
Efficient Management of Multi-Linked Negotiation

Based on a Formalized Model

XIAOQIN ZHANG x2zhang@umassd.edu

Department of Computer and Information Science, University of Massachusetts at Dartmouth

VICTOR LESSER AND SHERIEF ABDALLAH lesser,shario @cs.umass.edu

Department of Computer Science, University of Massachusetts at Amherst

Abstract. AMulti-linked negotiation problem occurs when an agent needs to negotiate with multiple other

agents about different subjects (tasks, conflicts, or resource requirements), and the negotiation over one

subject has influence on negotiations over other subjects. The solution of the multi-linked negotiations

problem will become increasingly important for the next generation of advanced multi-agent systems.

However, most current negotiation research looks only at a single negotiation and thus does not present

techniques to manage and reason about multi-linked negotiations. In this paper, we first present a tech-

nique based on the use of a partial-order schedule and a measure of the schedule, called flexibility, which

enables an agent to reason explicitly about the interactions among multiple negotiations. Next, we

introduce a formalized model of the multi-linked negotiation problem. Based on this model, a heuristic

search algorithm is developed for finding a near-optimal ordering of negotiation issues and their

parameters. Using this algorithm, an agent can evaluate and compare different negotiation approaches

and choose the best one. We show how an agent uses this technology to effectively manage interacting

negotiation issues. Experimental work is presented which shows the efficiency of this approach.

Key words: multiple related negotiations, agent reasoning and control, conflict resolution, performance

optimization.

1. Introduction

Multi-linked negotiation describes a situation where one agent needs to negotiate
with multiple agents about different issues (tasks, conflicts, or resource require-
ments), and the negotiation over one issue affects the negotiations over other issues.
In a multi-task, resource-sharing environment, an agent needs to deal with multiple,
related negotiation issues including: tasks contracted to other agents, tasks requested
by other agents, external resource requirements for local activities, and interrela-
tionships among activities distributed among different agents.
Consider the following example shown in Figure 1, which is a simplified supply

chain containing four agents. The Consumer Agent represents the environment that
generates tasks to be completed by the other three agents. When a new task is
generated by the Consumer Agent, it indicates how much it is worth and its deadline.
When the Computer Producer Agent receives task Purchase Computer from the
Consumer Agent, it also needs to sub-contract parts of the task Get Hardware and
Deliver Computer to the Hardware Producer Agent and the Transporter Agent,
respectively. The following three negotiations are interrelated: the negotiation
between the Computer Producer Agent and the Consumer Agent on task

Autonomous Agents and Multi-Agent Systems, 10, 165–205, 2005

� 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

Purchase Computer, the negotiation between the Computer Producer Agent and the
Hardware Producer Agent on task Get Hardware, and the negotiation between
Computer Producer Agent and the Transporter Agent on task Deliver Computer.
How can the agent deal with these interrelated negotiations? One approach is to

deal with these negotiations independently ignoring their interactions.1 If these
negotiations are performed concurrently, there could be possible conflicts among the
solutions to these negotiations; hence the agent may not be able to find a combined
feasible solution that satisfies all constraints without re-negotiation over some al-
ready ‘‘settled’’ issues. For example, in Figure 1, suppose the Computer Producer
Agent negotiates with the Consumer Agent and promises to finish Purchase Computer
by time 20, and concurrently the Computer Producer Agent also negotiates with the
Transporter Agent about task Deliver Computer and gets a contract that task
Deliver Computer will be finished at time 30, then the Computer Producer Agent will
find it is impossible for task Purchase Computer be finished by time 20 given that its
subtask Deliver Computer will not be finished until time 30.
To reduce the likelihood that this type of conflict occurs, these negotiations could

be performed sequentially; the agent deals with only one negotiation at a time, and
later negotiations are based on the results of earlier negotiations. This sequential
process, however, is not a panacea. First of all, the negotiation process takes much
longer when all the negotiations need to be negotiated sequentially, potentially using
up valuable time (delaying when problem solving can begin) and reducing the po-
tential solution space. For example, in Figure 1, suppose the deadline for completion
of task Deliver Computer is 20, the same as task Purchase Computer. If the negoti-
ation on task Deliver Computer starts at 10 and finishes at time 12, then the exe-
cution of task Deliver Computer can only start after time 12. However, if the
negotiation on task Deliver Computer starts at time 3, there is a larger time slot for
the execution of task Deliver Computer; hence, it is easier for the negotiation on task
Deliver Computer to succeed. Additionally, when the negotiation deadline is taken
into consideration, a negotiation started later may lose any chance of success. For
instance, in Figure 1, suppose the Consumer Agent associates a negotiation deadline

Deliver_Computer

Purchase_Parts

Deliver_Product

Get_Hardware

processtime: 7

Purchase_Computer

Get_Hardware

Produce_Computer

Get_Software
Install_Software

enables
processtime: 3

processtime: 3

enables

enables

processtime: 6

Deliver_Computer

and

and

Consumer Agent Consumer Agent Consumer Agent

Hardware Producer Agent Computer Producer Agent

Transporter Agent

Figure 1. A supply chain scenario.

ZHANG ET AL.166

of 8 with the proposal of task Purchase Computer, if the Computer Producer Agent
replies to this proposal later than time 8 because it wants to settle its other negoti-
ations first, it cannot get the contract on task Purchase Computer accepted.
Second, even if all the negotiations are sequenced, there is no guarantee of an

optimal solution or even of any possible solution. This problem can occur if the
agent does not reason about the ordering of the negotiations and just treats them as
independent negotiations, with their ordering being random. In this situation, the
results from the previous negotiations may make later negotiations very difficult or
even impossible to succeed. For instance, in Figure 1, if the Computer Producer
Agent first negotiates about task Purchase Computer before starting the negotiations
on task Get Hardware and task Deliver Computer, and the promised finish time of
task Purchase Computer results in tight constraints on the negotiations on task
Get Hardware and task Deliver Computer, these negotiations may fail and the
commitment on task Purchase Computer would have to be decommitted from.
One additional problem is caused by the difficulty in evaluating a commitment

given that the result of later negotiations are unknown, and thus making it harder for
an agent to find a local solution that will contribute effectively to the construction of
a good global solution. For example, in Figure 2, agent A has two non-local tasks
(the tasks that are performed by other agents), task Ta12 contracted to agent B and
task Ta21 contracted to agent C. There is a ‘‘facilitates’’ relationship from Ta12 to
Ta21. If Ta12 could be finished before Ta21 starts, it would reduce the processing
time of Ta21 by 50%. Suppose agent A first negotiates with agent C and then
negotiates with agent B; as a result of the negotiation with agent C, it is decided that
Ta21 starts at time 20 and finishes by time 40, but then it is found through the
negotiation with agent B that task Ta12 could only be finished by time 25. Given this
later information, if the start of Ta21 is delayed to time 25, Ta21 actually could be
finished at time 35 because of the facilitates effect. This solution would not be found,
however, if the agent ignores the interactions among these negotiations.
These previous examples indicate how important it is for an agent to reason about

the interactions among different negotiations and manage them from a more global
perspective. If done effectively, this permits the agent to minimize the possibility of

negotiationnegotiation

enables

facilitates

NL NL

............

Agent A

Agent B Agent C

Ta12

Ta

Ta11 Ta12 Ta13 Ta21 Ta22

Tc_Plus

Ta21Tb

Ta1

Tb_Plus

Ta2

Tc
and

and

and

and
and

Figure 2. Negotiations linked by a ‘‘facilitates’’ relationship.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 167

conflicts among the different negotiations and thus achieve better performance.
Additionally, these examples show that it is difficult to deal with multi-linked
negotiation problems because:

1. There are possible conflicts among related negotiations. If not resolved, these
conflicts may cause the failure of the agent’s local plan or reduce the agent’s local
utility achievement.

2. There are uncertainties associated with negotiations. Since the agent does not have
perfect and complete knowledge of the other agents’ states, the result of a
negotiation is uncertain. The agent may have an estimation about the likely
outcome of the negotiation, but it needs to be prepared for different outcomes.

3. There is a cost for negotiation. On one hand, the agent needs to allocate valuable
computational and communication resources for negotiation. On the other hand,
the time spent on negotiation may affect the outcome of the negotiation. For
example, the longer time spent on negotiation may reduce the time available for
execution hence reducing the possibility of finding a solution. Similarly, a delayed
reply to a proposal may not be accepted if there are other agents who have already
replied to it earlier.

4. The negotiation process needs to be interleaved with the agent’s local planning and
scheduling process because the agent needs to find a feasible local solution that
satisfies all commitments and local constraints.

The multi-linked negotiation problem is not only a complicated problem, but
also an important one because it actually happens in a number of application
domains. For example, in a supply chain problem, negotiations go on among more
than two agents. The consumer agent negotiates with the producer agent, and the
producer agent needs to negotiate with the supplier agents. The negotiations be-
tween the producer agent and the supplier agents has a direct influence on the
negotiation between the producer agent and the consumer agent. Figure 3 shows a
supply chain example, where there are a number of companies, some of which
produce parts for computers and some of which assemble computers, where others
are distributors, stores and customers. Multi-linked problems occur throughout
this system. We will also present a detailed supply chain scenario with multi-linked
negotiations based on Figure 3 in Section 2, and use this scenario as an example
throughout this paper. Another example of multi-linked negotiation is a distrib-
uted sensor network [5]. There are multiple sensors distributed at different loca-
tions, each of which has different coverage. Multiple targets move through the
region and it takes a certain number (more than one) of sensors to track a target
so as to get sufficient sensor data for acceptable tracking quality. Which sensors
should be used to track which target during which time interval poses an inter-
esting multi-linked negotiation problem.
In general, a Multi-linked negotiation problem occurs when an agent needs to

negotiate with multiple other agents about different subjects, and the negotiation
over one subject has influence on the negotiations over other subjects. The com-
mitment of resources for one subject affects the evaluation of a commitment or the
construction of a proposal for another subject. To solve a multi-linked negotiation

ZHANG ET AL.168

problem, an agent needs to find an efficient approach, which includes a temporal
ordering of these negotiations and appropriate parameters for each feature in
negotiations, so as to minimize the conflicts and maximize the agent’s expected
utility. In this paper, we first explicitly address this multi-linked negotiation problem
and analyze it, then we develop a formalized model and a set of reasoning tools that
enable an agent to find an near-optimal solution for this problem.
In the remaining of this paper, we will first introduce a detailed multi-linked

negotiation scenario and basic assumptions in this work (Section 2). Next we will
present a formalized model for the problem is presented in Section 3 . Using this
model, the agent can find the best ordering of the negotiations and their parameters,
and hence increase its local utility achievement. A partial order schedule and a set of
related algorithms will be presented in Section 4, which are necessary for the agent to
reason about the time constraints and the flexibility of each negotiation. The partial
order schedule and the related reasoning tools also make parallel negotiations fea-
sible by eliminating potential conflicts. An example to show how this model works is
presented in Section 5. Three sets of experimental work are presented in Section 6.
Section 6.1 examines the performance of the heuristic algorithm, Section 6.2 shows
that this management technique for multi-linked negotiation leads to improved
performance, and Section 6.3 shows it is important for agents to reason about
flexibility in a multi-linked negotiation problem. Section 7 discusses related work,

Figure 3. Supply chain example.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 169

with special attention on the relationship between the approach presented in this
paper and another approach based on a combinatorial auction. Section 8 summa-
rizes this paper.

2. Supply chain example

In this section, we describe the supply chain example presented in Section 1 in greater
detail. This example will be used throughout the rest of this paper to explain the
multi-linked negotiation problem. However, the negotiation process and the fol-
lowing approach are domain-independent and are not restricted to this application.

2.1. Supply chain scenario

There are four agents in Figure 1:

1. Consumer Agent generates three types of new tasks: Purchase Computer task for
Computer Producer Agent, Purchase Parts task for Hardware Producer Agent, and
Deliver Product task for Transporter Agent.

2. Computer Producer Agent receives the Purchase Computer task from Consumer
Agent, and needs to decide if it should accept this task and, if it does, what the
promised finish time of the task should be. Figure 1 shows the local plan for
producing computers; it includes a non-local task Get Hardware that requires
negotiation with Hardware Producer Agent. It also includes a non-local task
Deliver Computer that requires negotiation with Transporter Agent.

3. Hardware Producer Agent receives two types of tasks: Get Hardware from Com-
puter Producer Agent and Purchase Parts from Consumer Agent. It need to decide
whether to accept a new task and what is its promised finish time.

4. Transporter Agent receives two types of tasks: Deliver Computer from Computer
Producer Agent and Deliver Product from Consumer Agent. It needs to decide
whether to accept a new task and what is its promised finish time.

We first define two generalized terms to make the following description easier. In
the following description, we will use the term contractor agent to refer to the agent
who performs the task for another agent and gets rewarded for the successful com-
pletion of the task; and contractee agent to refer to the agent who has a task that needs
to be performed by another agent and pays a reward to the other agent. The contractor
agent and the contractee agent negotiate about a task and a contract is signed (a
commitment is built and confirmed) if an agreement is reached during the negotiation.
In this work, the negotiation process between agents is based on an extended

contract net model [10, 13]:

1. Contractee agent announces a task by sending out a proposal.
2. Contractor agent receives this proposal, evaluates it, responds to it in one of three

ways: by accepting it, by simply rejecting it, or by rejecting it but at the same time
making a counter-proposal.

ZHANG ET AL.170

3. Contractee agent evaluates the responses, it either chooses to confirm an accepted
proposal, or chooses to accept a counter-proposal.

4. Contractee agent awards the task to the chosen contractor agent based on the
commitment (the mutually accepted upon proposal or counter-proposal) which is
confirmed by both agents; the negotiation process then ends successfully. If a
mutually agreed proposal/counter-proposal cannot be found, the negotiation
process fails.

This process can be extended to a multi-step process by introducing an extended
series of alternative proposals and counter-proposals. However, in this paper, we
only focus on the two-step (proposal, counter-proposal) negotiation process. The
implications of performing a multi-step negotiation instead of a two-step negotiation
can be found in [17].
A proposal which announces that a task (t) needs to be performed includes the

following attributes:

1. earliest start time (est): the earliest start time of task t; task t cannot be started
before time est.

2. deadline (dl): the latest finish time of the task; the task needs to be finished before
the deadline dl.

3. minimum quality requirement (minq): the task needs to be finished with a quality
achievement no less than minq.2

4. regular reward (r): if the task is finished as the contract requested, the contractor
agent will get reward r.

5. early finish reward rate (e): if the contractor agent can finish the task by the time
(ft) as it promised in the contract, it will get the extra early finish reward:
maxðe � r � ðdl� ftÞ; rÞ,3 in addition to the regular reward r.

6. decommitment penalty rate (p): if the contractor agent cannot perform the task as
promised in the contract (i.e. the task could not be finished by the promised finish
time), it pays a decommitment penalty (p � r)4 to the contractee agent. Similarly, if
the contractee agent needs to cancel the contract after it has been confirmed, it
also needs to pay a decommitment penalty (p � r) to the contractor agent.

When the potential contractor agent receives a task proposal, it evaluates it and
decides to either accept it or reject it. If it accepts this proposal, it needs to decide
what the promised finish time should be. If it rejects the proposal, it can either simply
say ‘‘no’’ or generate a counter-proposal which modifies some of the attributes in the
proposal to accommodate its local problem-solving context.
In the above discussion, we assume the negotiation is about a task that needs

to be performed; however, the negotiation can also be about a nonlocal resource
requirement necessary for the completion of a task. The agent can require a
resource during a time period and pay for this resource usage. In this situation,
some of the attributes specified in the proposal are different from those in the
above description,5 but the basic negotiation process is the same, and the
methodologies we discuss in this paper are also suitable for negotiation over
resources.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 171

2.2. Detailed example of a multi-linked negotiation problem

Suppose Computer Producer Agent has received the following two tasks in the same
scheduling time window:6

task name : Purchase Computer A

arrival time : 5

earliest start time : 10 ðarrival timeþ estimated negotiation time ð5ÞÞ7

deadline : 40

reward : r ¼ 10

decommitment penalty : p ¼ 0:5

early finish reward rate : e ¼ 0:01

task name : Purchase Computer B

arrival time : 7

earliest start time : 12 ðarrival timeþ estimated negotiation timeð5ÞÞ
deadline : 50

reward : r ¼ 10

decommitment penalty rate : p ¼ 0:6

early finish reward rate : e ¼ 0:005

The agent’s local scheduler8 reasons about these two new tasks according to the
above information: their earliest start times, deadline, estimated process times and the
rewards. It then generates the following agenda which includes the following tasks:

Agenda 2:1 ½10; 26� Purchase Computer A½26; 46� Purchase Computer B

In this agenda, task Purchase Computer A is scheduled during time range [10, 26],
and task Purchase Computer B is scheduled during time range [26, 46]. This agenda
is only a high level plan and does not include the detailed actions (methods) that
need to be executed. The Computer Producer Agent checks the local plans for these
tasks9 as shown in Figure 4 and finds there are five negotiations:

1. Negotiate with Consumer Agent about the promised finish time of Pur-
chase Computer A.10

2. Negotiate with Consumer Agent about the promised finish time of Pur-
chase Computer B.

3. Negotiate with Hardware Producer Agent about whether it can accept the task
Get Hardware A and if it accepts this task, what is the promised finish time.

4. Negotiate with Hardware Producer Agent about the task Get Hardware B, with
the same concerns as above.

ZHANG ET AL.172

5. Negotiate with Transporter Agent about whether it can accept the task
Deliver Computer A, and if it accepts this task, what is the earliest start time and
what is the promised finish time.

These five negotiations are all related. The potential relationships among multiple
negotiation issues can be classified as two types. One type of relationship is the
directly linked relationship: negotiations A and B are directly linked if negotiation B
affects negotiation A directly because the subject in negotiation B is a necessary
resource (or a subtask) of the subject in negotiation A. The characteristics (such as
cost, duration and quality) of subject B directly affect the characteristics of subject A.
For example, as pictured in Figure 1, the negotiation on the task Purchase Com-
puter A is directly linked to the negotiation on the two tasks: Get Hardware A and
Deliver Computer A. If either one of these two tasks fails, the task Purchase Com-
puter A cannot be accomplished. Furthermore, when and how these two tasks are
performed also affects the way that the task Purchase Computer A is going to be
accomplished. In the same way, the negotiations about Get Hardware B and Pur-
chase Computer B are directly linked.
Another type of relationship is the indirectly linked relationship: negotiation A and

B are indirectly linked if the subjects in these negotiations compete for use of a
common resource. For example, as shown in Figure 4, besides the task Pur-
chase Computer A, Computer Producer Agent has another contract on task Pur-
chase Computer B. Because of the limited capability of the Computer Producer
Agent, when task Purchase Computer A will be performed affects when task Pur-
chase Computer B can be performed. The negotiation about task Purchase Com-
puter A and the negotiation about task Purchase Computer B are indirectly linked.
The essential difference between directly linked and indirectly linked relationships

is the following. If negotiation A and B are directly-related, then the failure of one

enables enables

est:10

Install_Software_A

Produce_Computer_B

Get_Software_A

enables

Get_Hardware_A

enablesenables
Produce_Computer_A

Get_Hardware_B

enables
Install_Software_B

Get_Software_B

negotiation with Hardware Producer est: earliest start time
dl: deadline

nonlocal task
local task

negotiation with Consumer Computer Producer Agent

est:12
Purchase_Computer_A Purchase_Computer_B

Shipping_Computer_BDeliver_Computer_A

C

process-time:3

process-time:3

process-time:6 process-time:10

process-time:3

process-time:7

process-time:3

process-time:7

total-process-time:16 total-process-time:20
dl:40 dl:50

negotiation with Transporter

A

D

EB

and and

and and

Figure 4. Computer producer agent’s tasks.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 173

negotiation may cause the subject (task or resource) in the other negotiation to be
infeasible or unnecessary. For example, if the subject B is a subtask of A, then the
failure of negotiation on B will cause the task A to be infeasible if there is no other
task that could substitute for task B; likewise, the failure of negotiation A will make
the subtask B unnecessary. If negotiation A and B are indirectly linked, then there is
no such influence between them. In the formalized model presented in Section 3, we
will show that these two different relationships are represented differently.

2.3. Analysis of the problem

In general, multi-linked negotiation (including both the directly linked and the
indirectly linked relationships) describes situations where one agent needs to
negotiate with multiple agents about different issues, where the negotiation over
one issue influences the negotiations over other issues. The characteristics of the
commitment on one issue affects the evaluation of a commitment or the con-
struction of a proposal for another issue. How can the agent deal with these
interrelated negotiations? Two questions need to be answered. The first question is
in what order should the negotiations be performed. Should all the negotiations be
performed concurrently or in sequence? If in sequence, in what sequence? The
second question is how the agent assigns values for those attributes (also referred as
‘‘features’’) in negotiation, such as the earliest start time, deadline, so as to mini-
mize the potential conflicts among negotiations and maximize the utility of the
agent as a result of multiple negotiations.
In a multi-linked negotiation problem, there are potentially many choices to order

negotiations, such as doing some of them in parallel and some of them in sequence.
Why is the order of negotiation important? First, because each negotiation issue has
a negotiation deadline, set by the contractee agent, if the contractor agent cannot
reply to a task proposal before the negotiation deadline, the negotiation fails. One
reason for missing the negotiation deadline is that the contractor agent is busy on
other negotiations before it decides to perform this negotiation. Furthermore, even if
the negotiation is completed before its deadline, when the negotiation is started
affects the likelihood of a successful negotiation. For example, when there are several
potential contractor agents, the earlier a response to negotiation is received, the more
likely the offer is accepted. Likewise, the earlier the contractee agent initiates the
negotiation, the more likely the contractor agent is to accept the proposal, since the
earlier a negotiation is started, the larger the space (time range) for the agent to find a
feasible solution. For instance, given that the deadline for task Get Hardware A is
30, if the negotiation on this task finishes at time 10, there is a 20-time-unit range for
Hardware Producer Agent to find a time in its local schedule to execute this task; if
the negotiation finishes at time 20, Hardware Producer Agent only has 10-time-unit
range to find a suitable time slot to execute this task. So the order of negotiation
directly affects the outcome of the negotiation.
Meanwhile, in a multi-linked negotiation problem, there are several features that

the agent needs to negotiate over for each subject. For a task proposal, the con-
tractee agent needs to find the earliest start time and deadline to request for the
task, how much reward to pay for this task, the early reward rate, and the

ZHANG ET AL.174

decommitment penalty, etc. The contractor agent needs to decide the promised
finish time. Some of these features are related to the features of the subjects in
other negotiations. For example, the deadline proposed for task Get Hardware A
affects the earliest start time of task Deliver Computer A, and the deadline of task
Deliver Computer A affects the promised finish time for task Purchase Computer A.
The agent needs to find appropriate values for these features to avoid conflicts
among them and to make sure there is a feasible local schedule to accommodate all
the local tasks and commitments. Furthermore, the values of these features
influence the outcomes of the negotiation and the agent’s local utility. For
example, the greater the reward is, the greater the likelihood that the task will be
accepted by the contractor agent; however, the contractee agent’s local utility
decreases as the reward it pays to the contractor agent increases. Also, the later the
deadline for task Get Hardware A is, the more likely that this task will be accepted
by the Hardware Producer Agent; however, the consequence of a later deadline for
task Get Hardware A is that there is less freedom for scheduling task
Deliver Computer A, and the promised finish time for task Purchase Computer A is
pushed back later, hence reducing the early reward that the Computer Producer
Agent may get. A good negotiation strategy for a multi-linked negotiation problem
should take an end-to-end perspective that accounts for all negotiations, and
provides the agent with an appropriate order of all negotiations and a feature
assignment (a set of assigned values) for those attributes under negotiation, so as
to avoid the conflicts among negotiations and optimize utility.

3. Model of the problem

In this section, we first introduce a formalized model of the multi-linked negotiation
problem and then present a heuristic search algorithm to find a
near-optimal negotiation approach: a feature assignment and an order for a group of
negotiations that an agent needs to conduct in order to optimize the expected utility.

3.1. Definition of the problem

A multi-linked negotiation problem occurs when an agent has multiple negotiations
that are interrelated.

Definition 3.1. A multi-linked negotiation problem is defined as an undirected graph
(more specifically, a forest as a set of rooted trees): M ¼ ðV; EÞ, where V ¼ fvg is a
finite set of negotiations, and E ¼ fðu; vÞg is a set of binary relations on V . ðu; vÞ 2 E
denotes that negotiation u and negotiation v are directly-linked. The relationships
among the negotiations are described by a forest, a set of rooted trees fTig. There is a
relation operator associated with every non-leaf negotiation v (denoted as qðvÞ),
which describes the relationship between negotiation v and its children. This relation
operator has two possible values: AND and OR.
Figure 5 shows the model of the multi-linked negotiation problem (described in

Figure 4) for Computer Producer Agent, the problem includes five negotiations. This

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 175

model can also handle negotiating with multiple agents on one subject. For example,
Figure 6 shows there are two transport agents: TAgent 1 and TAgent 2, both can be
a potentially contractee for task Deliver Computer A. The negotiation with
TAgent 1 and the negotiation with TAgent 2 can be modeled as C1 and C2 under C
with a relation operator OR.
The subject in a negotiation v may be a task to be allocated or a resource to be

acquired through negotiation.
From an agent’s viewpoint, there are two types of negotiations:

1. Incoming negotiation: The negotiation about a task proposed by another agent,
or a resource requested by another agent. For example, negotiation A
(Purchase Computer A) and D (Purchase Computer B) in Figure 4 are incoming
negotiations for Computer Producer Agent.

2. Outgoing negotiation: The negotiation about a task that needs to be sub-con-
tracted to another agent, or a resource requested for a local task. For example,
issue B (Get Hardware A), C (Deliver Computer A) and E (Get Hardware B) in
Figure 4 are outgoing negotiations for Computer Producer Agent.

Definition 3.2. A negotiation v is successful if and only if a commitment has been
established and confirmed for the subject in this negotiation by those agents which
are involved in this negotiation.

Definition 3.3. A leaf node v is task-level successful if and only if v is successful; A
non-leaf node v is task-level successful if and only if the following conditions are
fulfilled:

C

A D

B E

AND AND

Figure 5. Interrelationships among negotiations.

A

C1 C2

B C
or

and

C2: negotiation with TAgent_2 about Deliver_Computer_A

C1: negotiation with TAgent_1 about Deliver_Computer_A

A: negotiation on Purchase_Computer_A

Figure 6. Negotiation with multiple agents on one subject.

ZHANG ET AL.176

� v is successful;
� all its children are task-level successful if qðvÞ ¼ AND; or at least one of its children

is task-level successful, if qðvÞ ¼ OR.

As in Figure 5, negotiation A is task-level successful if and only if negotiation A is
successful, and negotiations B and C are also successful. In this case, Computer
Producer Agent can actually perform task Purchase Computer A successfully.
Each negotiation viðvi 2 V Þ is associated with a set of attributes Ai ¼ faijg. Each

attribute aij either has already been determined or needs to be decided. There are two
types of attributes: the attributes-in-negotiation (the features (attributes) of the
subject to be negotiated, such as task deadline, reward (price), quantity, etc.), and the
attributes-of-negotiation itself (i.e., negotiation start time, negotiation deadline, etc.).
The attributes in negotiation are in general domain dependent. In this supply chain
example, the following attributes (this is a complete and formal presentation com-
pared to those mentioned in Section 2.1) need to be considered:

1. time range ðstðviÞ; dlðviÞÞ: the time range associated with a task contains the start
time (stðviÞ) and the deadline (dlðviÞ). The task can only be performed during this
range ðstðviÞ; dlðviÞÞ to produce a valid result.

2. duration (dðviÞ): the process time requested to accomplish this task.
3. flexibility (f ðviÞ): the flexibility is defined based on the time range and the dura-

tion: f ðviÞ ¼ ðdlðviÞ�stðviÞ�dðviÞÞ
dðviÞ . The flexibility is an important feature because it

directly affects the success probability of the negotiation (see detail in Section 5).
4. finish time (ftðviÞ): the promised finish time for the task.
5. regular reward (rðviÞ): if the contractee agent can finish the task by the deadline

dlðviÞ, it gets reward rðviÞ.
6. early reward rate (eðviÞ): if the contractee agent can finish the task earlier than the

deadline dlðviÞ, it gets extra reward eðviÞ � ðdlðviÞ � ftðviÞÞ.
7. decommitment penalty(bðviÞ): the penalty paid to the other agent which is in-

volved in negotiation vi, when the agent decommits after vi is successful.
8. task-level successful reward (cðviÞ): the agent’s utility increases by the amount of

cðviÞ when vi is a root of a tree and is task-level successful. It is calculated by
subtracting the cost of vi, including the local cost and sub-contracting cost (the
reward paid to other agents), from the total reward of vi (regular reward plus early
reward).

The attributes-of-negotiation itself describes the negotiation process, they are
domain in-dependent:

1. negotiation duration (dðviÞ): the time needed for negotiation vi either to success-
fully complete or fail. It is assumed that negotiation duration is part of the agent’s
knowledge.12

2. negotiation start time (aðviÞ): the start time of negotiation vi. aðviÞ is an attribute
that needs to be decided by the agent.

3. negotiation deadline (�ðviÞ): negotiation vi needs to be finished before this deadline
�ðviÞ. The negotiation is no longer valid after time �ðviÞ, which is the same as a

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 177

failure outcome of this negotiation. For example, if task vi is proposed for
negotiation, the contractee agent needs to reply before time �ðviÞ. Otherwise, this
task proposal is no longer valid and the contractee agent would think the con-
tractor agent is not interested in this task. Furthermore, even if the agent starts the
negotiation before �ðviÞ, it is not necessarily true that all times before �ðviÞ are
equally good. Usually, a negotiation that is started earlier has a better chance to
succeed for two reasons: the other party considers this issue before other later
arriving issues, and this issue has a larger time range for negotiation. This rela-
tionship is described by the function fi that takes aðviÞ as one of its parameters.

4. success probability (psðviÞ): the probability that vi is successful. It depends on a set
of attributes, including both attributes-in-negotiation (i.e., reward, flexibility, etc.)
and attributes-of-negotiation (i.e., negotiation start time, negotiation deadline,
etc.). How these attributes affect the success probability can be described as a
function fi (an example of this function is introduced in Section 5), which maps
the values of the attribute aij, j ¼ 1; 2; :::; k, to psðviÞ: psðviÞ ¼ fiðai1; ai2; :::; aikÞ. aij
ðj ¼ 1; :::; kÞ represent the attributes that affect the success probability of this
negotiation. This function is domain dependent, the agent can construct this
function through the following approaches. One approach is that for the agents to
communicate meta-level information before negotiation, such as the slack time in
the agent’s schedule, the number of other competitors, etc. This information could
be used by the agent to construct the function more accurately. Another approach
is for an agent to learn to construct and adjust the structure of this function based
on its previous negotiation experience, provide that the similar negotiation situ-
ations are encountered multiple times. Reinforcement learning is a suitable
technique for this problem.

The attributes above are similar to those used in project management [7],
however, the multi-linked negotiation problem cannot be reduced to a project
management problem or a scheduling problem. As Figure 7 shows, the multi-
linked negotiation problem includes two sets of interrelated objects, the set of
negotiations (shown in the upper box) and the subjects in these negotiations
(shown in the lower box). The negotiations are interrelated and the subjects are
interrelated, also the attributes of negotiations and the attributes of the subjects are
interrelated too. The links among those attributes show the interrelationships
among these attributes. For example, the negotiation start time and the negotiation
deadline affect the success probability, the time range, the regular reward, and the
earlier reward rate also affect the success probability. To solve a multi-linked
negotiation problem, an agent needs to find a negotiation solution that includes the
ordering of these negotiations (negotiation ordering) and appropriate values
assigned to those attributes-in-negotiation (feature assignment). The goal is to find
a negotiation solution that optimizes the agent’s expected utility in these negoti-
ations. The success probabilities, the task level success rewards and the decom-
mitment penalties all contribute to the evaluation of a negotiation solution. The
negotiation ordering determines the negotiation start time and/or the negotiation
deadline of each negotiation, this ordering process can be viewed as a scheduling
process of these negotiations. Part of the feature assignment process is to find

ZHANG ET AL.178

consistent time ranges for those subjects in negotiations, which is another sched-
uling-like process. However, the whole multi-linked problem is not a classic
scheduling problem given these two sets of interrelated objects. These extra
dimensional complexities and interrelationships distinguish it from the classic
project management/scheduling problem, where there is only one set of interrelated
objects that need to be arranged in order.

3.2. Description of the solution

Given this multi-linked negotiation problem M ¼ ðV; EÞ, an agent needs to make a
decision about how the negotiations should be performed. The decision concerns the
negotiation ordering and the feature assignment, and they are interrelated. The
values assigned to some attributes, such as reward and flexibility, will affect the
probability of the success of the negotiation, and hence will affect the ordering of the
negotiations.

Definition 3.4. A negotiation ordering / is a directed acyclic graph (DAG),
/ ¼ ðV ;E/Þ. If e : ðvi; vjÞ 2 E/, then negotiation vj can only start after negotiation vi
has been completed. e : ðvi; vjÞ is referred as a partial order relationship (POR), e. A
negotiation ordering can be represented as a set of PORs, feg.

Definition 3.5. A negotiation schedule NSð/Þ contains a set of negotiations fvig.
Each negotiation vi has its negotiation start time aðviÞ/ and its negotiation finish time
eðviÞ/ that is calculated based on its negotiation duration dðviÞ and its negotiation
start time aðviÞ/.
Using the topological sorting algorithm, a negotiation schedule NSð/Þ can be

generated from a negotiation ordering / assuming all negotiations started at their

Get_Hardware_A

Get_Software_A

[10, 24]

[10, 24]

Install_Software_A

[24, 30]

Deliver_Computer_A

[30, 40]

Purchase_Computer_A finish at time 40

Get_Hardware_B

Get_Software_B

[12, 26]

[12, 26]

Install_Software_B

[26, 44]

Shipping_Computer_B

[29, 50]

Purchase_Computer_B finish at time 50

Evaluation of
a negotiation solution:

Attributes of each negotiations:

Attributes in negatiation of A and D:

Attributes in negotiation of B, C, and E:

and

A

B C

D

E

Negatiations: A, B, C D, and E

Subjects in negotiations

A, B, C, D, and E

promised finish time

tasklevel successful rewar d

time range

regular reward

earlier reward rate

decommitment penalty

negotiation ordering

feature assignment

negotiation start time

negotiation deadline

success probability

C

D

A

E

B

Figure 7. The structure of multi-linked negotiation problem.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 179

earliest possible times.13 Given this assumption and a start time s14 for a set of nego-
tiations, the negotiation schedule generated from a negotiation ordering is unique.
As shown in Figure 8, suppose the negotiation start time s ¼ 0, and the negoti-

ation duration of each negotiation is the same dðviÞ ¼ 5, then the following nego-
tiation schedule is generated for negotiation ordering #3 in Figure 8 according to the
assumption that every negotiation starts at its earliest possible time:

A½0; 5�B½5; 10�C½5; 10�D½0; 5�E½5; 10�

A½0; 5� means that negotiation A starts at time 0 and finishes at time 5.

Definition 3.6. Given a start time s, a negotiation ordering / is valid if for every
negotiation issue vi, the finish time eðviÞ/ is no later than the negotiation deadline
�ðviÞ.

Definition 3.7. A feature assignment u is a mapping function that assigns a value lij
to each attribute aij that needs to be decided in the negotiation. A feature assignment
u is valid if the assigned values of those attributes are consistent with each other.
‘‘Consistent’’ is interpreted differently for different features. For time-related

features, ‘‘consistent’’ means that given the assigned values of those time constraints,
there exists at least one feasible local schedule for all tasks. The partial order
scheduler and a related toolkit presented in Section 4 are used to test if the assigned
values of the time-related features are consistent. For monetary features such as
reward or price, ‘‘consistent’’ means that the sum of the sub-contracting cost paid to
other agents is less than the total expected reward. Algorithm A.1 in the Appendix
handles the consistent check for all types of features.

Definition 3.8. A negotiation solution ð/;uÞ is a combination of a negotiation
ordering / and a valid feature assignment u.

The evaluation of a negotiation solution is based on the expected task-level suc-
cessful rewards and decommitment penalties given all possible negotiation outcomes
for each negotiation. A negotiation has two possible outcomes: success and failure.

Definition 3.9. A negotiation outcome v for a set of negotiations fvjg; ðj ¼ 1; . . . ; nÞ
is a set of numbers fojgðj ¼ 1; . . . ; nÞ; oj 2 f0; 1g. oj ¼ 1 means vj is successful, oj ¼ 0
means vj fails. There are a total of 2n different outcomes for n negotiations, denoted
as v1; v2; . . . ; v2n .

A CB

D E

A CB

D E

A CB

D E

Ordering #1 Ordering #2 Ordering #3

Figure 8. Three possible negotiation orderings.

ZHANG ET AL.180

Definition 3.10. The expected value of a negotiation solution ð/;uÞ, denoted as
EVð/;uÞ, is defined as:

EVð/;uÞ ¼
X2n

i¼1

P ðvi;uÞ � ðRðvi;uÞ þ Cðvi;/;uÞÞ

P ðvi;uÞ denotes the probability of the outcome vi given the feature assignment u.

Pðvi;uÞ ¼
Qn

j¼1 pijðuÞ

pijðuÞ ¼ psðvjÞ; ðpsðvjÞ ¼ fjðuÞÞ if oj 2 vi ¼ 1
1� psðvjÞ if oj 2 vi ¼ 0

�

Rðvi;uÞ denotes the agent’s utility increase given the outcome vi and the feature
assignment u. Rðvi;uÞ ¼

P
j cuðvjÞ, vj is a root of a tree and vj is task-level successful

according to the outcome vi. Cðvi;/;uÞ denotes the decommitment penalty
(Cðvi;/;uÞ <¼ 0) according to the outcome vi, the negotiation ordering / and the
feature assignment u. Cðvi;/;uÞ is the sum of the decommitment penalties of those
negotiations, which are successful, but their root nodes are not task-level successful,
and such situations are unknown before these negotiation are started.
Cðvi;/;uÞ ¼

P
j buðvjÞ, vj represents every negotiation that fulfills all the following

conditions:

1. vj is successful according to vi;
2. the root of the tree that vj belongs to isn’t task-level successful according to vi;
3. according to the negotiation ordering /, there is no such negotiation vk existing

that fulfills all the following conditions:
(a) vk and vj belong to the same tree;
(b) vk gets a failure outcome according to the outcome vi;
(c) vk makes it impossible for rootðvjÞ to be task-level successful;
(d) the negotiation finish time of vk is no later than the negotiation start time of vj

according to the negotiation ordering /.

3.3. Description of a heuristic search algorithm

Based on the above definition, we present an algorithm that find a nearly optimal (as
we show in the experimental results) negotiation solution for a multi-linked nego-
tiation problem M ¼ ðV; EÞ.
Given a multi-linked negotiation problem M ¼ ðV; EÞ, the start time for negoti-

ation s, a set of valid feature assignments x ¼ fukg, k ¼ 1; . . . ;m, the complete
search algorithm evaluates each pair of negotiation ordering and valid feature
assignment ð/i;ukÞ, and then return the best one.15 The exponential complexity of
this complete algorithm prevents it from being used for real-time applications when
the number of negotiations and the number of valid feature assignments are large;
hence a heuristic search algorithm has been developed.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 181

The heuristic search for the near-optimal negotiation solution is broken into two
parts. One is to find a near-optimal negotiation schedule; the other one is to find a
near-optimal feature assignment for a given negotiation schedule. The search for the
optimal negotiation schedule is based on a simulated annealing search. Given a
negotiation ordering /, randomly pick a POR e, if e 2 E/, remove it from E/;
otherwise add it into E/.

16 A new negotiation ordering /new is now generated. If the
negotiation schedule NSð/newÞ is better than NSð/Þ, move to /new; otherwise, move
to /new with some probability less than 1. This probability decreases exponentially
with the ‘‘badness’’ of this move. Three heuristics have been added to this simulated
annealing process:

1. Record the best negotiation schedule so far found. When the search process
ends, return the best negotiation schedule ever found rather than the current
one.

2. Instead of randomly deciding whether to add a POR or remove a POR, use a
parameter (add por probability) to control the probability of the operation ‘‘add’’
or ‘‘remove’’. Actually, this parameter controls the tradeoff between sequencing
versus parallelizing the negotiation schedule (adding a POR forces two negotia-
tions to be serialized).

3. Instead of completely randomly choosing a POR to change from current nego-
tiation ordering, evaluate every POR e according to how the value of the nego-
tiation schedule changes by adding this POR e to an empty POR set. The
probability of adding POR e to the current POR set or removing POR e from the
current POR set depends on this evaluation. A POR e with a higher positive
evaluation has a higher probability of being added, and has a lower probability of
being removed.

Consider an example with three negotiations A, B and C. Suppose the negotiation
start time s ¼ 0, and the negotiation duration of each negotiation is the same
dðviÞ ¼ 5, the evaluation of POR (A ! B) is calculated as: the value of the negoti-
ation schedule: A½0; 5�B½5; 10�C½0; 5� minus the value of the negotiation schedule:
A½0; 5�B½0; 5�C½0; 5�.
The search for the near-optimal feature assignment is based on a hill climbing

search. Randomly pick another feature assignment uk. If it is better than current
one, move to uk. After considering the characteristics of this problem, the following
heuristics have been added to this search process:

1. According to the generation process, the change of those valid feature assign-
ments is continuous. Based on this observation, a number of sample points with
equal distance (the distance is adjustable, denoted as sample step) in between can
be selected from all the valid feature assignments and evaluated. Hill climbing
search then can be performed for each sample point.

2. Given current chosen feature assignment, the possible operations include: moving
to left and moving to right. If there is a better selection than current one, move to
the better selection; otherwise the search stops and a local maxima is found.

3. Compare all local maxima and return the best one.

ZHANG ET AL.182

Both search algorithms are implemented with search limitation threshold: after
certain amount of search effort, the algorithm will stop and report the result.
Experiments were performed to test how well these combined heuristic algorithms
work, and as we will describe in 6.1, the experimental work shows that the heuristic
search algorithm finds solutions very close to the best solutions found by the com-
plete search algorithm with significantly less effort.

4. Partial order schedule and related algorithms

In this section, we will introduce a partial order scheduler which allows the agent to
reason about the time-related constraints and the flexibility associated with each
negotiation issue. This toolkit is used by the agent to find valid feature assignments,
which are part of the input for the heuristic search algorithm described in Section
3.3.

4.1. Partial order schedule

A partial-order schedule is the basic reasoning tool that we use for interrelated
negotiations. Here we present the formalization of the partial-order schedule and use
examples to explain how it works for a multi-linked negotiation. Figure 9 shows the
partial-ordered schedule generated for the example in Figure 4.
A partial order schedule17 represents a group of tasks with specified precedence

relationships among them using a directed acyclic graph: PS = (T,R). T ¼
ftjt is a taskg, where each vertex in T represents a task, and R ¼ fðs; tÞjs; t 2 T Þg,
where each edge ðs; tÞ in R denotes the precedence relationship between task s and
task t (P ðs; tÞ), which means that task s has to be finished before task t can be
started.
A Task is represented as a node in the graph; it is the basic element of the schedule.

A task t needs a certain amount of processing time, also referred as its duration
(t:process time). A task can be a local task or a non-local task; a local task is per-

Get_Software_A

Install_Software_A

Install_Software_B Shipping_Computer_B

Get_Software_B

Deliver_Computer_A

est_o:10; dl_o:70; pt:3

est:17; dl:34; eft:20; lst:31est_o:10; dl_o:40; pt:7

est:10; dl:31; eft:17; lst:24

est:10; dl:31; eft:13; lst:28

est_o:10; dl_o:40; pt:6

est:20; dl:40; eft:26; lst:34

est_o:10; dl_o:40; pt:3

est_o:12; dl_o:50; pt:3

est:12; dl:37; eft:15; lst:34

est_o:12; dl_o:50; pt:7

est:12; dl:37; eft:19; lst:30

est_o:12; dl_o:50; pt:3

est:19; dl:40; eft:22; lst:37

est_o:12; dl_o:50; pt:10

est:22; dl:50; eft:32; lst:40

Get_Hardware_A

Get_Hardware_B

est: earliest start time
dl:deadline
pt: process time

dl_o: outside_deadline
est_o: outside earliest start time

eft: earliest finish time
lst: latest start time

Figure 9. The partial order schedule of Computer Producer Agent.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 183

formed locally (i.e., task Get Software A and task Shipping Computer B) and a non-
local task (i.e., task Get Hardware A and task Deliver Computer A) is performed by
another agent; hence, it does not consume local process time. The pretasks of task t is
a set of tasks that need to be finished before t can start: PreðtÞ ¼ fsjs 2T; ðs; tÞ 2 Rg;
t can start only after all tasks in PreðtÞ have been finished. For example, the pretasks
of task Install Software A includes task Get Hardware A and task Get Software A.
The posttasks of task t is a set of tasks that only can start after t has been finished:
PostðtÞ ¼ frjr 2T; < t; r >2 Rg. For example, the posttasks of task Install Soft-
ware B includes task Shipping Computer B.
A task t has constraints of earliest start time (t:est) and deadline (t:dl). The earliest

start time of a task t (t:est) is determined by the earliest finish time of its pretasks
(eft½PreðtÞ�) and its outside earliest start time constraint (t:est o)18:

t:est ¼ maxðeft½PreðtÞ�; t:est oÞ:

The earliest finish time of a task t (t:eft) is defined as:

t:eft ¼ t:est þ t:process time

The earliest finish time of a set of tasks T (eft½T �) is defined as the earliest possible
time to finish every task in the set T ; it depends on the earliest start time and the
duration of each task. For example, in Figure 9, the outside earliest start time con-
straint for task Install Software A is 10 (same as its super task Purchase Computer
A), the earliest finish time for its pretasks is 17 (assume Get Hardware A could be
finished at its earliest possible time), then the earliest start time for task
Install Software A is 17.
The deadline of task t (t:dl) is determined by the latest start time of its posttasks

(lst½PostðtÞ�) and its outside deadline constraint (t:dl o):

t:dl ¼ minðlst½PostðtÞ�; t:dl oÞ;

The latest start time of a task t (lstðtÞ) is defined as:

t:lst ¼ t:dl� t:process time;

The latest start time of a set of tasks T (lst½T �) is defined as the latest time for the
tasks in this set to start without any task missing its deadline. It depends on the
deadline and the duration of each task.
The flexibility of task t represents the freedom to move the task around in this

schedule.

F ðtÞ ¼ t:dl� t:est � t:process time
t:process time

For example, F ðGet Software AÞ ¼ ð40� 10� 3Þ=3 ¼ 9.
A feasible linear schedule is a total ordered schedule of all tasks, that fulfills the

following conditions:

ZHANG ET AL.184

� Each task t takes n (n>=1, if t is interruptible; otherwise, n=1.) time periods
ðpti; i ¼ 1; . . . ; nÞ for execution, Pi pti ¼ t:processtime.

� All precedence relationships are valid.
� All earliest start time and deadline constraints are valid.

A partial-order schedule is a valid if and only if there exists at least one feasible
linear schedule that can be produced from this partial order schedule without
additional constraints and with the interruptible execution assumption.19

Without additional constraints and with the interruptible execution assumption,
for a task t with the range [est, dl], no matter when task t is executed during this
range, if there exists at least one feasible linear schedule that can be produced from
this partial schedule, then the range [est, dl] for task t is a free range because task t
can be executed during any period in this range.
Without additional constraints and with the interruptible execution assumption,

for a set of tasks tiði ¼ 1; 2; . . . ; nÞ, with the range ½esti; dli�ði ¼ 1; 2; . . . ; nÞ,
respectively, no matter what time ti is executed during the range ½esti; dli�, if there
exists at least one feasible linear schedule that can be produced from this partial
schedule, then the ranges ½esti; dli�ði ¼ 1; 2; . . . ; nÞ for tasks tiði ¼ 1; 2; . . . ; nÞ are
consistent ranges. Negotiation over tasks tiði ¼ 1; 2; . . . ; nÞ can be performed in
parallel using these consistent ranges without worrying about conflicts. Figure 10
shows the consistent ranges for the tasks in the supply chain example. This means,
the negotiation for task Get Hardware A, Get Hardware B, and Deliver Com-
puter A can be performed in parallel using the time range [10, 24], [12, 26] and [30,
40]. Figure 11 presents a feasible linear schedule given these consistent ranges. The
two numbers in a box below a task represent the consistent range for this task, and
the two numbers above a task indicate the start time and the finish time for this
task in one linear schedule. It should be noticed that for each task the start time

C

Get_Hardware_A

Deliver_Computer_A

Get_Hardware_B

[12, 37] [12, 26]

Get_Software_A

Install_Software_A

Get_Software_B

Install_Software_B Shipping_Computer_B

[22, 50]

[12, 26] [12, 37]

[10, 31] [10, 24]

[10, 31] [10, 24]

[17, 34] [24, 30] [20, 40] [30, 40]

[19, 40] [26, 44] [29, 50]

Purchase_Computer_B finish at time 50

Purchase_Computer_A finish at time 40

B

E

Figure 10. The consistent ranges for tasks in negotiation: Get_Hardware_A, Get_Hardware_B, and

Deliver_Computer_A.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 185

and the finish time fall into its consistent range, they also can be moved freely
during this range.
The partial order schedule work is related to the Graphical Evaluation and Review

Technique(GERT) [8] which is used for project scheduling and management. The
major difference between the GERT work and ours is that the GERT work is not
oriented to negotiation; all activities are local and can be managed with authority.
Thus, with GERT there is no reasoning about free range, consistent ranges and
schedule flexibility that we feel are critical for an agent to effectively manage multi-
linked negotiation. Without reasoning of these factors, it is difficult to negotiate
efficiently on multiple related issues.

4.2. Algorithms

We have built the following algorithms to support the negotiation based on the
partial order schedule. We only describe the functions of these algorithms, the de-
tailed processes are presented in [16]. The complexities of these algorithms are
provided accordingly, n represents the number of input tasks.

Algorithm 4.1. Propagate EST DL (Complexity: Oðn2Þ).
Given a set of tasks with the outside constraints of the earliest start times and
deadlines, durations and precedence relationships, this procedure finds the earliest
start time (t:est) and the deadline (t:dl) for each task t according to the definitions in
Section 4.1.

Algorithm 4.2. Get Earliest Finish Time (Complexity: Oðn2Þ)
Given a set of tasks T , each task t has earliest start time (t:est) and its duration
(t:process time), this procedure calculates the earliest finish time of a set of tasks T
(eft½T �).

Algorithm 4.3. Get Latest Start Time (Complexity: Oðn2Þ)
Given a set of tasks T , each task t has its deadline (t:dl) and its duration
(t:process time), this procedure calculates the latest start time of a set tasks T
(lst½T �).

Get_Software_A

[10, 24]

B E C

Get_Hardware_A Get_Hardware_B Deliver_Computer_A

10 13 13 16 24 27

Install_Software_A

[24, 30]

Install_Software_B

[12, 26]

Get_Software_B

40303027

Purchase_Computer_A finish at time 40 Purchase_Computer_B finish at time 40

[26, 44]

Shipping_Computer_B

[29, 50]

[10, 24] [12, 26] [30, 40] start time

consistent range

finish time

Figure 11. The feasible linear schedule for those tasks in Figure 10.

ZHANG ET AL.186

Algorithm 4.4. Feasible Schedule (Complexity: Oðn4Þ)
Given a partial order schedule (T, R), each task has its earliest start time and
duration with respect to its pretask, posttask and its outside constraints, this pro-
cedure generates a feasible linear schedule if the partial order schedule is valid;
otherwise it reports failure.

Theorem 4.1. If there exists a feasible linear schedule, the Feasible Schedule algorithm
can find one.
The proof of this theorem is presented in [16].
Besides Algorithm 4.4, we have also developed Algorithm 4.5 to answer the

question of whether a partial order schedule is valid without trying to find a feasible
linear schedule.

Algorithm 4.5. Range Evaluation (Complexity: Oðn2Þ)
This procedure determines if a partial order schedule is valid.

The basic idea of Algorithm 4.5 is to check every possible time range ½est; dl� by
constructing all possible combinations of every task’s earliest start time and deadline.
For all tasks falling into this range, if the sum of process times of these tasks is
greater than the time available ðdl� estÞ, there is no feasible linear schedule;
otherwise, there exists a feasible linear schedule, because every task t can find a place
between its earliest start time and its deadline.
This proves the following theorem:

Theorem 4.2. Apartial order schedule is valid if and only if the procedure 4.5 returns true.

Using the above procedure, we have constructed the following algorithm to find
the free range of a non-local task used for the negotiation.

Algorithm 4.6. Find NL Range (Complexity: Oðn2Þ).
Given a partial order schedule ðT ;RÞ containing a task nlt, this procedure finds the
largest free range for task nlt.

If there is more than one non-local task, we need to sort them according to some
characteristics (i.e., flexibility, importance, difficulty of negotiation, etc.), and work on
them one by one. When the Find NL range procedure works on one task nlt i, the
range for those tasks before it (nlt 1; . . ., nlt ði� 1Þ) has already been decided and
cannot be changed. The range for those tasks after it (nlt ðiþ 1Þ; . . .) are set to a range
that is as small as possible, so as to allow this task nlt i to have the most freedom.
All of the above algorithms and procedures provide a toolkit for the agent to

reason about its proposals and evaluate counter-proposals from other agents.

5. Example

In this section, we demonstrate how the definition and the algorithm work on the
supply chain examples in Figure 4.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 187

To make the output easier to understand, only negotiation A (Purchase Com-
puter A), B (Get Hardware A) and C (Deliver Computer A) are considered in the
following example. For incoming negotiation A, regular reward rðAÞ ¼ 19, the
attribute that needed to be decided is the promised finish time ft; the task-level
successful reward depends on the promised finish time ft:

cðvÞ ¼ rðvÞ þ eðvÞ � ðdlðvÞ � ftðvÞÞ:
For outgoing negotiation B and C, the attributes needed to be decided are the start
time (st) and the deadline (dl). It is assumed that the negotiation durations are already
known to the agent, dðAÞ ¼ 3, dðBÞ ¼ 4, dðCÞ ¼ 4. The negotiation start times need to
be decide by the agent as part of the problem of constructing a negotiation ordering.
It is also assumed that the success probability depends on the flexibility f ðvÞ, which is
calculated based on the time range ðstðvÞ; dlðvÞÞ and the process time dðvÞ

f ðvÞ ¼ dlðvÞ � stðvÞ � dðvÞ
dðvÞ

� �
:

psðvÞ ¼ pbsðvÞ � ð2=pÞ � ðarctanðf ðvÞ þ cÞÞÞ

pbs is the basic success probability of this negotiation v when the flexibility f ðvÞ is very
large. c is a constant parameter used to adjust the relationship. In this example, the
following functions are used to determine the success probabilities for B and C:

psðBÞ ¼ pbsðBÞ � ð2=pÞ � ðarctanðf ðBÞ þ 2:5ÞÞ;
psðCÞ ¼ pbsðCÞ � ð2=pÞ � ðarctanðf ðCÞ þ 5ÞÞ;
pbsðBÞ ¼ 0:95; pbsðCÞ ¼ 0:99:

The different constant parameters for psðBÞ (2.5) and psðCÞ (5) specify that issueC has a
higher success probability than issueB given the same flexibility, as shown in Figure 12.
The following parameters are randomly generated: the success probability of A, the
negotiation deadline, the early reward rate of A, and the decommitment penalty.
For every attribute that needs to be decided: start time (st), deadline (dl) and the

promised finish time (ft), the agent can find its maximum possible range using the
partial-order schedule as shown in Figure 13. The agent searches over the entire
possible value space (Appendix, Algorithm A.1), and use the partial-order schedule
to test if a feature assignment is valid. A set of valid feature assignments is found and
used to find the optimal negotiation solution combining ordering constraints and
feature assignment.
Table 1 shows the output of the complete search algorithm (see Appendix, Algo-

rithm A.3) on six different cases in Figure 5, based on different negotiation deadlines,
early reward rates and decommitment penalties. In both cases 1 and 2, the negotiation
deadline � ¼ 6 is used, which results in a negotiation ordering that has the three
negotiations performed in parallel. In case 2, A has a higher earlier reward rate eðAÞ,
and all negotiations have lower decommitment penalties b than in case 1, so the
negotiation solution in case 2 arranges task A to finish 21 time units earlier than the
requested deadline, and earns an extra rewardof 4.0. In exchange,B andChave smaller

ZHANG ET AL.188

flexibilities f ðBÞ and f ðCÞ, hence lower success probability psðBÞ and psðCÞ. In cases 3
and 4, the negotiation deadline � ¼ 9. In case 3,A has amuch lower success probability
psðAÞ than in case 4, so negotiationA is scheduled before negotiationB andC. In cases 5

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14

su
cc

es
s

pr
ob

ab
ili

ty

flexibility

success probability depends on flexibility

Ps(B)=0.95*(2/pi)*atan(f(B)+2.5)
Ps(C)=0.99*(2/pi)*atan(f(C)+5)

Figure 12. Success probability depends on flexibility.

Get_Software_A

Install_Software_A

Install_Software_B

Get_Software_B

[10, 31]

[17, 34]

[12, 37]

[19, 40] [22, 50]

Get_Hardware_A

[10, 31]

Get_Hardware_B

[12, 37]
D Purchase_Computer_B finish at time 50

A Purchase_Computer_A finish at time 40

B

E

C

Deliver_Computer_A

[20, 40]

Shipping_Computer_B

Figure 13. Partial-order schedule.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 189

T
a
b
le

1
.
E
x
a
m
p
le
s
o
f
o
p
ti
m
a
l
n
eg
o
ti
a
ti
o
n
so
lu
ti
o
n
s.

N
eg
o
ti
a
ti
o
n

d
ea
d
li
n
e
(�
)

v
E
a
rl
y
re
w
a
rd

ra
te

ðeð
A
ÞÞ

D
ec
o
m
m
it

p
en
a
lt
y
(�
)

N
eg
o
ti
a
ti
o
n

sc
h
ed
u
le

et
¼

d
l
–
ft

E
a
rl
y
re
w
a
rd

ðer
Þ¼

eðA
Þ�

ðd
l
–
ft
Þ

F
le
x
ib
il
it
y

f
ðvÞ

S
u
cc
es
s

p
ro
b
a
b
il
it
y
p
s
ðv
Þ

#
1

A
0
.0
1
2

2
2
.2

A
[0
–
3
]

0
0

0
.9

�
¼

6
B

1
.3
2

B
[0
–
4
]

3
.0

0
.8
4

C
1
.3
2

C
[0
–
4
]

0
.8
3

0
.8
8

#
2

A
0
.1
8
9

1
.9
5

A
[0
–
3
]

2
1

4
.0

0
.9
2

�
¼

6
B

0
.1
2

B
[0
–
4
]

1
.0

0
.7
8

C
0
.1
2

C
[0
–
4
]

0
.5

0
.8
8

#
3

A
0
.1
1
7

1
6
.6

A
[0
–
3
]

0
0

0
.1
9

�
¼

9
B

0
.9
9
1

B
[3
–
7
]

3
.0

0
.8
4

C
0
.9
9

C
[3
–
7
]

0
.6
7

0
.8
8

#
4

A
0
.0
0
6

1
6
.6

A
[4
–
7
]

0
0

0
.6
4

�
¼

9
B

0
.9
9

B
[0
–
4
]

2
.4
3

0
.8
3

C
0
.9
9

C
[0
–
4
]

0
.6
7

0
.8
9

#
5

A
0
.0
4
3

1
7
.7

A
[0
–
3
]

0
0

0
.1
5

�
¼

11
B

1
.0
6

B
[3
–
7
]

2
.4
3

0
.8
3

C
1
.0
6

C
[7
–
1
1
]

0
.8
3

0
.8
8

#
6

A
0
.1
4
2

1
2
.6

A
[8
–
1
1
]

9
1
.3

0
.8
4

�
¼

11
B

0
.7
5

B
[0
–
4
]

1
.4
3

0
.8
0

C
0
.7
5

C
[4
–
8
]

1
.0

0
.8
9

ZHANG ET AL.190

and 6, the negotiation deadline � ¼ 11 and negotiation A, B and C are sequenced
according to the success probabilities; the negotiation with the lower success proba-
bility starts earlier. In case 6, A has a higher earlier reward rate eðAÞ, and all negotia-
tions have lower decommitment penalties b than case 5, so the negotiation solution in
case 6 arranges task A to finish 9 time units earlier than the requested deadline; this
earns an extra of reward 1.3. In exchange, B and C have smaller flexibilities f ðBÞ and
f ðCÞ and hence lower success probabilities psðBÞ and psðCÞ. It is also important to
notice that in all cases, B gets larger flexibility than C, but has a similar success
probability to that of C. This occurs because it is much easier for C to achieve a
successful negotiation according to the function that defines the relationship between
the success probability and the flexibility. This result demonstrates that this type of
reasoning is possible given the formal model described in Section 3.

6. Experimental work

We have implemented all the algorithms and reasoning tools described in previous
sections. To evaluate how these mechanisms work, we have built those agents that
described in the supply chain scenario (Section 5). These agents are implemented
using JAF (Java Agent Framework)[4], which provides the basic functions such as
communication and execution, for the agent, so we can focus on building the
negotiation component. The experiments are performed in the multi-agent system
simulator (MASS) [4], which provides a concrete, re-runnable, well-defined envi-
ronment to test multi-agent negotiation. We designed and performed three sets of
experiments for different purposes as described below.

6.1. Performance of heuristic algorithm

The first purpose is to test how well the heuristic algorithm works compared to the
complete search algorithm. The experimental setting is based on the example de-
scribed in Section 5. New tasks were randomly generated with decommitment pen-
alty b 2 ½0; 25�, early finish reward rate e 2 ½0; 0:2�, and deadline dl 2 ½60; 70�, and
arrived at the contractee agents periodically. We use the same task structures as
described in Figure 4, tasks vary with randomly generated parameters. This scenario
represents a class of problems where one agent needs to deal with both directly
related and indirectly related negotiation problems. The deadlines of tasks are
randomly generated from a range, which allows the agent to choose different
negotiation orderings. The following values (see Algorithm A.4 for more details)
were used in these experiments: add por probability ¼ 0:55, TEMP MAX ¼ 5;
TEMP STEP ¼ 0:1; sample step ¼ 10, search limit ¼ 106.
Table 2 shows the performance of this heuristic search algorithm compared to the

complete search algorithm. The quality of the negotiation solution found is very
close to the best solution found by the complete search. This heuristic algorithm
saves a large amount of search effort compared to the complete search when the
number of negotiations and the number of possible feature assignments increase.
The heuristic search spends more effort than the complete search when the search

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 191

space is very small (with a few negotiations and a few of feature assignments). This
problem can be fixed by choosing the values of the search parameters dynamically
according to the size of current search space, instead of using the fixed values as we
did in these experiments. For example, when the number of negotiations (NN) and
the number of valid feature assignments (NF) is small, we can set the search limit as
a small number so that the search can stop earlier; because a good-enough solution
can be found with less search effort in a small search space.

6.2. Different negotiation strategies

The second purpose is to test how different negotiation strategies affect the agent’s
performance under multi-linked negotiation situation. We compare the negotiation
strategy generated from the reasoning based on the formalized model with some
other simpler strategies. Under this experimental setup, Computer Producer Agent
needs to deal with multi-linked negotiations related to the incoming task
Purchase Computer and the outgoing task Get Hardware and Deliver Computer. The
following three different negotiation strategies were tested:

1. Sequenced negotiation. The agent deals with the negotiations one by one, first the
outgoing negotiations, then the incoming negotiations. The finish time promised is
the same as the deadline requested from the other agent, and the outgoing
negotiations get the largest possible flexibilities.

2. Parallel negotiation. The agent deals with the negotiations in parallel. It arranges
reasonable flexibility (1.5, in this experiment) for each outgoing task, and based

Table 2. Performance of heuristic search algorithm (NN: Number of negotiations; NF: Number of valid

feature assignments (the data points are grouped according to NN and NF); Quality: the quality of the

approach found by the heuristic search compared to the best approach found by the complete search (with

quality normalized to 1.0); CS: the number of search steps of the complete search. HS: the number of

search steps of the heuristic search; Ratio: the ratio of heuristic search steps to complete search steps. DS:

Number of data samples).

NN NF Quality CS HS Ratio DS

3 [0, 50) 0.982 336 520 1.547 89

[50, 100) 1.000 832 590 0.709 3

5 [0, 50) 1.000 1759 1967 1.119 48

[50, 100) 0.998 3861 1766 0.457 6

6 [0, 50) 1.000 9353 1869 0.200 43

[50, 100) 0.998 19502 1734 0.089 111

[100, 150) 0.998 31086 1674 0.054 123

[150, 200) 0.996 44058 1674 0.038 108

[200, 250) 0.995 57253 1692 0.030 88

[250, 300) 0.994 70292 1670 0.024 57

[300, 350) 0.997 82736 1638 0.020 46

[350, 400) 0.995 95213 1644 0.017 28

[400, 450) 0.994 108185 1662 0.015 25

[450, 500) 0.998 121479 1667 0.014 17

ZHANG ET AL.192

on this arrangement, the finish time of the incoming task is decided and promised
to the contractee agent.

3. Decision-based negotiation. The agent deals with the negotiation as the best
negotiation solution generated by the complete search algorithm.

The entire experiment contains 40 group experiments. Each group experiment has
the system running for 1000 time clicks for three times and each time Computer
Producer Agent uses one of the three different approaches. During 1000 time clicks,
there are 60 new tasks received by Computer Producer Agent. Table 3 shows the
comparison of Computer Producer Agent’s performance using different strategies.
When the agent uses the sequenced negotiation strategy, more tasks are canceled
because of the missed negotiation deadlines. When the agent uses the parallel
negotiation strategy, the agent pays a higher decommitment penalty because the
failure of the sub-contracted task prevents the incoming task to be task-level suc-
cessful. The decision-based approach is obviously better than the other two
approaches.21 It chooses a negotiation strategy dynamically according to negotiation
deadlines and other attributes. Under this experimental setup, it chooses the case
where all negotiations are performed in parallel about 13% of the time; it chooses the
case where all negotiations are performed sequentially about 38% of the time, and
the other times it chooses the case where some negotiations are performed in parallel.
This strategy enables the agent to receive more early reward and pay fewer
decommitment penalties.
The experimental result shows that in a multi-linked negotiation situation, it is

very important for the agent to reason about the relationship among different
negotiations and make a reasonable decision about how to perform negotiation. This
decreases the likelihood of the need for decommitment from previously settled
negotiations and increases the likelihood of utility gain.

6.3. Experiments on flexibilities

The third purpose is to study how the different flexibility policies in negotiation,
which involve different types of reasoning strategies, affect the agent’s performance.
The experimental environment is set up based on the scenario described in Figure 14.
It is a simplified scenario from the example shown in Section 2. This scenario rep-
resents a class of problem where one agent needs to deal with both directly and
indirectly related negotiation problems. New tasks were randomly generated with

Table 3. Comparison of computer producer agent’s performance using different negotiation strategies.

Policy Task canceled Decommit penalty Early reward Utility

Sequenced 37.25 73.82 0 358.09

Std.Dev. 2.6 11.8 0 57.4

Parallel 23.70 333.20 29.06 385.20

Std.Dev. 2.6 47.6 17.0 86.8

Decision-based 25.78 56.65 185.79 779.16

Std.Dev. 2.4 23.5 47.8 62.3

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 193

decommitment penalty rate p 2 ½0; 1�, early finish reward rate e 2 ½0; 0:1�, and
deadline dl 2 ½45; 105� (this range allows different flexibilities available for those sub-
contracted tasks), and arrived at the contractor agents periodically. The local
scheduler of the agent schedules all incoming new tasks occurring in a scheduling
time window according to their earliest start times, deadlines, process times and
rewards and generates an agenda (such as agenda 2.1 on p. 7). From this agenda, the
agent can find the scheduled finish time of each task. It could continue the negoti-
ation about these incoming tasks just based on the information from this agenda
without further reasoning about the detailed plan for each task (actually, that is what
the agent does when using the ‘‘Earliest-Finish-Time Policy’’ and the ‘‘Deadline
Policy’’). At the same time, if the local plan of these accepted tasks involves any non-
local task nlt, then the Find NL Range procedure (Algorithm 4.6) is used to find the
earliest start time and the deadline of the task nlt. The agent would then start
negotiation with the other agent about task nlt based on this time range. The entire
experiment contains 32 group experiments. Every group experiment runs 3 times for
1000 time clicks each, each time using one of the three different polices (All agents
use the same policy at the same time).
In this experiment, Computer Producer Agent needs to deal with the multi-linked

negotiations related to the incoming task Purchase Computer and the outgoing task
Get Hardware. The following three different negotiation policies were tested:

1. Earliest Finish Time Policy: the agent finds the scheduled finish time of the task
from its agenda and promises it as the finish time in the contract with the intention
of maximizing the early finish reward. In the example of Section 2.2, Computer
Producer Agent will accept both task Purchase Computer A and task Pur-
chase Computer B, with the promised finish time 26 and 46, respectively,
according to agenda 2.1 on page 7.

2. Deadline Policy: The agent promises the finish time that is the same as the deadline
of the task with no consideration of the early finish reward. In the example of

min

Purchuse_Computer

min

Sell_Computer

Install_Software

Get_Hardware

enables

enables

Get_Software

Shipping_Computer
enables

Produce_Computer

Purchuse_Computer

Purchase_Parts

......

Get_Hardware Purchase_Parts

Produce_Hardware Produce_Parts

Consumer Agent

Hardware Producer Agent

Computer Producer Agent

Figure 14. Three agents scenario.

ZHANG ET AL.194

Section 2.2, Computer Producer Agent will accept both task Purchase Computer A
and task Purchase Computer B, with the promised finish time 40 and 50,
respectively, according to their deadline requests.

3. Flexibility Policy: the agent analyzes its detailed partial-order schedule. If non-
local tasks are found, it arranges for reasonable flexibility (1, in this experiment)
for each non-local task, and based on this arrangement, the finish time of the
incoming task is decided and promised to the contractee agent. In the example of
Section 2.2, Computer Producer Agent will accept both task Purchase Computer A
and task Purchase Computer B. The promised finish time for task Pur-
chase Computer A is 39, and the promised finish time for task Purchase Com-
puter B is 40, according to the feasible schedule shown in Figure 15.

In all three cases above, the multiple negotiations are performed concurrently
based on the free ranges found by the partial-order scheduler. However, with the first
two policies, the agent does not reason about the interaction among negotiations or
manage the flexibilities for each negotiation.
Table 4 shows the comparison of the agents’ performance using different policies.

For the Computer Producer Agent (CPA), who has multi- linked negotiations, the
flexibility policy is obviously better than the other two policies; it gives the agent higher
utility because it generates more early reward and it causes fewer decommitment
penalties.22 For the Hardware Producer Agent (HPA), the Earliest Finish Time Policy
and the Flexibility Policymake no difference in the agent’s decision making processes,
since the agent has no sub-contracted task that needs consideration. The reason that

Get_Software_A

[10, 24]

Get_Hardware_A Get_Hardware_B Deliver_Computer_A

10 13 13 16 24 27

Install_Software_A Install_Software_B

[12, 26]

Get_Software_B

40303027

Purchase_Computer_B finish at time 40

Shipping_Computer_B

[10, 24] [12, 26] [27, 39]

[24, 27] [26, 30] [30, 40]

Purchase_Computer_A finish at time 39

B: process time 7 E: process time 7 C: process time 6

consistent range

start time finish time

Figure 15. The feasible schedule with flexibility of 1 for each non-local task.

Table 4. Comparison of performance using different negotiation policies in multi-linked negotiation.

Policy Tasks

received

Tasks

accepted

Tasks

canceled

Early

finished

Decommit

penalty

Early

reward

Utility

CPA Earliest finish time policy 60 59 27 33 123 283 391

CPA Deadline policy 60 60 0.5 0 2.9 0 413

CPA Flexibility policy 60 60 1.7 53 8.3 297 697

HPA Earliest finish time policy 87 87 27 29 0 36 268

HPA Deadline policy 84 84 9.6 0 0 0 256

HPA Flexibility policy 87 87 11 17 0 32 294

CPA: Computer Producer Agent; HPA:Hardware Producer Agent.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 195

the Earliest Finish Time Policy generates less utility for HPA is that because the CPA
cancels more task requests (because the finish times that the HPA could provide are
too late for CPA who also uses the Earliest Finish Time Policy at this time), and hence
the HPA has fewer tasks to perform and gains less reward. Because the CPA is
involved in the multi-linked negotiation, it pays lots of decommit penalties when it
adopts the Earliest Finish Time Policy when it finds that the finish time it promised
cannot be fulfilled. For the HPA, who does not need sub-contract task to other agents,
the Earliest Finish Time Policy produces more utility than theDeadline Policy because
it brings some early reward without paying any decommit penalty. These experiments
shows that in a multi-linked negotiation situation, it is very important for the agent to
reason about the relationships among different negotiations and maintain reasonable
flexibility for them. This type of reasoning decreases the likelihood of decommitment
from previously settled negotiations and thus gains more utility.

7. Related Work

To our knowledge, there is no other work that has addressed the directly linked rela-
tionship in the negotiation process. There is some work that takes into account the
indirectly linked relationship among multiple negotiations such as the distributed
meeting scheduling [12] problem and the distributed resource allocation problem [2].
However, those problems are different from our problem in the following ways: the
negotiation is cooperative by nature and the agent can altruistically withdraw its
request to help others succeed; the tasks are simple, no need for subcontracting; no time
pressure on negotiation and no penalty for decommitment. The negotiation problem
presented in this paper is much more complicated. Additionally, in these works, the
agents do not explicitly reason about the relationships among different negotiations, in
order to propose offers or counter-offers (choose the appropriate parameters in the
offer) to minimize the conflict and optimize the combined outcome. The ordering of
different negotiations is not taken into consideration in either of these approaches,
which we feel is important for the agent to find a good negotiation approach. Sand-
holm [9] has developed a complex contract type – ‘‘clustering- swap-multi-agent’’ that
allows tasks to be clustered, and then swapped between agents and even circulated
among agents. This work deals with indirectly linked negotiations by introducing
complicated contract types, however it does not reason about the interrelationship
among tasks and the influence of the temporal constraints on tasks as in our work.
A combinatorial auction could be another approach to multi-linked negotiation

problem, in which there are multiple items for sale, participants who may place bids
on arbitrary subsets of those items, and an auctioneer who must determine which
awardable combination of bids maximizes revenue. It allows agents to select a shared
plan for the group through a distributed computation process [6]. It is also used to
form a supply chain [15]. However, we do not feel that combinatorial auction is a
panacea for this multi-linked negotiation problem or a better approach than the
approach we described in this paper given the following reasons.
First of all, in combinatorial auction, the agent does not reason about the ordering

of negotiations, since all items are announced at the same time, meaning all issues are

ZHANG ET AL.196

negotiated concurrently. However, this assumption does not fit with the directly
linked negotiation situation. For instance, in this PCT example shown in Figure 16,
the Computer Producer Agent receives a task proposal Purchase Computer (A) from
the Consumer Agent. To accomplish this task, the Computer Producer Agent needs to
subcontract task Get Hardware (B) and task Deliver Computer (C). If we put this
example into the combinatorial auction framework, we will find that there is no way
that these three negotiation issuesA, B, andC can be performed concurrently without
conflict. Using the combinatorial auction model with time constraints [6], the Com-
puter Producer Agent needs to first announce the two tasks Get Hardware and
Deliver Computer, and wait for other agents to bid for these two tasks, and then select
the combined bids with consistent time constrains and minimized cost. Based on these
selected bids, the Computer Producer Agent can go back to negotiate with the Con-
sumer Agent. Using this model, the ordering of negotiations A, B and C is always
(B,C)! A. This could be a solution, but by no means to be the best solution under all
circumstances. As we have analyzed before and also as the experimental results
shown, the agent should dynamically choose the negotiation ordering based on the
negotiation deadlines, decommitment penalties, the estimations of successful prob-
abilities, and other environmental context so as to maximize the expected utility.
However, the combinatorial auction model neither reasons about these attributes nor
provides the agent with the flexibility to choose from different negotiation orderings.
This limitation prevents the agent from finding a better negotiation solution.
Second, the agent using a combinatorial auction model neither actively reasons

about the interrelationships among these related negotiation nor tries to direct the
negotiations to a hopefully optimal solution, but just waits passively and select the
solution from whatever is available, which does not guarantee finding a (good)
solution. Let us continue with the previous example, using the combinatorial auction
model, the Computer Producer Agent simply announces the two tasks Get Hardware
and Deliver Computer and waits for the other agents’ bids. When the Hardware
Producer Agent and the Transporter Agent construct their bids for these two tasks
respectively, they have no idea of how these two tasks relate to each other, all they
can do is to construct the bids based on their local problem solving context. Suppose
based on the ‘‘first come, first serve’’ rule, these two agents arrange these new tasks
after their current tasks. Assume that the bid from the Hardware Producer Agent is
‘‘Get Hardware, cost $100, time range: 10–17’’ based on its current task finishes at 10
and it takes 7 time units to perform task Get Hardware, and the bid from the
Transporter Agent is ‘‘Deliver Computer, cost $5, time range: 15–21’’ based on its
current task finishes at 15 and it takes 6 time units to perform task Deliver Computer.
However, based on these two bids, the Computer Producer Agent cannot find a
consistent solution because there is no time left for the task Install Software.
Actually the solution does exist if the Transporter Agent would leave some slack time
before starting task Deliver Computer. The Transporter Agent does not have the
necessary information that leads to this decision. To solve this problem in combi-
natorial auction, it can be requested that the contractee agent generate all possible
bids and send them all to the contractor agent. However, this solution causes large
amount of communication (as shown in Figure 16, upper part), and large number of
bids makes the winning-determination (WD) process more difficult and time-

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 197

C
on

su
m

er
 A

ge
nt

P
ur

ch
as

e_
P

ar
ts

H
ar

dw
ar

e
P

ro
du

ce
r

A
ge

nt
T

ra
ns

po
rt

er
 A

ge
nt

D
el

iv
er

_C
om

pu
te

r
G

et
_H

ar
dw

ar
e

C
om

pu
te

r
P

ro
du

ce
r

A
ge

nt
pr

oc
es

s-
ti

m
e:

 7

P
ur

ch
as

e_
C

om
pu

te
r

G
et

_H
ar

dw
ar

e

P
ro

du
ce

_C
om

pu
te

r

G
et

_S
of

tw
ar

e
In

st
al

l_
So

ft
w

ar
e

en
ab

le
s

pr
oc

es
s-

ti
m

e:
 3

pr
oc

es
s-

ti
m

e:
 3

en
ab

le
s

en
ab

le
s

pr
oc

es
s-

ti
m

e:
 6

D
el

iv
er

_C
om

pu
te

r

an
d

an
d

C
an

 y
ou

 d
o

it
 d

ur
in

g
ti

m
e

10
-2

5
an

d
w

it
hi

n
co

st
 $

11
0?

C

A

I
ca

n
do

 it
 in

 o
ne

 o
f t

he
 fo

ll
ow

in
g

w
ay

s:

B

I
ca

n
do

 it
 in

 o
ne

 o
f t

he
 fo

ll
ow

in
g

w
ay

s:
{$

10
0,

 1
0–

17
},

 {
$1

05
 1

1–
18

}
{$

10
3,

 1
2–

19
}

...
...

,{
$8

0,
 3

0–
37

}.
...

..

{$
5,

 1
5–

21
},

 {
$6

 1
6–

22
},

{$

7,
 1

7–
23

}
...

...
,{

$4
, 3

0–
36

}.
...

..

C
an

 y
ou

 d
o

it
 d

ur
in

g
ti

m
e

28
-4

0
an

d
w

it
hi

n
co

st
 $

8?

C
om

bi
na

to
ri

al
 A

uc
ti

on
 A

pp
ro

ac
h

M
ul

ti
li

nk
ed

 N
eg

ot
ia

ti
on

 A
pp

ro
ac

h

C
om

bi
na

to
ri

al
 A

uc
ti

on
 A

pp
ro

ac
h

F
ig
u
re

1
6
.
C
o
m
p
a
ri
so
n
o
f
th
e
co
m
b
in
a
to
ri
a
l
a
u
ct
io
n
a
p
p
ro
a
ch

w
it
h
th
e
m
u
lt
i-
li
n
k
ed

n
eg
o
ti
a
ti
o
n
a
p
p
ro
a
ch

o
n
a
su
p
p
ly

ch
a
in

ex
a
m
p
le
.

ZHANG ET AL.198

consuming.23 This example shows that combinatorial auction is not a suitable model
for multi-linked negotiation with complicated task relationships. In comparison, in
our approach (as shown in Figure 16, lower part), the Computer Producer Agent,
who has the most complete information, leads the negotiation by analyzing the
relationships among negotiations and arranging appropriate time ranges for related
subjects in negotiation, which resulting in a more efficient negotiation process and a
better solution in the end.
Thirdly, the general WD problem for combinatorial auction is NP-complete [3].

Current WD algorithms [11, 3] are based on depth-first search and using different
types of heuristics. So, from the computational complexity perspective, combina-
torial auction and our approach are at the same level of complexity.
The above analysis shows that combinatorial auction could be another approach

to multi-linked negotiation, but it has limitation that does not permit efficient
management of the negotiations where there are complex relationships. The ap-
proach in this paper provides a more general model and solution to multi-linked
negotiation problem.

8. Summary

In this paper, we defined the multi-linked negotiation problem and demonstrate how
an agent could deal with the multi-linked negotiation problem. Multi-linked
negotiation deals with multiple negotiations, where these negotiations are intercon-
nected — the negotiation over one issue affects other negotiations. To solve a multi-
linked negotiation problem, the agent needs to find out in what order the negotiations
should be performed, and how to negotiate on each issue to avoid conflict among
them. First, we construct a partial order schedule, which allows the agent to reason
about time-related constraints and flexibility on each issue. This reasoning process is
important for the agent to perform conflict-free negotiation and manage flexibility in
negotiation. Furthermore, we presented a formalized model of the multi-linked
negotiation problem that enables the agent to represent and reason about the rela-
tionships among different negotiations explicitly. Using this model, a heuristic search
algorithm is developed to that finds the nearly optimal approach in reasonable time.
Experimental work shows that this management technique for multi-linked negoti-
ation leads to improved performance over other simpler approaches.
In this work, we model the success probability as a function that depends on a set

of features, but we have not worked out how the agent can construct such a function.
In the future, we’d like to use meta-level information and learning technologies for
an agent to construct and adjust the structure of this function. Also, the model and
the algorithm presented here are for individual agents, to extend this model to a
multi-agent system is another direction of our future work. Additionally, in this
work, the result of the negotiation is limited to two outcomes: ‘‘success’’ or ‘‘fail’’.
Actually, when negotiation is successful, there are potentially many different out-
comes depending on the parameters in the commitment, such as different promising
finish times. Depending upon the different outcomes, the agent can adjust its other
negotiations that are related to this negotiation. The negotiation process can be

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 199

modeled as a Markov decision process, and the negotiation solution can be gener-
ated as a policy: perform the negotiation according to the results of the previous
negotiations. This is another direction of our future work.

Notes

1. This approach seems too naive, but is commonly used. Most research only deals with single negotiation;

little work has been done to study the relationships among different negotiations with complex task

structures (Section 7 provides more discussion of related work).

2. In this framework, we allow a task to be completed in different ways which may lead to different quality

achievements, different durations and different costs.

3. It is assumed that for each time unit the task being finished earlier than the deadline, the contractor

agent gets extra reward e � r, but the total extra reward would not exceed the reward r.

4. Using this model, the penalty only depends on the decommitment rate and the regular reward in the

contract. Actually a more complicated model can be introduced where the time of decommitment is

taken into consideration, i.e., a decommitment announced earlier has less penalty than a decommitment

in the last minute.

5. For example, the minimum quality requirement is not applicable for a resource requirement. A quantity

requirement may be necessary to specify how much resource is needed.

6. The agent will not schedule every time a new task arrives, but will schedule all tasks that fall into the

same scheduling time window.

7. The task cannot be started until the contract has been confirmed.

8. In this work, we use MQ scheduler as agent’s local scheduler, which is based on the MQ framework [14]

that allows agents to reason about different organizational objectives.

9. There are different ways to perform a task, which are represented as different methods in the task

structures. In Figure 4, Computer Producer Agent chooses to deliver the computer through the trans-

porter agent (Deliver Computer A) for task Purchase Computer A while ship the computer through a

package mailing system (Shipping Computer A) for task Purchase Computer B. This decision is made

by the agent’s scheduler depending on the difference of the characteristics of these methods and the

problem-solving context.

10. There are other attributes in the proposal that also can be negotiated over, such as regular reward,

earlier reward rate, and decommitment penalty. We only mentioned promised finish time here as an

example, because it is closely related to other negotiations.

11. Isolated nodes can be either independent or indirectly linked, depending on whether they compete for

the same resource. Let us take the computational resource as an example: if the time window [est, dl] for

the two negotiation subjects are overlapped, they are indirectly linked; otherwise, they are independent.

12. In this case, we used an expectation of the negotiation duration, which could be learned from experience.

13. It assumes the negotiation on an issue starts immediately after all the negotiations that precede this

negotiation have been finished according to the negotiation ordering.

14. The start time specifies the earliest start time for all negotiations. It is also possible to specify a

separately earliest start time for each negotiation.

15. If the set of valid feature assignments is a complete set of all possible valid feature assignments, this

algorithm is guaranteed to find the best negotiation solution. However, when the attributes have

continuous value ranges, it is impossible to find all possible valid feature assignments. We use a

depth- first search (DFS) algorithm that searches over the entire value space for all undecided attributes

by pre-defined search step size and finds a set of valid feature assignments (See Appendix, Algorithm

A.1).

16. The algorithm checks whether adding POR e to / causes a circle. If so, e will not be added, and the

algorithm will randomly choose another POR and continue.

17. In this paper, the term ‘‘partial-order schedule’’ refers to a representation of a group tasks with specified

precedence relationships, which also includes the associated definitions in this section. The term

‘‘partial-order scheduler’’ is used to refer to the procedure which actually produces the partial-order

schedules for tasks, and a set of associated reasoning algorithms presented in Section 4.2.

ZHANG ET AL.200

18. Outside earliest start time for task t is the earliest possible start time decided by the problem-solving

context. As a given parameter, it is not changeable during the partial order reasoning process. For

example, if the current time is 15, the task cannot start before time 15. In a similar way, the outside

deadline constraint is the task’s deadline decided by the problem solving context.

19. Partial order schedule is a representation and reasoning tool of a group of tasks and their interrela-

tionships. It is not an executable schedule for the agent. To translate a partial-order schedule to an

executable linear schedule, there are two different assumptions: the task is interruptible or non-

interruptible. The interruptible execution assumption is that the agent can switch to another task during

the execution of one task, and it can switch back at some point and continue the execution of the

incomplete task. The non-interruptible execution assumption does not allow execution of a task to be

split into parts. In this work we adopt the interruptible execution assumption, however, we also do not

consider there is cost for interrupting and resumption of a task.

20. This function describes a phenomenon where initially the likelihood of a successful negotiation in-

creases significantly as the flexibility grows, and then levels off afterwards. This function mirrors our

experience from the experiments in Section 6.3, which shows that after a certain point, additional

flexibility does not significantly improve the success probability. Obviously this function could be

affected by the meta-level information from the other agent.

21. Using a t-test, with the 0.001 alpha-level, the following hypothesis Ho is rejected: when using the

decision-based approach, Computer Producer Agent achieves an extra utility that is equal to 100% of

the utility gained when using the sequenced negotiation strategy, and 78% of the utility gained when

using parallel negotiation strategy, compared to the hypothesis Ha: when using the decision-based

approach, Computer Producer Agent achieves an extra utility that is more than 100% of the utility

gained when using the sequenced negotiation strategy, and 78% of the utility gained when using parallel

negotiation strategy.

22. Using a t-test, with the 0.01 alpha-level, the following hypothesis Ho is rejected: when using the

flexibility policy, Computer Producer Agent achieves an extra utility that is equal to 64% of the utility

gained when using the Earliest Finish Time Policy, compared to the hypothesis Ha: when using the

flexibility policy, Computer Producer Agent achieves an extra utility that is more than 64% of the utility

gained when using the Earliest Finish Time Policy .

23. There has been some recent work on preference elicitation [11] that potentially could reduce the number

of bids need to be sent. However, it is our intuition that to make this preference elicitation process

successful, it would need the similar type of reasoning process as shown in our work.

References

1. W. Conen and T. Sandholm, ‘‘Preference elicitation in combinatorial auctions: Extended abstract’’, in

ACM Conference on Electronic Commerce (ACM-EC), Tampa, FL, October 14–17, 2001.

2. M. Frank, A. Bugacov, J. Chen, G. Dakin, P. Szekely, and B. Neches, ‘‘The marbles manifesto: A

definition and comparison of cooperative negotiation schemes for distributed resource allocation’’, in

AAAI Fall 2001 Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001.

3. Y. Fujishima, K. Leyton-Brown, and Y. Shoham, ‘‘Taming the computational complexity of com-

binatorial auctions: Optimal and approximate approaches’’. in Proceedings of International Joint

Conference on Artificial Intelligence IJCAI’99, Stockholm, Sweden, 1999.

4. B. Horling, R. Vincent, and V. Lesser, ‘‘Multi-agent system simulation framework’’. in 16th IMACS

World Congress 2000 on Scientific Computation, Applied Mathematics and Simulation. EPFL, August

2000.

5. B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, K. Rawlins, and V. Lesser, ‘‘Distributed

sensor network for real time tracking’’. in Proceedings of the 5th International Conference on Auton-

omous Agents, ACM Press: Montreal pp. 417–424, June 2001.

6. L. Hunsberger and B. J. Grosz, ‘‘A combinatorial auction for collaborative planning’’, in Proceedings

of the Fourth International Conference on Multi-Agent Systems (ICMAS-2000), 2000.

7. J. J. Moder, C. R. Phillips, and E. W. Davis. Project Management with CPM, PERT and Precedence

Diagramming. Blitz Pub Co, 1995.

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 201

8. A. Pritsker, ‘‘Gert networks graphical evaluation and review technique’’. The Production Engineer,

1968.

9. T. Sandholm and V. Lesser, ‘‘On automated contracting in multi-enterprise manufacturing’’. in

Proceedings of the Improving Manufacturing Performance in a Distributed Enterprise: Advanced Sys-

tems and Tools.

10. T. Sandholm and V. Lesser, ‘‘Issues in automated negotiation and electronic commerce: Extending the

contract net framework’’, in Proceedings of the First International Conference on Multi-Agent Systems

(ICMAS95), 1995.

11. T. Sandholm and S. Suri, ‘‘Improved algorithms for optimal winner determination in combinatorial

auctions and generalizations’’, in National Conference on Artificial Intelligence (AAAI), 2000.

12. S. Sen and E. H. Durfee, ‘‘A formal study of distributed meeting scheduling’’, Group Decision and

Negotiation, vol. 7, 265–289, 1998.

13. R. G. Smith, ‘‘The contract net protocol: High-level communication and control in a distributed

problem solver’’, IEEE Transactions on Computers, 1980.

14. T. Wagner and V. Lesser, ‘‘Evolving real-time local agent control for large-scale mas’’, in J. Meyer

and M. Tambe, (eds.) Intelligent Agents VIII (Proceedings of ATAL-01), Lecture Notes in Artificial

Intelligence: Springer-Verlag, Berlin, 2002.

15. W. Walsh, M. Wellman, and F. Ygge, ‘‘Combinatorial auctions for supply chain formation’’, in

Second ACM Conference on Electronic Commerce, 2000.

16. X. Zhang, Sophisticated Negotiation In Multi-Agent Systems. Ph.D. thesis, University of Massachu-

setts: Amherst, 2002.

17. X. Zhang, V. Lesser, and R. Podorozhny, ‘‘New results on cooperative, multistep negotiation over a

multi-dimensional utility function’’ in AAAI Fall 2001 Symposium on Negotiation Methods for

Autonomous Cooperative Systems, pp. 1–10, 2001. http://mas.cs.umass.edu/exqzhang/pub/NewResult-

Neg-01.ps.

A. Appendix

Algorithm A.1 Find a set of valid feature assignments.
Input: M ¼ ðV; EÞ
For each attribute aij, if aij is already decided, the value of aij is decided valueðaijÞ;
if aij is undecided, the maximum possible range for aij is: [min valueðaijÞ,
max_valueðaijÞ], the search step size: stepij.
Output: a set of valid feature assignments x.

Generate the possible value set Wij for attribute aij;

If aij is already decided; Wij ¼ fdecided valueðaijÞg;
Else x ¼ min valueðaijÞ;

Repeat

add x to Wij;

x ¼ xþ stepij;

Until x > max valueðaijÞ
Generate all possible feature assignments uk based on the possible values in Wij;

If valid ðukÞ; add uk into x;

Return x;

ZHANG ET AL.202

Algorithm A.2 Evaluate a negotiation schedule with all possible feature assignments
and find the best feature assignments and the best value.
Input: negotiation schedule /, a set of valid feature assignments x ¼ fukg, k ¼ 1; . . . ;
m.
Output: the best value with the best feature assignment.

begin

forði ¼ 0; i <¼ m; iþ ¼ sample stepÞ
add ui to search set;

for each ui in search set

forðt ¼ 0; t < search limitt;þþÞ
if ðEVð/;uiþ1Þ > EVð/;uiÞÞ

i ¼ iþ 1;

else if ðEVð/;ui�1Þ > EVð/;uiÞÞ
i ¼ i� 1;

else

break;

if ðEVð/;uiÞ > best valueÞ
best value ¼ EVð/;uiÞ;
best assignment ¼ i;

returnðbest value; best assignmentÞ;
end

Algorithm A.3 Complete search: Find the best negotiation strategy.
Input: M ¼ ðV; EÞ, the start time for negotiation s, a set of valid feature assignments
x ¼ fukg, k ¼ 1; . . . ;m.
The complete search algorithm evaluates each pair of negotiation ordering and valid
feature assignment EVð/i;ukÞ, then return the best one.
Output: the best negotiation strategy.

Generate all valid negotiation orderings f/ig;
best value ¼ minimum value;

best ordering ¼ null;

best assignment ¼ null;

for each negotiation ordering /i

for each valid feature assignment uk

if EVð/i;ukÞ > best value

best value ¼ EVð/i;ukÞ;
best ordering ¼ /i;

best assignment ¼ uk;

return ðbest ordering; best assignmentÞ

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 203

Algorithm A.4 Heuristic search: Find the best negotiation strategy.
Input: M ¼ ðV; EÞ, the start time for negotiation ðsÞ, a set of valid feature assignments
x ¼ fukg, k ¼ 1; . . . ;m, the probability to add a por:add_ por_probability.
TEMP_MAX, TEMP_STEP: search parameters.
Output: the best negotiation strategy.

begin

Generate all possible PORs ¼ fðvi; vjÞjvi; vj 2 V g
total value ¼ 0;

total inverse value ¼ 0;

base value ¼ evaluate scheduleðNSðV ; ;Þ;xÞ;
for each por 2 PORs

/ðporÞ ¼ ðV ; porÞ
por:value ¼ evaluate scheduleðNSð/ðporÞÞ;xÞ:value� base value;

por:inverse value ¼ 1:0=por:value;

total value ¼ total valueþ por:value;

total inverse value ¼ total inverse valueþ por:inverse value;

for each por 2 PORs

por:in probability ¼ por:value=total value;

por:out probability ¼ por:value=total inverse value;

forðt ¼ TEMP MAX ; t >¼ 0; t� ¼ TEMP STEPÞ
generate a random number r between ½0; 1�;

if ðr < add por probabilityÞ
choose a por e from PORs=current ordering

according to in probability

new ordering ¼ current ordering \ e

else

choose a por e from current ordering according to

out probability

new ordering ¼ current ordering� e

evaluation result ¼ evaluate scheduleðNSð/ðnew orderingÞÞ;xÞ;
change value ¼ evaluation result:value-current value;

if ðchange value > 0jjrandom < e�change value=tÞ
current value ¼ evaluation result:value;

current assignment ¼ evaluation result:assignment;

current ordering ¼ new ordering;

if ðchange value > best valueÞ
best value ¼ current value;

ZHANG ET AL.204

best assignment ¼ current assignment;

best ordering ¼ current ordering;

return ðbest ordering; best assignmentÞ;
end

EFFICIENT MANAGEMENT OF MULTI-LINKED NEGOTIATION 205

