
Synchronous vs Asynchronous search on DisCSPs

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) are com-
posed of agents, each holding its variables, that are connected by constraints
to variables of other agents. There are two known measures of performance for
distributed search - the computational effort which represents the total search
time and the number of messages sent which represents the network load. Due
to the distributed nature of the problem, the behavior of the experimental envi-
ronment is extremely important. However, most experimental studies have used a
perfect simulator with instantaneous message delivery. The present paper inves-
tigates two families of distributed search algorithms on DisCSPs, Synchronous
and Asynchronous search. Improved versions of the two families of algorithms
are presented and investigated. The performance of the algorithms of these two
extended families is measured on randomly generated instances of DisCSPs. The
results of the investigation are twofold. First, the delay of messages is found to de-
teriorate the performance of asynchronous search by a large margin. This shows
that a correct (and realistic) experimental scenario is important. Second, when
messages are delayed, synchronous search performs better than asynchronous
search in terms of computational effort as well as in network load. It turns out
that asynchronous search fails to use its multiple computing power to an advan-
tage.

1 Introduction
Distributed constraints satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[Yokoo2000,Solotorevsky et. al.1996]). To achieve this goal, agents check the value as-
signments to their variables for local consistency and exchange messages among them,
to check consistency of their proposed assignments against constraints with variables
that belong to different agents [Yokoo2000,Bessiere et. al.2001].

Several asynchronous search algorithms on DisCSPs have been proposed in re-
cent years [Yokoo et. al.1998,Bessiere et. al.2001,Silaghi et. al.2001]. All of these al-
gorithms process assignments of agents asynchronously and rely on Nogoods for their
correctness and termination. In asynchronous search agents perform assignments asyn-
chronously and send out messages to constraining agents, informing them about their
assignments. Due to the asynchronous nature of agents’ operations, the global assign-
ment state at any particular instance during the run of an asynchronous search algorithm



is in general inconsistent. The motivation in using asynchronous search was that by al-
lowing agents to perform concurrently and independent of one another, the distributed
nature of the system will be used to gains in efficiency [Yokoo et. al.1998].
The immediate drawback is the network load. Agents performing computations con-
currently and performing assignments, load the network with messages informing other
agents of their actions. Not many comparisons were made between the efficiency of
synchronous and asynchronous search algorithms on DisCSPs. In [Yokoo2000] the
Asynchronous Backtrack algorithm (ABT ) was compared with Synchronous Back-
track (SBT ) on the n-queens problem and was found to arrive at a solution within a
smaller number of cycles. There are several important changes that have the potential
of improving the comparative study of [Yokoo2000]. These improvements relate to the
following features of the former study:

1. The synchronous algorithm used (SBT ) is a distributed version of chronological
backtrack (CBT), which is the slowest synchronous search algorithms (compared
to Conflict based Backjumping (CBJ) for example) [Prosser1993].

2. n-queens problems have a large number of solutions. It is interesting to perform the
comparison for harder problem instances [Smith1994].

3. The experiments were performed on a simulator with instantaneous messages. The
performance of ABT was found to be highly dependent on the communication
quality of the network [Fernandez et. al.2002].

The main goal of the present paper is to look closer at the performance of members of
the two families of search algorithms, synchronous and asynchronous, on DisCSPs. In
order to rectify the second point on our list of experimental drawbacks, the present paper
compares the performance of synchronous and asynchronous algorithms on a range
of randomly generated instances of DisCSPs that includes solvable, unsolvable, and
phase transition problems [Smith1994]. To create a fair comparison of asynchronous
and synchronous algorithms, one needs to note some specific features of ABT.

– The detection of an inconsistent partial assignment determines a conflict set which
leads to a backjump to the culprit agent [Yokoo et. al.1998,Bessiere et. al.2001].

– Eliminated values are returned to variables domains only after the eliminating Nogood

becomes inconsistent with the agent view.

These properties of ABT are not unique to asynchronous search (cf. [Ginsberg1993]),
and by using them in synchronous algorithms one can decrease the computational cost
(see Section 4).

The vast majority of experiments on DisCSP search were performed on a simulator
[Yokoo2000] and proceeded in cycles or rounds. This experimental setup is actually
equivalent to having messages that are instantaneous. At each round of the simulator all
messages of the former round arrive at their destination [Yokoo2000]. When all mes-
sages arrive within one cycle, agents always perform computations that are based on
an accurate view of the state of all other agents. When the delay of messages is large
enough, there is some inconsistency between the agent’s view of the system state and the
’real’ current state of the system, which causes a waste of computational effort. Need-
less to say that this particular experimental setup is out of tune with an asynchronous



environment and algorithm. The experimental evaluation presented in this paper uses
instances of DisCSPs with a wide range of difficulties and is performed with different
communication delays.

For a performance measure of the concurrent computational effort performed by
agents, one needs a better parameter than the number of cycles, since the computational
effort performed by different agents, in different cycles, is not necessarily identical. One
such measure, which is independent of implementation details, is the number of con-
current constraints checks [Meisels et. al.2002]. The results show that the performance
of synchronous search is similar to that of asynchronous search, in terms of computa-
tional effort. Moreover, on systems with fixed and random message delay the computa-
tional effort of synchronous search does not change while for asynchronous search the
computational cost grows by a large factor. Distributed constraint satisfaction problems
(DisCSPs) are presented in section 2. A description of the different versions of ABT

and comparisons between them on systems with different communication qualities, are
presented in section 3. A description of synchronous backtracking (SBT ) algorithm
and of an improved version, SynCBJ , is presented in section 4. Expeirimental results,
comparing the synchronous algorithms with ABT are also included in section 4. A
discussion of the performance and advantages of the algorithms on different DisCSP

instances and communication networks, is presented in section 5. Our conclusions are
presented in section 6.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSP) is composed of a set of k agents A1, A2, ..., Ak. Each agent Ai contains
a set of constrained variables Xi1 , Xi2 , ..., Xini

. Constraints or relations R are sub-
sets of the Cartesian product of the domains of the constrained variables. For a set
of constrained variables Xik

, Xjl
, ..., Xmn

, with domains of values for each variable
Dik

, Djl
, ..., Dmn

, the constraint is defined as R ⊆ Dik
× Djl

× ... ×Dmn
. A binary

constraint Rij between any two variables Xj and Xi is a subset of the Cartesian prod-
uct of their domains; Rij ⊆ Dj × Di. In a distributed constraint satisfaction problem
DisCSP, the agents are connected by constraints between variables that belong to dif-
ferent agents (cf. [Yokoo et. al.1998,Solotorevsky et. al.1996]). In addition each agent
has a set of constrained variables, i.e. a local constraint network. An assignment (or a
label) is a pair < var, val >, where var is a variable of some agent and val is a value
from var’s domain that is assigned to it. A compound label is a set of assignments of
values to a set of variables. A solution P to a DisCSP is a compound label that includes
all variables of all agents, that satisfies all the constraints. Following all former work
on DisCSPs, agents check assignments of values against non-local constraints by com-
municating with other agents through sending and receiving messages. An agent can
send messages to any one of the other agents. The delay in delivering a message is as-
sumed to be finite [Yokoo2000]. One simple form of messages for checking constraints,
that appear in many distributed search algorithms, is to send a proposed assignment
< var, val >, of one agent to another agent. The receiving agent checks the compat-
ibility of the proposed assignment with its own assignments and with the domains of



its variables and returns a message that either acknowledges or rejects the proposed as-
signment (cf. [Yokoo et. al.1998,Bessiere et. al.2001]). The following assumptions are
routinely made in studies of DisCSP s [Yokoo2000,Bessiere et. al.2001]. and are as-
sumed to hold in the present study.

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception

is finite.
3. Messages sent by agent Ai to agent Aj are received by Aj in the order they were

sent.

The network of constraints, in each of the experiments, is generated randomly by se-
lecting the probability p1 of a constraint among any pair of variables and the probability
p2, for the occurrence of a violation among two assignments of values to a constrained
pair of variables. Such uniform random constraints networks of n variables, k values
in each domain, a constraints density of p1 and tightness p2 are commonly used in ex-
perimental evaluations of CSP algorithms (cf. [Prosser1994,Smith1994]). Experiments
were conducted on networks with 10 variables (n = 10) and 10 values (k = 10). All
instances were created with density parameter p1 set to 0.7 (p1 = 0.7). The value of
p2 varied between 0.1 to 0.9. In order to evaluate the algorithms performances, it is
best to compare two independent measures of performance search effort in the form of
constraints checks and communication load in the form of the total number of messages
sent. By measuring computational effort in the number of constraints checks performed
instead of the number of cycles, we take in to account the possibility of agents perform-
ing different amount of computational effort in different cycles. The evaluation of the
computational effort of distributed algorithms has to take concurrency into account. We
count the concurrent effort made by agents using the method of counting concurrent
constraint checks (CCCs) [Meisels et. al.2002] in which each agent holds a counter of
constraints checks it makes. Every message sent carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search we
achieve a close measure to the accurate cost of the concurrent effort during the run of
the algorithm.

3 Asynchronous Backtrack algorithms

The Asynchronous Backtrack algorithm (ABT ) was presented in several versions
over the last decade [Yokoo1992,Yokoo et. al.1998,Yokoo2000,Bessiere et. al.2001]. In
the ABT algorithm, agents hold an assignment for their variables at all times, which
is consistent with their view of the state of the system. When the agent cannot find
an assignment consistent with its Agent view, it changes its view by eliminating a
conflicting assignment from its Agent view data structure. It then sends back a Nogood
which is based on its former inconsistent Agent view and makes another attempt to
assign its variable [Yokoo2000,Bessiere et. al.2001]. This is in contrast to synchronous
search, in which an agent that cannot find a consistent assignment sends a backtrack



message and waits for the state of the system to change before it attempts to reassign
its variable. The following descriptions of ABT , and its different versions, all have the
above property.

– when received (ok?, (xj , dj)) do
1. add (xj, dj) to agent view;
2. check agent view;end do;

– when received (nogood, xj , nogood) do
1. add nogood to nogood list;
2. when nogood contains an agent xk that is not its neighbor do
3. request xk to add xi as a neighbor,
4. and add (xk, dk) to agent view; end do;
5. old value← current value; check agent view;
6. when old value = current value do
7. send (ok?, (xi, current value)) to xj ; end do; end do;

– procedure check agent view
1. when agent view and current value are not consistent do
2. if no value in Di is consistent with agent view then backtrack;
3. else select d ∈ Di where agent view and d are consistent;
4. current value← d;
5. send (ok?,(xi, d)) to low priority neighbors; end if;end do;

– procedure backtrack
1. nogood← agent view;
2. when nogood is an empty set do
3. broadcast to other agents that there is no solution;
4. terminate this algorithm; end do;
5. select (xj , dj) where xi has the lowest priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove (xj , dj) from agent view; end do;
8. check agent view

Fig. 1. ABT algorithm with full Nogood recording

3.1 Asynchronous Backtrack ABT with full nogood recording
The Asynchronous Backtrack algorithm ABT [Yokoo2000], has a total order of priori-
ties among agents. Agents have a data structure, called Agent view, which contains the
most recent assignments received from agents with higher priority. The algorithm starts
by each agent assigning its variable, and sending the assignment to neighbor agents
with lower priority. When an agent receives a message containing an assignment (an
ok? message [Yokoo2000]), it updates its Agent view with the received assignment
and if needed replaces its own assignment, to achieve consistency. Agents that reassign
their variable, inform their lower priority neighbors by sending them ok? messages.
Agents that cannot find a consistent assignment, send the inconsistent tuple in their
Agent view in a backtrack message (a Nogood message [Yokoo2000]). In the sim-
plest form of the ABT algorithm, the complete Agent view is sent as a Nogood. The
Nogood is sent to the agent with the lowest priority whose assignment is included in
the Nogood.



Agents that receive a Nogood, check its relevance against the content of their
Agen view. If the Nogood is relevant the agent stores it, and tries to find a consis-
tent assignment. In any case, if the agent receiving the Nogood keeps its assignment,
it informs the Nogood sender by resending it an ok? message with its assignment. An
agent Ai which receives a Nogood containing an assignment of an agent Aj which
is not included in its Agent view, adds the assignment of Aj to the Agent view and
sends a message to Aj asking it to add a link between them i.e. inform Ai about all
assignment changes it performs in the future.

After an agent Ai sends a Nogood message to agent Ak, it removes the assignment
of Ak from its Agent view and tries to reassign its variable. This means that if agent
Ai still cannot find a consistent assignment for its variable, another Nogood will be
created, sent to an agent with higher priority than Ak and its assignment will again
be removed from Ais Agent view before Ai makes another attempt to assign its vari-
able. This process will continue until Ai succeeds to find a consistent assignment or its
Agent view empties and a no solution is declared. The code of the ABT algorithm
is presented in figure 1.

3.2 Improvements to ABT

The first improvement of the performance of ABT requires agents to read all mes-
sages they receive before performing computation [Yokoo et. al.1998]. A formal proto-
col for such an algorithm was not published. The idea is not to perform the procedure
check agent view until all the messages in the agent’s ’mailbox’ are read and the
Agent view is updated. Figure 2 (a) presents the difference in computation effort, be-
tween a version of ABT performing an assignment after each message received and a
version of ABT reading all messages before performing an assignment.

(a) (b)

Fig. 2. (a) Number of concurrent constraints checks performed by ABT performing assignments
after each message received and performing assignments after reading all messages, (b) Number
of concurrent constraints checks performed by ABT running on networks with different forms of
communication.

Although it is clear that a version of ABT that reads all messages received in every
step of computation can be much more efficient, such a property makes the efficiency of



ABT dependent on the form of communication. The consistency of the Agent view

held by an agent, with the actual state of the system before it begins the assignment
attempt is affected directly by the number and the relevance of the messages it re-
ceived up to this step. Figure 2 (b) presents the performance of ABT , solving the same
DisCSPs, on systems with different message delay including the results of ABT run-
ning on a DisCSP with random delay of values between 100 and 300 milliseconds.

In our results, as in [Fernandez et. al.2002], ABT performs worse in a random delay
system. These results are not surprising since for fixed delays an agent receives mes-
sages from all of its neighbors at about the same time, and can in most cases perform
the assignment while holding most of the relevant information. When the messages ar-
rive after a random delay, agents are more likely to respond to a single message, which
tends to deteriorate the algorithm’s performance. The most important conclusion from
Figures 2 is that the improvement that results from reading all incoming messages in
each cycle is washed out completely when messages have random delays. This was
also a major experimental result of [Fernandez et. al.2002], but, did not have a clear
explanation there.

Fig. 3. Number of concurrent constrains checks performed by ABT sending full Nogoods and
ABT resolving conflicting Nogoods.

The simplest form of ABT sends Nogoods that include the complete Agent view

of the sending agent. Although the algorithm instructs the agent to send back all in-
consistent subsets of the Agent view, [Yokoo et. al.1998,Yokoo2000] explains that
such a search for inconsistent subsets is computationally expensive. Consequently, it is
enough to send the complete content of the Agent view. The reason for this compu-
tation not to be essential can be shown by the following description. Assume agent Ai

sends back a Nogood to agent Aj , removes the assignment of Aj from its Agent view

and makes another attempt to reassign its variable. If a shorter inconsistent assignment
still exists in its Agent view, another Nogood will be sent to agent Aj−1 (assum-
ing agent Aj−1 is a neighbor of agent Ai). Let Al be the lower priority agent in the
Agent view of Ai, such that the removal of Al’s assignment enables Ai to assign its
variable. Then at the end of the above process a Nogood message will be sent to Al. In



– SBT:
1. done← false
2. if(first agent)
3. CPA← create CPA
4. assign CPA
5. while(not done)
6. switch msg.type
7. stop: done← true
8. backtrack: remove last assignment
9. CPA or backtrack: assign CPA

– assign CPA:
1. CPA← assign local
2. if(is consistent(CPA))
3. if(is full(CPA))
4. report solution

5. stop
6. else
7. send(CPA, next)
8. else
9. backtrack

– backtrack:
1. if(first agent)
2. CPA← no solution
3. stop
4. else
5. send(backtrack msg,previous agent)

– stop:
1. send(stop, all other agents)
2. done← true

Fig. 4. SBT algorithm

other words, a backjump operation is performed from Ai to Al. The gain in computing
the inconsistent subset that includes Al comes from avoiding the sending of Nogood

messages to all agents with lower priorities than Al. A method for resolving inconsis-
tent subsets of the Agent view, based on methods of dynamic backtrack, was presented
in [Bessiere et. al.2001]. In the DisDB algorithm of [Bessiere et. al.2001], agents hold
explanations for every value eliminated from their domain. When a backtrack operation
is performed the agent resolves its Nogood set by creating a Nogood containing the
union of all of its explanations, which is a set of conflicting assignments included in
its Agent view. Figure 3 presents a comparison of the computational performance of
ABT with full Nogoods and ABT resolving Nogoods by the DisDB method, on a
system with no message delay.

4 Synchronous Backtrak algorithms

4.1 Synchronous Backtrack (SBT)

The Synchronous Backtrack algorithm (SBT ), presented in figure 4, is a distributed
version of CBT [Prosser1993]. SBT has a total order among all agents, like ABT.



Agents exchange one partial solution that we term Current Partial Assignment

(CPA) which carries a consistent tuple of the assignments of the agents it passed so
far. The first agent initializes the search by creating a CPA, assigning its variable on
the CPA and sending the CPA to the next agent. Every agent that receives the CPA

tries to assign its variable without violating constraints with the assignments on the
CPA. If the agent succeeds to find such an assignment to its variable, it appends the
assignment to the tuple on the CPA and sends it to the next agent. If it cannot find
a consistent assignment, it sends the CPA back to the previous agent to change its
assignment, thus performing a chronological backtrack. An agent that receives a CPA

in a backtrack message removes the assignment of its variable and tries to reassign it
with a consistent value. The algorithm ends successfully if the last agent manages to
find a consistent assignment for its variable. The algorithm ends unsuccessfully if the
first agent encounters an empty domain.

4.2 Improvements to Synchronous search

SBT can be improved by adding to it some simple features of backjumping. As was
mentioned in section 1, these features exist in ABT, independently of its asynchronicity.
In the improved version of SBT, agents hold eliminating explanations for each value
eliminated from their domains, as in DisDB. When a backtrack operation is performed
the agent resolves its Nogoods creating a conflict set which is used to determine the
culprit agent to which the backtrack message will be sent. As a result the synchronous
algorithm gains the backjumping property. Eliminated values are returned to the domain
only after a new CPA is received. Values whose eliminating Nogoods are no longer
consistent with the partial assignment on the CPA are returned for evaluation. This
reduces the computation needed in each synchronous step.

(a) (b)

Fig. 5. (a) Number of constraints checks performed by SynCBJ SBT and ABT, (b) Total number
of messages sent by SynCBJ SBT and ABT.

The resulting Synchronous Conflict based Backjumping algorithm (SynCBJ)
is compared in Figure 5 to SBT and ABT , with a message delay of 0 and 100 mil-
liseconds. Figure 5(a) shows the computational effort and figure 5(b) presents the total



amount of messages sent during the algorithm run. The results presented in figure 5
show that using asynchronous search has no advantage in computational effort even on
systems with no message delay. ABT is outperformed by SynCBJ on systems with
some message delay. In terms of message load the cost of running synchronous search
is much lower than asynchronous search, as should be expected (see Figure 5(b)).

5 Discussion

Two families of search algorithms on distributed CSPs were presented, analyzed and
experimentally evaluated. Asynchronous backtracking (ABT) is able to perform a type
of dynamic backtrack and can resolve its Nogoods in order to store shorter versions
of them. Synchronous backtracking (SBT) can use explanations in order to generate a
conflict set that directs its backjumping step.

The experimental setup and the measures of performance for DisCSP algorithms
were analyzed in detail. The measure of concurrent constraints checks comes closest
to an implementation independent measure of computational effort in a concurrent en-
vironment. A simulator’s environment, beside being essentially non concurrent, was
shown to favor asynchronous algorithms by giving them the advantage of full informa-
tion on the current state of the search process. An advantage that contradicts the asyn-
chronous nature of the distributed system of a DisCSP. In order to test the concurrent
performance of the two families of distributed search algorithms, a realistic environment
was used. The experiments were performed on randomly generated DisCSPs, where the
difficulty of the problems spans a wide range including the phase transition region. The
system used message delays, either fixed or random, to test the asynchronous perfor-
mance of all versions of the algorithms. Multiple versions of both families of DisCSP
algorithms were run and their performance compared. The main result of all the ex-
periments is that the best versions of ABT perform no better than the best versions of
SBT , on random instances of DisCSP with randomly delayed messages.

6 Conclusions

Distributed search algorithms for solving a DisCSP s have two measures of perfor-
mance - time, which we measure in terms of computation effort and network load
[Lynch1997]. For distributed search the accepted approach is that the dominant measure
is that of computational effort. This was measured standardly by the number of cycles or
steps to complete the search [Lynch1997,Yokoo2000]. We measure the computational
effort in terms of concurrent constraints checks (CCCs) [Meisels et. al.2002] in order
to take in to account the computational effort required in each step. The present paper
achieved three goals:

1. It introduced improved versions of synchronous distributed search, in order to com-
pare asynchronous search to other efficient algorithms.

2. It experimented with all algorithms on a simulator that included message delays, in
order to be much closer to a realistic distributed environment.

3. It used randomly generated problems with variant tightness of constraints, so that
the difficulty of the problems to solve covered a wide range.



It is many times assumed that the cost in network load required for asynchronous
search is compensated by gains of computational efficiency. This common assump-
tion about distributed search on DisCSPs was found to be incorrect by our experi-
ments reported in section 3, 4. An improved synchronous algorithm performs equally
well as asynchronous search algorithms in terms of computational effort. In addition,
SBT loads the network with only one message at a certain time and its performance
is stable for a variety of communication qualities. Still, the idleness of the agents
during most of the run of synchronous search points in the direction of concurrent
search [Zivan and Meisels2002].

References

[Bessiere et. al.2001] C. Bessiere, A. Maestre and P. Messeguer. Distributed Dynamic Back-
tracking. Proc. Workshop on Distributed Constraints, IJCAI-01, Seattle, 2001.

[Fernandez et. al.2002] C. Fernandez, R. Bejar, B. Krishnamachari, K. Gomes Communication
and Computation in Distributed CSP Algorithms. Proc. Principles and Practice of Constraint
Programming, CP-2002, pages 664-679, Ithaca NY USA, July, 2002.

[Ginsberg1993] M. L. Ginsberg. Dynamic Backtracking. Jof Artificial Intelligence Research.,
pages 25-46, 1993.

[Lynch1997] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[Meisels et. al.2002] A. Meisels et. al. Comparing performance of Distributed Constraints Pro-

cessing Algorithms. Proc. DCR Workshop, AAMAS-2002 , pages 86-93, Bologna, July, 2002.
[Prosser1993] P. Prosser. Hybrid Algorithm for the Constraint Satisfaction Problem, Computa-

tional Intelligence, 9:268-299, 1993.
[Prosser1994] P. Prosser Binary constraint satisfaction problems: some are harder than others ,

Proc. ECAI-94, pp.95-99, 1994.
[Silaghi et. al.2001] M. C. Silaghi, D. Sam-Haroud and B. Faltings. Asynchronous Consistency

Maintenance. In 2nd Asia-Pacific IAT, pages 100-104, Maebashi, Japan, 2001.
[Silaghi2002] M.C. Silaghi Asynchronously Solving Problems with Privacy Requirements.

PhD Thesis,Swiss Federal Institute of Technology (EPFL), 2002.
[Smith1994] B. M. Smith. Phase Transition and the Mushy Region in CSP. In Proc. ECAI-94,

pages 100-104, 1994.
[Solotorevsky et. al.1996] G. Solotorevsky, E. Gudes and A. Meisels. Modeling and Solv-

ing Distributed Constraint Satisfaction Problems (DCSPs). Constraint Processing-96, New
Hamphshire, October 1996.

[Yokoo1992] M. Yokoo. Distributed Constraint Satisfaction for Formalizing Distributed Prob-
lem Solving. 12th International Conference on Distributed Computing Systems (ICDCS-92).,
pages 614-621, 1992.

[Yokoo et. al.1998] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. Distributed Constraint
Satisfaction Probelm: Formalization and Algorithms. IEEE Trans. on Data and Kn. Eng., 10(5):
673-685, 1998.

[Yokoo2000] M. Yokoo Distributed Constraint Satisfaction Problems. Springer Verlag, 2000.
[Yokoo2000a] M. Yokoo. Algorithms for Distributed Constraint Satisfaction: A Review. Autons

Agents Multi-Agent Sys 2000, 3(2): 198-212, 2000.
[Zivan and Meisels2002] R. Zivan and A. Meisels. Parallel Backtrack Search on DisCSPs. Proc.

AAMAS-2002 Workshop on Distributed Constraint Satisfaction, pages 202-208, Bologna, July,
2002.


