
Artificial Intelligence 170 (2006) 440–461

www.elsevier.com/locate/artint

Concurrent search for distributed CSPs ✩

Roie Zivan, Amnon Meisels ∗

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel

Received 30 May 2005; received in revised form 7 December 2005; accepted 21 December 2005

Available online 17 February 2006

Abstract

A distributed concurrent search algorithm for distributed constraint satisfaction problems (DisCSPs) is presented. Concurrent
search algorithms are composed of multiple search processes (SPs) that operate concurrently and scan non-intersecting parts of
the global search space. Each SP is represented by a unique data structure, containing a current partial assignment (CPA), that is
circulated among the different agents. Search processes are generated dynamically, started by the initializing agent, and by any
number of agents during search.

In the proposed, ConcDB, algorithm, all search processes perform dynamic backtracking. As a consequence of backjumping,
a search space can be found unsolvable by a different search process. This enhances the efficiency of the ConcDB algorithm.
Concurrent Dynamic Backtracking is an asynchronous distributed algorithm and is shown to be faster than former algorithms
for solving DisCSPs. Experimental evaluation of ConcDB, on randomly generated DisCSPs demonstrates that the network load of
ConcDB is similar to the network load of synchronous backtracking and is much lower than that of asynchronous backtracking. The
advantage of Concurrent Search is more pronounced in the presence of imperfect communication, when messages are randomly
delayed.
 2006 Elsevier B.V. All rights reserved.

Keywords: Constraints satisfaction; Search; Distributed AI

1. Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each holding its local constraint
network, that are connected by constraints among variables of different agents. Agents assign values to variables,
attempting to generate a locally consistent assignment that is also consistent with all constraints between agents
(cf. [22]). To achieve this goal, agents check the value assignments to their variables for local consistency and exchange
messages with other agents, to check consistency of their proposed assignments against constraints with variables
owned by different agents [1,20].

Distributed CSPs are an elegant model for many every day combinatorial problems that are distributed by nature.
Take for example a large hospital that is composed of many wards. Each ward constructs a weekly timetable assigning
its nurses to shifts. The construction of a weekly timetable involves solving a constraint satisfaction problem for each

✩ Supported by the Lynn and William Frankel center for Computer Sciences and the Paul Ivanier Center for Robotics and Production Management.
* Corresponding author.

E-mail addresses: zivanr@cs.bgu.ac.il (R. Zivan), am@cs.bgu.ac.il (A. Meisels).
0004-3702/$ – see front matter 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2005.12.005

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 441
ward. Some of the nurses in every ward are qualified to work in the Emergency Room. Hospital regulations require
a certain number of qualified nurses (e.g. for Emergency Room) in each shift. This imposes constraints among the
timetables of different wards and generates a complex Distributed CSP [19].

A search procedure for a consistent assignment of all agents in a DisCSP, is a distributed algorithm. An intu-
itive way to make the distributed search process on DisCSPs efficient is to enable agents to compute concurrently.
Concurrent computation by agents can result in a shorter overall time of computation for finding a solution.

One method for achieving concurrency for search on DisCSPs is for agents to perform assignments concurrently.
In order to avoid the waiting time of a single backtrack search, agents compute assignments to their variables asyn-
chronously. In asynchronous backtracking algorithms agents assign their variables without waiting for information
about all relevant assignments of higher priority agents [1,16,21]. In order to make asynchronous backtracking correct
and complete, all agents share a static order of variables and the algorithm keeps data structures for Nogoods that are
discovered during search [1,20].

The present paper proposes a different way of achieving concurrency for search. In order to achieve shorter overall
run-time, concurrent search runs multiple search processes on a DisCSP. All agents participate in all search processes,
assigning their variables and checking for consistency with constraining agents. All search processes are performed
asynchronously by all agents, thereby achieving concurrency of computation and shortening the overall time of run
for finding a global solution. In each search process agents perform assignments sequentially. Agents and variables are
ordered randomly on each of the search processes, diversifying the sampling of the search space. Concurrent search
distributes among agents a dynamically changing number of search processes. The degree of concurrency during
search changes dynamically and enables automatic load balancing.

In order to exchange complete information about assignments of all agents, Concurrent Search circulates multiple
Current Partial Assignments (CPAs) among all agents. Each CPA represents one search process (SP) and each search
process scans a different part of the global search space. The search space is split dynamically at different points on
the path of the search process by agents generating additional CPAs. The splitting and re-splitting of the search space
is performed independently by agents and is thus a distributed process. Splits are first attempted by agents residing at
the top of the sub-search tree that is being split. When the agent has no opportunity to split, the splits move down to
agents that are lower in the split sub-tree.

It is well known that search algorithms on CSPs benefit from backjumping [4,6,14]. An elegant form of back-
jumping which stores explanations for the removal of values, is Dynamic Backtracking [7]. This method was later
adapted to distributed CSP algorithms by [2]. The best Concurrent Search algorithm, Concurrent Dynamic Back-
tracking (ConcDB), presented in this paper, performs dynamic backtracking (DB) as in [2] on each of its concurrent
sub-search spaces. Since search processes are dynamically generated by ConcDB, the performance of backjumping
in one search space can indicate that other search spaces are unsolvable. This feature, combined with the random
ordering of agents in each search process, enables early termination of search processes that are discovered to be
unsolvable. The combination of Concurrent Search and Dynamic Backtracking in ConcDB result in a fast algorithm,
which outperforms previous complete search algorithms both sequential assigning (synchronous) and Asynchronous
Backtracking by a large factor (see Section 5).

Concurrent Search, as proposed in the present paper and in [23,25], may seem similar to former approaches of
parallelism. Splitting the search space at the first agent and running several search processes for each of the values of
the first agents’ domain is part of interleaved search in [8]. The possibility of dynamic allocation of predefined search
slots for multiple asynchronous backtracking search processes was reported in [17]. The performance of multiple
asynchronous backtracking search shows a small improvement for two asynchronous backtracking search processes
and deteriorates for larger concurrency [8]. On the other hand, Concurrent Search as presented in the present study
improves the performance of single search process, both sequential and asynchronous backtracking, by a large factor
(see Section 5).

Distributed constraint satisfaction problems (DisCSPs) are presented in Section 2. Section 3 presents the princi-
ples and mechanism of Concurrent Search along with a detailed description of Concurrent Dynamic Backtracking.
The method for terminating SPs which are shown to be unsolvable during backjumps, is presented in Section 3.3.
A correctness and completeness proof for Concurrent Search, and in particular for ConcDB, is presented in Section 4.

Section 5 presents an extensive experimental evaluation, which demonstrates multiple advantages of ConcDB.
First, the features of concurrent search are investigated. Multiple search processes are better than one and dynamic
generation of search processes makes the algorithm perform best (Section 5.1). Next, a comparison of ConcDB to

442 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
existing algorithms for solving DisCSPs, is presented in Section 5.2. The impact of message delay on the perfor-
mance of concurrent search is evaluated in Section 5.3. ConcDB is compared to CBJ, AFC and ABT in the presence
of random message delays. Sequential assigning algorithms are affected the most by message delays. Concurrent dy-
namic backtracking is much more robust to message delay than asynchronous backtracking. The delay of messages
has a strong impact on the run of distributed search algorithms [5,27]. Finally, the heuristic which is used by agents
to determine the level of concurrency is evaluated in Section 5.4. This experiment demonstrates the size of the effect
that the level of concurrency has on the performance of the algorithm in the presence of message delay. Conclusions
on the advantages of using multiple DB search processes in DisCSP search are presented in Section 6.

2. Distributed constraint satisfaction

A distributed constraint network (or a distributed constraint satisfaction problem—DisCSP) is composed of a set
of k agents A1,A2, . . . ,Ak . Each agent Ai contains a set of constrained variables Xi1,Xi2, . . . ,Xini

. Constraints or
relations R are subsets of the Cartesian product of the domains of the constrained variables [4]. For a set of constrained
variables Xis ,Xjl

, . . . ,Xmh
, with domains of values for each variable Dis ,Djl

, . . . ,Dmh
, the constraint is defined as

R ⊆ Dis ×Djl
×· · ·×Dmh

. A binary constraint Rij between any two variables Xj and Xi is a subset of the Cartesian
product of their domains; Rij ⊆ Dj × Di . In a distributed constraint satisfaction problem DisCSP, the agents are
connected by constraints between variables that belong to different agents (cf. [19,21]). In addition, each agent has a
set of constrained variables, i.e. a local constraint network.

An assignment (or a label) is a pair 〈var, val〉, where var is a variable of some agent and val is a value from var’s
domain that is assigned to it. A partial assignment (or a compound label) is a set of assignments of values to a set of
variables. A solution to a DisCSP is a partial assignment that includes all variables of all agents, that satisfies all the
constraints. Following all former work on DisCSPs, agents check assignments of values against non-local constraints
by communicating with other agents through sending and receiving messages. An agent can send messages to any one
of the other agents.

One simple protocol for checking constraints, that appears in many distributed search algorithms, is to send a
proposed assignment 〈var, val〉, of one agent to another agent. The receiving agent checks the compatibility of the
proposed assignment with its own assignments and with the domains of its variables and returns a message that
either acknowledges or rejects the proposed assignment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [2,20].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception is finite.
3. Messages sent by agent Ai to agent Aj are received by Aj in the order they were sent.
4. Every agent can access the constraints in which it is involved and check consistency against assignments of other

agents.

3. Concurrent search

Concurrent Search is a family of algorithms which perform multiple concurrent backtrack search processes asyn-
chronously on disjoint parts of the DisCSP search-space. Each search process includes all variables and therefore
involves all agents. Each agent holds a set of data structures, one for each search process. These data structures, which
we term Search Processes (SPs), include all the relevant data for the state of the agent on each of the search processes.
Agents in concurrent search algorithms pass their assignments to other agents on a special type of message—a Current
Partial Assignment (CPA). Each CPA represents one search process, and holds the agents’ current assignments in the
corresponding search process. An agent that receives a CPA tries to assign its local variables with values that are not
conflicting with the assignments already on the CPA, using only the current domains in the SP that is related to the
received CPA. The uniqueness of the CPA for every search space ensures that assignments are not done concurrently
(and conflictingly) in a single sub-search-space [25,26].

An agent can generate a set of SPs and corresponding CPAs that split the search space of a single SP whose CPA
has passed through that agent, by splitting the domain of one of its variables. Agents can perform splits independently
and keep the resulting data structures (SPs) privately. All other agents need not be aware of the split, they process

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 443
Fig. 1. Simple Concurrent Search with two CPAs.

all CPAs in exactly the same manner (see Section 3.2). CPAs are created either by the Initializing Agent (IA) at the
beginning of the algorithm run, or dynamically by any agent that splits an active search-space during the algorithm
run. A simple heuristic of counting the number of times agents pass a given CPA (without finding a solution), is used
to determine the need for re-splitting of the search-space traversed by that CPA. This generates a mechanism of load
balancing, creating more search processes on heavily backtracked search spaces.

Fig. 1 presents an example of a DisCSP, searched concurrently by two search processes represented by two CPAs,
CPA1 and CPA2. Each of the four agents A1 to A4, holds two Search Processes (SPs). The domains of all four agents
are the same—{1..4}. The current domains of the SPs are shown in Fig. 1. The domains on the left represent the
state after 3 assignments to CPA1. The domains on the right hand side of Fig. 1 represent the state after the second
assignment to CPA2.

Agent A1 has assigned the value 1 on CPA1 and the value 3 on CPA2. The values that are left in each of its domains
are 2 in SP1 and 4 in SP2. Agent A3 has assigned the value 2 to CPA1, having failed to assign the value 1. This
leaves its current domain, for SP1, with the values [3,4]. The two CPAs are traversing non-intersecting sub-search
spaces in which CPA1 is exploring all tuples beginning with 1 or 2 for agent A1, and CPA2 all tuples beginning with
3 or 4. CPA1 is depicted on the LHS of Fig. 1 and CPA2 is on the RHS. CPA1 moves among the agents in the order
A1 → A2 → A3. CPA2 moves in the order A1 → A4 → ·· ·.

A backtrack operation is performed by an agent which fails to find a consistent assignment with the partial assign-
ment on the CPA that it is currently holding. A backtrack operation sends a CPA backwards, requesting the receiving
agent to revise its assignment on the CPA. Agents that have performed dynamic splitting, have to collect all of the
returning CPAs, of the relevant SP, before declaring that a sub-search-space does not contain a solution. In this case
all consistent values of the split domain have been sent forward on some CPA and failed, which means the agent must
perform a backtrack operation.

The search ends unsuccessfully, when all CPAs return for backtrack to the IA and the domain of the first variable of
each CPA is empty. In this case all the search processes are stopped. The search ends successfully if one CPA contains
a complete assignment, a value for every variable in the DisCSP.

There is no synchronization between the assignments performed in different SPs and the splitting of different
CPAs. Due to the random choice of the next agent and the dynamic asynchronous splitting of search spaces, the
steps of agents in different search process are interleaved in a non-predefined order. This makes Concurrent Search
algorithms asynchronous [11].

The following subsections present a detailed description of Concurrent Search.

3.1. Main objects of concurrent search

The main data structure that is used and passed between the agents is a current partial assignment (CPA). A CPA
contains an ordered list of triplets 〈Ai,Xj , val〉 where Ai is the agent that owns the variable Xj and val is a value, from
the domain of Xj , assigned to Xj . This list of triplets starts empty, with the agent that initializes the search process,

444 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 2. Initial state and the state after the CPA travels 5 steps without returning to its initializing agent.

and includes more assignments as it is passed among the agents. Each agent adds to a CPA that passes through it, a set
of assignments to its local variables that is consistent with all former assignments on the CPA. If successful, it passes
the CPA to the next agent. If not, it backtracks, by sending the CPA to the agent from which it was received.

Splitting the search space on some variable divides the values in the domain of this variable into several groups.
Each sub-domain defines a unique sub-search-space and a unique CPA traverses this search space. Dynamic splitting
is triggered by the number of assignment steps performed on a CPA, without returning back to its initiator. This is an
intuitive meaning of thrashing and can be based on a simple threshold for the number of unsuccessful assignments—
steps_limit.

Consider the constraint network that is described in Fig. 2. The three agents own one variable each, and the initial
domains of all variables contain four values {1..4}. The constraints connecting the three agents are: X1 < X2, X1 > X3,
and X2 < X3. The initial state of the network is described on the LHS of Fig. 2. In order to keep the example small,
no initial split is performed, only dynamic splitting. The value of steps_limit in this example is 4. The first 5 steps of
the algorithm run produce the state that is depicted on the RHS of Fig. 2. The circled values in the current domains of
agents X1 and X2 are the assigned values on the CPA. The current domain of X2 had only two values left, [3,4]. X3

is now holding the CPA and has no assignment that is consistent with it.
The run of the algorithm during these 5 steps is as follows:

1. X1 assigns its variable the value 1, and sends to X2 a CPA with a step counter CPA_steps = 1.
2. X2 assigns its variable the value 2, and sends the CPA with both assignments, and with CPA_steps = 2, to X3.
3. X3 cannot find any assignment consistent with the assignments on the CPA. It passes the CPA back to X2 to

reassign its variable, with CPA_steps = 3.
4. X2 reassigns its variable with the value 3, and sends the CPA again to X3 after raising the step counter to 4.
5. X3 receives the CPA with X2’s new assignment.

In the current step of the algorithm, agent X3 receives a CPA which has reached the step_limit. It has to generate a
split operation. Before trying to find an assignment for its variable, X3 sends a split message to X1 which is the CPAs
generator and changes the value of the CPA_steps counter to 0. Next, it sends the CPA to X2 in a backtrack message.
The algorithm run proceeds as follows:

• When X1 receives the split message it performs the following operations:
– Creates a new (empty domain) SP data structure.
– Deletes values 3 and 4 from its original domain and inserts them into the domain of the new split SP.
– Creates a new CPA and assigns it with 3 (a value from the new domain).
– Sends the new CPA to a randomly selected agent.

• Other agents that receive the new CPA create new SPs with a copy of the initial domain.

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 445
Fig. 3. The new non-intersecting search spaces now searched using two different CPAs.

The resulting split search-spaces are depicted in Fig. 3. Circled values represent those that are currently assigned
on the corresponding CPA1 or CPA2. After the split, two CPAs are passed among the agents. The two CPAs perform
search on two non-intersecting search-spaces. In the original SP after the split, X1 can assign only values 1 or 2 (see
LHS of Fig. 3). The search on the original SP is continued from the same state it was in before the split. Agents X2
and X3 continue the search using their current domains to assign the original CPA. Therefore, the current domain of
X2 (on SP1) does not contain values 1 and 2 which were eliminated in earlier steps. In the newly generated search
space, X1 has the values 3,4 in its domain. Agent X1 assigns 3 to its variable and the other agents that receive CPA2
check the new assignment against their full domains (RHS of Fig. 3).

Every agent that receives a CPA for the first time, creates a local data structure which we call a search process (SP).
This is true also for the initializing agent (IA), for each created CPA. The SP holds all data on current domains for the
variables of the agent, such as the remaining and removed values during the path of the CPA.

The structure of the ID of a CPA and its corresponding SP is a pair 〈A,j 〉, where A is the ID of the agent that
created the CPA and j is the number of CPAs this agent created so far. This enables all agents to create CPAs with a
unique ID. When a split is performed during search, the generated CPA has a unique ID and carries the ID of the CPA
from which it was split.

Although any agent can split its domain, the current version of the algorithm splits search spaces as high as possible
in the search tree. This generates split sub-search-spaces that are as large as possible and a larger number of agents
participate in the divided search procedure. When agents have no further opportunity to split an SP because of lack of
values in their current domain, split messages are transferred down the search tree to agents lower in the current order
of the search (see Fig. 5, procedure perform_split, lines 2, 8 and 9). Note that different concurrent search processes
are ordered differently. Therefore, the splitting of the search space occurs at different agents in different concurrent
SPs.

3.2. General concurrent search

The following terminology is used in the description of concurrent search algorithms:

• CPA_generator: Every CPA carries the ID of the agent that created it.
• origin_SP: an agent that performs a dynamic split, holds in each of the new SPs the ID of the SP it was split from

(i.e. of origin_SP). An analogous definition holds for origin_CPA. The origin_SP of an SP that was not created
in a dynamic split operation is its own ID.

• split_set: the set of SP IDs, stored in an origin_SP. Every origin_SP holds in its split_set the IDs of all the SPs
for which it is their origin (i.e. all SPs which were split from it by the agent holding it). For every active SP, the
only split_set relevant is the split_set of its origin_SP.

• steps_limit: the number of steps (from one agent to the next) that will trigger a split, if the CPA does not find a
solution, or does not return to its generator.

The messages exchanged by agents in concurrent search are the following:

446 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Concurrent_Search:
1. done ← false
2. if(IA) then initialize_SPs
3. while(not done)
4. switch msg.type
5. split: perform_split
6. stop: done ← true
7. CPA: receive_CPA
8. backtrack: receive_CPA

receive_CPA:
1. CPA ← msg.CPA
2. if(first_received(CPA.ID))
3. create_SP(CPA.ID)
4. if(CPA.generator = ID)
5. CPA.steps ← 0
6. else
7. CPA.steps ++
8. if(CPA.steps = steps_limit)
9. splitter ← select_assigned_agent
10. CPA_steps ← 0
11. send(split_msg splitter)
12. if(msg.type = backtrack)
13. remove_last_assignment
14. assign_CPA

assign_CPA:
1. CPA ← assign_local
2. if(is_consistent(CPA))
3. if(is_full(CPA))
4. report_solution
5. stop
6. else
7. send(CPA, next_agent)
8. else
9. backtrack

initialize_SPs:
1. for i ← 1 to domain_size
2. CPA ← create_CPA(i)
3. SP[i].domain ← first_var[value_i]
4. create_SP(CPA.ID)
5. assign_CPA

Fig. 4. Main and assign parts of concurrent search.

backtrack:
1. delete(CPA.ID from origin_SP.split_set)
2. if(origin_SP.split_set is_empty)
3. if(IA)
4. CPA ← no_solution
5. if(no_active_CPAs)
6. report_no_solution
7. stop
8. else
9. send(backtrack, last_assignee)
10. else
11. mark_fail(CPA)

perform_split:
1. if(not_backtracked(CPA))
2. var ← select_split_var
3. if(var �= null)
4. create_split_SP(var)
5. create_split_CPA(SP.ID)
6. add(CPA.ID to origin_SP.split_set)
7. assign_CPA
8. else
9. send(split, next_agent)

stop:
1. send(stop, all_other_agents)
2. done ← true

Fig. 5. Backtrack and split for concurrent search.

• CPA—the message carrying a Current Partial Assignment.
• backtrack_msg—a CPA sent in a backtrack operation.
• stop—a message indicating the end of the search.
• split—a message that is sent in order to trigger a split operation. Contains the ID of the SP to be split.

Figs. 4 and 5 present the functions which are performed in any type of concurrent search algorithm. The main
function of the algorithm and functions that perform assignments on the CPA when it moves forward are presented in
Fig. 4.

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 447
• The main function Concurrent_Search is run by all agents. If it is run by the initializing agent (IA), it initializes
the search by creating multiple SPs, assigning each SP with one of the first variable’s values. After initialization,
it loops forever, waiting for messages to arrive.

• receive_CPA first checks if the agent holds a SP with the ID of the current_CPA and if not, creates a new
SP. If the CPA is received by its generator, it changes the value of the steps counter (CPA_steps) to zero. This
prevents unnecessary splitting. Otherwise, it checks whether the CPA has reached the steps_limit and a split must
be initialized (lines 7–9). The splitting agent, which we term splitter, is selected to be any one of the assigned
agents (line 9). A specific heuristic for splitting is to send the split message to the CPA_generator (as mentioned
above the CPA_generator is the first part of any CPA_ID). This is equivalent to splitting the search tree as high
as possible. This specific policy is implemented in the ConcDB version of the present paper. Before assigning the
CPA a check is made whether the CPA was received in a backtrack_msg. If so, the previous assignment of the
agent which is the last assignment made on the CPA is removed, before assign_CPA is called (lines 12–13).

• assign_CPA tries to find an assignment for the local variables of the agent, which is consistent with the assign-
ments on the CPA. If it succeeds, the agent sends the CPA to the selected next_agent (line 7). If not, it calls the
backtrack method (line 9).

The rest of the functions of Concurrent Search are presented in Fig. 5.

• The backtrack method is called when a consistent assignment cannot be found in a SP. Since a split might have
been performed by the current agent, a check is made, whether all the CPAs in the split_set of the origin_CPA of
the backtracking CPA have also failed (line 2). If not then only the current CPA is marked (line 11) and no further
action need take place. When all split CPAs have returned unsuccessfully, the search space of the SP is unsolvable
and a backtrack operation is initialized.
In case of an IA, the SP and the corresponding origin_CPA are marked as a failure (lines 3–4). If all other CPAs
are marked as failures, the search is ended unsuccessfully (line 6). If the current agent is not the IA, a backtrack
message is sent to the agent whose assignment is the latest of the assignments included in the inconsistent CPA
(line 9).

• The perform_split method tries to find in the SP specified in the split_message, a variable with a non-empty
current_domain. It first checks that the CPA to be split has not been sent back already, in a backtrack message
(line 1). If it does not find a variable for splitting, it sends a split_message to next_agent (lines 8–9). If it finds a
variable to split, it creates a new SP and CPA, and calls assign_CPA to initialize the new search (lines 3–5). The
ID of the generated CPA is added to the split set of the divided SPs origin_SP (line 6).

Fig. 6 extends the example presented in Fig. 1. For each SP (except for the ones holding the corresponding CPA),
the content of the origin and the split-set are displayed. The origin of all SPs except for the SPs of agent A1 are their
own IDs since they were not created in a dynamic split operation. Their split-set includes only their own ID, since
they are not yet an origin of any SP created by a dynamic split operation. In this example the SP 〈1,2〉 held by agents
A2 and A3 will only be created when they will first receive the corresponding CPA.

The origin of SP 〈1,2〉 is the SP it was split from which is 〈1,1〉. The split set of SP 〈1,2〉 is empty since the
relevant split-set is only its origin_SP’s split-set. The split-set of SP 〈1,1〉, includes its own ID and the ID of the SP
that was split from it which is 〈1,2〉.

3.3. Concurrent dynamic backtracking

The method of backjumping that is used in the ConcDB algorithm is based on Dynamic Backtracking [7]. Each
agent that removes a value from its current domain stores the partial assignment that caused the removal of the
value. This stored partial assignment is called an eliminating explanation by [7]. When the current domain of an
agent empties, the agent constructs a backtrack message from the union of all assignments in its stored removal
explanations. The union of all removal explanations is an inconsistent partial assignment, or a Nogood [7,20]. The
backtrack message is sent to the agent which is the owner of the most recently assigned variable in the inconsistent
partial assignment.

448 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 6. Simple Concurrent Search with two CPAs.

In concurrent dynamic backtracking, a short Nogood can rule out multiple sub-search-spaces, all of which contain
no solution and are thus unsolvable. In order to terminate the corresponding search processes, an agent that receives a
backtrack message performs the following procedure:

• Detect the SP to which the received (backtrack) CPA either belongs or was split from.
• Check if the CPA corresponding to the detected SP was split down its path.
• If it was:

– Send an unsolvable message to the next_agent of the related SP, thus generating a series of messages along the
former path of the CPA.

– choose a new unique ID for the CPA received and its related SP.
– continue the search using the SP and CPA with the new ID.

• Check if there are other SPs which contain the inconsistent partial assignment received (by calling function
check_SPs), send corresponding unsolvable messages and resume the search on them with new generated
CPAs.

The change of ID makes the resumed search process independent of the process of terminating unsolvable search
spaces. If the agents would have resumed the search using the ID of the original SP or of the received CPA, a race con-
dition would arise since there is no synchronization between the process of terminating unsolvable search procedures
to that of the resumed valid search procedure. In such a case, an agent that received an unsolvable message might have
marked an active search space as unsolvable.

The unsolvable message used by the ConcDB algorithm, is a message not used in general Concurrent Search,
which indicates an unsolvable sub-search-space. An agent that receives an unsolvable message performs the following
operations for the unsolvable SP and each of the SPs split from it:

• mark the SP as unsolvable.
• send an unsolvable message which carries the ID of the SP to the agent to whom the related CPA was last sent.

Fig. 7 presents the methods ConcDB, receive_CPA and backtrack, that were changed from the general description
of Concurrent Search in Figs. 4 and 5. Fig. 7 contains also two additional methods needed for adding Dynamic
Backtracking to concurrent search.

In method receive_CPA a check is made in lines 2, 3 whether the SP related to the received CPA is marked un-
solvable. In such a case the CPA is not assigned and the related SP is terminated. If the split_limit is reached the split
message is sent to the generator of the CPA to create the split as high as possible in the search tree (lines 11–13). This

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 449
ConcDB:
1. done ← false
2. if(IA) then initialize_SPs
3. while(not done)
4. switch msg.type
5. split: perform_split
6. stop: done ← true
7. CPA: receive_CPA
8. backtrack: receive_CPA
9. unsolvable: mark_unsolvable(msg.SP)

receive_CPA:
1. CPA ← msg.CPA
2. if(unsolvable SP)
3. terminate CPA
4. else
5. if(first_received(CPA_ID))
6. create_SP(CPA_ID)
7. if(CPA_generator = ID)
8. CPA_steps ← 0
9. else
10. CPA.steps + +
11. if(CPA_steps = steps_limit)
12. splitter ← CPA_generator
13. send(split_msg, splitter)
14. if(msg.type = backtrack)
15. check_SPs(CPA.inconsistent_assignment)
16. last_sent_CPA.remove_last_assignment
17. CPA ← last_sent_CPA
18. if(sp.split_ahead)
19. send(unsolvable, sp.next_agent)
20. sp.rename_SP
21. assign_CPA

backtrack:
1. delete(current_CPA from origin_split_set)
2. if(origin_split_set is_empty)
3. if(IA)
4. CPA ← no_solution
5. if(no_active_CPAs)
6. report_no_solution
7. stop
8. else
9. backtrack_msg ←

inconsistent_assignment
10. send(backtrack_msg,

lowest_priority_assignee)
11. else
12. mark_fail(current_CPA)

mark_unsolvable(SP)
1. mark SP unsolvable
2. send(unsolvable, SP.next_agent)
3. for each split_SP in SP.origin.split_set
4. mark split_SP unsolvable
5. send(unsolvable, split_SP.next_agent)

check_SPs(inconsistent_assignment)
1. for each sp in {SPs \ current_SP}
2. if(sp.contains(inconsistent_assignment))
3. send(unsolvable, sp.next_agent)
4. last_sent_CPA.remove_last_assignment
5. CPA ← last_sent_CPA
6. sp.rename_SP
7. assign_CPA

Fig. 7. Methods for dynamic backtracking of ConcDB.

is a specific heuristic for select_assigned_agent of the general receive_CPA in Fig. 4 (line 9 there). For a backtracking
CPA (lines 14–20) a check is made whether there are other SPs which can be declared unsolvable. This can happen
when the head (or prefix) of their partial assignment (their common head i.e. CH) contains the received inconsistent
partial assignment. Procedure check_SPs for every such SP found, initiates the termination of the search process on
the unsolvable sub-search-space and resumes the search with a newly generated CPA. Next, a check is made whether
the SP was split by agents who received the CPA after this agent (line 18) (this fact can be recorded on the CPA when
its holder initiates the split). If so, the termination of the unsolvable SP is initiated by sending an unsolvable message.
A new ID is assigned to the received CPA and to its related SP (line 20).

The inconsistent partial assignment received in the backtrack message may rule out more than one active search
process. The check performed by the function check_SPs triggers the termination of these inconsistent search
processes. For each of the terminated SPs a new CPA is created and the search process is resumed after the culprit
assignment is revised.

In method backtrack, the agent inserts the culprit inconsistent partial assignment into the backtrack message (line 9)
before sending it back in line 10. This is the only difference from the standard backtrack method in Fig. 5.

As described above, method mark_unsolvable is part of the mechanism for terminating SPs on unsolvable search
spaces. The agent marks the SP related to the message received, and any SP split from it, as unsolvable and sends
unsolvable messages to the agents to whom the corresponding CPAs were sent.

450 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
4. Correctness of concurrent search

To prove correctness of a search algorithm for DisCSPs one needs to prove that it is sound, complete and that
it terminates. A central fact that can be established immediately is that agents send forward only consistent partial
assignments. This fact can be seen at lines 1, 2 and 7 of procedure assign_CPA (Fig. 4). This implies that agents
process, in procedure assign_CPA, only consistent CPAs. Since the processing of CPAs in this procedure is the only
means for extending partial assignments, the following lemma holds:

Lemma 1. Concurrent Search extends only consistent partial assignments. The partial assignments are received via
a CPA, extended and sent forward by the receiving agent.

The following theorem derives immediately from Lemma 1.

Theorem 1. Concurrent Search is sound.

The only lines of the algorithm that report a solution are lines 3, 4 of procedure assign_CPA. These lines follow
a consistent extension of the partial assignment on a received CPA. It follows that a solution is reported iff a CPA
includes a complete and consistent assignment. �

To prove completeness for Concurrent Search, one needs first to eliminate the stopping condition for the first
solution (lines 3–5 of function assign_CPA in Fig. 4). Another important point is the exact manner in which domains
of values of variables are scanned, for the next consistent assignment. Values for assignment are selected only in line 1
of the function assign_CPA. For the completeness proof one naturally assumes that the function assign_local, that is
run by every agent, scans all values of the current domain exactly once. This is equivalent to the common assumption
in all exhaustive backtracking algorithms that all values are tried until a consistent assignment is found (cf. [9]).

With the above assumptions, the completeness of Concurrent Search is established in three steps. First, for the case
of a single CPA. Then, for several CPAs generated by the IA. Finally, for dynamic generation of CPAs during search.
The following lemma establishes the completeness of the 1-CPA case.

Lemma 2. Concurrent Search sends forward in a CPA every consistent partial assignment.

To prove Lemma 2, one proceeds in analogy to the proof of completeness for centralized backtrack by Kondrak
and van Beek [9]. With no loss of generality assume that every agent holds one variable. Assume that there is some
consistent assignment (X1,X2, . . . ,Xk) of length k, that is not received by any agent. Take the highest j < k, such
that assignment (X1,X2, . . . ,Xj−1) is sent forward (by agent j − 1) on a CPA that is received by agent j . There
is at least one, sent by the initializing agent. Agent j , has a consistent assignment (X1,X2, . . . ,Xj) that extends
(X1,X2, . . . ,Xj−1), being a sub-tuple of (X1,X2, . . . ,Xk). When agent j extends the received CPA, it succeeds in a
consistent partial assignment (X1,X2, . . . ,Xj) and sends it forward. This can be seen clearly in lines 1, 2, 7 of function
assign_CPA in Fig. 4. This contradicts the above assumption on the maximality of the assignment (X1,X2, . . . ,Xj−1),
that is sent forward. �

To complete the correctness proof one needs also to show that Concurrent Search terminates. The messages of
Concurrent Search carry CPAs and move either forward or backward. The number of backward moves is finite, since
each backward move deletes a value from the domain of the receiving agent (lines 10–11 of function receive_CPA in
Fig. 4). To prove termination one needs to show that there can only be a finite number of forward moves (i.e. carrying
CPAs). Every agent keeps its current domain in the SP structure and scans its values exactly once, for every different
partial assignment received on a CPA. Every move forward carries a consistent partial assignment (by Lemma 2).
There is a finite number of different consistent partial assignments, hence a finite number of forward moves in Con-
current Search.

Theorem 2 follows immediately.

Theorem 2. The 1-CPA version of Concurrent Search is complete and terminates.

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 451
Having shown the correctness of Concurrent Search for a single CPA, one needs to show correctness for the more
general case of multiple CPAs generated at the algorithm start.

Theorem 3. A version of Concurrent Search which includes a single split into k search processes at the beginning of
the search is complete and terminates.

Consider a CPA, Ci , that corresponds to a partial domain of one variable of the initializing agent and is passed
through the network of all agents. Each agent Aj it passes through generates a data structure SPi with all domains of
its local variables (lines 2, 3 of procedure receive_CPA). The only difference between the data structures corresponding
to Ci and those that are generated for a 1-CPA version of Concurrent Search is in the structure SPi of the initializing
agent. In every other agent, the data structure SPi and the code it runs are exactly equal to those run for Concurrent
Search with one CPA. For agents different than the IA, the search procedure of Ci scans exactly the same subspace
that is scanned for the one-CPA version of Concurrent Search. Consequently, the search procedure corresponding to
Ci is correct.

The union of all domain values of the selected variable for a split (in the IA) is exactly equal to the original domain
of values of that variable. As shown above, the search sub-trees spanned by all agents that are not the IA, are equal
to those spanned for the 1-CPA algorithm. Each of those equal search subspaces is scanned completely and correctly
and all these scans terminate and are performed for every value of the variable of the IA that was selected for the split
operation. Consequently, the union of the sub-trees that corresponds to each of the CPAs is exactly equal to the search
tree that is spanned by the one-CPA version of Concurrent Search. �

The final step in the correctness proof of Concurrent Search is to show that a dynamic split operation does not
interfere with the correctness of the algorithm.

Theorem 4. Concurrent Search with dynamic splitting is complete and terminates.

Consider agent Ai which is not the initializing agent, that receives a split_msg and runs the procedure perform_split.
It sends forward one or more consistent CPAs that represent non-intersecting sub-search-spaces. The completeness and
termination of the search on each of these sub-search-spaces follows from the completeness of the search initialized
by any CPA of an initializing agent. Agent Ai will declare no solution by sending a backtrack message, only after all
of its split-SPs failed (lines 1, 2 of procedure backtrack). In other words, backtracking from multiple CPAs preserves
completeness at the splitting agent. The condition to receive failure messages for all values for which a CPA was
generated ensures that backtrack corresponds exactly to the case where there is no solution in the scanned search
space. The sum of the number of tuples explored in the split search space is equal to the number of tuples in the
original search space and therefore the algorithm termination is not affected by the split. �

For the completeness of ConcDB one needs to show also that the additional mechanism for terminating unsolvable
search processes on unsolvable sub-search-spaces does not terminate a search-process which explores a sub-search-
space that includes a solution. To do so we continue as follows. In every sub-search-space, all tuples of assignments
share the head (or prefix) of the assignment. Thus for every sub-search-space we define:

Definition 1. A Common Head (CH) is the maximal prefix of assignments which is included in all partial assignments
in a sub-search-space.

Lemma 3. A sub-search-space whose CH includes an inconsistent subset of assignments does not include a solution
to the DisCSP.

The proof of Lemma 3 derives from the method of constructing an inconsistent assignment in dynamic back-
track [7]. A partial assignment is declared inconsistent only if it causes an empty domain in one of the variables. This
implies that this partial assignment cannot be part of a solution. From Definition 1 we derive that if a CH includes an
inconsistent partial assignment it must be included in all the assignments in its related sub-search-space which means
that none of these assignments is a solution to the DisCSP. �

452 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Theorem 5. ConcDB does not terminate search-processes which lead to a solution.

ConcDB terminates a search process by sending forward unsolvable messages (line 19 in function receive_CPA,
line 5 in function mark_unsolvable, line 3 in function check_SPs). Only SPs that have a CH that is an extension of
the CH that was found inconsistent are marked unsolvable. The search on these SPs is terminated when the agent
receives the CPA corresponding to the unsolvable SP (lines 2,3 of function assign_CPA). Lemma 3 implies the proof
for Theorem 5. It is immediately clear from Theorem 5 that all partial assignments that lead to a solution will be
extended, which implies the completeness of ConcDB. �
5. Experimental evaluation

The common approach in evaluating the performance of distributed algorithms is to compare two independent
measures of performance—time, in the form of steps of computation [11,20], and communication load, in the form
of the total number of messages sent [11]. Comparing the number of non-concurrent steps of computation of several
search algorithms on DisCSPs, measures the concurrency of the algorithms.

Non-concurrent computation effort, in systems with no message delay, are counted by a method similar to that of
Lamport’s logical clocks [10,12]. Every agent holds a counter of constraint checks performed. Every message carries
the value of the sending agent’s counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the cost of the search as the largest
counter held by some agent at the end of the search, we achieve a measure of concurrent search effort that is close to
Lamport’s logical time [10]. This measure can be upgraded to count the number of non-concurrent constraint checks
performed (NCCCs), thus incorporate the local computational effort of agents in each step [12].

The measure of non-concurrent number of constraints checks (NCCCs) is implementation independent. This makes
it more representative than run-time, which can only be measured on multi-machine implementation and is dependent
on many implementational details in particular on communication among machines. The present paper evaluates the
proposed algorithm in the presence of message delays. In order to control message delays, an asynchronous simulator
must be used. Controlling the delay of messages is another reason to avoid multi-machine implementation. Again,
leading to the implementation independent choice of the NCCCs measure over run-time.

The experimental evaluation includes four sets of experiments. In the first set the effect of concurrent computation is
evaluated by comparing different versions of concurrent search, that have different levels of concurrency. In the second
set of experiments the run of ConcDB is compared to the three best performing search algorithms, synchronous conflict
backjumping (CBJ) [3,24], asynchronous forward-checking (AFC) [13] and asynchronous backtracking (ABT) [1,20].
The third set of experiments checks the behavior of Concurrent Search and the other algorithms in real world systems
with random message delays. The last set of experiments investigates the heuristic used to determine the level of
concurrency of the ConcDB algorithm. The algorithm is run using various steps_limit values with and without message
delays.

All experiments were conducted using an asynchronous simulator. To simulate asynchronous agents, the simulator
implements agents as Java Threads. Threads (agents) run asynchronously, exchanging messages. After the algorithm
is initiated, agents block on incoming message queues and become active when messages are received. Experiments
were conducted on random networks of constraints. The network of constraints, in each of the experiments, is gener-
ated randomly by selecting the probability p1 of a constraint among any pair of variables and the probability p2, for
the occurrence of a violation among two assignments of values to a constrained pair of variables [15,18]. All four sets
of experiments, were conducted on networks with 15 agents (n = 15) and 10 values for each agent’s variable (k = 10).
The only exception are the experiments in Section 5.2 which compare the run of the algorithms on problems of dif-
ferent sizes, where problem sizes reach n = 20. For each pair of density and tightness values (p1, p2) 50 different
random problems were solved by each algorithm and the results presented are the average of these 50 runs.

5.1. Evaluation of concurrency within ConcBT

To investigate the effect of concurrency, one needs to compare the performance of Concurrent Search with and
without splitting and dynamic splitting. To this end, the simplest concurrent search algorithm, ConcBT, was run in
a 1-CPA version, 5-CPA version and a version which performs dynamic re-splitting (using a step_limit of 35). The

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 453
Fig. 8. Number of non-concurrent constraint checks in different versions of ConcBT.

Fig. 9. Total number of messages sent in different versions of ConcBT.

ConcBT algorithm is used in this set instead of ConcDB to eliminate the effect of Dynamic Backtracking on the results.
The 1-CPA version is completely sequential and serves as the baseline for comparison to the concurrent versions.

In the first set of experiments the density of the constraint networks is (p1 = 0.7). The value of tightness, p2 was
varied between 0.1 and 0.9, to cover all range of problem difficulty. Results show averages over 50 runs.

Fig. 8 shows the computational effort, the number of non-concurrent constraint checks, for all three versions. It is
easy to see that concurrency improves the search efficiency and that dynamic re-splitting improves it further. For the
harder problem instances the improvement is by a factor of 6 over the 1-CPA version and a factor of 3 over the 5-CPA
version. Fig. 9 shows the results in total number of messages sent. Clearly, the concurrent versions, either the 5-CPA
version or the re-split one, circulate more CPAs in the network. However, the interesting result is that even though
ConcBT with dynamic splitting increases the number of traversing CPAs during search, the effect on the total number
of messages is negligible. The dynamic splitting ConcBT does send more messages concurrently but does so during a
shorter period of time, resulting in a low amount of total communication.

5.2. Comparing to other DisCSP algorithms

In order to evaluate the performance of concurrent dynamic backtracking (ConcDB) it is compared to representa-
tives of the two families of algorithms in the literature. For sequential assignment (synchronous) DisCSP algorithms

454 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 10. Number of non-concurrent constraint checks performed by ConcDB, ABT and CBJ on low density DisCSPs.

Conflict-based Backjumping is selected [3,24]. CBJ is an improved version of synchronous backtracking [20], in
which agents process conflict sets in order to backtrack directly to the culprit agent.

Asynchronous Forward-checking (AFC) [13] is an algorithm which performs sequential assignments like CBJ.
A special message which carries the current partial assignment (CPA) is passed among agents and serves as a token
to synchronize agent’s assignments. An agent which successfully assigned its variable and added its assignment to
the CPA, beside sending the CPA forward for the next agent to assign it, sends copies of the CPA to all unassigned
agents which perform forward checking concurrently and asynchronously. As a result, the agents detect early a need
to backtrack. Agents initiate a backtrack procedure by sending Not_OK messages to all agents which may hold the
CPA. An agent that receives a Not_OK message and then the inconsistent CPA, backtracks as in CBJ by sending the
CPA back to the culprit agent.

Asynchronous Backtracking (ABT) [1,20] is the best performing asynchronous backtracking algorithm. In ABT
agents assign their variables asynchronously, and send their assignments in ok? messages to other agents to check
against constraints. A fixed priority order among agents is used to break conflicts. Agents inform higher priority
agents of their inconsistent assignment by sending them the inconsistent partial assignment in a Nogood message. In
the present implementation of ABT, Nogoods are resolved and stored according to the method presented in [1]. Based
on Yokoo’s suggestions [20], agents read in every step, all messages received before performing computation. This
forms the best performing version of ABT.

In [20], Yokoo reports that the Asynchronous Weak Commitment algorithm (AWC) is faster than ABT. However, in
order to be complete AWC requires agents to hold exponential space (for Nogoods). This makes AWC unfeasible for
hard instances of large DisCSPs. According to Yokoo, this problem can be solved by limiting the size of the Nogood
storage, making. a non-complete algorithm.

Fig. 10 presents the number of non-concurrent constraint checks performed by ConcDB, CBJ, AFC and ABT on
problems with low constraint density (p1 = 0.4). For the harder problem instances, ConcDB outperforms AFC by a
factor of 1.5, ABT by a factor of 2.5 and CBJ by a factor of 3. Fig. 11 presents the total number of messages sent by
the algorithms in the same run. When it comes to network load the advantage of ConcDB over ABT and AFC is larger
(a factor of 4). As expected, the total network load of the synchronous algorithm, which maintains a single message
throughout the search, is the smallest. Still, the total number of messages sent by CBJ and ConcDB are very close.

Figs. 12 and 13 show similar results on DisCSPs with higher density (p1 = 0.7). The advantage of ConcDB over
ABT and CBJ in NCCCs is more pronounced on higher density DisCSPs. On the hardest instances, ConcDB performs
6 times less non-concurrent constraint checks than ABT and 4 times less than CBJ. AFC also performs better on dense
DisCSPs. On the hardest instances it performs slightly better than ConcDB. The total number of messages sent by
ConcDB and CBJ are very close. However, AFC sends 4 times more messages and ABT sends 6 times more messages
than both CBJ and ConcDB.

Figs. 14 and 15 present the number of non-concurrent constraint checks performed by the different algorithms on
problems with increasing sizes (number of agents). For every size, the result of the most hardest instances DisCSPs

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 455
Fig. 11. Total number of messages sent by ConcDB, ABT and CBJ on low density DisCSPs.

Fig. 12. Number of non-concurrent constraint checks performed by ConcDB and ABT on high density DisCSPs.

Fig. 13. Total number of messages sent by ConcDB, ABT, CBJ and AFC on high density DisCSPs.

456 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 14. Number of NCCCs performed by ConcDB, ABT CBJ and AFC on the hardest instances of DisCSPs with increasing sizes (p1 = 0.4).

Fig. 15. Number of NCCCs performed by ConcDB, ABT CBJ and AFC on the hardest instances of DisCSPs with increasing sizes (p1 = 0.7).

are presented. Clearly the performance of ABT and CBJ deteriorates faster than that of AFC and ConcDB when the
number of agents increments.

5.3. Performance in the presence of message delays

An important part of the experimental evaluation is to measure the impact of imperfect communication on the
performance of distributed search on DisCSPs. Message delay has the potential of changing the behavior of distributed
search algorithms [5]. For the simplest possible algorithm, synchronous backtracking (SBT) [20], the effect of message
delay is very clear. The number of computation steps is not affected by message delay and the delay in every step
of computation is the delay on the message that triggered it. Therefore, the total time of the algorithm run can be
calculated as the total computation time, plus the total delay time of messages. This is true also for versions of
synchronous backtracking that perform backjumping [3,24].

In the presence of concurrent computation, the time of message delays must be added to the total algorithm time
only if no computation was performed concurrently. To achieve this goal a simulator is used, which counts message
delays in terms of computation steps and adds them to the accumulated run-time when no computation is performed
concurrently [27].

The asynchronous simulation of message delays is essential for controlling the experimental evaluations. The eval-
uated algorithms must be run in a controllable environment that can correctly measure non-concurrent computational
effort. In that respect the evaluation of different DisCSP algorithms under message delay performed in NCCCs are

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 457
truly implementation independent and concurrent. This is in strong contrast to run-time measures on multimachines,
that depend strongly on the system.

In order to simulate message delays, all messages are delivered by a dedicated Mailer thread. The mailer holds a
counter of non-concurrent constraint checks performed by agents in the system. This counter represents the logical
time of the system [10] and is called the Logical Time Counter (LTC). Every message delivered by the mailer to
an agent, carries the LTC value of its delivery to the receiving agent. An agent that receives a message updates its
counter to the maximum value between the received LTC and its own value. Next, it performs the computation step,
and sends its outgoing messages with the value of its counter, incremented by the number of CCs performed during
the step.

The mailer simulates message delays in terms of non-concurrent constraint checks. When the mailer receives a
message, it first checks if the LTC value that is carried by the message is larger than its own value. If so, it increments
the value of the LTC. Then a delay for the message (in number of NCCCs) is selected. Each message is assigned a
delivery_time which is the sum of the current value of the LTC and the selected delay (in CCs), and placed in the
outgoing_queue. The Mailer delivers messages, with delivery_time less or equal to the mailer’s current LTC value, to
their destination agents.

When there are no incoming messages, and all agents are idle, if the outgoing_queue is not empty (otherwise the
system is idle and a solution has been found) the mailer increases the value of the LTC to the value of the delivery_time
of the first message in the outgoing queue and delivers the first message.

The non-concurrent run time reported by the algorithm, is the largest LTC value that is held by some agent at the end
of the algorithm run. By incrementing the LTC only when messages carry LTCs with values larger than the mailer’s
LTC value, constraint checks that were performed concurrently are not counted twice. The actual computational cost
during any step is in principle different for different DisCSP algorithms. Measuring non-concurrent constraint checks
also enables to evaluate algorithms in which agents perform computation which is not triggered or followed by a
message.

Figs. 16 and 17 present the results of the third set of experiments in which the four algorithms were run on sys-
tems with random message delays. Each message was delayed between 10 to 50 non-concurrent constraint checks
and the results are presented for low and high density constraint networks. As expected, CBJ is affected most when
messages are delayed. In a sequential assignments (synchronous) algorithm there is no concurrent computation by
agents. Therefore, each message delay is added to the final run-time result. Message delays have also a strong effect
on AFC since, although it performs concurrent computation, its assignments are performed sequentially. The perfor-
mance of asynchronous backtracking also deteriorates in the presence of random message delays, while the effect
on concurrent search is minor. The advantage of concurrent search over both synchronous and asynchronous back-
tracking in the presence of message delay is connected to the properties of these algorithms. Previous studies report
that ABT performs best when it reads multiple messages before performing computation [1,24]. When messages are

Fig. 16. Number of NCCCs performed by ConcDB, ABT, CBJ and AFC on low density DisCSPs with random message delay(p1 = 0.4).

458 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 17. Number of NCCCs performed by ConcDB, ABT, CBJ and AFC on low density DisCSPs with random message delay(p1 = 0.7).

Fig. 18. Number of non-concurrent constraint checks performed by ABT, AFC and ConcDB on systems with increasing message delays.

randomly delayed, agents in ABT are more likely to perform computation triggered by a single message. This explains
the deterioration in performance of ABT in the presence of random message delays.

To understand the robustness of Concurrent Search to message delay imagine the following example. Consider
the case where ConcDB splits the search space multiple times and the number of CPAs is larger than the number of
agents. In systems with no message delays this would mean that some of the CPAs are waiting in incoming queues, to
be processed by the agents. This delays the search on the sub-search-spaces they represent. In systems with message
delays, this potential waiting is caused by the system. By choosing the right steps_limit, agents can be kept busy at all
times, performing computation against consistent partial assignments.

To further investigate the different behavior of the four algorithms in the presence of imperfect communication, it
is interesting to examine the algorithms reaction to message delays of different sizes.

The effect on synchronous CBJ is linear (as expected) and its slope is as steep as the size of the delay. This makes
it impossible to display synchronous search together with ABT, AFC and ConcDB. Fig. 18 presents the impact, in
number of non-concurrent constraint checks, of different sizes of random message delays, on Asynchronous Back-
tracking, Asynchronous Forward-checking and on Concurrent Dynamic Backtracking. As expected, AFC is affected
most when the average size of delays increases. The difference in robustness between ABT and ConcDB is striking.
While ABT performs a linearly growing number of NCCCs, ConcDB remains relatively constant. Over a range of
average random delay of 200 CCs, ABT’s performance deteriorates by a factor of 4.5, while for ConcDB the increase
is very slow and the overall factor is about 1.5.

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 459
5.4. The impact of the steps_limit

The level of concurrency of the ConcDB algorithm is determined by the heuristic upon which the agents decide
when to send a split message. Using the heuristic suggested in Section 3, the concurrency of the algorithm can be
controlled by selecting a good value to the steps_limit. Figs. 19 and 20 present the number of non-concurrent constraint
checks performed by ConcDB using various steps_ limits. The algorithm was tested with and without message delay.
It is clear from the above figures that the choice of a large steps_limit deteriorates the performance of ConcDB when
run on systems with message delays. The effect on ConcDB running with optimal communication is quite small. These
results are not surprising considering the results for CBJ and ConcDB presented in Section 5.2. When the value of the
steps_limit increases, the level of concurrency decreases and the behavior of the algorithm is closer to the behavior
of a single sequential search procedure—CBJ. As for CBJ, it performs well when there are no message delays but
performs poorly in the presence of message delay. Figs. 21 and 22 present the performance of the algorithm for smaller
steps_limits. The stronger effect of the growing steps_limit in the presence of message delay is clear in these figures.
An interesting observation is that with no message delays, the highest level of concurrency does not produce the best
performance.

Fig. 19. Number of non-concurrent constraint checks performed by ConcDB for increasing steps_limits (p1 = 0.4).

Fig. 20. Number of non-concurrent constraint checks performed by ConcDB for increasing steps_limits (p1 = 0.7).

460 R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461
Fig. 21. Number of non-concurrent constraint checks performed by ConcDB for a smaller range of steps_limits (p1 = 0.4).

Fig. 22. Number of non-concurrent constraint checks performed by ConcDB for a smaller range of steps_limits (p1 = 0.7).

6. Conclusions

Search algorithms on DisCSPs can be categorized into two families. Single search process algorithms (SPAs) and
multiple (concurrent) search process algorithms (MPAs). MPAs are also called concurrent search algorithms (CSAs).
The state of single process algorithms is defined by a single tuple of assignments, one for each agent. When this set
of assignments is complete (containing assignments to all variables of all agents) and consistent, the SPA stops and
reports a solution. Single search process algorithms can be asynchronous, like ABT [1,20] or synchronous (SBT [20],
CBJ [3,24]). In concurrent search, multiple concurrent processes search non-intersecting parts of the global search
space of a DisCSP [8,17,23]. All agents in a MPA participate in every search process, since each agent holds some
variables of the search space. As a result, concurrent search is an asynchronous distributed process.

The Concurrent Dynamic Backtracking search algorithm (ConcDB) provides an efficient method for several search
processes to search concurrently for a solution to a DisCSP. The independent random ordering of search on multiple
search processes generates an efficient randomization that improves the overall performance. Through a mechanism
of dynamic splitting, the number of search processes can be enhanced in some sub-search spaces, thus achieving load
balancing in a natural way. The addition of Dynamic Backtracking to concurrent search, enables early termination
of search processes on sub-spaces which do not lead to a solution. An inconsistent subset can be found in one sub-
space that rules out other sub-spaces as unsolvable. Dynamic backtracking was found to account for ∼10% of search
processes termination in the experiments of Section 5.2.

R. Zivan, A. Meisels / Artificial Intelligence 170 (2006) 440–461 461
The experimental behavior of ConcDB on random DisCSPs clearly indicates its efficiency, compared to algorithms
of a single search process like CBJ, AFC and ABT. This advantage is more pronounced on realistic systems with
random message delays where the performance of single process algorithms deteriorates while ConcDB is robust.

References

[1] C. Bessiere, A. Maestre, I. Brito, P. Meseguer, Asynchronous backtracking without adding links: a new member in the abt family, Artificial
Intelligence 161 (1–2) (2005) 7–24.

[2] C. Bessiere, A. Maestre, P. Messeguer, Distributed dynamic backtracking, in: Proc. Workshop on Distributed Constraint of IJCAI 01, 2001.
[3] I. Brito, P. Meseguer, Synchronous, asynchronous and hybrid algorithms for discsp, in: Workshop on Distributed Constraints Reasoning

(DCR-04) CP-2004, Toronto, September 2004.
[4] R. Dechter, Constraints Processing, Morgan Kaufman, San Mateo, CA, 2003.
[5] C. Fernandez, R. Bejar, B. Krishnamachari, K. Gomes, Communication and computation in distributed csp algorithms, in: Proc. CP2002,

Ithaca, NY, July 2002, pp. 664–679.
[6] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, T. Walsh, An empirical study of dynamic variable ordering heuristics for the constraint

satisfaction problem, in: Principles and Practice of Constraint Programming, 1996, pp. 179–193.
[7] M.L. Ginsberg, Dynamic backtracking, J. Artificial Intelligence Res. 1 (1993) 25–46.
[8] Y. Hamadi, Interleaved backtracking in distributed constraint networks, Internat. J. AI Tools 11 (2002) 167–188.
[9] G. Kondrak, P. van Beek, A theoretical evaluation of selected backtracking algorithms, Artificial Intelligence 21 (1997) 365–387.

[10] L. Lamport, Time, clocks, and the ordering of events in distributed system, Comm. ACM 2 (1978) 95–114.
[11] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Series, Morgan Kaufmann, San Mateo, CA, 1997.
[12] A. Meisels, I. Razgon, E. Kaplansky, R. Zivan, Comparing performance of distributed constraints processing algorithms, in: Proc. AAMAS-

2002 Workshop on Distributed Constraint Reasoning DCR, Bologna, July 2002, pp. 86–93.
[13] A. Meisels, R. Zivan, Asynchronous forward-checking for distributed csps, in: W. Zhang (Ed.), Frontiers in Artificial Intelligence and Appli-

cations, IOS Press, Amsterdam, 2003.
[14] P. Prosser, Hybrid algorithms for the constraint satisfaction problem, Comput. Intelligence 9 (1993) 268–299.
[15] P. Prosser, An empirical study of phase transitions in binary constraint satisfaction problems, Artificial Intelligence 81 (1996) 81–109.
[16] M.C. Silaghi, Asynchronously solving problems with privacy requirements, PhD thesis, Swiss Federal Institute of Technology (EPFL), 2002.
[17] M.C. Silaghi, B. Faltings, Parallel proposals in asynchronous search, Technical Report 01/#371, EPFL, August 2001, http://liawww.epfl.ch/

cgi-bin/Pubs/recherche.
[18] B.M. Smith, Locating the phase transition in binary constraint satisfaction problems, Artificial Intelligence 81 (1996) 155–181.
[19] G. Solotorevsky, E. Gudes, A. Meisels, Modeling and solving distributed constraint satisfaction problems (dcsps), in: Constraint Processing-

96, Cambridge, MA, October 1996, pp. 561–562 (short paper).
[20] M. Yokoo, Algorithms for distributed constraint satisfaction problems: A review, Autonomous Agents Multi-Agent Syst. 3 (2000) 198–212.
[21] M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction problem: Formalization and algorithms, IEEE Trans. Data

Knowledge Engrg. 10 (1998) 673–685.
[22] M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed problem solving, in: IEEE

Intern. Conf. Distrb. Comp. Sys., 1992, pp. 614–621.
[23] R. Zivan, A. Meisels, Parallel backtrack search on discsps, in: Proc. AAMAS-2002 Workshop on Distributed Constraint Reasoning DCR,

Bologna, July 2002.
[24] R. Zivan, A. Meisels, Synchronous vs asynchronous search on discsps, in: Proc. 1st European Workshop on Multi Agent System, EUMAS,

Oxford, December 2003.
[25] R. Zivan, A. Meisels, Concurrent backtrack search for discsps, in: Proc. FLAIRS-04, Miami, FL, May 2004, pp. 776–781.
[26] R. Zivan, A. Meisels, Concurrent dynamic backtracking for distributed csps, in: CP-2004, Toronto, 2004, pp. 782–787.
[27] R. Zivan, A. Meisels, Message delay and discsp search algorithms, in: Proc. 5th Workshop on Distributed Constraints Reasoning, DCR-04,

Toronto, 2004.

