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Abstract

Distributed breakout algorithm (DBA) is an effi-
cientmethod for solvingdistributedconstraintsat-
isfactionproblems(CSP).Inspiredby its potential
of being an efficient, low-overheadagent coordi-
nation methodfor problemsin distributed sensor
networks,we studyDBA’s propertiesin this paper.
We specificallyshow that on an acyclic graph of� nodes, DBA canfind a solution in ��� ���	� syn-
chronizeddistributedsteps.This completenessre-
sultrevealsDBA’ssuperiority overconventional lo-
cal searchon acyclic graphs and implies its po-
tential as a simple self-stabilizationmethod for
tree-structured distributedsystems.We alsoshow
a worst caseof DBA in a cyclic graph where it
never terminates. To overcome this problem on
cyclic graphs, we propose two stochasticvaria-
tionstoDBA. Ourexperimentalanalysisshowsthat
stochasticDBAs are able to avoid DBA’s worst-
casescenarios andhassimilar performanceasthat
of DBA.

1 Introduction and Overview
Our primary motivation of studyingdistributedbreakout al-
gorithm(DBA) [9;11] is toapply it asasimple,low-overhead
method for coordinating agentsin distributed sensornet-
works [12]. One important classof problems among dis-
tributedagentsis thecoordinationof theirdistributedactions
in sucha way thatoverall inter-agent constraintsarenot vio-
lated. Sucha problem canbe captured asa distributedcon-
straintsatisfactionproblem(CSP)[9].

DBA is a remarkableextensionof breakout algorithmfor
centralizedCSP[6]. Centralizedbreakout algorithm is alocal
searchmethod with an innovative method for escapinglocal
minima.Thisis realizedby introducingweightstoconstraints
anddynamically increasingsomeof theweightssoasto force
agentsto dynamically adjusttheir values.It hasbeenshown
experimentallythatoncertainconstraint problems,it is more
efficient than local searchalgorithms with multiple restarts
andasynchronousweak-commitment search[9; 11].
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Despitetheir unique featuresandearly success,breakout
and distributed breakout algorithms have not beenstudied
thoroughly. For example, their completenessis not fully un-
derstood and their complexity remains unknown. It is also
not clearwhat constraint graphstructureswill renderworst
casesfor thesealgorithms. To our bestknowledge,thework
onthesetwo algorithmsis limited to theoriginal publications
on thesubject,specifically[6; 9; 11].

Motivated by our real-world applications of distributed
sensornetworks in which DBA canapply [12] andinspired
by itspossiblegreatpotential in solvinglargedistributedCSP,
we studyDBA in this paper. After a brief overview of break-
out anddistributedbreakout algorithms(Section2), we ana-
lyzethecompletenessandcomputationalcomplexity of DBA
(Section3). Weprovethatonacyclic constraintgraphs,DBA
is complete,in thesensethatit is guaranteedto find asolution
if oneexists.Wealsoshow thatits complexity, thenumberof
synchronizeddistributedsteps,is ��� ����� on anacyclic graph
with � nodes. Theseanalyticalresultsreveal thesuperiority
of DBA over conventional centralizedanddistributed local
search,which is not completeon acyclic graph. In addition,
weidentify thebestandworstarrangementsfor variableiden-
tifiersonacyclic graphs,whicharecritical elementsof theal-
gorithm. TheseresultsindicatethatDBA is anefficient, low-
overheadmethod for self-stabilization[8] in tree-structured
distributedsystems.Furthermore,on cyclic graphs,we con-
structa casein whichDBA is unable to terminate,leading to
its incompletenessin this case. To avoid DBA’s worst-case
behavior on cyclic graphs, we introducestochasticfeatures
to DBA (Section4). We proposetwo stochasticvariationsto
DBA andexperimentallydemonstratethatthey areableto in-
creaseDBA’scompletenessoncyclic graphsandhavesimilar
anytime performanceastheoriginalalgorithm.

Finally, we discusspreviousrelatedwork in Section5 and
concludein Section6.

2 Breakout and Distributed Breakout
The breakout algorithm [6] is a local searchmethod

equippedwith aninnovativeschemeof escapinglocalminima
for CSP. Givena CSP, thealgorithmfirst assignsa weightof
oneto all constraints. It thenpicksavaluefor everyvariable.
If no constraintis violated,thealgorithm terminates.Other-
wise, it choosesa variablethat can reduce the total weight



Algorithm 1 Sketchof DBA
setthelocalweightsof constraintsto one��
�������� arandom value from domain
while (noterminationcondition met)do

exchange ��
������ with neighbors
WR � BestPossibleWeightReduction()
sendWR to neighborsandcollecttheirWRs
if (WR ��� ) then

if (it hasthebiggestimprovement amongneighbors)
then��
�������� thevaluethatgives WR
end if

else
if (noneighborcanimprove) then

increaseviolatedconstraints’ weightsby one
end if

end if
end while

of theunsatisfiedconstraints if its valueis changed. If such
a weight-reducing variable-value pair exists, the algorithm
changesthe valueof a chosenvariable. The algorithm con-
tinuestheprocessof variableselectionandvaluechangeun-
til no weight-reducingvariablecanbe found. At that point,
it reachesa local minimum if a constraintviolation still ex-
ists. Insteadof restartingfrom another randominitial assign-
ment,the algorithm tries to escapefrom the local minimum
by increasing the weightsof all violatedconstraints by one
andproceeds asbefore. This weight changewill force the
algorithm to alter thevaluesof somevariablesto satisfythe
violatedconstraints.

Centralizedbreakout canbeextendedto distributedbreak-
out algorithm (DBA) [9; 11]. Without lossof generality, we
assignanagentto a variable,andassumethatall agentshave
unique identifiers. Two agentsareneighbors if they sharea
common constraint. An agentcommunicatesonly with its
neighbors.At eachstepof DBA, anagentexchangesits cur-
rentvariablevaluewith its neighbors,computesthepossible
weight reduction if it changesits currentvalue,anddecides
if it should do so. To avoid simultaneous variablechanges
at neighboring agents, only the agenthaving the maximal
weight reduction hasthe right to alter its current value. If
tiesoccur, theagents breakthetiesbasedon their identifiers.
Theabove processof DBA is sketchedin Algorithm 1. For
simplicity, we assumeeachstepis synchronizedamong the
agents.This assumptioncanbe lifted by a synchronization
mechanism [8].

In the descriptionof [9; 11], eachagentalsomaintainsa
variable, calledmy-termination-counter (MTC), to help de-
tectapossibleterminationcondition. At eachstep,anagent’s
MTC recordsthediameterof a subgraphcenteredaround the
agentwithin which all the agents’constraints are satisfied.
For instances,anagent’s MTC is zeroif oneof its neighbors
hasa violated constraint; it is equalto onewhenits immedi-
ateneighborshavenoviolation. Therefore,if thediameterof
theconstraint graphis known to eachagent, whenanagent’s
MTC is equal to theknowndiameter, DBA canterminatewith

the current agentvaluesasa satisfyingsolution. However,
MTCs maynever become equalto thediameterevenif a so-
lution exists. Therearecasesin which the algorithm is not
completein that it cannot guaranteeto find a solutionevenif
oneexists. Sucha worst casedepends on the structure of a
problem, a topic of the next section. We do not includethe
MTC hereto keepourdescription simple.

It is worth pointingout that thenode, or agent, identifiers
arenotessentialto thealgorithm. They areonlyusedto setup
a priority betweentwo competingagentsfor tie breaking. As
longassuchprioritiesexists,nodeidentifiersarenotneeded.

3 Completeness and Complexity
In thissection,westudythecompletenessandcomputational
complexity of DBA on binaryconstraintproblems in which
no constraintinvolvesmorethantwo variables. This is not
a restrictionasa non-binary constraint problemcanbecon-
vertedtoabinaryonewith cycles[1;7]. Oneadvantageof us-
ing binaryproblemsis thatwecanfocusonthemainfeatures
of DBA ratherthanpayattentionto thedegreeof constraints
of the underlying problem. In the restof the paper, we use
constraint problemsto referto binary problemsif not explic-
itly stated. In addition, the complexity is definedasDBA’s
number of synchronizeddistributedsteps.In onestep,value
changesatdifferentnodesareallowedwhile onevariablecan
change its valueat mostonce. We alsousevariables,nodes
andagents interchangeably in ourdiscussion.

3.1 Acyclic graphs
First notice that acyclic graphs are 2-colorable. Thus, any
acyclic constraint problemmusthave a satisfyingsolutionif
thedomainsizeof avariable is atleasttwo. In addition, larger
domains make a problemlessconstrained. Therefore, it is
sufficient to consideracyclic constraint problemswith vari-
abledomains nomorethantwo.

To simplify ourdiscussionandfor pedagogicalreasons,we
first consider chains,which arespecialacyclic graphs. The
resultsonchainswill alsoserveasa basisfor trees.

Chains
We will refer to thecombinationof variable valuesandcon-
straintweightsasa problemstate, or statefor short.A solu-
tion of a constraint problem is a statewith no violatedcon-
straint.Wesaytwo statesareadjacentif DBA canmovefrom
onestateto theotherwithin onestep.

Lemma 1 On a chain, DBA will not visit thesameproblem
statemore thanonce.

Proof: Assumetheopposite,i.e.,DBA canvisit a statetwice
in a processasfollows, ��� �!�#"$�&%'%'%(�!�#)*�!�+� . Obvi-
ouslyno constraint weightis allowedto increaseat any state
on this cycle. Supposethatnode , changesits valueat state� � to resolve a conflict - involving , . In the worst casea
new conflict at theothersideof thenode will becreated. -
is thus“pushed”to theneighbor of , , say . . Two possibili-
tiesexist. First, - is resolved at . or another nodealongthe
chain,so thatno statecycle will form. Second, - returns to, , causing, to change its valuebackto its previous value.
Sincenodesareordered,i.e., they haveprioritized identifiers,



violations mayonly move in onedirection and - cannot re-
turn to , from . without changing a constraint weight. This
meansthat - mustmovebackto , from another path,which
contradictsthefactthatthestructureis a chain. /0
Lemma 2 Ona chainof � variables,eachof whichhasa do-
mainsizeat leasttwo,DBA canincreasea constraint weight
to at most 1 ��24365 .
Proof: The weight of the first constraint on the left of the
chainwill neverchange andthusremainat one, sincetheleft
endnode canalwayschangeits valueto satisfyits only con-
straint. The weight of the secondconstraint on the left can
increaseto two at themost. Whentheweight of thesecond
constraint is two andthesecondconstrainton theleft is vio-
lated,thesecondnode will alwayschange its valueto satisfy
thesecondconstraintbecauseit hasa higher weightthanthe
first constraint. This will pushthe violation to the left end
nodeandforce it to changeits valueandthusresolvethecon-
flict. This argumentcanbe inductively appliedto the other
internalnodesandconstraintsalongthechain. In fact,it can
be appliedto both endsof the chain. So the maximal con-
straintweighton thechainwill be 1 ��273	5 . /0

Immediatecorollariesof this lemmaarethebestandworst
arrangementsof variable identifiers.In thebestcase,theend
nodes of the chainshouldbe most active, always trying to
satisfytheonly constraint,andresolvingany conflict. There-
fore,theendnodesshouldhavethehighestpriority, followed
by their neighbors,andsoon to themiddleof thechain. The
worst caseis simply the opposite of the bestcase;the end
nodesaremostinactiveandhavethelowestpriority, followed
by theirneighbors,andsoon.

Theorem 1 On a chain of � nodes, DBA terminatesin at
most �8� stepswith a solution,if it exists,or with an answer
of nosolution,if it doesnotexist.

Proof: As a chainis always2-colorable,thecombinationof
the above lemmasgivesthe resultfor a chainwith nodes of
domain sizesat least two. It is possible,however, that no
solutionexists if somevariableshave domain sizeslessthan
two. In this case,it is easyto createa conflict betweentwo
nodes with domainsize one, which will never be resolved.
As a result,theweightsof theconstraintsbetweenthesetwo
nodeswill beraisedto � . If eachagentknowsthechainlength� , DBA canbeterminated whena constraint weight is more
than � . (In fact, the chainlengthcanbe computedin ��� �8�
stepsasfollows. An endnodefirst sendsnumber1 to its only
neighbor. Theneighboring node addsoneto thenumber re-
ceivedandthenpassesthenew number to theotherneighbor.
Thenumberreachedat theotherendof thechainis thechain
length,whichcanbesubsequently disseminatedto therestof
thechain.Thewholeprocesstakes 36� steps.)Furthermore,a
nodeneedsatmost �:9<; stepsto increaseaconstraintweight.
This worst caseoccurs whena chaincontains two variables
at two endsof thechainwhich have thelowestpriorities and
unity domainsizesso neitherof themcanchange its value.
Onsuchachain,aconflictcanbepushedaround betweenthe
two endnodes many time. Every time a conflict reachesan
endnode,thenodeincreasestheconstraint weightto pushthe

conflictback.Sincea constraintweightwill benomorethan� , theresultfollows. /0
A significantimplication of theseresultsis a termination

condition for DBA onachain. If DBA doesnotfindasolution
in �8� steps,it canterminate with an answerof no solution.
This new terminationcondition andDBA’s original termina-
tion condition of my-termination-counterguaranteeDBA to
terminateona chain.

Trees
Thekey to theproof for thechainandtreestructuresis thatno
cycleexistsin anacyclic graph, sothatthesameconflict can-
not returnto a node without increasinga constraint weight.

Theargumentsonthemaximal constraintweightfor chains
hold for generalacyclic graphs or trees. First consider the
casethateachvariable hasa domainsizeat leasttwo. In an
acyclic graph, an arbitrary constraint (link) - connectstwo
disjointacyclic graphs, =<> and = � . Assume=?> and = � have� > and � � nodes,respectively, and � >*@ � � . Thenthemaxi-
mal possibleweight A on - cannot bemorethan � > , which
is proveninductively asfollows. If thenode� associatedwith- is theonly node of =B> , thentheclaim is truesince � can
alwaysaccommodate- . If = > is achain,thenthearguments
for Lemma2 apply directlyandthemaximalpossibleweight
of a constraintis the number of links the constraint is away
from theendvariableof =C> . If � is theonly node in =B> that
connectsto morethanoneconstraintin = > , which we call a
branching node,thena conflict at - maybepushedinto = >
whentheweightof - is greaterthanthesumof theweights
of all constraintsin =�> linkedto � , which is at mostequal to
thenumberof nodesof = > . Thesameargumentsequallyap-
ply when � is not theonly branchingnode of = > . Therefore,
themaximalconstraintweightis boundedby � .

The worst-casecomplexity can be derived similarly. A
worstcaseoccurs whenall endvariablesof anacyclic graph
have fixedvalues,sothata conflict maynever bepushedout
of thegraph. A constraintweightcanbebumpedup by one
after a conflict hastraveled from an endnodeto otherend
nodes andback,within at most � steps.

Basedonthesearguments,wehave thefollowing result.

Theorem 2 On an acyclicgraphwith � nodes,DBA termi-
natesin at most��� stepswith eitheranoptimalsolution,if it
exists,or ananswerof nosolution,if it doesnotexist.

Theabovecompletenessresultcanbedirectly translatedto
centralizedbreakout algorithm, leadingto its completeness
onacyclic graphs aswell. Moreover, sinceeachstepin DBA
is equivalent to � stepsin thecentralizedalgorithm, eachof
which examinesa distinct variable, thecomplexity resulton
DBA alsomeans that the worst-casecomplexity of the cen-
tralizedalgorithm is ��� �ED	� . Theseanalyticalresultsreveal
the superiority of centralizedbreakout algorithm and DBA
over conventional local searchmethods on acyclic graphs,
whicharenotcompleteevenonachain.

Ourexperimentalresultsalsoshow thatthenumberof steps
takenby DBA is muchsmallerthanthe �F� upper bound, as
shown in Figure 1. In our experiments,we useddifferent
sizechainsandtreesandaveraged the resultsover 100 ran-
dom trials. We considered the best-andworst-caseidenti-
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Figure1: Thenumberof stepstakenby DBA on chainswith
thebestandworstvariable identifierarrangements(left) and
on treeswith worstidentifierarrangements (right).

fier arrangementsfor chains(Figure1 left) andworst-casear-
rangementfor trees(wheremoreactivenodesarecloserto the
centersof the trees)with differentbranchingfactors.As the
figure shows, the averagenumber of stepstaken by DBA is
nearlinearfor theworst-caseidentifierarrangement, andthe
number of stepsis linearon treeswith a worst-caseidentifier
arrangement(Figure1 right). Furthermore,for a fixednum-
ber of nodes the number of stepsdecreasesinverselywhen
branching factorsof thetreesincrease.In short,DBA is effi-
cientonacyclic graphs.

3.2 Cyclic graphs
Unfortunately, DBA is not complete on cyclic constraint
graphs. Thiswill includenon-binaryproblemsasthey canbe
convertedto binary problemswith cycles.Thisis alsotherea-
sonthatbreakout algorithmis not completeon Booleansat-
isfiability with threevariablesperclause[6], which is equiv-
alentto a constraint with threevariables.
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Figure2: A worstcasefor DBA ona ring.

Whentherearecycles in a graph, conflictsmay walk on
thesecyclesforever. To seethis, considera problem of col-
oring a ring with anevennumber of nodesusingtwo colors
(blackandwhite),asshown in Figure2,wherethenodeiden-
tifiers andconstraint weightsare respectively next to nodes
andedges.Figure2(1) shows a casewheretwo conflictsap-
pearat locationsbetweennodes1 and3 andbetweennodes4
and5, thatarenot adjacent to eachother. Theweightsof the
correspondingedgesareincreasedaccordingly in Figure2(2).
As node1 (node4) hasahigherpriority thannode3 (node5),
it changesits valueandpushes theconflict onestepcounter-
clockwisein Figure2(3). Therestof Figure2 depictsthesub-
sequentstepsuntil all constraint weights havebeenincreased
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Figure3: Stepstakenby DBA andvariantsontheexampleof
Figure2 with random initial assignments (left) andthe spe-
cific assignment of Figure2 (right).

to 2. Thisprocesscancontinue foreverwith thetwo conflicts
moving in thesamedirectionon thechainat thesamespeed,
chasingeachotherendlesslyandmakingDBA incomplete.

4 Stochastic Variations
A lessonthatcanbe learnedfrom theabove worst-casesce-
nariois thatconflictsshouldnotmove at thesamespeed.We
thusintroducerandomnessto alterthespeedsof possiblecon-
flict movementson cyclesof a graph.This stochasticfeature
may increaseDBA’s chancesof finding a solutionpossibly
with a penaltyonconvergenceto solutionfor somecases.

4.1 DBA(wp) and DBA(sp)
We canaddrandomnessto DBA in two ways.In thefirst, we
useaprobability for tie breaking. Thealgorithm will proceed
asbefore, except that whentwo neighboring variableshave
thesameimprovement for thenext step,they will changetheir
valuesprobabilistically. This means thatbothvariablesmay
change or notchange,or just oneof them.We call thisvaria-
tion weakprobabilistic DBA, denotedasDBA(wp).

In the secondmethod, which was inspired by the dis-
tributedstochasticalgorithm[3; 4; 13], avariablewill change
if it hasthe best improvement among its neighbors. How-
ever, whenit canimprovebut theimprovement is not thebest
among its neighbors, it will change basedon a probability.
This variation is more active thanDBA andthe weakprob-
abilistic variation. We thuscall it strongprobabilistic DBA,
DBA(sp) for short.

Onefavorablefeatureof thesevariantsis that no variable
identifiersareneeded, which maybeimportant for someap-
plicationswherenodeidentifiers acrossthe whole network
is expensive to compute. Moreover, thesevariants give two
familiesof variations to DBA, depending ontheprobabilities
used.It will beinterestingto seehow they vary under differ-
entparameters, thetopic thatwe consider next.

4.2 DBA(wp) versus DBA(sp)
We first studythetwo variantson theexample of coloring an
8-nodering of Figure2. In thefirst setof tests,node identi-
fiersandinitial colorsarerandomly generatedand10,000tri-
alsaretested.DBA is unable to terminateon15%of thetotal
trials aftermorethan100,000steps1, while on theother85%

1Our additionaltestsalsoshow thatDBA’s failureratedecreases
asthering sizeincreases.
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Figure4: DBA(wp) andDBA(sp)ongrid 3 �IH 3 � and J<KML .

of thetrials DBA findsa solutionafter5 stepson average as
shown in Figure3(left). In contrast,DBA(wp) andDBA(sp)
alwaysfind solutionsbut require almosttwice asmany steps
onaverage with thebestprobability around �ON P .

In thesecondsetof tests,weusetheexact worst-caseinitial
assignmentasshown in Figure2. As expected, DBA failedto
terminate.DBA(wp) andDBA(sp)find all solutionson1,000
trials. Sincethey arestochastic,eachtrial mayrunadifferent
numberof steps.Theaveragenumberof stepsunderdifferent
probability is shown in Figure3(right).

Next we study thesetwo families of variants on grids,
graphs andtrees. We considercoloring thesestructuresus-
ing 2 colors. For grids, we consider3 �QH 3 � , LR�QHSLR� , andPR�<HTP7� gridswith connectivities equalto JQKUL and JQKWV .
To simulateinfinitely large grids in our experiments,we re-
move thegrid boundariesby connectingthenodeson thetop
to thoseonthebottomaswell asthenodesontheleft to those
on theright of thegridsto createJBKXL grid. For JBKYV grid,
we further link a nodeto four moreneighbors, oneeachto
thetop left, top right, bottomleft andbottomright. This ren-
dersthe problemoverconstrained for two-coloring. Hence,
the algorithms may only try to improve the solutionquality
by minimizing thenumberof violatedconstraints.

The resultsof 3 �ZH 3 � grids with J[K\L are shown in
Figure 4, averaged over 2,000 trials. As the figuresshow,
thehighertheprobability thebetterDBA(wp)’sperformance.
For DBA(sp) ]^KX�ON _ is thebestprobability.

We generate2,000 graphs with 400 nodes with an av-
erageconnectivity per node equal to J`KaL and J`KaV
by adding, respectively, 1,600 and3,200 edges to randomly
picked pairs of unconnectednodes. Thesetwo graphs are
generated to make a correspondence to the grid structures
of J`KaL and JbKcV considered previously, except that
both random graphs are not two-colorable. All algorithms
areapplied to thesamesetof graphs for a meaningful com-
parison. Figure5 shows the resultson graphs with JXKdV .
Thereis no significantdifferencewithin the DBA(wp) fam-
ily. However, DBA(sp) with large probabilities cansignifi-
cantly degrade to very poor performance,exhibiting a phe-
nomenon similar to phase transitions. SinceDBA(sp) with
highprobability is closetodistributedstochasticalgorithm [3;
4; 13], theresultsherearein line with thoseof [13].

We alsoconsiderDBA(wp) andDBA(sp) on random trees
with variousdepths andbranchingfactors.Dueto spacelim-
itations,wedonot includedetailedexperimentalresultshere,
but give a brief summary. As expected,they all find op-
timal solutionsfor all 10,000 2-coloring instances.Within
DBA(wp) family, thereis nosignificantdifference.However,
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DBA(sp) with a high probability hasa pooranytime perfor-
mance.

Combining all the resultson the constraint structures we
considered,DBA(sp) appearsto bea pooralgorithm in some
cases,especiallywhenits probability is veryhigh.

4.3 DBA(wp) and DBA(sp) versus DBA
Theremaining issueis how DBA(wp) andDBA(sp)compare
with DBA. Here we usethe bestparameters for thesetwo
variants from the previous testsandcompare themdirectly
with DBA. Weaveragetheresultsoverthesamesetsof prob-
lem instanceswe usedin Section4.2. Figures6, 7 and 8
show the experimental resultson grids, random graphs and
trees,respectively. With their bestparameters,DBA(wp) and
DBA(sp)appearto becompatiblewith DBA. Furthermore,as
discussedearlier, DBA(wp) andDBA(sp) increasetheproba-
bility of convergenceto optimal solutions.DBA(wp), in par-
ticular, is a betteralternative in many casesif its probability
is chosencarefully. Stochasticfeaturesdo not seemto im-
pairDBA’sanytimeperformanceonmany problemstructures
andhelpovercometheproblemof incompletenessof DBA on
graphs with cycles.

5 Related Work and Discussions
It is well known that acyclic constraint problems can be
solved in linear time by an arc consistency algorithm fol-
lowed by a backtrack-free valueassignment[5]. However,
on acyclic graphsthereexists no uniform distributedalgo-
rithm that is self-stabilizablein the sensethat it is guaran-
teed to reacha solution from an arbitrary initial state [2].
In a uniform distributedalgorithm [8], all nodesexecute the
sameprocedureand two nodesdo not differentiate them-
selves. Therefore, DBA is not a uniform algorithmas two
adjacentnodescandiffer from eachotherby their different
priorities. It hasalsobeenshown thatby introducingonlyone
uniquenodeto aconstraintgraph, anexponential-complexity
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self-stabilizationalgorithm exists [2]. In that regard, our re-
sultsof DBA onacyclic graphindicatethatnodeprioritiesare
merelya tool for reducing complexity.

Onerelatedalgorithm for distributedCSPis asynchronous
weak-commitment (AWC) searchalgorithm [9; 10]. One
major differencebetweenAWC andDBA is that node pri-
orities in AWC may change dynamically while node prior-
ities in DBA arestationary. In contrast,constraintweights
may increasedynamically in DBA while they are static in
AWC. With a sufficient amount of memory to record the
states(agent views) thatan agenthasvisited,AWC is guar-
anteedto converge to asolutionif it exists. In theworstcase,
the amount of memoryrequired is exponentialof the prob-
lemsize.In contrast,DBA convergesto asolutiononacyclic
graphs without any additional memory. It may be also the
casethat AWC doesnot require an exponential amount of
memory to reacha solutionon acyclic graph, an interesting
future researchtopic.

Another relatedalgorithm for distributedCSPisdistributed
stochasticalgorithm(DSA) [3; 4; 13]. DSA is a family of
stochasticsearchalgorithmswith two membersbeingdiffer-
ent from eachotheron the degrees of parallelismof agent
actions.Contrastingto DBA, DSA doesnot requirepriorities
among agents andis not guaranteedto find a solutioneither,
even if oneexists. Our limited experimentalresultsshowed
thatDBA ismoreefficientthanDSAonacyclic graphs,which
is supported by our analyticalresultsin this paper, and on
many underconstrainedcyclic constraint problems. Ourcom-
pleteresultscomparing thesetwo algorithmswill beincluded
in ourfinal report of this research.

6 Conclusions
We closely examined the completenessand computational
complexity of distributedbreakout algorithm (DBA) in this
paper. WeshowedthatDBA is completeandhaslow polyno-
mial complexity on acyclic graphs. This result is important

as it shows the superiority of DBA over conventional local
search,which doesnot guaranteethe completenesseven on
a chain. The result also implies that DBA can be usedas
a methodfor self stabilizationin tree-structureddistributed
systems.We alsoidentifieda simpleworst-casenode identi-
fier arrangementon a ring in which DBA maynot terminate.
This helpsto understandthebehavior of DBA on graphs and
non-binaryconstraintproblems.Wefurtherproposedandex-
perimentally demonstratedthatrandomizationcanovercome
such worst-casesituationswithout a significant penalty to
DBA’s anytimeperformance.
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