com- 
munity of interacting machines. Here, we might want to maintain stability in the face 
of new agents who bring with them new goals and potentially new strategies as well. 
If the mechanism is “self-perpetuating”, in that it is not only to the benefit of society 

as a whole to follow the rules, but also to the benefit of each individual member, then 
the social behavior remains stable even when the society’s members change dynami- 
cally. When the interaction rules create an environment in which a particular strategy is 
optimal, beneficial social behavior is resistant to outside invasion [ I]. 

6. Domain theory 

We have several times alluded to the connection between protocols and domains- 
for a given class of interactions, some protocols might be suitable while others arc 
not. We have found it useful to categorize domains into a three-tier hierarchy of task 
oriented domains, state oriented domains, and worth oriented domains. This hierarchy 
is by no means complete, but does cover a large proportion of the kinds of real-world 
interactions in which we are interested. This article is focused on task oriented domains. 
For treatments of state oriented domains. see [76-78,82-841; for treatments of worth 

oriented domains, see [ 59,79,85]. 

6.1. Tusk oriented domains 

These are domains in which an agent’s activity can be defined in terms of a set 

of tasks that it has to achieve. These tasks can be carried out without concern about 
interference from other agents; all the resources necessary to accomplish the tasks are 
available to the agent. On the other hand. it is possible that agents can reach agreements 
where they redistribute some tasks, to everyone’s benefit (for example, if one agent 
is doing some task, he may, at little or no cost. be able to do another agent’s task). 
The domains are inherently cooperative. Negotiation is aimed at discovering mutually 
beneficial task redistribution. 

The key issue here is the notion of tusk, an indivisible job that needs to be carried 
out. Of course, what constitutes a task will be specific to the domain. Many kinds of 
activity, however, can be conceived of in this way, as the execution of indivisible tasks. 
For example, imagine that you have three children, each of whom needs to be delivered 
to a different school each morning. Your neighbor has four children, and also needs 
to take them to school. Delivery of each child can be modeled as an indivisible task. 
Although both you and your neighbor might be interested in setting up a carpool, there 
is no doubt that you will be able to achieve your tasks by yourself, if necessary. The 
worst that can happen is that you and your neighbor won’t come to an agreement about 
setting up a carpool, in which case you are no worse off than if you were alone. You 
can only benefit (or do no worse) from your neighbor’s existence. 
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Assume, though, that one of my children and one of my neighbor’s children both go 
to the same school (that is, the cost of carrying out these two deliveries, or two tasks, 
is the same as the cost of carrying out one of them). It obviously makes sense for both 
children to be taken together, and only my neighbor or I will need to make the trip to 

carry out both tasks. 
What kinds of agreements might we reach? We might decide that I will take the 

children on even days each month, and my neighbor will take them on odd days; 
perhaps, if there are other children involved, we might have my neighbor always take 
those two specific children, while I am responsible for the rest of the children (his and 
mine). Another possibility would be for us to flip a coin every morning to decide who 

will take the children. An important issue, beyond what deals can be reached, is how a 
specific deal will be agreed upon (see Section 7.2 below). 

Consider, as further examples, the postmen domain, the database domain, and the 
fax domain (these domains are described in more detail, and more formally, below). 
In the postmen domain, each agent is given a set of letters to deliver to various nodes 
on a graph; starting and ending at the post office, the agents are to traverse the graph 
and make their deliveries. There is no cost associated with carrying letters (they can 
carry any number), but there is a cost associated with graph traversal. The agents are 
interested in making short trips. Agents can reach agreements to carry one another’s 

letters, and save on their travel. 
The database domain similarly assigns to each agent a set of tasks, and allows for 

the possibility of beneficial task redistribution. Here, each agent is given a query that it 
will make against a common database (to extract a set of records). A query, in turn, 

may be composed of subqueries (i.e., the agent’s tasks). For example, one agent may 
want the records of “All female employees making over $50,000 a year”, while another 
agent may want the records of “All female employees with more than three children”. 
Both agents share a subtask, the query that involves extracting the records of all female 

employees (prior to extracting a subset of those records). By having only one agent get 
the female employee records, another agent can lower its cost. 

The third example is the fax domain. It appears very similar to the postmen domain, 
but is subtly different. In the fax domain, each agent is given a set of faxes to send to 
different locations around the world (each fax is a task). The only cost is to establish 

a connection. Once the connection is made, an unlimited number of faxes can be sent. 
Of course, if two agents both have faxes to send to Paris and to London, they may 
redistribute their faxes, with one sending all the faxes to Paris and the other sending all 

the faxes to London. 
Despite the seemingly minor differences in these domains, the attributes of suitable 

protocols are very different for each, as we will see below. 

6.2. State oriented domains 

The state oriented domain (SOD) is the type of domain with which most AI re- 
search has dealt. The blocks world, for example, is a classic state oriented domain. 
SODS are a superset of TODs (i.e., every TOD can be cast in the form of an 
SOD). 



In an SOD, each agent is concerned with moving the world from an initial state into 
one of a set of goal states. There is, of course, the possibility of real conflict here. 
Because of, for example, competition over resources, agents might have fundamentally 
different goals. There may be no goal states that satisfy all agents. At other times, 
there may exist goal states that satisfy all agents. but that are expensive to reach-and 
which require the agents to do more work than they would have had to do in isolation. 
Mechanisms for dealing with state oriented domains are examined in [ 76-78,83,84]. 
Again, negotiation mechanisms that have certain attributes in task oriented domains 
(e.g., efficiency, stability) do not necessarily have these same attributes in state oriented 

domains. 

6.3. Worth oriented dornuim 

Worth oriented domains ( WODs) are a generalization of state oriented domains, 
where agents assign a worth to each potential state, which establishes its desirability for 
the agent (as opposed to an SOD, in which the worth function is essentially binary- 
all non-goal states have zero worth). This establishes a decision theoretic flavor to 
interactions in a WOD. One example of a WOD is the TileWorld, as presented in [ 521. 
The key advantage of a worth oriented domain is that the worth function allows agents to 
compromise on their goals, sometimes increasing the overall efficiency of the agreement. 
Every SOD can be cast in terms of a WOD. of course (with binary worth function). 
Negotiation mechanisms suitable for an SOD need not be suitable for a WOD (that 
is. the attributes of the same mechanism may change when moving from an SOD to 
a WOD). Mechanisms for dealing with worth oriented domains are examined in [ 79. 

851. 

7. The building blocks of a negotiation mechanism 

Designing a negotiation mechanism, the overall “rules of interaction”, is a three-step 
process. First, the agent designers must agree on a definition of the domain, then agree 
on a negotiation protocol, and finally propose a negotiation strategy. 

7. I. Domain dejinition 

The complete definition of a domain should give a precise specification to the concept 

of a goal, and to the agent operations that are available. For example, in the postmen 
domain, the goal of an agent is the set of letters that the agent must deliver (as in any 
TOD, the goal is the set of tasks that need to be carried out), along with the requirement 
that the agent begin and end at the post office. 

The specification of agent operations that are available define exactly what an agent 
can do, and the nature of those actions’ cost. In the postmen domain, again, it is part of 
the domain definition that an agent can carry an unlimited number of letters, and that 
the cost of a graph traversal is the total distance traveled. 
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This formal domain definition is the necessary first step in analyzing any new domain. 
If agents are negotiating over sharing message traffic in telecommunications networks, 
it is necessary to specify completely what constitutes a goal, and what agent operations 
are available. Similarly, PDAs involved in negotiations over schedules need their goals 
and operators precisely defined. 

7.2. Negotiation protocol 

Once the domain has been specified, we need to specify the negotiation protocol, 

which establishes the rules of interaction among agents. Here, we need to be concerned 
both with the space of possible deals, and with the negotiation process. 

l Space of possible deals: First, we must specify the set of candidate deals. Specif- 
ically, what kinds of agreements can the agents come to? For example, we might 
restrict our agents to only discussing deals that do not involve redundant work (e.g., 
in the carpool example, the parents will not consider deals that have two parents 
visiting the same school). Similarly, we might specify that deals cannot involve 

tossing a coin. 
l Negotiation process: Given a set of possible deals, what is the process that agents 

can use to converge to agreement on a single deal? In other words, what are the 
rules that specify how consensus will be reached? How will one agreed-upon deal 
be differentiated from the other candidates? In the carpool example, we might 
specify that each parent will in turn offer a delivery schedule and assignments; the 
next parent can either accept the offer, or reject it and make his own counter-offer. 
We might also allow as part of the negotiation process that any parent can, at any 
point, make a “take-it-or-leave-it” proposition, that will either be accepted or end 
the negotiation without agreement. Another example of a negotiation process was 
the monotonic concession protocol that was described in Section 2.5.1 above. 

7.3. Negotiation strategy 

Given a set of possible deals and a negotiation process, what strategy should an 

individual agent adopt while participating in the process? For example, one strategy for 
a parent in the carpool scenario is to compute a particular delivery schedule and present 
it as a “take-it-or-leave-it” deal. Another strategy is to start with the deal that is best for 
you, and if the other parent rejects it, minimally modify it as a concession to the other 

parent. 
The specification of a negotiation strategy is not strictly part of the interaction rules 

being decided on by the designers of automated agents. In other words, the designers 
are really free to build their agents as they see fit. No one can compel them to build 
their agents in a certain way (having a certain strategy), and such compulsion, if 
attempted, would probably not be effective. However, we can provide strategies with 
known properties, and allow designers to incorporate them. More specifically, we may 
be able to bring to the table a given strategy, and show that it is provably optimal (for 
the agent itself). There will be no incentive for any designer to use any different strategy. 
And when all agents use that strategy, there will be certain (beneficial) global properties 



of the interaction. So a negotiation strategy is provided to the designers as a service; if 
a compelling case is made, the designers will in fact incorporate that strategy into their 
agents. We generally are interested in negotiation protocol/strategy combinations. 

8. Three classes of TODs 

As mentioned above, the domain examples given in Section 6.1 are all TODs, and 
seem to have a great deal in common with one another. There are, however, critical 

differences among them, all focused on the domains’ cost functions. To demonstrate 
these differences, we categorize TODs based on three possible attributes of the cost 
function: subadditivity, concavity, and modularity. This is a hierarchy; modularity implies 
concavity, which in turn implies subadditivity. Protocols and strategies that are stable in 
one kind of TOD are not necessarily stable in other kinds. These issues are discussed 
at greater length below. 

8.1. Subadditive 

In some domains, by combining sets of tasks we may reduce (and can never increase) 
the total cost, as compared with the sum of the costs of achieving the sets separately. 
The postmen domain, for example, is subadditive. If X and Y are two sets of addresses, 
and we need to visit all of them (X U Y), then in the worst case we will be able to 
do the minimal cycle visiting the X addresses, then do the minima1 cycle visiting the Y 
addresses. This might be our best plan if the addresses are disjoint and decoupled (the 
topology of the graph is against us). In that case. the cost of visiting all the addresses is 
equal to visiting one set plus the cost of visiting the other set. However, in some cases 
we may be able to do better, and visit some addresses on the way to others. That’s what 

subadditivity means. 
As another example, consider the database query domain. To evaluate two sets of 

queries, X and Y, we can of course evaluate all the queries in X, then independently 
evaluate all the queries in Y. This, again, might be our best course of action if the 
queries are disjoint and decoupled; the total cost will be the cost of X plus the cost of 
Y. However, sometimes we will be able to do better, by sharing the results of queries 

or subqueries, and evaluate X U Y at lower total cost. 
A relatively minor change in a domain definition, however, can eliminate subadditivity. 

If, in the postmen domain, the agents were not required to return to the post office at 
the end of their deliveries, then the domain would not be subadditive. 

8.2. Concave 

In a concave domain, the cost that arbitrary set of tasks Z adds to set of tasks Y 
cannot be greater than the cost Z would add to a subset of Y. The fax domain and 
the database query domain are concave, while the postmen domain is not. Intuitively, a 
concave domain is more “predictable” than a subadditive domain that is not concave. 
There is an element of monotonicity to the combining of tasks in a concave domain 
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that is missing from non-concave domains. You know, for example, that if you have an 
original set of tasks (X), and are faced with getting an additional outside set (Z), you 
will not suffer greatly if you enlarge the original set-the extra work that 2 adds will 
either be unaffected or reduced by the enlargement of the original set. In a non-concave 

domain, even if it is subadditive, you might find that the extra work that Z adds is much 
greater than it would have been before the enlargement. 

8.3. ~udM~ur 

In a modular domain, the cost of the combination of two sets of tasks is exactly the 
sum of their individual costs minus the cost of their intersection. This is, intuitively, the 
most well-behaved subadditive domain category of all. When task sets are combined, it 
is only their overlap that matters-all other tasks are extraneous to the negotiation. Only 

the fax domain from the above TOD examples is modular. 

9. Incomplete information 

Much of the research that we have been conducting on this model of negotiation 

considers issues relating to agents that have incomplete information about their en- 
counter [ 781. For example, they may be aware of their own goal without knowing the 
goal of the agent with whom they are negotiating. Thus, they may need to adapt their 
negotiation strategy to deal with this uncertainty. 

One obvious way in which uncertainty can be exploited can be in misrepresenting an 
agent’s true goal. In a task oriented domain, such misrepresentation might involve hiding 
tasks, or creating false tasks (phantoms, or decoys), all with the intent of improving 
one’s negotiation position. The process of reaching an agreement generally depends on 
agents declaring their individual task sets, and then negotiating over the global set of 
declared tasks. By declaring one’s task set falsely, one can in principle (under certain 
circumstances), change the negotiation outcome to one’s benefit. Much of our research 
has been focused on negotiation mechanisms that disincentivize deceit. These kinds 
of negotiation mechanisms are called “incentive compatible” mechanisms in the game 
theory literature. When a mechanism is incentive compatible, no agent designer will 
have any reason to do anything but make his agent declare his true goal in a negotiation. 
Although the designer is free to build his agent any way he pleases, telling the truth 
will be shown to be the optimal strategy. 

This concern for honesty among agents, and for encouraging that honesty by the very 
structure of the negotiation environment, is an absolutely essential aspect of work on 
muitiagent systems. Situations in which agents have an incentive to lie are, in general, 

not stable. Although agent designers may discuss a strategy, they will then be motivated 
to go back and build their agents differently. This will ultimately result in less efficient 

systems (and outcomes that are worse for the individual agents). First, agents might 
reasonably expend a great deal of energy in discovering the true goal of the other 
negotiator, and all of this effort lowers the simplicity and efficiency of the system. 
Second, they will be tempted to risk strategies that may result in inferior outcomes. Two 



agents, coming together, each trying to outguess the other, will sometimes make choices 
that benefit no one. 

Thus efficiency and stability are closely related. There is no point, in multiagent 
systems, in considering efficiency without considering stability. Without stability, effi- 
ciency cannot be guaranteed, as agents are tempted to deviate from the globally efficient 

strategy. 

10. Task oriented domains-the formal definition 

A tusk oriented domain (TOD) describes a certain class of scenarios for multiagent 
encounters. Intuitively, it is a domain that is cooperative, with no negative interactions 
among agents’ goals. Each agent welcomes the existence of other agents, for they can 
only benefit from one another (if they can reach agreement about sharing tasks). 

Definition 1. A tusk orierztrd donzctirl ( TOD) is a tuplc (I, A, c) where: 
( I) 7 is the set of all possible tasks. 

(2) A={A,,A? ,..., A,,) IS an ordered list of agents. 
(3) c is a 1l~7notonic function i’ : [ 2* 1 + FL’ [ 21] stands for all the finite subsets 

of 7. For each finite set of tasks X g 1. c(X) is the cost of executing all 
the tasks in X by a sirrgle agent. c is monotonic, i.e., for any two finite subsets 
x c Y c 7, c(X) < c(Y). 

(4) c(B) = 0. 

Definition 2. An encounter within a TOD (7. A, c) is an ordered list (TI, T2,. . , T,,) 
such that for all k t {I,. , II}, TX is a ,finite set of tasks from 7 that Ak needs to 
achieve. Tk will also be called Ak’s Leoai. 

According to the definition above. the cost function c takes no parameters other than 
the task set. In general, c might be defined as having other, global, parameters (like the 
initial state of the world). However, the cost of a set of tasks is independent of others’ 
tasks that need to be achieved. An agent in a TOD is certain to be able to achieve his 
goal at that cost. 

11. Attributes and examples of TODs 

Here we give several examples of TODs. which cover a variety of agent interaction 
situations. Subsequently, we will further classify each of these TOD examples with 
respect to the cost properties mentioned above in Section 8. 

I I. 1. Delivery domain 

Description: Agents have to deliver sets of containers to warehouses, which are 
arranged on a weighted graph G = G( v E). There is no limit to the number of containers 
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that can fit in a warehouse. The agents all start from a central distribution point. Agents 
can exchange containers at no cost while they are at the distribution point, prior to 
delivery. 

Tusk set: The set of all addresses in the graph, namely V. If address x is in an agent’s 
task set, it means that he has at least one container to deliver to x. 

Cost function: The cost of a subset of addresses X G V, i.e., c(X), is the length of 
the minimal path that starts at the distribution point and visits all members of X. 

11.2. Postmen domain 

Description: Agents have to deliver sets of letters to mailboxes, which are arranged 
on a weighted graph G = G( YE). There is no limit to the number of letters that can 
fit in a mailbox. After delivering all letters, agents must return to the starting point (the 
post office). Agents can exchange letters at no cost while they are at the post office, 
prior to delivery. 

Task set: The set of all addresses in the graph, namely V. If address x is in an agent’s 
task set, it means that he has at least one letter to deliver to x. 

Cost function: The cost of a subset of addresses X C V, i.e., c(X), is the length of 
the minimal path that starts at the post office, visits all members of X, and ends at the 

post office. 

11.3. Database queries 

Description: Agents have access to a common database, and each has to carry out a 
set of queries. The result of each query is a set of records. For example, agent At may 
want the records satisfying the condition “All female employees of company X earning 
over $50,000 a year”, and agent A2 may want the records satisfying the condition “All 

female employees of company X with more than 10 years of seniority”. Agents can 
exchange results of queries and subqueries at no cost. 

Task set: All possible queries, expressed in the primitives of relational database theory, 

including operators like join, projection, union, intersection, and difference. 
Cost function: The cost of a set of queries is the minimal number of database opera- 

tions needed to generate all the records. It is possible to use the result of one query as 
input to other queries, i.e., the operations are not destructive. 

11.4. The fax domain 

Description: Agents are sending faxes to locations on a telephone network (a weighted 
graph), To send a fax, an agent must establish a connection with the receiving node. 

Once the connection is established, multiple faxes can be sent at no extra cost. The 
agents can, at no cost, exchange messages to be faxed. 

Tusk set: The set of all possible receiving nodes in the network. If node x is in an 
agent’s task set, it means that he has at least one fax to send to n. 

Cost function: There is a cost associated with establishing a single connection to any 
node x. The cost of a set of tasks is the sum of the costs of establishing connections 
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to all the nodes in the set. Thus, the cost of a dial-up connection to a given node is 
independent of other nodes in the task set. 

11.5. BlacWwhite hole domuirl 

Description: There are a set of identical pegs, a basket, and a set of holes. A peg can 
be in a hole, in the basket, or in an agent’s hand. Each hole is labeled as either black or 
white, and can hold at most one peg. One agent is only concerned with the configuration 
of pegs in black holes, and the other is only concerned with the configuration of pegs 
in white holes. Each agent has a list of (his own color) holes to fill or empty. There 
are enough pegs to satisfy both agents’ goals. There are two operations in this world: 

Pickup (pick up the peg from a non-empty hole or any peg from the basket), and 
PutDown (put down the peg which is currently being held into an empty hole or the 
basket). An agent can hold no more than one peg at a time. 

Tusk set: A single task (s, h) is to have hole s contain h pegs, where h is 0 or 1 
(i.e., make hole s empty or have it contain one peg only). 7 = (s, h): s is a hole, 
h E (0, I}. In each encounter the world is in some initial state (this is an encounter- 
specific parameter that affects the cost function, but the cost function is still identical 

for all agents). One agent has a consistent task set that includes only white holes, while 
the second agent has a consistent task set that includes only black holes. 

Cost function: The cost of a consistent set of tasks X is the minimal set of Pickup, 
PutDown operations that need to be done to move the world from its initial state to a 
final state that achieves all tasks in X. There is at least one minimal cost plan that does 
not involve the other agent’s holes (neither takes nor places pegs into those holes). 

11.6. SubclussiJicution 

Having introduced the TODs above, we now turn our attention to attributes that 
these domains exhibit. These attributes strongly affect their relationships to negotiation 
mechanisms. We will focus on the attributes of subadditivity, concavity, and modularity. 

The motivation for these definitions are presented in more detail below. 

Definition 3 (Subudditivity) TOD (7, A, C) will be called subadditive if for all finite 
sets of tasks X, Y C I, we have c( X U Y) < c(X) + c(Y). 

In other words, by combining sets of tasks we may reduce (and can never increase) 
the total cost, as compared with the cost of achieving the sets alone. All the TOD 

examples above are subadditive, except the delivery domain. To see why the delivery 
domain is not subadditive, consider the encounter shown in Fig. I. 

The cost of task a (i.e., the cost of delivering something to node a from the distribution 
point) is 1, which is also the cost of task 6. However, the cost of the union of a and b 

is 3 (the deliverer, after delivering to one, must go back to the distribution point before 
continuing to deliver to the other). Thus the cost of the union of the tasks (3) is greater 
than the sum of the costs of the individual tasks (2). In the delivery domain there can 
be non-subadditive encounters. 
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Distribution point 

1 A 1 

~(AI,&) WA11 

Fig. 1. Non-subadditive encounter in the delivery domain. 

In this article, we are mainly concerned with two-agent subadditive domains. 

Definition 4 (Concavity). TOD (7, A, c) will be called concave if for all finite sets of 

tasks XGY, Z&7, wehave c(YUZ) -c(Y) <c(XUZ) -c(X). 

In other words, the cost that an arbitrary set of tasks Z adds to a set of tasks Y cannot 

be greater than the cost Z would add to a subset of Y. 

Theorem 5. All concave TODs are also subadditive. 

The proof of this theorem and all other theorems, as well as additional lemmas, can 
be found in Appendix A. 

The general postmen domain, and the black/white hole domain, are not concave. 
The other TOD examples (the fax domain and the database query domain) are con- 
cave. 

The postmen domain is not concave because there may be cases such that a task (or 

a set of tasks) can add more to some other set of tasks than it adds to a subset of it. 
Such an example can be seen in Fig. 2. Every edge between nodes has cost 1. 

LetX={d,e,f,g} CY={b,c,d,e,f,g} and Z=(h). 

(AI) post office (A2) 

g a b 

(Al) e 

d C 

(AI) (A21 

Fig. 2. Non-concave encounter in the postmen domain. 



Initial 
0 0 State 

I 2 3 

z 
3 

Fig. 3. Non-ctmcavc encounter m thr black/white hole dornain 

~~(XUZ~=~~(tl,e,,f‘,g,h}~ =c({d.c. /‘.,q}, =c(X) =6. 

c(YCIZ)=c({h,c,d.r.,f’.g,h}) =9 5, c({h,c,d,e,f,g}) =c(Y) =7. 

Therefore, we have a violation of the concavity condition: 

2=C(YuZ) C(Y) ;>C(xl.lZ) C,( X) = 0. 

An example of the non-concavity of the black/white hole domain can be seen in 

Fig. 3. 
In the initial state (as can be seen in the top of Fig. 3) slot I is empty while slots 2 

and 3 are filled. X includes the task ( I. I ) (i.e., slot I is filled). The cost of achieving 
X from the initial state (c(X) ) is 2. All we need to do is to Pickup one block from 
the basket or from other slots and then to PutDown the block in slot I. Y includes X 

and an additional task to empty slot 2 (i.e., Y = { (1, 1). (2,O))). To achieve Y we also 
need to do only one Pickup (this time we will pick the block in slot 2 up) and one 
PutDown (i.e. c.(Y) = 2). Z includes one task: to empty slot 3 (i.e., Z = ((3,O))). 
For this reason, c( X L Z) = 2, which is achieved by picking up the block in slot 3 and 
putting it down in the empty slot I. However. C( Y li Z) = 4. because we will need to 

move one block (from slot 2 to slot I ) to achieve Y, and then we will need to move 
another block (from slot 3 to the basket) to achieve Z. Again, we have a violation of 
the concavity condition: 

?=c(YUz) ~-c(Y) >c(XiJz) m-c-(x) =(). 

Theorem 6. The postmen domain. restricted to graphs that have a tree topology (no 

cycles), is concave. 
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f ?F d f 

e 

g C a 

e 

Fig. 4. Modular graph topologies. 

Definition 7 (Modularity). TOD (7, A, c) will be called modular if for all 
of tasks X, Y C 7, we have c(X U Y) = c(X) + c(Y) - c(X fl Y). 

d 

finite sets 

In other words, the cost of the combination of two sets of tasks is exactly the sum of 
their individual costs minus the cost of their intersection. 

Theorem 8. All modular TODs are also concave. 

Only the fax domain from the above TOD examples is modular. 
As stated in Theorem 6, the postmen domain restricted to a tree topology is concave. 

A graph has a star topology if there is no more than one node with degree greater than 

one (a star topology is a subcase of a tree topology). The node with degree greater 
than one is called the center of the graph. If we further restrict the postmen domain to 
trees that have star topologies (where the post office is at the center), then we have a 

modular TOD. A star example can be seen at the left side of Fig. 4, where the post 
office is at node a. 

In a star topology the cost of visiting two different nodes u, w E 7 is equal to the 
sum of visiting each node separately, i.e., u # w --+ c( {u} U {w}) = c( {u}) + c<(w)). 

This implies the modularity condition. 
The postmen domain restricted to fully connected (there is an arc between any two 

nodes) and homogeneous (all arcs have the same length) graphs, is also modular. 
An example of a fully connected and homogeneous graph can be seen in the right 
side of Fig. 4. If the length of all the nodes is 1 then the cost of visiting a set of 

nodes X in a fully connected and homogeneous graph is: c(X) = 1x1 + 1. This simply 
implies the modularity condition: c(X U Y) = IX U YI + 1 = 1x1 + IYI - IX f? Y( + 1 = 

(~x~+1)+(~Y~+1)-(~xnY~+1)=c(X)+c(Y)-c(XnY). 
Non-homogeneous fully connected graphs are not even concave. An example of that 

is the example seen above in Fig. 3, with additional sufficiently long additional arcs to 
make the graph fully connected. 
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12. Mechanisms for subadditive TODs 

In this section, we develop the framework for formalizing two-agent negotiation 

mechanisms in subadditive task oriented domains. Similar definitions can be found in 

our previous work [ 75,77,78 1. 

Definition 9. Given an encounter ( TI, 7’2 ) within a two-agent TOD (7. {Al, AZ}, c) 

we have the following: 
( I ) A pure deul is a redistribution 01 tasks among agents. It is an ordered list 

( DI, 02) such that Dr , D? C 7. and Dl &.J 02 = Tl U Tz. The semantics of such 
a deal is that each agent An commits itself to executing all tasks in Dk. The cost 

of such a deal to Ak is defined to he Costk( D1,02) = c( Dk). 

(2) A mixed deal is a pure deal ( DI, D2) and a probability p, 0 < 11 < I. A mixed 

deal will he denoted by (D1 1 Dl): p. The semantics of this deal is that the agents 

will perform a lottery such that, with probability p, DI will be assigned to Al 

and 02 will be assigned to A?. With probability I -p. DI will be assigned to 
A2 while D? will be assigned to A 1. The cost of such a deal to Ak is defined to 

be Costk((Dr, D2):p) = (p)c(Dk) + (I --- p)c(Djsx). 
(3) An all-or-nothing deal is a mixed deal (T, U T?, 0): p. Agreeing to such a deal, 

Al has a p chance of executing all the tasks Tl U T, and has a I ~ p chance of 

doing nothing. 

With the above definitions of three deal types. we now consider utility, the negotiation 

set, optimal protocols, and stable negotiation strategies. 

Definition 10. Given an encounter (TI, Tz) within a TOD (7, {Al, A~},c), we have 
the following: 

( I ) For any deal 6 (pure, all-or-nothing, or mixed) we will define Utilityk( 6) E 

c(Tk) - Costk(8). 
(2) The (pure) deal 0 E (TI, Tz ) will be called the conjict deal. 

(9 is a conflict because no agent agrees to execute tasks other than its own. Note that 
for all k, Utility,!(O) = 0. When the agents fail to agree, i.e., run into a conflict, they 

by default execute the conflict deal 0. Our assumption is that rational agents are utility 
maximizers; since they can guarantee themselves utility 0, they will not agree to any 
deal that gives them negative utility. 

Definition 11. For vectors LY = (LY~,cx~,. .a,,) and /3 = (pt,&, . .,&), we will say 
that cy dominates /3 and write a t fi if and only if V~(CY~ > Pk), and 31( CYY[ > p,). We 
will say that CY weakly dominates p and write CY t p if and only if vk(ak 3 &). 

Definition 12. For deals 6 and 8’ (pure, all-or-nothing, or mixed), we will say 
that 6 dominates 8, and write 8 + 8, if and only if (Utilityt (a), Utilityz(S)) t 
(Utility, (6’), Utilityz( 8) ). We will say that 6 weakly dominates 8, and write 6 k 8, 
if and only if (Utility, (6), Utilityz( 6) ) k (Utility, (a’), Utility2 (8) ). We will say that 
8 is equivalent to 8, and write 6 z 6’ if ‘Jk(Utilityk(S) = Utilityk(8)). 
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If S t 6’ it means that the deal S is better for at least one agent and not worse for 
the other. 

Definition 13. Deal S is individual rational if S k 0. 

A simple observation from the above definition and from Definition 10 (of the conflict 
deal and utility) is that a deal S is individual rational if and only if V’k E { 1,2}: 
Utilityk( 6) > 0. 

Definition 14. A deal S is called pareto optimal if there does not exist another deal 6’ 

such that 6’ t S [ 33,43,60]. 

A pareto optimal deal cannot be improved upon for one agent without lowering the 

other agent’s utility from the deal. 

Definition 15. The set of all deals that are individual rational and pareto optimal is 

called the negotiation set (NS) [ 331. 

Since agents are by definition indifferent between two deals that give them the same 

utility, we are interested in negotiation mechanisms that produce pareto optimal deals 
(i.e., if agent Al gets the same utility from deals x and y, but A:! prefers y, we don’t 
want them to settle on x). At this point, we are only considering negotiation mechanisms 
that result in a deal from the NS. These are, in some sense, mechanisms with efficient 

outcomes. 

Theorem 16. For any encounter in a TOD, NS over pure deals is not empty. 

Theorem 17. For any encounter within any TOD, NS over mixed deals is not empty. 

13. Mechanisms that maximize the product of utilities 

Having introduced the two mechanisms above (remember that a mechanism includes 
both a protocol and a strategy), we will shift our attention to the entire class of 

mechanisms that satisfy the following conditions: 
l The protocol is symmetrically distributed. 
l The strategy is in equilibrium with itself. 
l Given the protocol, if two agents play the strategy they will agree on a deal 

that maximizes the product of their utilities. If there is more than one product 
maximizing deal, they will agree on a deal (among those product maximizers) that 
maximizes the sum of utilities. If there is more than one such sum maximizing 

product maximizer, the protocol will choose among those deals with some arbitrary 
probability. This definition implies both individual rationality and pareto optimality 
of the agreed-upon deals. 



We will call this class of mechanisms the product nmximizing mechanisms, or PMMs. 
All PMMs are efficient. Throughout the rest of this article, we will not be concerned 

with exactly which negotiation mechanism agents use:, as long as it belongs to the PMM 

class. 
Their arc a number of existing approaches to the bargaining problem in game theory. 

One of the earliest and most popular was Nash’s axiomatic approach [ 43,501. Nash 
was trying to axiomatically define a “fair” solution to a bargaining situation. He listed 
the following criteria as ones that a fair solution would satisfy: 

( 1 ) Individual rationality (it would not be fair for a participant to get less than he 
would anyway without an agreement). 

(2) Pareto optimality (a fair solution will not specify an agreement that could bc 
improved for one participant without harming the other). 

( 3 ) Symmetry (if the situation is symmetric. that is, both agents would get the same 

utility without an agreement, and for every possible deal, the symmetric deal is 

also possible. then a fair solution should also be symmetric, that is, give both 
participants the same utility). 

(4) Invariance with respect to lineal- utility transformations. For example, imagine 
two agents negotiating on how to divide $100. If one agent measures his utility 
in dollars while the other measures his in cents. it should not influence the fair 

solution. Similarly, if one agent already has $10 in the bank, and evaluates the 
deal that gives him .x dollars as having utility 10 + x while the other evaluates 
such a deal as having utility .t-, it should not influence the fair solution (i.e.. 
change of origin doesn’t affect the solution). 

( 5) Independence of irrelevant altcrnativcs. Imagine two agents negotiating about 

how to divide IO, 000 cents. The Nash solution will be 5,000 cents for each, 

due to the symmetry assumption above. Now imagine that the same agents arc 
negotiating over $100. Even though there are now some deals that they can’t 
reach (for example. the one where one agent gets $49.99, and the other gets 
$30.01). the solution should be the same. because the original solution of 5,000 
cents can still be found in the new deal space. 

Nash showed that the product maximizing solution not only satisties the above criteria. 
but is the only solution that satisfies them. The first four criteria above are explicitly 
or implicitly assumed in our own approach (in fact. for example, our version of the 
fourth assumption above is more restrictive than Nash’s). The fifth criteria above is 
not ussutmd in our work, but turns out to be true in some cases anyway. We USC the 
Nash solution, in general, as a reasonable bargaining outcome, when it is applicable. 
Nash, however. had some assumptions about the space of deals that we do not hold. 

For example, the Nash bargaining problem assumes a bounded, convex, continuous, and 
closed region of negotiation. In our agent negotiations, we do not assume that the space 
of deals is convex, nor that it is continuous. 

Definition 18. A product maximizin g mechanism (PMM) over a set of deals is a 
mechanism that has a negotiation strategy that is in equilibrium with itself-if all 
agents use this negotiation strategy, they will agree on a deal in NS that maximizes 
the product of the agents’ utility [SO]. If there is more than one such deal that 
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maximizes the product, the mechanism chooses one arbitrarily, with equal probabil- 
ity. 

Note that a PMM by definition satisfies the stability and efficiency criteria mentioned 

in Section 5. 
The monotonic concession protocol defined above in Section 2.5. I has an ~uilibrium 

strategy for each deal type that yields agreement on a deal in NS that maximizes the 

product of the agents’ utility. Those strategies are based on Zeuthen risk criteria [ 741, 
and were presented in [ 751. Therefore, the monotonic concession protocol (mentioned 

in Section 25.1) is a PMM. 

Theorem 19. A Pan over mixed deals in s~badditive ho-agent TCWs divides the 
available utility equally between the two agents. 

14. Incentive compatible mechanisms 

Sometimes agents do not have full information about one another’s goals. This raises 

the question of whether agents can benefit from concealing goals, or manufacturing arti- 

ficial goals. This lying can either occur explicitly, by declaring false goals, or implicitly, 
by behaving as if these false goals were true, depending on the specific negotiation 
mechanism. Our work in previous papers [ 75,77,78] partly focused on combinations 
of negotiation mechanisms and domains where agents have no incentive to lie. A negoti- 
ation mechanism is called incentive compatible when the strategy of telling the truth (or 
behaving according to your true goals) is in equilibrium (i.e., when one agent uses the 

strategy, the best thing the other agent can do is use the same strategy). In the postmen 
domain [ 751, we identified three types of lies: 

( 1) hiding tasks (e.g., a letter is hidden) ; 
(2) phantom tasks (e.g., the agent claims to have a letter, which is non-existent and 

cannot be produced by the lying agent); 
(3) decoy tasks (e.g., the agent claims to have a letter, which is non-existent but can 

be manufactured on demand if necessary). 
Since certain deals might require the exchange of letters, a phantom lie can be uncovered, 
while a decoy lie (and of course a hidden lie) cannot. Thus, a phantom lie under certain 
negotiation mechanisms is “not safe”. Different domains differ as to how easy or hard 

it is to generate decoy tasks. 
In this section, we provide a characterization of the relationship between kinds of 

lies, domain attributes, and deal types. There are three kinds of lies in TODs, and we 
have considered three domain attributes (subadditivity, concavity, modularity) and three 
classes of optimal negotiation mechanisms, based on pure, all-or-nothing, and mixed 
deals. The resulting three-by-three-by-three matrix is represented in Fig. 5. Its notation 
is described below. 

Consider the entry under subadditive, all-or-nothing deal, decoy lie (we’ll refer to this 
as entry [a, j, z] ) . The entry L at that position means that for every optimal negotiation 
mechanism that is based on all-or-nothing deals, there exists a subadditive domain and 
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Fig. 5. Three-dimensional tahlc of incentive compatibility 

an encounter such that at least one agent has the incentive to lie with a decoy lie (L 

means lying may be beneficial). The entry T at position [b, k. z] means that for every 

concave domain and every encounter within this domain, under any optimal negotiation 
mechanism based on mixed deals, agents do not have an incentive to lie with decoy lies 
(T means telling the truth is always beneficial). 

The entries in the table marked T/P (such as [ a,j, y] ) refer to lies which are not 
beneficial because they may always be discovered (in any encounter within the domain) ; 
if the agent tells the truth, it is because he is afraid of the penalty that will be levied 
if his lie is discovered. Thus, T/P can be transformed into T if the optimal negotiation 
mechanism includes a sufficiently high penalty for discovered lies. 

In the table, there is a relationship between cells. The fact that entry [a,_j,x] is 

T implies that entry [ b.j, x] will also be T (this is denoted by the /* single shaft 
arrow in the first cell, and the ,7 arrow going into the T in cell [ b,j, x] ). Similarly, 
[b, j, x 1 being T implies that entry [ c,j. x 1 will be T (and is also denoted by arrows). 
This is because modular domains arc concave. and concave domains are subadditive; 
if there is no incentive to lie even in a subadditive domain, there will certainly be no 
incentive to lie in concave or modular domains (which are subclasses of subadditive 

domains). 
Similarly, the I, entry in [u, i. x 1 implies that [b, i, x] will also have an L entry: if 

a beneficial lie can be found in a modular domain, then it can certainly be found in a 
concave domain (a superset). These downward influences of L are also marked in the 
table. with J arrows. 

There is also a relationship between certain table entries with the same domain 
attribute (these relationships are denoted by double shaft arrows like +). For example, 
if there is no incentive to lie in general mixed deals, there is no incentive to lie in 
all-or-nothing deals (which are a subset). Thus, the T in cell lb, k, z] implies the T in 
cell [b,j,z] (it also implies [b,k,y], which in turn implies [b, j, y 1, .). 

To fill out the table, therefore, we need only demonstrate a small number of “fixed 
points”, which in turn imply all the other table entries. The fixed points that need to 
be demonstrated are numbered in the table from I to 8. We demonstrate the values 
for these 8 cells, and present some other theorems that make general statements about 
optimal negotiation mechanisms. 

Modular (c) 
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14.1. Incentive compatible fixed points 

The four incentive compatible fixed points are determined by the theorems below. 

Theorem 20 (Fixed point 1) . For any encounter in u ho-agent subaddit~ve TOD, and 
any optimal negotiation mechanism over all-or-nothing deals, every “hiding” lie is not 
beneficial. 

Theorem 21. For any encounter in a two-agent subadditive TOD, there is always an 
all-or-nothing deal in NS maximizing the product of the utilities. 

Since an all-or-nothing deal is always a candidate agreement, the negotiation mecha- 
nism might arbitrarily choose it. This is the reason that the L in [a, k, z] is implied by 
the L in [a, j, z] . If there exists an encounter in which one of the agents has an incentive 
to lie when the negotiation is over all-or-nothing deals, then in the same encounter the 
same agents have the same incentive to lie when negotiating over general mixed deals: 
the agreement can always be an all-or-nothing deal. 

Another consequence is the following theorem. 

Theorem 22 (Fixed point 2). For any encounter in a do-agent subadditive TOD, and 
any PMM over mixed deals, every ‘phantom” lie has a positive probability of being 
discovered, Therefore, with a suficiently severe penalty mechanism, it is never beneficial 
to declare a phantom task, 

Theorem 23 (Fixed point 3). For any encounter in a two-agent concave TOD, and any 
optimal negotiation mec~nism over mixed deals, every “decoy” lie is not bene~~ial. 

Theorem 24. For any encounter in a two-agent concave TOD, and any optimal negoti- 
ation mechanism over all-or-nothing deals, every lie (including combinations of hidden, 
phantom, and decoys) is not beneficial. 

Because of the theorem above, it is clear that for concave domains, agents cannot 
benefit by lying when all-or-nothing deals are in use-i.e., any optimal negotiation 
procedure over all-or-nothing deals is incentive compatible. This is also true for modular 
domains (a subcase). This can be seen in the table, where the entire all-or-nothing row 
is marked T for modular and concave domains. 

Additionally, in a subadditive domain where decoy tasks cannot be generated, an 
optimal negotiation procedure over all-or-nothing deals with a penalty mechanism for 
discovered lies is incentive compatible (this was shown, in a different form, in [ 751) . 
This can be seen in the table, where the all-or-nothing row is marked with T and T/P 
(excluding the decoy column). 

Theorem 25 (Fixed point 4). For any encounter in a two-agent modular TOD, and 
any optimal negotiation mechanism over pure deals, every “decoy” lie is not beneji- 
cial. 
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Pip. 6. Example ot fixed point 5 

14.2. Non-incentive compatible ,jixed points 

Fixed point 5 
For an example of a beneficial phantom lie in a concave domain using a negotiation 

mechanism over pure deals, consider the following example in the postmen domain 

restricted to graphs that have a tree topology (this domain is concave, due to Theorem 6) : 

Example of a phantom letter. Consider the graph given on the left of Fig. 6 (the 

length, and thus the cost, of each edge is written next to it). The post office is at the 
root of the tree; both agents Ai and A2 need to deliver letters to nodes a and 0. 

Each agent has a 0.5 chance of delivering the letters to (I (Utility = 2) and a 0.5 

chance of delivering the letters to b (Utility = 4). The expected utility for both is 3. 
What happens when AI creates a phantom letter, and tells A2 that he has another 

letter to deliver to node c? See the right side of Fig. 6. The cost for Al of delivering his 

letters plus the phantom letter is now 12. It would not be individual rational for A2 to 
visit c; A1 will thus have to visit c, and he could deliver AZ’S letter to b on his way. So 

they will agree on a deal where A 1 delivers the letters to b and c (with apparent utility 
of 4, and actual utility of 4). Thus, Al’s utility has risen from 3 to 4 by creating this 
phantom letter. This lie is also a “safe” lie, since A2 cannot verify whether the phantom 

letter was actually delivered. 

Fixed point 6 

For an example of a beneficial decoy lie in a subadditive domain (e.g., the postmen 
domain with an unrestricted graph topology) using a negotiation mechanism over all- 
or-nothing deals, consider the following example. 

Example. Let the graph be as in Fig. 7. Every edge between nodes has cost I. 
Agent Al needs to deliver letters to nodes d. e, f, and g, with a total cost of 6. Agent 

A2 needs to deliver letters to nodes b and c, with a total cost of 4. If Al tells the truth, 
both utilities will be 1.5 (Al will do the whole cycle with probability &). After Al 
lies with producible decoy letter to node h, his apparent cost is still 6. Delivery of the 
entire set of letters, however, now (apparently) costs 9. They will agree on the deal that 
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Fig. 7. Example of fixed point 6. 

gives both agents apparent utility of 0.5. Agent A2 will do the entire delivery, including 

the decoy letter, with probability 6, in fact getting utility of 0.5. Agent Al, however, 

will simply do the cycle (i.e., without the decoy letter), with probability g, getting an 

actual utility of 1.72. Lying is thus beneficial for Al: telling the truth gives him a real 
utility of 1.5, while lying gives him a real utility of 1.72. 

The example above is an instance of a more general case. It turns out that if an agent 
knows the relationship between his and his opponent’s total costs in an all-or-nothing 
negotiation, it is possible for him to reliably generate a beneficial “default” lie that is 
made up of decoy tasks. In a subadditive domain, like the postmen domain, he can 
generate extra decoy tasks “along the way” (i.e., that don’t increase his stand-alone 
cost), but which improve his position in the final agreement. This can only be done 
by A1 when the cost of Ti is greater than the cost of T2. The example above is an 
instance of this situation. The important result here is that the lie can be generated 
reliably without having full information about the other agent’s set of tasks. 

Theorem 26. For any encounter in a two-agent subadditive TOD, and any PMM over 

all-or-nothing deals, if agent Al knows that the cost of Tl is greater than the cost of T2, 

he can generate a default decoy lie that may benejt him, and will never harm him. 

To demonstrate fixed points 7 and 8, we bring two examples from the postmen domain 
that have as their topology that of a star; this is a modular TOD, and represented in 
Fig. 8. The post office is in the center of the star, and the length of the lines represent 

the distances from the post office. 

Fixed point 7 
Consider the left example in Fig. 8. Both agents have to deliver letters to nodes b (at 

a distance of 1) and e (at a distance of 2). Note that c(T,) = c(T2) = c(Tl U T2) = 6. 

If both agents tell the truth the negotiation mechanism will arbitrarily send one to node 
b and one to node e. If agent A1 hides his letter to node b, then the only pure deal that 
maximizes the product of the agents’ utilities is the one that sends agent A1 to node b 
(!) and agent A2 to node e. Thus, agent Al benefits from his lie. 
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Fig. 8. Slar topologies for postmen delivery. 

Fixed point 8 

Consider the right example in Fig. 8. Agent Ai has to deliver a set of letters that 

includes ones to nodes a, c, d, e. and f. Agent A2 has to deliver a set of letters that 

includes ones to nodes a, b. c. d. and e. Note that c(Tl) = c(T2) = 10, and c(Tl UT2) = 
I?. 

If Al hides his letter to node a, then let r; be his apparent set of tasks (without node 
a). Note that ,,(r;) = 8, and c(T; i_l T?) = 12. Using any PMM, under the assumption 
that Al’s true set of tasks is T;, they can agree on a mixed deal (X, Y) : p such that 

X = {a,f}, Y = {b,c,d,e}, and p = i (call this deal a*). Let UT stand for the utility 
of AI from S*. and cl; stand for AZ’S utility from that same deal. Utility cl: = U; = 3. 
But Al’s real utility is IO - $4 - $ IO = 4.5 which is greater than 4, the utility he would 

have gotten if he had told the truth. 
The all-or-nothing deal is not beneficial for Al because the agents would agree on the 

probability p = 6, which would give agent Al a real utility of 10-h 12- 62 = 32 < 4. 

However, the expected payoff for the lying agent is 4i, i.e., still over 4, even when the 
negotiation mechanism sometimes chooses the all-or-nothing deal, so the lying agent 
benefits. 

15. Conclusions 

To provide agents with a suitable interaction environment in which they can coordi- 
nate, it may be desirable to establish high-level protocols that motivate socially beneficial 
(and individually beneficial) behavior. Game theory can provide tools appropriate to the 
design of these protocols. Some of the attributes that designers might like to see in 
interaction environments are efficiency. stability, and simplicity. 

The design of suitable protocols is closely connected to the domain in which agents 
will be acting. Certain protocols might be appropriate for one domain, and inappropriate 
for another. In almost all cases, it is important to provide protocols that can deal with 
incomplete information on the part of agents, while maintaining the stability of the 
overall mechanism. 

In this article we have presented a general domain theory to use in analyzing negoti- 
ation protocols. We have characterized task oriented domains (TODs), which cover an 
important set of multiagent interactions. 
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We have presented several examples of TODs, and examined three attributes that 
these domains can exhibit, namely subadditivity, concavity, and modularity. We have 
then enumerated the relationship between deal types, domain attributes, and types of 

deception, focusing on whether an agent in a TOD with a given attribute and deal type 

is motivated to always tell the truth. In particular, we have shown that in concave TODs, 

there is no benefit to an agent’s lying when all-or-nothing deals are in use. In a general 
subadditive domain, however, when agents are able to generate decoy tasks, even all- 

or-nothing deals are not sufficient to create stability (discourage lies). In addition, we 
demonstrated that in subadditive domains, there often exist beneficial decoy lies that do 
not require full information regarding the other agent’s goals. 
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Appendix A. Proofs 

Theorem 5. All concave TODs are also subadditive. 

Proof. The proof follows immediately if we choose X to be the empty set. 

For any concave domain (7, A, c) and any finite subsets Y Z C 7: 

c(Y u Z) - c(Y) < c(0 u Z) - c(0) 

< c(Z>, 

c(YUZ) <c(Y) +c(z). q 

Theorem 6. The postmen domain, restricted to graphs that have a tree topology (no 

cycles), is concave. 

Proof. Let G( YE) be a weighted, connected graph that has a tree topology. A graph has 

a tree topology if and only if it contain no cycles, i.e., there is at most one non-repetitive 
path (each node in the path appears only once) between any two nodes. Let p E V be 
the post office. For each subset of nodes X G V, c(X) is the cost of the minimal cyclic 
path that starts at the post office, visits all the nodes in X, and ends at the post office. 
Since the graph has a tree topology, the minimal path that visits X is unique modulo 
the order of visiting specific nodes. Let X (called the closure of X) be the union of all 
nodes that are visited in the minimal path that visited X. X is also the maximal superset 
(in the C relation) of X that has the same cost c(X). X is also the minimal connected 
subgraph of G that includes both the post office p and X. 
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For a subset of nodes X C V and a specific node c t V, we define the distance 
between a set of nodes to a given node dist( X, L’) to be the length of the shortest path 

between v to one of the nodes in the closure of X (2). If u E X then d&(X, L!) is 

defined to be 0. Due to the fact that G has no loops, c( X U {u}) = c(X) + 2dist( X, c). 
To show that the domain is concave we need to show that for all sets of nodes X 2 Y, 

andYZCV,wehavec(YUZ)-c(Y)<c(XUZ)-c(X). 
We will prove this by induction on the size of Z ( lZ/). 

Assume that /ZI = 1, i.e.. Z = 1~). 
We know that c(X U {z}) = c(X) + 2dist(X,~) therefore: c(X U {z}) - C(X) = 

2disr( X, z). Using the same argument, we have that c( Y U {z}) - C(Y) = 2dist( Y, z ). 
Since X & Y, we have that X & Y. This implies that dist( Y z) 6 dist( X, z), which is 

what we needed to show. The distance to a superset cannot be greater than the distance 

to a subset. 
Assume that c( Y U Z) --- c( Y) < c( X Al Z) -- L,(X) is true for sets Z of size less than 

or equal to n. We will then show that it is also true for sets of size n + 1. 
Let Z C V be an arbitrary set of nodes such that /Zl = n. and let I $ Z be some 

node in V. But then we have that: 
(1) c(YUZ) -c(Y) <c(XUZ) --c(X) (fromtheinductionasssumption); 

(2) c([YuZ]IJ{~})~c([Y~_JZl) <c.(1XUZlU{z})-c([XUZl) (fromthe 
II = 1 case above, since X i_J Z is a subset of Y U Z). 

If we add both inequalities, we get: 

c([YUZl’J{,}) -c(Y) <d[XLlZliU{:}) -c(X). 

or. regrouping, we have 

Thus the set Z u {:} also satisties the concavity condition. 0 

Theorem 8. All rvodulur TODs ure ulso L‘~IIL’L~LY. 

Proof. For any modular domain jl. A, CJ and any finite subsets X & Y, Z C 7: 

x;lzc:Ynz. 

Monotonicity: 

c(xnz) < c(YllZ), 

Modulurity: 

c(xnz) =c(X)+c(Z) -c(XUZ) <c(Y) +c(Z) -c(YUZ) =c(YflZ), 

c(X) - c(XU Z) < c(Y) - c(YU Z), 

CCYUZ) -c(Y) <c(XUZ) -c(X). 0 
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Theorem 16. For any encounter in a TOD, NS over pure deals is not empty. 

Proof. 0 is an individual rational pure deal, and there cannot be an infinite chain of 
pure deals such that . . . + 8’ > 8 > 6 > 0. This is because for any deal 6, and for any 

k E { 1,2}, Utilityk( 8) is bounded by c(Tk) (since maximal benefit is reached when all 
of one’s tasks are executed by the other agent). There exists at least one maximal pure 
deal 6* that will be pareto optimal, but it is also individual rational, so 6* E NS. Cl 

Theorem 17. For any encounter within any TOD, NS over mixed deals is not empty. 

Proof. Let (Tl , T2) be some encounter in a two-agent TOD. To show that the negotiation 
set is not empty, it is sufficient to show a mixed deal that is both individual rational and 

pareto optimal. 
Among all pure deals (Dl ,D2) that satisfy the following two conditions: 

sum: kc(‘G) 2 &cCDi). 
i=l i=l 

let (D;, 0;) be one that also has minimal total cost, i.e., 

c(D;) +c(D;) = min 
(Dt ,Dg) that satisfies the min and sum conditions 

ctD1) + c(D2). 

Since the conflict deal 0 = (Tl, T2) satisfies the min and sum conditions and there 

are only a finite number of pure deals, the pure deal (DT, 0;) exists. 

Without loss of generality, we can assume that c(T2) 2 c(Tl) and c(Dz) 3 c( 07). 
From the min condition, we see that c(Tl) 2 c( 0;). There are two cases: 

l If c(T2) > c( D;), then the deal (D;,Dz): 1 is individual rational. 

l If c(T2) < c(D;), then the deal (Dr,D;):p (where p = 1 - (c(T1) - c(D;))/ 
(c( 0;) - c( D;))) is individual rational. 

(DT, 0;) : p is also pareto optimal, because if there is another deal (Di, 0;) : q 
that dominates (D;, 0;) : p, then (Di, 04): q is also individual rational and therefore 

satisfies the min and sum conditions: 

Utilityi((D;,D;):p) > 0, 

c(F) - tp)ctDT) 2 0, 

47;) 2 (PMDT) 

> (p)c(Df) + (I- p>dD;-i) 

c c(Z) 2 c c(D;), 
iE{l,2} iEIl.2) 



min c(T,) > min c(D,*). 
fE(1.2) IE(l.2) 

Since (D;, 0;): q dominates (0:. Dz ): p it ah iq$ies that 

c Utilityf((D{,Di):y) > c Utility,((D;,D;):p) 

IEj1.2) llz{ I.‘} 

This can be true only il 

c c(D;) < c 
c,( u,* ) 

E{l.2} iE{l.2) 

But this contradicts the fact that (D;, 0; ) is the nzinin~ul total cost pure deal that 

satisfies the nzirl and sum conditions. cl 

Lemma A.1 (Efficiency of agreement ) Ebr ml>’ mcounter in u two-agent subadditive 

TOD. $fa mixeddeal (D,,D2):p cNS thm c(D,) +c(D2) =c(D, uD2). 

Proof. L.( D1 ) + c,( 02) 3 CC DI j-1 Dz) because of the subadditivity of C. Using prool 
by contradiction, let’s assume that C( DI ) + (‘( D2) > c(D, u Dz), then show that this 
results in a contradiction. 

If c( 01) + c( D2) > c( DI I_! D2), then WC can show that the deal (D,, D2):p is 
dominated by the all-or-nothing deal ( DI 1.~ D2, fl): y, such that 

MD]) + (I --p)c(D2) 
4= 

c(D, U D2) 

This would contradict the fact that ( DI , Dz ) : /I is in the negotiation set, since it would 
then not be pareto optimal. Thus, if C( DI ) +c( D2) > c( Dl u 02) but cannot be greater, 
then the two sides of the equation must be equal. 

First, we will show that y lies between 0 and I, which it must in order for ( Dl U 
Dz, 8): q to be a legal mixed deal. 

0 < c(Dl) < c(DI lJ D2), 

0 < c( D2) < c( DI l-1 02 ) 

Thus 0 < q < 1. by the definition of y. 
The following completes the proof by demonstrating the above claim that the all-or- 

nothing deal (D1 iJ D2, 0): y dominates the deal ( DI , 02): p. 

Costl((D~ lJD?.(l)):q)=yc(D~ LDZ) (by thedefinitionofq) 

=pc(D,) + (I p)‘(D2) 

= Cost, ( (D,. D2 ): p), 
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So for agent AI, the two deals are equivalent. Because of the subadditivity condi- 
tion, i.e., that c(Dt) +c(D2) > c(Dt UD2), it follows that 1 < (c(Dt) +c(Dz))/ 

(c( Dt U 02) ) . By splitting up the right side of the equation, we get 

l< 
PC(a) + (1 -P)C(Dz) + (1 -p)c(D1) +pc(D2) 

C(DI u 02) C(Dl UO2) . 

Since the first term is equal to q, this means that 

1 <q+ (1 -PM@) +Pc(Dz) 

C(Dl UD2) ’ 

(1 _q) < (1 -P)da) +Pc(D2) 

CC& UD2) ’ 

(1 -q)dDI UD2) < (1 -p)c(D1) fpc(D2). 

And so, because the left side of the inequality equals Cost2( (01 U D2,0): q), and 

the right side of the inequality equals Cost2( (Dl, 02): p), we have the following: 

Costz((Dt U D2,‘d):q) < Cost2((Dl,D2):p). 
Thus the all-or-nothing deal is cheaper for agent AZ, and therefore agent AZ’S utility 

is greater. We have 

Utilityt((Dt UD2,Ql):q) =Utilityt((Dt,D2):P), 

Utilityz((Dt UD2,0):q) > Utility2((Dt,Dz):P), 

which means that (D1 U D2,@): q + (D!, 02): p. Thus the all-or-nothing deal domi- 

nates. 0 

Lemma A.2 (Constant sum equality). For any encounter in a two-agent subadditive 
TOD, for each mixed deal 6 E NS, Utility1 (6) +Utilityz(S) = c(Tl) +c(T2) -c(TI uT2). 

Proof. Let 6= (Dl,Dz):p be a mixed deal. 

Utility, (8) + Utility2 (8) 

=c(Tl) - [pc(D~) + (1 -p)c(D2)1 +c(T2) - [Cl -p)c(Dl) +pc(D2)1 

(Definition of utility) 

=~(TI) +c(T2) - [c(DI) +c(D2)1 

=c(Tl) +c(T2) - c(Dl U 02) (Lemma A.l) 

=c(Tl) +c(T2) -c(TlUTz) (Definitionofadeal). 0 

Theorem 19. A PMM over mixed deals in subadditive two-agent TODs divides the 
available utility equally between the two agents. 

Proof. For any deal S E NS, C E Utilityt(S) +Utility:!(@ = c(T,) fc(T2) -c(T, UT2) 
because of Lemma A.2. From the definition of a PMM we know that the agreement 
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that will be reached will maximize the product of‘ their utilities. Let 6 be a deal that the 
agents agree on after negotiation when both are using a PMM. 

7r( 6) E Utililyr (G)Utilityz( 5) 

= Utility) (8) Cc’ ~~ Utility) ( 6) 1 

= Utility) (6)C Utility) (8)‘. 

To maximi~c rr, we take the derivative of TT with respect to Utility) (6). To discover 

what value of Utility) (6) will maximiz 7~. the first derivative should equal zro. 

(Utility) (6)C Utility, (6)‘)’ = C ZUtility) (6) = 0 means that Utility) (8) = ;C = 

Ulilityz(6). !~I 

Proof. Assume that agent Al decides to hide one of‘ his tasks; WC will show that this 
cannot bc beneficial using all-or-nothing deals. 

Let LI = c(TJ ). 11 = c(T:) and (’ = (,(TI L Tz). Let 6(p) be the all-or-nothing 

deal (TI U T2.M): /I. The agents will agree on this all-or-nothing deal a(/,) such that 
Utility) (6(p)) = LJtilityl(S(p)) (Theorem 19). 

So the agreement reached i\ y :- b( ((’ + ti /I) / ( 2~) ). 

(‘t-u -11 
Cost,(y) = 3 . 

lc+ll- ii 
cost?(y) = -2. 

Utility,(y) and Utility?(y) = 7 

11‘ agent Al lies and hides some tasks L Y TI and broadcasts T; = TI - L, then 
(because of’ the subadditivity of’ the domain) 

c(T,) < c(T;) +(,(I,). (A.1 1 
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Let a* = c(T;*), 1= c(L) and c* = c(7’7UT2). If they negotiate on 7’; and T2 they will 
agree on [ (TT U T2,8) : (c* + a* - b) / (2c*) 1. Agent A I will perform 7’i U T2 with prob- 
ability (c* + a* - b)/(2c*) or perform only L with probabilty (c* + b - a*)/( 2c*) 
and his expected cost will be: 

c* + a* - b 

2c” 
c+ 

c* + b - a* 

2c* 
1. 

To complete the proof, it will be sufficient to show that 

c* + u* - b c* + b - a* 

2c* 
c+ 

2c* 
12 

c+a-b 

2 ’ 

c(c*+a’-b)+I(c*+b-u*)>c*(c+a-b), 

cc* -t c(a* - b) + E(c* f b -a*) > c*c + c*(a - b), 

c(a* - b) + Z(c* + b - a*) > c*(u - b). 

There are two cases: 
Case 1: c+u* 2 c* +a. 
Case 2: c + u* < c* + a. 
Case 1. We know that c* + 1 > c (Eq. (A.2)) which means that i > c - c*. It will 

be sufficient to show that: 

c(a* - b)+(c-c*)(c*+b-a’) >?:*(a-b), 

c(a*-b+c*+b-a*)-c*(c*+b-a*) >c*(u-b), 

CC*-c*(c*+b-a*) &*(a-b), 

c- (c*+b-a”) >,a-b, 

c-c*-b+a*>a-b, 

c - C* + u* 3 a, 

c+a* 2 a+c*. 

Case 2. c + a* < c* + a means that C* > c + a* - a. It will be sufficient to show that: 

~(a*-b)+Z(c+a*-a+b-a*) >c*(a-b), 

c(a* -b) + Z(c+ b - a) > c*(a - b), 

c(a* - b) +Ec+Z(b-a) 3 c*(a- b), 

c(a* -b+i) +l(b-a) >c*(a-b), 

c(a’ -b+I)+(c*+I)(b-a) 20. 

We know that c* + I 2 c (Eq. (A.2) ) . it will be sufficient to show that: 

c(a* - b + I) + c( b - a) 2 0, 



which is true (Eq. ( A. I ) ). 

Proof. Assume that ( flf, II, ): p ih in the negotiation set. If we use the same probability 

q that was delined above ( in the proof of’ Lemma A. I ), we can show that ( DI !_I 

DJ. (I? ): y k ( D . DJ): p using the same htcps as in the proof of Lemma A. I, by 

changing the “-:” symbol to “5”. Bccausc ( 111. D2 ): p is in the negotiation set. it 

cannot bc dominated, and theref’ore ( D, 1 i 11~. f/l): q G (Di. D,): p. 0 

Proof. This l’ollows immediately I’rom Theorem 71. The agents can always agree on 

some all-or-nothing deal. which will assign all tasks (including the phantom tasks) to 

the non-lying agent with some positive probability. 11 

Theorem 23 (Fixed point 3 ). ht. trtty twutwttcr itt (1 tbvo-agent C’O~CL~~YJ TOD, and urt~ 

PMM over mixed deuls. n’cjr? “drco~” lie i.s twt henyficiul. 

Proof. Let (T,.7;) he the true encounter. Let o = c,CT, ). b = c(T?), and (‘= c(Tl UT,). 

Negotiation using the true information and using any PMM over mixed deals will lead 

to an agreement on a mixed deal 6 that satisfies Utility, (8) = i ( CI+D-C) = Utilityl( 6). 

Assume that agent AI lies and declares that his initial set of tasks is T; = T, U f,. 

where 1, is a set of decoy tasks. Let (I* = c,( T,* ) and c* = c(T; ii Tl ) ; in other words. 

(I* is agent Al’s apparent initial cost. and (.* is his apparent total cost. 

The negotiation that asssumc.\ this information is true will lead to an agreement on 

a mixed deal 6” that satisfies Utility, ( 6* ) = i (N% + 11 -_ c,*) = Utilityl( 6” ). Because 

T; C {T;” IJTl}. WC can USC the definition of’ &cavity and conclude that C* -C < cl* -(I 

(because the cost that L adds to T1 is greater than the cost that L adds to {TI U Tl}). 

This also means that CI (’ < I/* c’. WC can thus conclude that Utility*( 6’) = 

t( (I* -t 1) - c*) > :((I + II ~- c‘) = Utilityz( 6). In other words, even though agent A2 

might have to perform some or all of the decoy tasks, his utility can only be larger than 

if agent Al would have told the truth. 
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Because we are speaking of a constant sum game (Lemma A.2), it seems reasonable 
that if agent AZ’S utility goes up, agent Al’s utility will go down. 3 This is what we will 
now show. 

The agents will agree on a mixed deal 6’ = (X*, Y*) : p such that X* u Y* = TT u T2. 

LetX=X*-L,Y=Y*-L,x*=c(X*),y*=c(Y*),x=c(X)andy=c(Y). 
Agent Al does not have to perform his decoy tasks, however, and therefore his actual 

utility from 6* (which we denote by Utility, (F)) is a - px - (1 - p)y. 

On the other hand, agent A2 does have to perform the decoy tasks. Therefore his 
utility from 8’ is b - (1 - p)x* - py*. We can sum those two utilities. 

Utility,(g) +Utility;!(a*) =a-px- (1 -p)y+b- (1 -p)~* -py* 

=a+b-((I -p)y+py*)+(px+(l -p>x*) 

<a+b-(y+x) 

<a+b-c 

= Utility, (6) + Utility2 (6). 

Note that X G X*, therefore x < x*, and as a consequence, x < px + ( 1 - p)x*. 
Similarly, Y C Y’, therefore y 6 y’, and as a consequence, y < (1 - p)y + py*. 

Also, according to Theorem 5 (all concave TODs are also subadditive TODs) and the 
definition of subadditivity (since Y U X = Tl U T2), we have that c < x + y. 

We have shown that agent Al’s utility plus agent A2’s utility when agent Al lies is 

less than or equal to their combined utility when agent AI doesn’t lie. However, we 

have already shown that agent AZ’S utility when agent Al lies is greater than or equal 

to agent AZ’S utility when agent A1 doesn’t lie. Thus, the conclusion is that agent Al’s 

actual utility cannot be bigger than his unvarnished utility. The lie is not beneficial for 

agent AI. 0 

Theorem 24. For any encounter in a two-agent concave TOD, and any PMM over all- 

or-nothing deals, every lie (including combinations of hidden, phantom, and decoys) is 

not benejkial. 

Proof. Let (Tl , T2) be the encounter, and let the agreement that will be reached using 
a PMM with the common knowledge of the true information be the mixed deal 6. 

Assume that agent A1 declares that his set of tasks is T; = {T, - Th U Td}, where 
T,, is the set of all his hidden tasks, and Td is the set of all his decoy tasks. Let the 
agreement that the agents will reach when they assume this information is true be 6*. 

Consider the negotiation where agent Al declares his set of tasks to be T;* = {Tl -TII}. 
Let S** be the agreement that the agents will reach in the above negotiation. 

Let u** = c(T;*) and c** = c(T;* U T2). In other words, u** is Al’s apparent cost, 

and c** is the apparent total cost. 

3 Actually, it is more subtle: agent Al’s apparent utility also goes up along with AZ’S, but what we are 

concerned with is Al’s actual utility. 



The negotiation that asssumes this information is true will lead to an agreement 
on a mixed deal 8** that satisfies: Utility, (8**) = ;(a** + I> - c**) = Utilityz( p*). 

Because T;* C: {T;’ U T?}, we can use the definition of concavity and conclude that 
** c - c** < a - N** (because the cost that L adds to T, is greater than the cost that L 

adds to {T;* U T?} ), This also means that N** ~ c** < a - c, so we can conclude that 

Utility! (8**) = i (u** + b - c**) < k( N + b ~ c) = Utility, (6). In other words, the 
apparent utility of agent Ai is less than his unvarnished utility without the hidden tasks. 

Let us now consider the situation where agent Al declares TT = {T;’ U r,}. From 

Theorem 23 we can see that -(a* ) < Utility, (a**), and the final conclusion 

will be that m(S*) < Utility! (6). The liar’s actual utility will be less than his 

unvarnished utility. i7 

Theorem 25 (Fixed point 4). Ei,r any etlcounter in u two-ugent modular TOD, and 

any PMM over pure deals, c~~~er~ “decoy” lie is tmt benejiciicial. 

Proof. Let (T,, T2) he an encounter. Let 6 = CL),, 02) be a pure deal, i.e., DI n 02 = fl 

and DiiJD2=TrUT2,Utilityi(6)+Utilityz(6) =(c(T,)-c(D,))+(c(Tz)-c(D2)) = 

c(Tl) +c(T2) - (r(Dl) +c(DzJ). 
The modularity of c implies that: (c( D1) + c( 02)) = c( DI U 02) ~ c( DI n 02) = 

c( T, UT*) (since the intersection of DI and Dl is empty). This means that Utility, (6) + 

Utility?_(G) =c(T,) +c(Tz) -~c(T, f.JTz) =c(T, nT?). 

The agents will agree on a deal that maximizes the product of the utilities (from 

the definition of a PMM, in Section 12). Since all pure deals have a constant sum of 
utility (which is c(T, n T2) ), the deals that maximize the product are those that have 
the smallest difference between the two agents’ utilities. Therefore, there is either one 
pure deal, or two complementary pure deals. that maximize the product. In the former 
case, the unique pure deal gives both agents equal utility. In the latter case, one of the 
complementary pure deals will be chosen arbitrarily (each with probability ;). Both 

agents will have the same expected utility ( ic( TI n T2) ). 

Assume that agent Ai lies and creates a decoy task d t 7. His apparent initial 
set of tasks is T; = Tl U {d}. Since d +z’ TI (otherwise it was not a decoy task), 

c( T; ) = c(Tl ) + c( {d} ). For any pure deal 6 = (D1 , 02) the apparent utility for agent 
A 1 from the deal is: c(T; ) ~ c.( DI ) ; the actual utility that agent A 1 gets from 6 depends 
on whether the decoy task d is in Dl. If d E DI, then Al’s actual utility from S is 

I -(c(DI) -c({d})) =c(T11 -c(DI) +c({d}) =c(T;) -c({d}) -c(Dl)+ 
c( {d}) = c(T;) - ~(01) (i.e., Al’s actual utility from 6 is equal to its apparent utility 
from 6). 

If d $2’ DI then its actual utility from 6 is c(T,) -c(Dl) = c(T,) -c(D,) +c({d}) = 
c(T;) - c( D1) ~ c( {d}) (i.e., its actual utility from 6 is lower than its apparent utility, 

by 4(d))). 

There are two cases: 

(1) d E T2. In thiscase, c(T;nTl) =c(Tl V‘iT*) +c({d}), and agent Al’s expected 

actual utility is ic( Tr fV’2). He would have gotten the same actual utility declaring 
his true set of tasks. 
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(2) d 6 T2. Then T; n T2 = Tl Cl T2, and agent Al’s expected actual utility is 
i(c(T, n T2) - c({d})). He would have gotten more (ic(T, n T2)) declaring 

his true set of tasks. 0 

Theorem 26. For any encounter in a two-agent subadditive TOD, and any PMM over 

all-or-nothing deals, if agent Al knows that the cost of Ti is greater than the cost of T2, 
he can generate a default decoy lie that may benejt him, and will never harm him. 

Proof. Using Theorem 19, we know that agents will agree on a deal that gives them 
equal utility. Negotiating over all-or-nothing deals means that they will agree on a proba- 

bility p that satisfies the following relationship: c(T1) -p*c(Tl UT2) = c(T2) - (1 -p) * 
c( Tl U T2). Thus, they will agree on the following: p = (c( Tl ) - c( T2) + c( Tl U T2) ) / 
(2c(Tl U T2)). If agent A1 declares T; which is a superset of Tl (i.e., Tl with extra 

decoy tasks), then they will agree on a p* that satisfies (c( TT) - c( T2) + c( T; U T2) ) / 

(2c( T; U T2) ). We have that c( TT U T2) 2 c( Tl U T2) because of the monotonicity of c. 
If agent A1 has chosen his decoys such that c( T;) = c( Tl ), then we have that Ai’s ap- 

parent utility is c(T;) -p* *c(TTuT2), while his actual utility is c(Tl) -p* *c(T) UT?) 
(since he won’t have to carry out the decoy tasks). Thus, if p* < p, agent Al benefits 

from this lie. 
If c(T,) > c(T3, then p* < p, from the definition of p* and p, the equivalence of 

c(T;) and c(Tl), and the inequality c(TT UT2) > c(Tl uT~). 0 

References 

[ I] R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984). 

[2] K. Binmore, Fun and Games. A Text on Game Theory (Heath, Lexington, MA, 1992). 
[ 3 ] S. Cammarata, D. McArthur and R. Steeb, Strategies of cooperation in distributed problem solving, in: 

Proceedings IJCAI-83, Karlsruhe ( 1983) 767-770. 
[4] R. Clark, C. Grossner and T. Radhakrishnan, Consenses: a planning protocol for cooperating expert 

systems, in: Proceedings Eleventh International Workshop on Distributed Artificial Intelligence, Glen 

Arbor, MI (1992) 43-58. 

]5] P.R. Cohen and H.J. Levesque, Intention = Choice + Commitment, in: Proceedings AAAI-87, Seattle. 

WA (1987) 410-415. 

[6] P.R. Cohen and H.J. Levesque, Intention is choice with commitment, Arttf Intell. 42 ( 1990) 213-261. 
[ 71 P.R. Cohen and H.J. Levesque, Teamwork, Technote 503, SRI International, Menlo Park, CA ( 199 1) 

[ 8 I S.E. Conry, R.A. Meyer and V.R. Lesser, Multistage negotiation in distributed planning, in: A. Bond 

and L. Crasser, eds., Readings in Distributed Artijciul bttelligence (Morgan Kaufmann, San Mateo, CA, 

1988) 367-384. 
]9] D.D. Corkill, Hierarchical planning in a distributed environment, in: Proceedings IJCAI-79, Tokyo 

(1979) 168-175. 
[ IO] D.D. Corkill, A framework for organizational self-design in distributed problem solving networks, Ph.D. 

Thesis, University of Massachusetts, Amherst, MA ( 1982). 
[ 111 K.S. Decker and V.R. Lesser, Generalizing the partial global planning algorithm, Internat. J. Infell. Coop. 

btfortn. Sysf. 1 ( 1992) 319-346. 
[ 121 J. Doyle, Rationality and its roles in reasoning, Comput. Intell. 8 (1992) 376-409. 
[ 131 E.H. Durfee, Coordination of Distributed Problem Solvers (Kluwer Academic Publishers, Boston, MA, 

1988). 
[ 141 E.H. Durfee and V.R. Lesser, Using partial global plans to coordinate distributed problem solvers, in: 

Proceedings IJCAI-87, Milan (1987) 875-883. 



1 I5 1 E.H. Durfec. V.R. Lesser and D.D. Corkill. Cooperation through communication in a distributed problem 

solving network, in: M.N. Huhns. ed.. Diwihu/ec/ .Ar/[fic.rcl/ /r~f~//i~mw (Morgan Kaufmann. Los Altos, 

CA. I987 ) Chapter 2. 29-5x 

I6 ) E.H. Durfee and J.S. Kosenhchcm. Distributed prohlcm wlvin g and multi-agent wstcms. comparisons 

and examples, in: I’~owerlin,~.~ ~r/~irrrrr~//~ /~~t~n~~tio~~trl Work.rlwp OH /Ii.ctri/xrtrtl Arr!/ic~~d Itztelligmc~c. 

Scattle, WA ( I994 ) 94.- 104. 

I7 1 E. Ephrati. Divide and conquer In multi-agent plannmg. m: Procwdincy.s AAAI-94. Seattle, WA ( 1994) 

375--3x0. 

IX I E. Ephrati and J.S. Rosenschem. The Clarke i:,lx :I\ a consxsus mechanism among automated agents. 

m: /‘rowedin,p I\/\/\/-9/. Anaheim. CA C IO9 I 1 I71- 178. 

I9 1 E. Ephrati and J.S. Rosenschein, Constrained intelligent actlon: planning under the intluence of a master 

agent, in: Proc.rrtlirr,q.v .&IA/-92. San Jose. CA f 1992) 263-268. 

20 E. Ephrati and J.S. Rosenschein, Planning to please: planning while constrained by a master agent. 

in: Proc~erdin,qs E/went/~ Irrt~rntr/i~~md Workrhop OH Di.~/rihured Ar~~ficul Intellipnc~e, Glen Arbor, MI 

(1992) 77-94 

21 ) E. Ephrati and J S. Roseaschein, Reaching agreement through partial revelation 01 preferences, in: 

Pro~~c~eclwjis -Itnr/r I:‘~ro/xw~ Gnfrwwc 011 Arfi/hr/ /t~/r//;,ync~, Vienna ( 1992) 229-231. 

122 I E. Ephrati and J.S Roscnschrin, Distributed consensus mechanisms for self-interested heterogeneous 

agents. in: Procccdit~,q.T Fin/ /rrfr~rrroff~~ri~~/ Cm/cwwe ml /rltr//ijivnt rrrrd Coo/wrtiiiva /r@rtna/ior~ 

.(;\..wm, Rotterdam ( I993 ) 7 I-79 

1231 E. Ephrnti and J.S. Roscnschcin. Multl-agent planning as a dynamx search for social consensus. in: 

Proc~ae~/,/r~.~ /./(i\/-93. Chambcry ( 1903 1 423-13 

113 1 E. Ephrati and J.S. Rosenschcin, Drrlvm, 0 consensus m multi-agent ayatems, Arti/. /nrc~//. 87 ( 1996). 

1 25 I Il. Fudenbeg and J. Tiroie, GOJ~ T/~ro,:~x ( MIT Pre\\, Cambridge, MA. I992). 

126 I Ia. Gasser. Social conceptions of knowledge and action: DA1 foundations and open systems semantics. 

:I/Yif. /,1/r//. 47 ( 199 I ) 107. 13x 

( 27 I L. Gnsser, Social knowledge and wc~al actwn, 111’ /‘).~wc,c~//r~~.c /./C’Af-93. Chambery ( 1993) 75 l-757. 

128 1 M.P. Georgeff, Communic;~tion and interaction in multi-agent planning. m: I’roc~retling.~ AAAI-8.7. 

Washington. DC c 1983) I?-- I29 

[ 20 I M.P Georgeff. A theory of action for multi-agent planning, In: Pwceedin~~s AAAL’H, Austin, TX ( 1984 1 
111~125. 

I30 ] M.P Georgeff and A.L. Lansky. Reactive reasoning and planning, in: frowedirrfi.c AAAI-X7, Seattle. WA 

(1987)677ww 

[ 31 1 H.J. Grosz and S. Kraus, Collaborative plans for group activities, in. I’rocwdin~s IJCAI-93, Chambery 

(1993) x7--373 

I.33 1 J.C. Harsanyi, Approaches to the bargainmy problem before and after the theory of games: a critical 

dixussion of Zeuthen’s, Hick’s and Nash theories. /:‘[,,,rrorrzerric,(~ 24 ( 1956) l44- 157. 

/ 33 1 J.C. Harsanyi. Rtrriontrl 13elrtrvror od Btrrplhufq Ikquflihrium hl Grurws curd Soc,rtr/ Situuriom 

(Cambridge University Press, Cambridge, I977 i. 
I34 1 M. Kamel and A. Syed, An object-oriented multiple agent planning system, in: L. Gasser and M.N. 

Huhns. eds., Distributed Art$cicr/ fnrellipvwe. 1hl11nw II (Pitman. London/Morgan Kaufmann, San 

Matro. CA, 1989) 259-290. 

I35 I M.J. KatL and J.S. Rosenschein. Verifymg plan\ for multiple agents. ./. Ex/wr. T/twre/. Artif. /rote//. 5 

(1993) 39-S6 

I36 I D. Kinny. M. ILjungberg. A. Kao. E. Sonenberp. G. Tidhar and E. Werner, Planned team activity, in: 

f’~r-Proc,rrdln,s.s hirt/r Eurofwrm Workshop OH Modeling Autonornou.x Agenrs in (1 Multi-Apmt World, 

Rome ( 1992) Chapter 2. 

[ 37 I K. Konolige. A lirst-order formalirntion of knowledge and action for a multi-agent planning system. 

Mtrc,/1. /n/r//. 10 ( 1982). 

13X I S. Kraus and J. Wilkenfeld. Negotiations over time in a multi-agent environment: preliminary report, in: 

P rowedin~~s /./CA/-Y/. Sydney, Australia ( I99 I 1 56-6 I. 
I39 1 S. Kraus, J. Wilkenfeld and G. Zlotkin. Multiagent negotiation under time constraints, Artif: Intel/. 75 

( 1995) 297-33s. 



G. Zlotkin, J.S. Rosenschein/Arrificial Intelligence 86 (1996) 195-244 243 

1401 T. Kreifelts and E von Martial, A negotiation framework for autonomous agents, in: Y. Demazeau and 
J.-l? Milller, eds., Decentralized A.1.2, Proceedings of the Second European Workshop on Modelling 
Autonomous Agents in a Multi-Agent World (North-Holland, Amsterdam, 1991) 7 l-88. 

141 1 K. Kuwabara and V.R. L.CWX, Extended protocol for multistage negotiation, in: Proceedings Ninth 
W~~rkshoIJ on Distributed Art@ciul Intelligence, Rosario, WA ( 1989) 129-161. 

[ 421 B. L&as& H. uasri and V.R. Lesser, Negotiation and its role in cooperative dist~buted problem solving, 
in: Proceedings Tenth International Workshop on Distributed Artificial Intelligence, Austin, TX ( 1990) 
Chapter 8. 

[ 43 J R.D. Lute and H. Raiffa, Games and Decisions (Wiley, New York, 1957). 
[ 44 1 T.W. Malone, R.E. Fikes, K.R. Grant and M.T. Howard, Enterprise: a market-like task scheduler for 

distributed computing environments, in: B.A. Huberman, ed., The Ecology of Computation (North- 
Holland. Amsterdam, 1988). 

[ 45 1 D. McArthur, R. Steeb and S. Cammarata, A framework for distributed problem solving, in: Proceedings 
AAAI-82, Pittsbu~h, PA (1982) 181-184. 

1461 L. Morgenstem, A first order theory of planning, knowledge, and action, in: J.Y. Halpem, ed., Theoretical 
Aspecfs of Reasoning About Knowledge (Morgan Kaufmann, Los Altos, CA, 1986) 99-l 14. 

[ 47 I L. Morgenstem, A formal theory of multiple agent nonmonotonic reasoning, in: Proceedings AAAI-W, 
Boston, MA (1990) 538-544. 

I48 ] Y. Moses and M. Tennenholtz, Artificial social systems, Part I : basic principles, Tech. Rept. CS90- 12, 
Weizmann Institute of Sciences, Rehovot, Israel ( 1990). 

1491 Y. Moses and M. Tennenholtz, On computational aspects of artificial social systems, in: Proceedings 
~ie~~e~t~~ Infer~utional Workshop on Di.~#ributed Artl~cial Intelligence. Glen Arbor, MI ( 1992) 267-283. 

[ 50 / J.F. Nash, The ba~aining problem. econometrics 28 ( 1950) 155-162. 
[ 5 I 1 E.P.D. Pednault, Formulating multiagent dynamic-world problems in the classical planning framework, 

in: M.l? Georgeff and A.L. Lansky, eds., Reasoning about Actions and Plans: Proceedings of the I986 
Workshop (Morgan Kaufmann, San Mateo, CA, 1987) 47-82. 

1521 M.E. Pollack and M. Ringuette, Introducing the Tileworld: experimentally evaluating agent architectures. 
in: Proceedings AAAI-90, Boston, MA ( 1990) 183-l 89. 

[ 53 1 R.P. Pope, S.E. Conry and R.A. Mayer, Distributing the planning process in a dynamic environment, 
in: Proceedings Eleventh Internation~t Wor~hop on Di.~tr~buted Artijicial Intelligence, Glen Arbor, MI 
(1992) 317-331. 

154) AS. Rao, M.P. Georgeff and E.A. Sonenberg, Social plans: a preliminary report, in: Pre-Proceedings 
Third European Workshop on Modeling Autonomous Agents and Multi-Agent Worlds, Germany ( 199 I ) 

IS.51 J.S. Rosenschein, Synchronization of multi-agent plans, in: Proceedings AAAI-82, Pittsburgh, PA ( 1982) 
115-119. 

( 56 1 J.S. Rosenschein, Rational interaction: cooperation among intelligent agents, Ph.D. Thesis, Stanford 
University, Stanford, CA ( 1986). 

157 I J.S. Rosenschein. Consenting agents: Negotiation mechanisms for multi-agent systems, in: Proceedings 
IJCAI-93, Chambery ( 1993) 792-799. 

[ 581 J.S. Rosenschein and M.R. Genesereth, Deals among rational agents, in: fr~~(~eedi~~s IJCAI-85, Los 
Angeles, CA ( 1985) 9 l-99. 

[ 591 J.S. Rosenschein and Ci. Zlotkin, Rules ofEncounter: Designing Conventions,fr,r Aufomated Negotiation 
Among Computers (MIT Press, Cambridge, MA, 1994). 

I60 I A.E. Roth, Axiomatic Models of Bargaining (Springer, Berlin, 1979). 
[ 61 1 Y. Shoham and M. Tennenholtz, Emergent conventions in multi-agent systems: initial experimental results 

and observations (preliminary report), in: Proceedings Third Internntionnl Conference on Principles #’ 
Knawied~e Re~Jre.~entation and Reasoning, Cambridge, MA ( 1992). 

[ 62 [ Y. Shoham and M. Tennenholtz, On the synthesis of useful social laws for artificial agent societies 
(preliminary report). in: Proceedings AAAI-92, San Jose, CA ( 1992). 

[ 63 1 R.G. Smith, A framework for problem solving in a distributed processing environment, Ph.D. Thesis. 
Stanford University, Stanford, CA ( 1978). 

[ 64 1 R.G. Smith, The contract net protocol: high-level communication and control in a distributed problem 
solver, IEEE Truns. Compu~. 29 ( 1980) I 104-l 113. 



244 G. Zlotkin, J.S. Roserrschei~z/Arr!~~(.i~~i lr~telfipme 86 (I 996) i95-244 

1651 K. Steeh, S. Cammarata, F. Hayes-Roth and R. Wesson. Distributed intelligence for air Heet control. 

Tech. Rept. WD-839.ARPA. The Rand Corporation (1980). 

(661 C.J. Stuart, An implementation of a multi-agent plan synchronizer, in: Proceedings IJCAI-85. Los 

Angeles, CA f 1985) IO3 I - 1035. 

I67 / K.P Sycara. Resolving goal conflicts via negotiation. in: Pmceedirrgv AAAf-~~, St. Paul, MN ( 1988) 

245-250. 

168 1 K.P. Sycara. Argulnentation: planning other agents’ plans, in: Prorredin~.~ IJCAI-89, Detroit, MI ( 1989) 

517-523. 

1691 E von Martial, Multiagent plan relationships. an: Proceedings Ninth fr~rervutionctl Workshof~ on 

Distributed ArtiJiic.ud Intellipwe, Rosario, WA ( 1989) S9-72. 

170 I F. von Martial, Coordination of plans in multiagent worlds by taking advantage of the favor relation. 

in: Procwdirr,~s Tenth fnter.nc~fiorwf Wrrrkshop on Ds.v~ribr~ted Arr@icicrf fnfeffi~ence, Austin. TX ( 1990) 

Chapter 2 1. 

[ 72 1 M.P. Wellman. A general equilibrium approach to distributed transportation planning, in: Proceedings 

AAAI-92, San Jose. CA ( 1992). 

[ 73 1 M.F? Wellman, A marker-oriented programming environment and its application to distributed 

multicommodity flow problems. J. A@. Intell. Rex. 1 ( 1993) l-23. 

[ 74 I E Zeuthen, Problems of Moncpf~ md Gwnnmic Wc~&rre (G. Routledge & Sons, London, 1930). 

/ 75 1 C. Zlotkin and J.S. Rosenschein, Negotiation and task sharing among autonomous agents in cooperative 

domains, in: f’~~~~,~~di~z~.~ UCAI-89, Detroit. MI ( 1989) 9 12-9 17. 

I76 1 G. Zlotkin and J.S. Rosenschein. Negotiation and conflict resolution in non-cooperative domains, in: 

Ptoceedings AAM-90, Boston. MA ( 1990) 100-l OS. 

[ 77 1 G. Zlotkin and J.S. Rosenschein, Cooperation and conflict resolution via negotiation among autonomous 

agents in noncooperative domains. fEEE Tnrm. S.xvr. Mrm Cybern. 21 ( I99 I ) I3 I7- 1324. 

I78 1 G. Zlotkin and J.S. Rosenscbein. Incomplete information and deception in multi-agent negotiation, in: 

f’wceedin~s IJCAI-9I, Sydney. Australia ( 1991 1 225-23 I. 

/ 79 1 G. Zlotkin and J.S. Rosenschein. Negotiation and goal relaxation, in: Y. Demazeau and J.P. Miiller. eds., 

D~(~~l7fr~lli~~d A. i.2, Proceedings of the Srcond Ec~~o~~~l~~l W(~rk.~l7~)f~ on ~~~d~lfi~~ AuI~)Iz~~~?~~~~.~ Agent.? 

in a ~~~f~f-A~~~~ Worfd ( Nosh-Holland. Amsterdam, 1991 f 273-286. 

180 1 G. Zlotkin and J.S. Rosenschein, Compromise in negotiation: exploiting worth functions over states, 

Tech. Rept. 93-3, Leibniz Center for Computer Science, Hebrew University, Jerusalem ( 1993). 

181 I Ct. Zlotkin and J.S. Rosenschein, A domain theory for task oriented negotiation. in: Proceedings IJCAI- 

93. Chambery (1993) 416-422. 

I82 1 G. Zlotkin and J.S. Rosenschein. The extent of cooperation in state-oriented domains: negotiation among 

183 

184 

I x5 

tidy agents, Cc!ntpur. Arfif: Intell. 12 ( I993) 10% 122. 
G. Zlotkin and J.S. Rosenschein, Negotiation with incomplete information about worth: strict versus 

tolennt mechanisms, in: P r{)~~edit~‘s.~ First f~~~~r~~~rf~~~~~ff C(~~~~re~~~~ m ~~7fe~~j~e~~f ird C[~~~~er~~~jl,~~ 

f~?~)ri~~J~f~~ Si:mnts, Rotterdam ( 1993) 17% 184. 

G. Zlotkin and J.S. Rosenschein. Mechanisms for automated negotiation in state oriented domains, J. 

Art~~ fntell. Res. (to appear). 

G. Zlotkin and J.S. Rosenschein, Compromise in negotiation: exploiting worth functions over states, 

Artif. Intell. 84 ( 1996) IS I - 176. 


