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Abstract. A distributed concurrent search algorithm for distributed constraint
satisfaction problemd)isCSR) is presented. Concurrent search algorithms are
composed of multiple search processeBs) that operate concurrently and scan
non-intersecting parts of the global search space. Search processes are generated
dynamically started by the initializing agent, and by any number of agents during
search.

In the proposed(ConcD B, algorithm, all search processes perform dynamic
backtracking. As a consequence of dynamic backtracking, a search space scanned
by one search process can be found unsolvable by a different search process.
This enhances the efficiency of th&ncD B algorithm. Concurrent search is an
asynchronous distributed algorithm and is shown to be faster than asynchronous
backtracking (ABT). The network load 6foncD B is also much lower than that

of ABT.

1 Introduction

Distributed constraint satisfaction problen3ifCSR) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[Yokoo02000,Solotorevsky et. al.1996]). To achieve this goal, agents check the value as-
signments to their variables for local consistency and exchange messages with other
agents, to check consistency of their proposed assignments against constraints with
variables owned by different agents [Meseguer and Jimenez2000,Bessiere et. al.2001].
Distributed CSPs are an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example a large hospital that is composed of
many wards. Each ward constructs a weekly timetable assigning its nurses to shifts. The
construction of a weekly timetable involves solving a constraint satisfaction problem for
each ward. Some of the nurses in every ward are qualified to work iEntergency
Room Hospital regulations require a certain number of qualified nurses (e.g. for Emer-
gency Room) in each shift. This imposes constraints among the timetables of different
wards and generates a complex Distributed CSP [Solotorevsky et. al.1996].

* Partially supported by the Lynn and William Frankel Center for Computer Science



A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves assignments of all agents to all their variables
and exchange of information among all agents, to check the consistency of assignments
with constraints among agents. An intuitive way to make the distributed search process
on DisCSPs efficient is to enable agents to compute concurrently. Concurrent computa-
tion by agents can result in a shorter overall time of computation for finding a solution.

One method for achieving concurrency in search on Distributed CSPs is to en-
able agents to cooperate in a single backtrack procedure. In order to avoid the wait-
ing time of a single backtrack search, agents compute assignments to their variables
asynchronously. In asynchronous backtracking algorithms, agents assign their vari-
ables without waiting to receive information about all relevant assignments of other
agents [Yokoo et. al.1998,Silaghi2002]. In order to make asynchronous backtracking
correct and complete, all agents share a static order of variables and the algorithm keeps
data structures for nogoods that are discovered during search (cf. [Bessiere et. al.2001]).
The present paper proposes a different way of achieving concurrency for search. In or-
der to achieve shorter overall runtime, concurrent search runs multiple search processes
on aDisCSP All agents participate in all search processes, assigning their variables and
checking for consistency with constraining agents. All search processes are performed
asynchronously by all agents, thereby achieving concurrency of computation and short-
ening the overall time of run for finding a global solution [Zivan and Meisels2002].
Agents and variables are ordered randomly on each of the search processes, diversify-
ing the sampling of the search space. Agents generate and terminate search processes
dynamically during the run of the algorithm, thus creating a distributed asynchronous
algorithm [Zivan and Meisels2004]. The degree of concurrency during search changes
dynamically and enables automatic load balancing (see section 2.1).

The present paper proposes Concurrent Dynamic BacktrackingD B that per-
forms dynamic backtracking on each of its concurrent sub-search spaces [Ginsberg1993].
Since search processes are dynamically generatedoby D B, the performance of
backjumping in one search space can indicate that other search spaces are unsolvable.
This feature, combined with the random ordering of agents in each search process, en-
ables early termination of search processes discoverda®yo be unsolvable.

The principles and mechanism @bncurrent Searclhlong with a detailed descrip-
tion of theConcD B algorithm are described in section 2. A correctness and complete-
ness proof foC'oncD B, is outlined in section 3. Section 4 presents an extensive experi-
mental evaluation, which demonstrates multiple advantag€soé D B. A comparison
of ConcD B to asynchronous backtracking (ABT) [Yokoo2000,Bessiere et. al.2001] is
presented in section 4.1. For all measures of concurrent performance, from number of
steps through number of concurrent constraints checks, to number of messages sent,
ConcDBoutperformsABT and its advantage is more pronounced for harder problem
instances. For all three measures of performance, the difference befivee B and
ABT grows with message delaln other words, concurrent dynamic backtracking is
more robust to message delay than asynchronous backtracking [Fernandez et. al.2002].



2 Concurrent Search

Concurrent Searcls a family of algorithms which perform multiple concurrent back-
track search processes asynchronously on disjoint parts ddigd@SPsearch-space.
Each search space includes all variables and therefore involves all agents. Each agent
holds a set of data structures, one for each search process. These data structures, which
we termSearch Processes (SR)nclude all the relevant data for the state of the agent
on each of the search processes. Agents in concurrent search algorithms pass their as-
signments to other agents orC#A (Current Partial Assignment) data structure. Each
CPArepresents one search process, and holds the agents’ current assignments in the
corresponding search process. An agent that receiv@BAeatries to assign its local
variables with values that are not conflicting with the assignments already @Pye
using only the current domains in tthat is related to the receiveZPA

An agent can generate a set@P As that split the search space of a singl& A
that passed through that agent, by splitting the domain of one of its variables. Agents
can perform splits independently and keep the resulting data strucB&resptivately.
All other agents need not be aware of the split, they process/@llls in exactly the
same manner (see section 2.CPAs are created either by the Initializing AgemA)
at the beginning of the algorithm run, or dynamically by any agent that splits an active
search-space during the algorithm run. A simple heuristic of counting the number of
times agents pass ti@PAin a sub-search-space (without finding a solution), is used to
determine the need for re-splitting of search-spaces. This generates a nice mechanism of
load balancing, creating more search processes on heavily backtracked search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment with the partial assignment on@RAthat it is currently holding. A back-
track operation sends @P A backwards, requesting the receiving agent to revise its
assignment on th€' P A. Agents that have performed dynamic splitting, have to collect
all of the returning”C P As, of the relevanf P, before declaring that a sub-search-space
does not contain a solution by performing a backtrack operation.

The search ends unsuccessfully, wherC##s return for backtrack to the IA and
the domain of their first variable is empty. The search ends successfuheilCPA
contains a complete assignmgeatvalue for every variable in the DisCSP.

There is no synchronization between the assignments performed in diffeRant
and the splitting of differen€ P As. The next agent @ P A is sent to is selected ran-
domly. Dynamic splitting of search spaces is performed asynchronously. Consequently,
the steps of agents in different search process are interleaved in a non predefined order.
This makes Concurrent Search algorithms asynchronous [Lynch1997].

The main data structure that is used and passed between the agermisrisna
partial assignment (CPA)A CPA contains an ordered list of triplets A;, X, val >
whereA; is the agent that owns the variabtg andval is a value, from the domain of
X, assigned toX;. This list of triplets starts empty, with the agent that initializes the
search process, and includes more assignments as it is passed among the agents. Each
agent adds to &PAthat passes through it, a set of assignments to its local variables
that is consistent with all former assignments on @A If successful, it passes the
CPAto the next agent. If not, hacktracksby sending th€PAto the agent from which
it was received. Splitting the search space on some variable divides the values in the



domain of this variable into several groups. Each sub-domain defines a unique sub-
search-space and a unigG@A traverses this search space (for a detailed example of
dynamic splitting see section 2.2).

Every agent that receivesGPAfor the first time, creates a local data structure which
we call asearch process (SPThis is true also for the initializing agenity), for each
createdCPA The SPholds all data on current domains for the variables of the agent,
such as the remaining and removed values during the path @RAe

The structure of théD of aCPAand its correspondingPis a pair< A, j >, where
A is the ID of the agent that created the CPA and the number of CPAs this agent
created so far. Thib of C'PAs enables all agents to cre@@As independently, with
a uniquelD. This is the basis for dynamic splitting of the search space. When a split is
performed during search, &ll P As generated by the agent that performs the split have
a uniquel D and carry thd D of the C P A from which they were split.

2.1 Description of Concurrent Search

The main functions of concurrent search are presented in Figure 1.

— The main functionConcurrent Search, initializes the search if it is run by the
initializing agent (1A) It initializes the search by creating multipPs assigning
each SP with one of the first variable’s values. After initialization, it loops forever,
waiting for messages to arrive.

— receiveCPA first checks if the agent holds@P with the ID of the current CPA
and if not, creates a ne®P. If the CPA is received by its generator, it changes
the value of the steps countet’ P A_steps) to zero. This prevents unnecessary
splitting. Otherwise, it checks whether t#°A has reached theteps_limit and
a split must be initialized (lines 7-9). Before assigning hBA a check is made
whether the”' P A was received in &acktrack_msg, if so the previous assignment
of the agent which is the last assignment made on(fi¥4 is removed, before
assign_.C PAis called (lines 10-11). If not, th€ P A is saved as the original P A
for use in future backtracks.

— assignCPA tries to find an assignment for the local variables of the agent, which
is consistent with the assignments on &€ A. If it succeeds, the agent sends the
CPAto the selecte@iext_agent (line 7). If not, it calls thebacktrackmethod (line
9).

— The backtrack method is called when a consistent assignment cannot be found
in a SP. Since a split might have been performed by the current agent, a check is
made, whether all th€PAs in thesplit_set of theorigin_C P A of the backtracking
C P A have also failed (line 2). When all spl(itP As have returned unsuccessfully,
the search space of tt$8° is unsolvable and a backtrack operation is initialized.

In case of anlA, the SPand the correspondingrigin.CPAare marked as a failure
(lines 3-4). If all othetCPAs are marked as failures, the search is ended unsuccess-
fully (line 6). Then a backtrack message is sent to the agent which its assignment
is the latest of the assignments included in the inconsigiént (line 9).

— Theperform _split method tries to find in th&Pspecified in thesplit_message, a
variable with a non-empty curremdipmain. It first checks that thé P A to be split



Concurrent Search

1. done< false

2. if(1A) theninitialize_SPs
3. while(not done)

4 switch msg.type

5 split: performsplit

6. stop: done« true

7 CPA: receiveCPA

8 backtrack: receive CPA

initialize _SPs

1. for i « 1todomain_size
2. createSP(i)

3 domainSPJi] « first.val[i]
4. CPA — createCPA(i)

5 assign_ CPA

receive CPA:

1. CPA— msg.CPA
2. if(first.received(CPAID))
3.  createSP(CPAID)

4, if(CPA_generator = ID)

5 CPAsteps— 0

6. else

7 CPA_steps ++

8 if (C P A_steps = steps_limit)

9. sendgplit-msg, C PA_generator)
10.if(msg.type Dacktrack_-msg)

11. removelastassignment
12.assign.CPA

stop:
1. send(stopgll_other_agents)
2. done— true

assignCPA:
CPA«+ assignlocal
if (is_consistent(CPA))
if (is_full(CPA))
report_solution
stop
else
send(CPA, nexagent)
else
backtrack

CoNooO~LODNE

backtrack:
1. delete(curren€PA fromorigin_split_set)
2. if(origin_split_set is_.empty)

3. if (1A)

4, CPA«+ no_solution

5. if (no_active CPAS)

6. reportno_solution

7. stop

8. else

9. sendbackirack_msg, last_assignee)
10. else

11.  mark_fail(current_.CPA)

perform _split:

1. if(not_backtracked(C' P A))

var«— select_split_var

if (var is.not null)
createsplit SP(var)
createsplit CPA(SRID)
add(CPAID to origin_split_set)
assign_ CPA

else
send§plit_msg, next_agent)

CoNoOR~WOD

Fig. 1. Concurrent Search

has not been sent back already, in a backtrack message (line 1). If it does not find a
variable for splitting, it sends a splihessage taext_agent (lines 8-9). If it finds

a variable to split, it creates a né®PandC P A, and callsassignCPAto initialize

the new search (lines 3-5). TiB of the generated’P A is added to the split set

of the dividedS Psorigin_SP (line 6).

Figure 2 presents an example of a DisCSP, searched concurrently by two processes
represented by two CPAE;PA; andC P As. Each of the four agentd; to A4, holds
two SPs. The current domains of the SPs are shown in Figure 2. The domains on
the left represent the state after 3 assignmentS 4. The domains on the right of
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Fig. 2. Concurrent Searclvith two CPAs

figure 2 represent the state after the first assignme6tiol,. CP A is depicted on

the LHS of figure 2 and’ P A, is on the top RHS. Each CPA has its ID on its right.
Agent A, has assigned the value 1 6P A; and the value 3 06’PA,. The values

that are left in each of its domains are 29#®; and 4 inSP,. Agent A3 has assigned

the value 2 ta” P A, having failed to assign the value 1. This leaves its current domain,

for S P;, with the values [3,4]. The two CPAs are traversing non intersecting sub search

spaces in whicli’ P A; is exploring all tuples beginning with 1 or 2 for agefit, and

C P A, all tuples beginning with 3 or 4.

2.2 Example of dynamic splitting

Consider the constraint network that is described in figure 3. All three agents own one
variable each, and the initial domains of all variables contain four values}. The
constraints connecting the three agents &fe: < Xo, X; > X3, and X, < Xs.

The initial state of the network is described on the LHS of Figure 3. In order to keep
the example small, no initial split is performed, only dynamic splitting. The value of
steps_limit in this example is 4. The first 5 steps of the algorithm run produce the state
that is depicted on the RHS of Figure 3. The run of the algorithm during these 5 steps
is described in detail below:

1. X, assigns 1, and sendsa” A with CPA_steps =1to X5 .

2. X, assigns 2, and sends thea? A with C P A_steps = 2, t0 X3.

3. X3 cannot find any assignment consistent with the assignments ofi Ehe It
passes thé€’ P A back toX5 to reassign its variable, with' P A_steps = 3.

X5 assigns 3 and sends the” A again toXs, raising the step counter to 4.

5. X3 receives th&’ P A with X,'s new assignment.

e



[1!2’3!4]

X1<=X2

X1>X3 [1,2,3,4]

[1,2,3.4] [1,2,3,4]

At the beginning After 5 steps

Fig. 3. Initial state and the state after the CPA travels 5 steps without returning to its generating
agent

X1<X2 X1=X2

X1>X3 41 X1> X3 [1,2,3,4]

X2<X3 X2<X3

Oniginal SP after splitting New SP created

Fig. 4. The new non intersecting search spaces now searched using two di€&vst

In the current step of the algorithm, ageXi$ receives aC' P A which has reached
the step_limit. According to lines 8-9 of functiomeceive_C' P A it has to generate a
split operation. Before trying to find an assignment for its varialllg,sends a split
message t&; which is theC' P As generator and changes the value ofdheA_steps
counter to 0. Next, it sends thiieP A to X in a backtrack message. The algorithm run
proceeds as follows:

— WhenX; receives the split message it performs the following operations:
e Creates a new (empty domaifiP? data structure.
e Deletes value8 and4 from its original domain and inserts them into the new
domain.



ConcDB:

9. unsolvable: markunsolvable

receive CPA:

1. CPA~— msg.CPA
2. if(unsolvable SP)
3. terminate CPA
4, else

13. if(msg.type acktrack_-msg)
14. checkSPs

(CPA.inconsistenassignment)

15. CPA — {last_sent_ CPA}\
last_assignment

backtrack:

9. backtrack_-msg «—
inconsistent_assignment
10. sendfacktrack_msg,

lowest_priority_assignee)
11. else
12.  mark_fail(current_ CPA)

mark _unsolvable
mark msg.SP unsolvable
send(unsolvable, nexigent)
for each split. SP
mark splitSP unsolvable
send(unsolvable, nexigent)

gpwNE

check SPginconsisteniassignment)
1. for eachofthe{SPs\ current_.SP}

16. if(SPsplitahead) 2. if (SP.contains(inconsisteassignment))
17. send(unsolvable, SP.neagient) 3. send(unsolvable, SP.nexgient)
18. renameSP 4. CPA — {last_sent_ CPA}\
19. assign . CPA last_assignment
5. renameSP
6. assign CPA

Fig. 5. Methods for Dynamic Backtracking

e Creates a new' P A and assigns it witl3 (a value from the new domain).
e Sends the new' P A to a randomly chosen agent.
— Other agents that receive the néWP A create news Ps with a copy of the initial
domain.

After the split, twoC' P As are passed among the agents. The®wAs perform search

on two non intersecting search-spaces. In the origitfakfter the splif X; can assign

only valuesl or 2 (see LHS of Figure 4). The search on the original SP is continued
from the same state it was in before the split. Agekitsand X3 continue the search
using their current domains to assign the origi6d A. Therefore the domain oX»

does not contain values 1 and 2 which were eliminated in earlier steps and assigns the
value 3 onC'PA;. In the newly generated search spake,has the values, 4 in its
domain. AgentX; assigns3 to its variable and the other agents that rece&i@ A,

check the new assignment against their full domains (RHS of figure 4).

2.3 Concurrent Dynamic Backtracking

The method of backjumping that is used in the propaSedcD B algorithm is based
on Dynamic Backtracking [Ginsbergl1993,Bessiere et. al.2001]. Each agent that re-
moves a value from its current domain stores the partial assignment that caused the



removal of the value. This stored partial assignment is calleéliamnating expla-
nation by [Ginsberg1993]. When the current domain of an agent empties, the agent
constructs a backtrack message from the union of all assignments in its stored removal
explanations. The union of all removal explanations is an inconsistent partial assign-
ment, or aNogood[Ginsberg1993,Bessiere et. al.2001]. The backtrack message is sent
to the agent which is the owner of the most recently assigned variable in the inconsistent
partial assignment.

In concurrent dynamic backtracking, a short nogood can belong to multiple search
spaces, all of which contain no solution and are thus unsolvable. In order to terminate
the corresponding search processes, an agent that receives a backtrack message per-
forms the following procedure:

— detect theS P to which the received' P A either belongs or was split from.
— check if theS P was split.
— if it was:
e send anunsolvable message to theextagentof the related” P A.
e choose a new unique ID for téP A received and its relateiP.
e continue the search using t&” andC P A with the new ID.
— check if there are othe$ Ps which contain the inconsistent partial assignment re-
ceived, send corresponding:solvable messages and resume the search on them
with new generated’' P As.

The change of ID makes the process independent of whether the backtrack message
included theoriginal CPAor one of its split offsprings.

Theunsolvablemessage used by tligoncD B algorithm, is a message not used in
generalConcurrent Searchwhich indicates an unsolvable sub-search-space. An agent
that receives annsolvable message performs the following operations for the unsolv-
able S P and each of th& Ps split from it:

— mark theS P as unsolvable.
— send amunsolvable message which carries the ID of thé to the agent to whom
the related”’ P A was last sent.

Agents that receive & P A first check if the related P was not markedinsolvable.
If so they terminate thé€’P A and its related P.

Figure 5 presents the metho@encD B, receive_C P A andbacktrack, that were
changed from the general description@dncurrent Searcim Figure 1, and two addi-
tional methods needed for addiBynamic Backtrackingo concurrent search.

In methodreceive_C P A a check is made in lines 3,4 if theP related to the re-
ceivedCPA is marked unsolvable. In such a case h2 A is not assigned and the
related SP is terminated. For a backtrackingPA (lines 13-18) a check is made
whether the SP was split by agents who received the CPA after this agent (line 16).
If so, the termination of the unsolvable SP is initiated by sendingralvable mes-
sage. A new ID is assigned to the received CPA and its reldfedline 18). Before
calling assign_.C'PA, a check is made whether there are other SPs which can be de-
clared unsolvable. This can happen when the head of their partial assignment (their



common header i.e. Qrtontains the received inconsistent partial assignment. Proce-
durecheck_SPs for every suchS P found, initiates the termination of the search pro-
cess on the unsolvable sub-search-space and resumes the search with a new generated
CPA.

Methodmark_unsolvable is part of the mechanism for terminating SPs on unsolv-
able search spaces. The agent marks the SP related to the message received as unsolv-
able, and sends unsolvable messages to the agents to whom the CPA of this SP, and any
otherC P A split from it, were sent. In methokhcktrack, the agent inserts the culprit
inconsistent partial assignment into the backtrack message (line 9) before sending it
back in line 10.

3 Correctness of Concurrent Search

A central fact that can be established immediately is that agents send forward only
consistent partial assignments. This fact can be seen at lines 1, 2 and 7 of procedure
assignCPA(Figure 1). This implies that agents process, in procedecesveCPAand
assignCPA only consistenC' P As. Since the processing 6fP As in these procedures

are the only means for extending partial assignments, the following lemma holds:

Lemma 1 ConcurrentSearch algorithms extend only consistent partial assignments.
The partial assignments are received via@'®# A and extended and sent forward by the
receiving agent.

The correctness of'oncurrentSearch includes soundness and completeness. The
soundness af oncurrentSearch follows immediately from Lemma 1. The only lines
of the algorithm that report a solution are lines 3, 4 of procedgs®gnCPA These
lines follow a consistent extension of the partial assignment on a recélved. It
follows that a solution is reportdtf aC' P A includes a complete and consistent assign-
ment.

In order to prove the completeness of thencD B algorithm we first outline the
proof for the simpler concurrent backtrack version and then show that adding conflict
based backjumping does not affect the completeness of the algorithm. The main points
of the completeness proof for general concurrent search are the following:

— Completeness for the case of a singl€ A, is equivalent to the proof of complete-
ness for centralized backtrack by Kondrak and vanBeek [Kondrak and vanBeek1997].
— For several’ P As generated by theA, the only difference from the— C P A case
is in the data structures of tHed.
— A dynamic split operation does not interfere with the completeness of the algo-
rithm.

The above three points were establisheddoncBT in [Zivan and Meisels2004]. For

the completeness @foncD B one continues as follows. In every sub search space all
tuples of assignments share the head of the assignment. Thus for every sub-search-space
we define:

Definition 1 A Common Heade(C H) is the maximal prefix of assignments which is
included in all partial assignments in a sub-search-space.



Lemma 2 A sub-search-space whoé&{ includes an inconsistent subset of assign-
ments does not include a solution to the DisCSP.

The proof of lemma 2 derives from the method of constructing an inconsistent as-
signment in dynamic backtrack [Ginsberg1993,Bessiere et. al.2001].

Lemma 3 ConcD B does not terminate search-processes which lead to a solution.

Only SPs that have &' H that is an extension of th€' H that was found incon-
sistent are marked unsolvable. The search on thd3®is later terminated. Lemma 2
implies the proof for lemma 3. It is immediately clear from lemma 3 that all partial
assignments that lead to a solution will be extended, which implies the completeness of
ConcDB.

4 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-
putation [Lynch1997,Yokoo2000], and communication load, in the form of the total
number of messages sent [Lynch1997]. Comparing the number of concurrent steps of
computation of search algorithms on DisCSPs, measures the time of run of the algo-
rithms.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [Lamport1978,Meisels et. al.2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,
we achieve a measure of concurrent search effort that is close to Lamports logical
time [Lamport1978]. If instead of steps of computation we count the number of concur-
rent constraints check peformed@C's), we take into account the local computational
effort of agents in each step [Meisels et. al.2002].

An important part of the experimental evaluation is to measure the impact of im-
perfect communication on the performance of concurrent search. Message delay can
change the behavior of distributed search algorithms [Fernandez et. al.2002]. In the
presence of concurrent computation, the time of message delays must be added to the
total algorithm timeonly if no computation was performed concurrenflp achieve
this goal, we use a simulator which counts message delays in terms of computation
steps and adds them to the accumulated run-time when no computation is performed
concurrently [Zivan and Meisels2004a].

Experiments were conducted on random networks of constraints \afriables,

k values in each domain, a constraints density,0&nd tightnes®, (which are com-
monly used in experimental evaluations of CSP algorithms cf. [Prosser1996,Smith1996]).
All three sets of experiments were conducted on networks with 15 agertsif), 10
values for each variablé:(= 10) and two values of constraints density = 0.4 and
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Fig. 6. (a) Number of concurrent steps for either 1-CPA, 5-CPAs, or dynamic number of CPAs,
(b) Total number of messages, sent by the same three versions.

p1 = 0.7 The tightness valug,, is varied between 0.1 and 0.9, to cover all ranges of
problem difficulty.

To investigate the effect of concurrency, one needs to compare the performance of
Concurrent Searchvith and without splitting and dynamic splitting. To this end, the
simplest concurrent search algorith@igncBT', was run in a 1EPA version, 5CPA
version and a %5PA version with dynamic re-splitting, using a step limit of 35. The
1-CPAversion is completely sequential and serves as the baseline for comparison to the
concurrent versions.

The LHS of figure 6 shows the computational effort in number of concurrent steps to
a solution, for all three versions. It is easy to see that concurrency improves the search
efficiency and that dynamic resplitting improves it further. The results in concurrent
constraints checks are similar and not presented due to limited space. The total number
of messages sent by all three versions of the algorithm are presented on the RHS of
figure 6. Surprisingly, the effect of dynamic splitting on message load is minor.

4.1 Comparing to Asynchronous Backtracking

The performance of concurrent dynamic backtracki@gr(cDB can be compared to
asynchronous backtrackingd BT") [Yokoo2000]. In ABT agents assign their vari-
ables asynchronously, and send their assignmenigirmessages to other agents to
check against constraints. A fixed priority order among agents is used to break con-
flicts. Agents inform higher priority agents of their inconsistent assignment by sending
them the inconsistent partial assignment iV agood message. In our implementation
of ABT, the Nogoods are resolved and stored according to the method presented in
[Bessiere et. al.2001]. Based on Yokoo’s suggestions [Yokoo2000] the agents read, in
every step, all messages received before performing computation.

The LHS of figure 7 presents the comparison of the number of concurrent con-
straints checks performed loyoncD B and ABT on problems with low dinsityy; =
0.4). For the harder problem instanc&pncDBoutperformsABT by a factor of 3.
On the RHS of figure 7 The results are presented in the number of concurrent steps
of computation. The smaller factor of difference can be related to the larger amount of
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Fig. 8. Total number of messages sent by ConcDB and ABT on DisCSPs with low density (a) and
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local computatiolMA BT perfoms in each step since it reads all the messages which it
received up to this step.

Figure 8 presents the total number of messages sent by both algorithms on DisCSPs
with densityp; = 0.4 (LHS) andpl = 0.7 (RHS). In both cases when it comes to
network load, the advantage 6bncD B is larger (a factor of 4, fop; = 0.4 and 5, for
pl =0.7).

Figure 9 presents a comparison @ncD B and ABT on DisCSPs with higher
density 1, = 0.7). The results are very similar.

Figure 10 presents the results of the set of experiments in which the algorithms were
run on a system with random message delay. Each message was delayed between 5to 10
steps and the results in logical steps are presented for low and high density (LHS and
RHS of figure 10 respectively). Random message delay deteriorates the performance
of asynchronous backtracking while the effect on concurrent dynamic backtracking is
minor. The results in figure 10 show a larger factor of difference between the two algo-
rithms.

5 Conclusions

Concurrent search on distributed CSPs has been presented in detail. Concurrent search
algorithms maintain multiple search processes on non intersecting parts of the global
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search space of a DisCSP ([Zivan and Meisels2002,Hamadi2002]). All agents in con-
current search participate in every search process, since each agent holds some variables
of the search space. Each agent holds the current domains of its variables, for each of
the search processes. Search processes are dynamically generated by agents in an asyn-
chronous distributed process.

Concurrent dynamic backtracking'¢ncD B) provides an efficient method for sev-
eral search processes to search concurrently a DisCSP. Dynamic backtracking enables
concurrent search an early termination of search processes on sub-spaces which do not
lead to a solution. An inconsistent subset can be found in one sub-space and rule out
other sub-spaces as unsolvable. In such a case, the search on the obsolete sub-search-
spaces is terminated by an elegant procedure which does not affect viable search pro-
cesses in progress.

An extensive experimental evaluation @bncD B has been presented. Its experi-
mental behavior on random DisCSPs clearly indicates its efficiency, compared to algo-
rithms of a single search process lik3T'. Experiments were conducted for different
constraints densities, a wide range of constraints tightness and in systems with random
message delays. In all experiments and for three different measures of performance,
ConcD B outperformsA BT by a large margin.



Concurrent search, as proposed in the present paper and in [Zivan and Meisels2004],
may seem similar to former approaches of parallelism. There is, however, a major dif-
ference between Concurrent Dynamic BacktrackKihgycD B and theinterleaved par-
allel search algorithm - IDIBTTHamadi2002]. IDIBT runs multiple processes of asyn-
chronous backtracking and its multiplicity is fixed at the start of its run [Hamadi2002].
Dynamic splitting of the search space improves the search by a meaningful factor (see
Figure 6). This is in contrast tbD1 BT, where performance deteriorates for more than
2 contexts [Hamadi2002].
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