
Concurrent Dynamic Backtracking for Distributed
CSPs?

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. A distributed concurrent search algorithm for distributed constraint
satisfaction problems (DisCSPs) is presented. Concurrent search algorithms are
composed of multiple search processes (SPs) that operate concurrently and scan
non-intersecting parts of the global search space. Search processes are generated
dynamically, started by the initializing agent, and by any number of agents during
search.
In the proposed,ConcDB, algorithm, all search processes perform dynamic
backtracking. As a consequence of dynamic backtracking, a search space scanned
by one search process can be found unsolvable by a different search process.
This enhances the efficiency of theConcDB algorithm. Concurrent search is an
asynchronous distributed algorithm and is shown to be faster than asynchronous
backtracking (ABT). The network load ofConcDB is also much lower than that
of ABT.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[Yokoo2000,Solotorevsky et. al.1996]). To achieve this goal, agents check the value as-
signments to their variables for local consistency and exchange messages with other
agents, to check consistency of their proposed assignments against constraints with
variables owned by different agents [Meseguer and Jimenez2000,Bessiere et. al.2001].

Distributed CSPs are an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example a large hospital that is composed of
many wards. Each ward constructs a weekly timetable assigning its nurses to shifts. The
construction of a weekly timetable involves solving a constraint satisfaction problem for
each ward. Some of the nurses in every ward are qualified to work in theEmergency
Room. Hospital regulations require a certain number of qualified nurses (e.g. for Emer-
gency Room) in each shift. This imposes constraints among the timetables of different
wards and generates a complex Distributed CSP [Solotorevsky et. al.1996].

? Partially supported by the Lynn and William Frankel Center for Computer Science



A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP ), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves assignments of all agents to all their variables
and exchange of information among all agents, to check the consistency of assignments
with constraints among agents. An intuitive way to make the distributed search process
on DisCSPs efficient is to enable agents to compute concurrently. Concurrent computa-
tion by agents can result in a shorter overall time of computation for finding a solution.

One method for achieving concurrency in search on Distributed CSPs is to en-
able agents to cooperate in a single backtrack procedure. In order to avoid the wait-
ing time of a single backtrack search, agents compute assignments to their variables
asynchronously. In asynchronous backtracking algorithms, agents assign their vari-
ables without waiting to receive information about all relevant assignments of other
agents [Yokoo et. al.1998,Silaghi2002]. In order to make asynchronous backtracking
correct and complete, all agents share a static order of variables and the algorithm keeps
data structures for nogoods that are discovered during search (cf. [Bessiere et. al.2001]).
The present paper proposes a different way of achieving concurrency for search. In or-
der to achieve shorter overall runtime, concurrent search runs multiple search processes
on aDisCSP. All agents participate in all search processes, assigning their variables and
checking for consistency with constraining agents. All search processes are performed
asynchronously by all agents, thereby achieving concurrency of computation and short-
ening the overall time of run for finding a global solution [Zivan and Meisels2002].
Agents and variables are ordered randomly on each of the search processes, diversify-
ing the sampling of the search space. Agents generate and terminate search processes
dynamically during the run of the algorithm, thus creating a distributed asynchronous
algorithm [Zivan and Meisels2004]. The degree of concurrency during search changes
dynamically and enables automatic load balancing (see section 2.1).

The present paper proposes Concurrent Dynamic BacktrackingConcDB that per-
forms dynamic backtracking on each of its concurrent sub-search spaces [Ginsberg1993].
Since search processes are dynamically generated byConcDB, the performance of
backjumping in one search space can indicate that other search spaces are unsolvable.
This feature, combined with the random ordering of agents in each search process, en-
ables early termination of search processes discovered byDB to be unsolvable.

The principles and mechanism ofConcurrent Searchalong with a detailed descrip-
tion of theConcDB algorithm are described in section 2. A correctness and complete-
ness proof forConcDB, is outlined in section 3. Section 4 presents an extensive experi-
mental evaluation, which demonstrates multiple advantages ofConcDB. A comparison
of ConcDB to asynchronous backtracking (ABT) [Yokoo2000,Bessiere et. al.2001] is
presented in section 4.1. For all measures of concurrent performance, from number of
steps through number of concurrent constraints checks, to number of messages sent,
ConcDBoutperformsABT and its advantage is more pronounced for harder problem
instances. For all three measures of performance, the difference betweenConcDB and
ABT grows with message delay. In other words, concurrent dynamic backtracking is
more robust to message delay than asynchronous backtracking [Fernandez et. al.2002].



2 Concurrent Search

Concurrent Searchis a family of algorithms which perform multiple concurrent back-
track search processes asynchronously on disjoint parts of theDisCSPsearch-space.
Each search space includes all variables and therefore involves all agents. Each agent
holds a set of data structures, one for each search process. These data structures, which
we termSearch Processes (SP)s, include all the relevant data for the state of the agent
on each of the search processes. Agents in concurrent search algorithms pass their as-
signments to other agents on aCPA (Current Partial Assignment) data structure. Each
CPA represents one search process, and holds the agents’ current assignments in the
corresponding search process. An agent that receives aCPA tries to assign its local
variables with values that are not conflicting with the assignments already on theCPA,
using only the current domains in theSPthat is related to the receivedCPA.

An agent can generate a set ofCPAs that split the search space of a singleCPA
that passed through that agent, by splitting the domain of one of its variables. Agents
can perform splits independently and keep the resulting data structures (SPs) privately.
All other agents need not be aware of the split, they process allCPAs in exactly the
same manner (see section 2.1).CPAs are created either by the Initializing Agent (IA)
at the beginning of the algorithm run, or dynamically by any agent that splits an active
search-space during the algorithm run. A simple heuristic of counting the number of
times agents pass theCPA in a sub-search-space (without finding a solution), is used to
determine the need for re-splitting of search-spaces. This generates a nice mechanism of
load balancing, creating more search processes on heavily backtracked search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment with the partial assignment on theCPA that it is currently holding. A back-
track operation sends aCPA backwards, requesting the receiving agent to revise its
assignment on theCPA. Agents that have performed dynamic splitting, have to collect
all of the returningCPAs, of the relevantSP , before declaring that a sub-search-space
does not contain a solution by performing a backtrack operation.

The search ends unsuccessfully, when allCPAs return for backtrack to the IA and
the domain of their first variable is empty. The search ends successfully ifone CPA
contains a complete assignment, a value for every variable in the DisCSP.

There is no synchronization between the assignments performed in differentSPs
and the splitting of differentCPAs. The next agent aCPA is sent to is selected ran-
domly. Dynamic splitting of search spaces is performed asynchronously. Consequently,
the steps of agents in different search process are interleaved in a non predefined order.
This makes Concurrent Search algorithms asynchronous [Lynch1997].

The main data structure that is used and passed between the agents is acurrent
partial assignment (CPA). A CPAcontains an ordered list of triplets< Ai, Xj , val >
whereAi is the agent that owns the variableXj andval is a value, from the domain of
Xj , assigned toXj . This list of triplets starts empty, with the agent that initializes the
search process, and includes more assignments as it is passed among the agents. Each
agent adds to aCPA that passes through it, a set of assignments to its local variables
that is consistent with all former assignments on theCPA. If successful, it passes the
CPAto the next agent. If not, itbacktracks, by sending theCPAto the agent from which
it was received. Splitting the search space on some variable divides the values in the



domain of this variable into several groups. Each sub-domain defines a unique sub-
search-space and a uniqueCPA traverses this search space (for a detailed example of
dynamic splitting see section 2.2).

Every agent that receives aCPAfor the first time, creates a local data structure which
we call asearch process (SP). This is true also for the initializing agent (IA), for each
createdCPA. TheSPholds all data on current domains for the variables of the agent,
such as the remaining and removed values during the path of theCPA.

The structure of theID of aCPAand its correspondingSPis a pair< A, j >, where
A is the ID of the agent that created the CPA andj is the number of CPAs this agent
created so far. TheID of CPAs enables all agents to createCPAs independently, with
a uniqueID. This is the basis for dynamic splitting of the search space. When a split is
performed during search, allCPAs generated by the agent that performs the split have
a uniqueID and carry theID of theCPA from which they were split.

2.1 Description of Concurrent Search

The main functions of concurrent search are presented in Figure 1.

– The main functionConcurrent Search, initializes the search if it is run by the
initializing agent (IA). It initializes the search by creating multipleSPs, assigning
each SP with one of the first variable’s values. After initialization, it loops forever,
waiting for messages to arrive.

– receiveCPA first checks if the agent holds aSPwith the ID of the current CPA
and if not, creates a newSP. If the CPA is received by its generator, it changes
the value of the steps counter (CPA steps) to zero. This prevents unnecessary
splitting. Otherwise, it checks whether theCPA has reached thesteps limit and
a split must be initialized (lines 7-9). Before assigning theCPA a check is made
whether theCPA was received in abacktrack msg, if so the previous assignment
of the agent which is the last assignment made on theCPA is removed, before
assign CPA is called (lines 10-11). If not, theCPA is saved as the originalCPA
for use in future backtracks.

– assignCPA tries to find an assignment for the local variables of the agent, which
is consistent with the assignments on theCPA. If it succeeds, the agent sends the
CPA to the selectednext agent (line 7). If not, it calls thebacktrackmethod (line
9).

– The backtrack method is called when a consistent assignment cannot be found
in a SP. Since a split might have been performed by the current agent, a check is
made, whether all theCPAs in thesplit set of theorigin CPA of the backtracking
CPA have also failed (line 2). When all splitCPAs have returned unsuccessfully,
the search space of theSP is unsolvable and a backtrack operation is initialized.
In case of anIA, theSPand the correspondingorigin CPAare marked as a failure
(lines 3-4). If all otherCPAs are marked as failures, the search is ended unsuccess-
fully (line 6). Then a backtrack message is sent to the agent which its assignment
is the latest of the assignments included in the inconsistentCPA (line 9).

– Theperform split method tries to find in theSPspecified in thesplit message, a
variable with a non-empty currentdomain. It first checks that theCPA to be split



Concurrent Search:
1. done← false
2. if (IA) then initialize SPs
3. while(not done)
4. switch msg.type
5. split: performsplit
6. stop: done← true
7. CPA: receiveCPA
8. backtrack: receiveCPA

initialize SPs:
1. for i← 1 todomain size
2. createSP(i)
3. domainSP[i]← first val[i]
4. CPA← createCPA(i)
5. assign CPA

receiveCPA:
1. CPA←msg.CPA
2. if (first received(CPAID))
3. createSP(CPAID)
4. if (CPA generator = ID)
5. CPA steps← 0
6. else
7. CPA steps ++
8. if (CPA steps = steps limit)
9. send(split msg, CPA generator)
10. if (msg.type =backtrack msg)
11. removelast assignment
12.assign CPA

stop:
1. send(stop,all other agents)
2. done← true

assignCPA:
1. CPA← assignlocal
2. if (is consistent(CPA))
3. if (is full(CPA))
4. report solution
5. stop
6. else
7. send(CPA, nextagent)
8. else
9. backtrack

backtrack:
1. delete(currentCPA fromorigin split set)
2. if (origin split set is empty)
3. if (IA)
4. CPA← no solution
5. if (no activeCPAs)
6. reportno solution
7. stop
8. else
9. send(backtrack msg, last assignee)
10. else
11. mark fail(current CPA)

perform split:
1. if (not backtracked(CPA))
2. var← select split var
3. if (var is not null)
4. createsplit SP(var)
5. createsplit CPA(SPID)
6. add(CPAID to origin split set)
7. assign CPA
8. else
9. send(split msg, next agent)

Fig. 1.Concurrent Search

has not been sent back already, in a backtrack message (line 1). If it does not find a
variable for splitting, it sends a splitmessage tonext agent (lines 8-9). If it finds
a variable to split, it creates a newSPandCPA, and callsassignCPA to initialize
the new search (lines 3-5). TheID of the generatedCPA is added to the split set
of the dividedSPsorigin SP (line 6).

Figure 2 presents an example of a DisCSP, searched concurrently by two processes
represented by two CPAs,CPA1 andCPA2. Each of the four agentsA1 to A4, holds
two SPs. The current domains of the SPs are shown in Figure 2. The domains on
the left represent the state after 3 assignments toCPA1. The domains on the right of



Fig. 2.Concurrent Searchwith two CPAs

figure 2 represent the state after the first assignment toCPA2. CPA1 is depicted on
the LHS of figure 2 andCPA2 is on the top RHS. Each CPA has its ID on its right.

AgentA1 has assigned the value 1 onCPA1 and the value 3 onCPA2. The values
that are left in each of its domains are 2 inSP1 and 4 inSP2. AgentA3 has assigned
the value 2 toCPA1, having failed to assign the value 1. This leaves its current domain,
for SP1, with the values [3,4]. The two CPAs are traversing non intersecting sub search
spaces in whichCPA1 is exploring all tuples beginning with 1 or 2 for agentA1, and
CPA2 all tuples beginning with 3 or 4.

2.2 Example of dynamic splitting

Consider the constraint network that is described in figure 3. All three agents own one
variable each, and the initial domains of all variables contain four values{1..4}. The
constraints connecting the three agents are:X1 < X2, X1 > X3, andX2 < X3.
The initial state of the network is described on the LHS of Figure 3. In order to keep
the example small, no initial split is performed, only dynamic splitting. The value of
steps limit in this example is 4. The first 5 steps of the algorithm run produce the state
that is depicted on the RHS of Figure 3. The run of the algorithm during these 5 steps
is described in detail below:

1. X1 assigns 1, and sends aCPA with CPA steps = 1 toX2 .
2. X2 assigns 2, and sends theCPA with CPA steps = 2, toX3.
3. X3 cannot find any assignment consistent with the assignments on theCPA. It

passes theCPA back toX2 to reassign its variable, withCPA steps = 3.
4. X2 assigns 3 and sends theCPA again toX3, raising the step counter to 4.
5. X3 receives theCPA with X2’s new assignment.



Fig. 3. Initial state and the state after the CPA travels 5 steps without returning to its generating
agent

Fig. 4.The new non intersecting search spaces now searched using two differentCPAs

In the current step of the algorithm, agentX3 receives aCPA which has reached
the step limit. According to lines 8-9 of functionreceive CPA it has to generate a
split operation. Before trying to find an assignment for its variable,X3 sends a split
message toX1 which is theCPAs generator and changes the value of theCPA steps
counter to 0. Next, it sends theCPA to X2 in a backtrack message. The algorithm run
proceeds as follows:

– WhenX1 receives the split message it performs the following operations:
• Creates a new (empty domain)SP data structure.
• Deletes values3 and4 from its original domain and inserts them into the new

domain.



ConcDB:
..
..
..
9. unsolvable: mark unsolvable

receiveCPA:
1. CPA←msg.CPA
2. if (unsolvable SP)
3. terminate CPA
4. else
..
..
..
13. if (msg.type =backtrack msg)
14. checkSPs

(CPA.inconsistentassignment)
15. CPA← {last sent CPA}\

last assignment
16. if (SPsplit ahead)
17. send(unsolvable, SP.nextagent)
18. renameSP
19. assign CPA

backtrack:
..
..
9. backtrack msg←

inconsistent assignment
10. send(backtrack msg,

lowest priority assignee)
11. else
12. mark fail(current CPA)

mark unsolvable
1. mark msg.SP unsolvable
2. send(unsolvable, nextagent)
3. for eachsplit SP
4. mark splitSP unsolvable
5. send(unsolvable, nextagent)

check SPs(inconsistentassignment)
1. for eachof the{SPs \ current SP}
2. if (SP.contains(inconsistentassignment))
3. send(unsolvable, SP.nextagent)
4. CPA← {last sent CPA}\

last assignment
5. renameSP
6. assign CPA

Fig. 5.Methods for Dynamic Backtracking

• Creates a newCPA and assigns it with3 (a value from the new domain).
• Sends the newCPA to a randomly chosen agent.

– Other agents that receive the newCPA create newSPs with a copy of the initial
domain.

After the split, twoCPAs are passed among the agents. The twoCPAs perform search
on two non intersecting search-spaces. In the originalSP after the split, X1 can assign
only values1 or 2 (see LHS of Figure 4). The search on the original SP is continued
from the same state it was in before the split. AgentsX2 andX3 continue the search
using their current domains to assign the originalCPA. Therefore the domain ofX2

does not contain values 1 and 2 which were eliminated in earlier steps and assigns the
value 3 onCPA1. In the newly generated search space,X1 has the values3, 4 in its
domain. AgentX1 assigns3 to its variable and the other agents that receiveCPA2

check the new assignment against their full domains (RHS of figure 4).

2.3 Concurrent Dynamic Backtracking

The method of backjumping that is used in the proposedConcDB algorithm is based
onDynamic Backtracking [Ginsberg1993,Bessiere et. al.2001]. Each agent that re-
moves a value from its current domain stores the partial assignment that caused the



removal of the value. This stored partial assignment is called aneliminating expla-
nation by [Ginsberg1993]. When the current domain of an agent empties, the agent
constructs a backtrack message from the union of all assignments in its stored removal
explanations. The union of all removal explanations is an inconsistent partial assign-
ment, or aNogood[Ginsberg1993,Bessiere et. al.2001]. The backtrack message is sent
to the agent which is the owner of the most recently assigned variable in the inconsistent
partial assignment.

In concurrent dynamic backtracking, a short nogood can belong to multiple search
spaces, all of which contain no solution and are thus unsolvable. In order to terminate
the corresponding search processes, an agent that receives a backtrack message per-
forms the following procedure:

– detect theSP to which the receivedCPA either belongs or was split from.
– check if theSP was split.
– if it was:

• send anunsolvable message to thenextagentof the relatedCPA.
• choose a new unique ID for theCPA received and its relatedSP .
• continue the search using theSP andCPA with the new ID.

– check if there are otherSPs which contain the inconsistent partial assignment re-
ceived, send correspondingunsolvable messages and resume the search on them
with new generatedCPAs.

The change of ID makes the process independent of whether the backtrack message
included theoriginal CPAor one of its split offsprings.

Theunsolvablemessage used by theConcDB algorithm, is a message not used in
generalConcurrent Search, which indicates an unsolvable sub-search-space. An agent
that receives anunsolvable message performs the following operations for the unsolv-
ableSP and each of theSPs split from it:

– mark theSP as unsolvable.
– send anunsolvable message which carries the ID of theSP to the agent to whom

the relatedCPA was last sent.

Agents that receive aCPA first check if the relatedSP was not markedunsolvable.
If so they terminate theCPA and its relatedSP .

Figure 5 presents the methodsConcDB, receive CPA andbacktrack, that were
changed from the general description ofConcurrent Searchin Figure 1, and two addi-
tional methods needed for addingDynamic Backtrackingto concurrent search.

In methodreceive CPA a check is made in lines 3,4 if theSP related to the re-
ceivedCPA is marked unsolvable. In such a case theCPA is not assigned and the
relatedSP is terminated. For a backtrackingCPA (lines 13-18) a check is made
whether the SP was split by agents who received the CPA after this agent (line 16).
If so, the termination of the unsolvable SP is initiated by sending anunsolvable mes-
sage. A new ID is assigned to the received CPA and its relatedSP (line 18). Before
calling assign CPA, a check is made whether there are other SPs which can be de-
clared unsolvable. This can happen when the head of their partial assignment (their



common header i.e. CH) contains the received inconsistent partial assignment. Proce-
durecheck SPs for every suchSP found, initiates the termination of the search pro-
cess on the unsolvable sub-search-space and resumes the search with a new generated
CPA.

Methodmark unsolvable is part of the mechanism for terminating SPs on unsolv-
able search spaces. The agent marks the SP related to the message received as unsolv-
able, and sends unsolvable messages to the agents to whom the CPA of this SP, and any
otherCPA split from it, were sent. In methodbacktrack, the agent inserts the culprit
inconsistent partial assignment into the backtrack message (line 9) before sending it
back in line 10.

3 Correctness of Concurrent Search

A central fact that can be established immediately is that agents send forward only
consistent partial assignments. This fact can be seen at lines 1, 2 and 7 of procedure
assignCPA(Figure 1). This implies that agents process, in proceduresreceiveCPAand
assignCPA, only consistentCPAs. Since the processing ofCPAs in these procedures
are the only means for extending partial assignments, the following lemma holds:

Lemma 1 ConcurrentSearch algorithms extend only consistent partial assignments.
The partial assignments are received via aCPA and extended and sent forward by the
receiving agent.

The correctness ofConcurrentSearch includes soundness and completeness. The
soundness ofConcurrentSearch follows immediately from Lemma 1. The only lines
of the algorithm that report a solution are lines 3, 4 of procedureassignCPA. These
lines follow a consistent extension of the partial assignment on a receivedCPA. It
follows that a solution is reportediff aCPA includes a complete and consistent assign-
ment.

In order to prove the completeness of theConcDB algorithm we first outline the
proof for the simpler concurrent backtrack version and then show that adding conflict
based backjumping does not affect the completeness of the algorithm. The main points
of the completeness proof for general concurrent search are the following:

– Completeness for the case of a singleCPA, is equivalent to the proof of complete-
ness for centralized backtrack by Kondrak and vanBeek [Kondrak and vanBeek1997].

– For severalCPAs generated by theIA, the only difference from the1−CPA case
is in the data structures of theIA.

– A dynamic split operation does not interfere with the completeness of the algo-
rithm.

The above three points were established forConcBT in [Zivan and Meisels2004]. For
the completeness ofConcDB one continues as follows. In every sub search space all
tuples of assignments share the head of the assignment. Thus for every sub-search-space
we define:

Definition 1 A Common Header(CH) is the maximal prefix of assignments which is
included in all partial assignments in a sub-search-space.



Lemma 2 A sub-search-space whoseCH includes an inconsistent subset of assign-
ments does not include a solution to the DisCSP.

The proof of lemma 2 derives from the method of constructing an inconsistent as-
signment in dynamic backtrack [Ginsberg1993,Bessiere et. al.2001].

Lemma 3 ConcDB does not terminate search-processes which lead to a solution.

Only SPs that have aCH that is an extension of theCH that was found incon-
sistent are marked unsolvable. The search on theseSPs is later terminated. Lemma 2
implies the proof for lemma 3. It is immediately clear from lemma 3 that all partial
assignments that lead to a solution will be extended, which implies the completeness of
ConcDB.

4 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-
putation [Lynch1997,Yokoo2000], and communication load, in the form of the total
number of messages sent [Lynch1997]. Comparing the number of concurrent steps of
computation of search algorithms on DisCSPs, measures the time of run of the algo-
rithms.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [Lamport1978,Meisels et. al.2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,
we achieve a measure of concurrent search effort that is close to Lamports logical
time [Lamport1978]. If instead of steps of computation we count the number of concur-
rent constraints check peformed (CCCs), we take into account the local computational
effort of agents in each step [Meisels et. al.2002].

An important part of the experimental evaluation is to measure the impact of im-
perfect communication on the performance of concurrent search. Message delay can
change the behavior of distributed search algorithms [Fernandez et. al.2002]. In the
presence of concurrent computation, the time of message delays must be added to the
total algorithm timeonly if no computation was performed concurrently. To achieve
this goal, we use a simulator which counts message delays in terms of computation
steps and adds them to the accumulated run-time when no computation is performed
concurrently [Zivan and Meisels2004a].

Experiments were conducted on random networks of constraints ofn variables,
k values in each domain, a constraints density ofp1 and tightnessp2 (which are com-
monly used in experimental evaluations of CSP algorithms cf. [Prosser1996,Smith1996]).
All three sets of experiments were conducted on networks with 15 agents (n = 15), 10
values for each variable (k = 10) and two values of constraints densityp1 = 0.4 and



(a) (b)

Fig. 6. (a) Number of concurrent steps for either 1-CPA, 5-CPAs, or dynamic number of CPAs,
(b) Total number of messages, sent by the same three versions.

p1 = 0.7 The tightness valuep2, is varied between 0.1 and 0.9, to cover all ranges of
problem difficulty.

To investigate the effect of concurrency, one needs to compare the performance of
Concurrent Searchwith and without splitting and dynamic splitting. To this end, the
simplest concurrent search algorithm,ConcBT , was run in a 1-CPA version, 5-CPA
version and a 5-CPA version with dynamic re-splitting, using a step limit of 35. The
1-CPAversion is completely sequential and serves as the baseline for comparison to the
concurrent versions.

The LHS of figure 6 shows the computational effort in number of concurrent steps to
a solution, for all three versions. It is easy to see that concurrency improves the search
efficiency and that dynamic resplitting improves it further. The results in concurrent
constraints checks are similar and not presented due to limited space. The total number
of messages sent by all three versions of the algorithm are presented on the RHS of
figure 6. Surprisingly, the effect of dynamic splitting on message load is minor.

4.1 Comparing to Asynchronous Backtracking

The performance of concurrent dynamic backtracking (ConcDB) can be compared to
asynchronous backtracking (ABT ) [Yokoo2000]. In ABT agents assign their vari-
ables asynchronously, and send their assignments inok? messages to other agents to
check against constraints. A fixed priority order among agents is used to break con-
flicts. Agents inform higher priority agents of their inconsistent assignment by sending
them the inconsistent partial assignment in aNogood message. In our implementation
of ABT , theNogoods are resolved and stored according to the method presented in
[Bessiere et. al.2001]. Based on Yokoo’s suggestions [Yokoo2000] the agents read, in
every step, all messages received before performing computation.

The LHS of figure 7 presents the comparison of the number of concurrent con-
straints checks performed byConcDB andABT on problems with low dinsity (p1 =
0.4). For the harder problem instances,ConcDBoutperformsABT by a factor of 3.
On the RHS of figure 7 The results are presented in the number of concurrent steps
of computation. The smaller factor of difference can be related to the larger amount of



(a) (b)

Fig. 7.(a) Number of concurrent constraints checks performed by ConcDB and ABT, (b) Number
of concurrent steps for both algorithms.

(a) (b)

Fig. 8.Total number of messages sent by ConcDB and ABT on DisCSPs with low density (a) and
high density (b).

local computationABT perfoms in each step since it reads all the messages which it
received up to this step.

Figure 8 presents the total number of messages sent by both algorithms on DisCSPs
with densityp1 = 0.4 (LHS) andp1 = 0.7 (RHS). In both cases when it comes to
network load, the advantage ofConcDB is larger (a factor of 4, forp1 = 0.4 and 5, for
p1 = 0.7).

Figure 9 presents a comparison ofConcDB andABT on DisCSPs with higher
density (p1 = 0.7). The results are very similar.

Figure 10 presents the results of the set of experiments in which the algorithms were
run on a system with random message delay. Each message was delayed between 5 to 10
steps and the results in logical steps are presented for low and high density (LHS and
RHS of figure 10 respectively). Random message delay deteriorates the performance
of asynchronous backtracking while the effect on concurrent dynamic backtracking is
minor. The results in figure 10 show a larger factor of difference between the two algo-
rithms.

5 Conclusions

Concurrent search on distributed CSPs has been presented in detail. Concurrent search
algorithms maintain multiple search processes on non intersecting parts of the global



(a) (b)

Fig. 9. (a) Number of concurrent constraints checks forp1 = 0.7, (b) Number of concurrent steps
for p1 = 0.7.

(a) (b)

Fig. 10. (a) Number of logical concurrent steps performed by ConcDB and ABT on low density
DisCSPs, (b) on high density DisCSPs.

search space of a DisCSP ([Zivan and Meisels2002,Hamadi2002]). All agents in con-
current search participate in every search process, since each agent holds some variables
of the search space. Each agent holds the current domains of its variables, for each of
the search processes. Search processes are dynamically generated by agents in an asyn-
chronous distributed process.

Concurrent dynamic backtracking (ConcDB) provides an efficient method for sev-
eral search processes to search concurrently a DisCSP. Dynamic backtracking enables
concurrent search an early termination of search processes on sub-spaces which do not
lead to a solution. An inconsistent subset can be found in one sub-space and rule out
other sub-spaces as unsolvable. In such a case, the search on the obsolete sub-search-
spaces is terminated by an elegant procedure which does not affect viable search pro-
cesses in progress.

An extensive experimental evaluation ofConcDB has been presented. Its experi-
mental behavior on random DisCSPs clearly indicates its efficiency, compared to algo-
rithms of a single search process likeABT . Experiments were conducted for different
constraints densities, a wide range of constraints tightness and in systems with random
message delays. In all experiments and for three different measures of performance,
ConcDB outperformsABT by a large margin.



Concurrent search, as proposed in the present paper and in [Zivan and Meisels2004],
may seem similar to former approaches of parallelism. There is, however, a major dif-
ference between Concurrent Dynamic BacktrackingConcDB and theinterleaved par-
allel search algorithm - IDIBT[Hamadi2002]. IDIBT runs multiple processes of asyn-
chronous backtracking and its multiplicity is fixed at the start of its run [Hamadi2002].
Dynamic splitting of the search space improves the search by a meaningful factor (see
Figure 6). This is in contrast toIDIBT , where performance deteriorates for more than
2 contexts [Hamadi2002].

References

[Bessiere et. al.2001] C. Bessiere, A. Maestre and P. Messeguer. Distributed Dynamic Back-
tracking.Proc. Workshop on Distributed Constraints, IJCAI-01, Seattle, 2001.

[Fernandez et. al.2002] C. Fernandez, R. Bejar, B. Krishnamachari, K. Gomes Communication
and Computation in Distributed CSP Algorithms.Proc. Principles and Practice of Constraint
Programming, CP-2002, pages 664-679, Ithaca NY USA, July, 2002.

[Ginsberg1993] M. L. Ginsberg Dynamic Backtracking.Artificial Intelligence Research,1:
25-46, 1993

[Hamadi2002] Y. Hamadi Interleaved Backtracking in Distributed Constraint Networks.Intern.
Jou. AI Tools, 11: 167-188, 2002.

[Kondrak and vanBeek1997] G. Kondrak and P. vanBeek A Theoretical Evaluation of Selected
Backtracking Algorithms.Artificial Intelligence, 89: 365-87, 1997.

[Lamport1978] L. Lamport Time, clocks and the ordering of events in a distributed system.
Comm. of ACM, 21: 558-565, 1978.

[Lynch1997] N. A. Lynch. Distributed Algorithms.Morgan Kaufmann Series, 1997.
[Meisels et. al.2002] A. Meisels et. al. Comparing performance of Distributed Constraints Pro-

cessing Algorithms. Proc. AAMAS-2002 Workshop on Distributed Constraint Satisfaction,
Bologna, July, 2002.

[Meseguer and Jimenez2000] P. Meseguer M. A. Jimenez Distributed Forward Checking.Proc.
CP-2000 Workshop on Distributed Constraint Satisfaction, Singapore, 22 September, 2000.

[Prosser1996] P. Prosser An empirical study of phase transition in binary constraint satisfaction
problems.Artificial Intelligence, 81:81-109, 1996.

[Smith1996] B. M. Smith. Locating the phase transition in binary constraint satisfaction prob-
lems. InArtificial Intelligence, 81:155-181, 1996.

[Silaghi2002] M.C. Silaghi Asynchronously Solving Problems with Privacy Requirements.
PhD Thesis,Swiss Federal Institute of Technology (EPFL), 2002.

[Solotorevsky et. al.1996] G. Solotorevsky, E. Gudes and A. Meisels. Modeling and Solv-
ing Distributed Constraint Satisfaction Problems (DCSPs).Constraint Processing-96, New
Hamphshire, October 1996.

[Yokoo et. al.1998] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. Distributed Constraint
Satisfaction Problem: Formalization and Algorithms.IEEE Trans. on Data and Kn. Eng., 10(5):
673-685, 1998.

[Yokoo2000] M. Yokoo. Algorithms for Distributed Constraint Satisfaction: A Review.Au-
tonomous Agents & Multi-Agent Sys., 3(2): 198-212, 2000.

[Zivan and Meisels2002] A. Meisels et. al. Parallel Backtrack search on DisCSPs.Proc.
AAMAS-2002 Workshop on Distributed Constraint Satisfaction, Bologna, July, 2002.

[Zivan and Meisels2004] R. Zivan and A. Meisels. Concurrent Backtrack search on DisCSPs.
to apear inFLAIRS 2004, May 2004. (full version http://www.cs.bgu.ac.il/˜zivanr)

[Zivan and Meisels2004a] R. Zivan and A. Meisels. Message delay and DisCSP search algo-
rithms. submit toECAI 2004, August 2004.


