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Abstract

Distributed brealout algorithm (DBA) is an effi-

cientmethdal for solvingdistributedconstraintsat-
isfactionprodems (CSP).Inspiredby its potential
of being an efficient, low-overheadagen coord-

nation methodfor prablemsin distributed sensor
networks, we studyDBA’s propertiesin this paper
We specificallyshav that on an agyclic graph of

n nodes, DBA canfind a solutionin O(n?) syn-
chronizeddistributedsteps. This conpletenesse-
sultreveals DBA’s superiaity overcorventianallo-

cal searchon agyclic graphs and implies its po-
tential as a simple self-stabilizationmethod for

tree-structted distributed systems.We also show

a worst caseof DBA in a cyclic gragh whereit

never termirates. To overcome this problem on

cyclic grapts, we propose two stochasticvaria-
tionsto DBA. Ourexpeimentalanalysisshovsthat
stochasticDBAs are able to avoid DBA's worst-
casescenaris andhassimilar perfaamanceasthat
of DBA.

1 Introduction and Overview

Our primary motivation of studyingdistributed brealout al-

gorithm (DBA) [9; 11] isto apgy it asasimple,low-overhea

methodfor coordnating agentsin distributed sensornet-
works [12]. Oneimportart classof problemsamory dis-
tributedagentss the coordnationof their distributedactions
in suchaway thatoverall interagen constraintarenotvio-

lated. Sucha prodem canbe captued asa distributedcon-
straintsatishctionproblem(CSP)[9].

DBA is aremakableextensionof bre&out algorithmfor
centralizedCSP[6]. Centralizedrealout algoritrmis alocall
searchmethal with aninnovative methal for escapindocal
minima. Thisis realizedby introducingweightsto constraints
anddynamically increasingsomeof theweightssoasto force
agentdo dynamically adjusttheir values.It hasbeenshavn
expearimentallythaton certainconstraih prodems, it is more
efficient than local searchalgoithms with multiple restarts
andasynchonasweak-cenmitmert search[9; 11].
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Despitetheir unigLe featues and early successbrealout
and distributed brealout algorithrs have not beenstudied
thoraughly. For examge, their competenesss not fully un-
derstoa andtheir compleity remairs unknown. It is also
not clearwhat constraim graphstructureswill renderworst
casedor thesealgoritms. To our bestknowledge, the work
onthesewo algoiithmsis limited to theoriginal publications
onthesubjectspecifically[6; 9; 11].

Motivated by our real-world applicatiors of distributed
sensometworks in which DBA canapply [12] andinspired
by its possiblegreatpoterial in solvinglarge distributedCSR
we studyDBA in this pager. After abrief ovewview of break
out anddistributedbrealout algorithms (Section2), we ana-
lyze thecomgetenessandcomputationalcompleity of DBA
(Section3). We prove thatonagyclic constraingraghs,DBA
is comgete,in thesensehatit is guaanteedo find asolution
if oneexists. We alsoshaw thatits compexity, thenumber of
synchonizeddistributedsteps,js O(n?) onanagyclic graph
with n nodes. Theseanalyticalresultsreveal the superioity
of DBA over conventioral centralizedand distributed local
searchwhich is not completeon agyclic graph In addition
weidentify thebestandworstarrargemeirs for variableiden-
tifiersonagyclic graphs,whicharecritical elementf theal-
gorithm. TheseresultsindicatethatDBA is anefficient, low-
overheadmethal for self-stabilization[8] in tree-strutured
distributedsystems.Furthermore,on cyclic graghs, we con-
structa casein which DBA is unabe to termirate,leadirg to
its inconpletenessn this case. To avoid DBA's worst-case
behaior on cyclic grapts, we introduce stochastideatures
to DBA (Sectiond). We proposetwo stochastiovariatiansto
DBA andexperimentallydemanstratethatthey areableto in-
creasdDBA’'s completerssoncyclic graghsandhave similar
anytime perfamanceasthe original algorithm

Finally, we discusspreviousrelatedwork in Section5 and
conclwein Section6.

2 Breakout and Distributed Breakout

The brealout algorithm [6] is a local search methal
equigedwith aninnovative schemef escapindocalminima
for CSP Givena CSR thealgorithmfirst assignsa weight of
oneto all constrants. It thenpicksavaluefor everyvariable.
If no constraintis violated,the algorithm terminates.Other
wise, it chosesa variablethat canredice the total weight



Algorithm 1 Sketchof DBA

setthelocal weightsof constraintdo one
value < arandam value from domain
while (noterminationcondtion met)do
exchangevalue with neigtbors
WR <+ BestPossibleWightReductior)(
sendWR to neighborsandcollecttheir WRs
if (WR > 0) then
if (it hasthe biggestimprovemant amongneigtbors)
then
value < thevaluethatgives WR
end if
else
if (noneighor canimprove)then
increaseviolatedconstraims’ weightsby one
end if
end if
end while

of the unsatisfiedconstraits if its valueis chamged. If such
a weight-redicing variablevalue pair exists, the algoritim

chan@sthe valueof a chosernvariade. The algoritim con-
tinuesthe proessof variableselectionandvaluecharge un-

til no weight-redicing variablecanbe found. At that poirt,

it reachesa local minimum if a constraintviolation still ex-

ists. Insteadof restartingfrom anothe randominitial assign-
ment,the algoritim tries to escapdrom the local minimum

by increasig the weightsof all violated constraiis by one
and proceed asbefore This weight changewill force the
algorithm to alterthe valuesof somevariablesto satisfythe
violatedconstraints.

Centralizedbrealout canbe extendedto distributedbreak
out algoiithm (DBA) [9; 11]. Without lossof generality we
assignanagentto avariable,andassumehatall agentshave
unigLe identifiers. Two agentsareneightors if they sharea
comma corstraint. An agentcomnunicatesonly with its
neigtbors. At eachstepof DBA, anagentexchargesits cur-
rentvariablevaluewith its neigtbors,comptesthe possible
weightredction if it chamgesits currentvalue,anddecides
if it shoud do so. To avoid simultaneos variablecharges
at neighloring agerts, only the agenthaving the maximal
weight redudion hasthe right to alter its current value. If
tiesoccur the agens breakthetiesbasedntheiridentifiers.
The above processof DBA is sketchedin Algorithm 1. For
simplicity, we assumesachstepis synchonizedamory the
agents. This assumptiorcan be lifted by a synchonization
mechaism [8].

In the descriptionof [9; 11], eachagentalso maintainsa
variabe, called my-terminatim-counier (MTC), to help de-
tectapossibleterminationcondtion. At eachstep,anagents
MTC recordghe diameterof a subgaphcenteedarourd the
agentwithin which all the agents’constraiis are satisfied.
For instancesanagert’'s MTC is zeroif oneof its neighors
hasa violated constraim; it is equalto onewhenits immed-
ateneighlorshave noviolation. Therdore, if thediameterof
the constrain graphis known to eachagen, whenanagents
MTC is equato theknown diameterDBA cantermiratewith

the current agentvaluesas a satisfyingsolution. However,
MTCs may never becone equalto the diameteravenif a so-
lution exists. Thereare casesn which the algoiithm is not
comgetein thatit canrot guaanteeto find a solutionevenif
oneexists. Sucha worst casedeperls on the structue of a
prodem, a topic of the next section. We do not includethe
MTC hereto keepour descrigion simple.

It is worth pointing out thatthe node, or agen, identifiers
arenotessentiato thealgorithm They areonly usedto setup
apriority betweertwo competingagentdor tie breakirg. As
long assuchpriorities exists, nodeidentifiersarenot needed

3 Completenessand Complexity

In this section we studythe competenesandcomputational
comgexity of DBA on binary corstraintproblens in which
no constraintinvolves morethantwo variebles. This is not
a restrictionasa non-hnary constraim problem canbe con-
vertedto abinaryonewith cycles[1; 7]. Oneadvartageof us-
ing binary prodemsis thatwe canfocus onthe mainfeatures
of DBA ratherthanpayattentionto the degreeof constraints
of the undelying prablem. In the restof the paper we use
constraim prodemsto referto binary prablemsif not explic-
itly stated. In addition the compleity is definedasDBA's
numter of synchronizeddistributedsteps.In onestep,value
changsatdifferentnodesareallowedwhile onevariablecan
chang its valueat mostonce. We alsousevariablesnodes
andagerns interchangealy in ourdiscussion.

3.1 Acyclic graphs
First notice that agyclic graghs are 2-colaable. Thus, ary
agyclic constraim problem musthave a satisfyingsolutionif
thedomainsizeof avariale is atleasttwo. In addtion, larger
domans male a problemlessconstraind. Therefae, it is
sufficient to corsideracyclic constrant prablemswith vari-
abledomairs no morethantwo.

To simplify ourdiscussiorandfor pedaggicalreasos, we
first conside chains,which are specialagyclic grapts. The
resultson chainswill alsosene asabasisfor trees.

Chains

We will referto the combiration of varialle valuesandcon-
straintweightsasa problemstate or statefor short. A solu-
tion of a constraim prodem is a statewith no violatedcon-
straint. We saytwo statesareadjacentif DBA canmove from
onestateto the otherwithin onestep.

Lemma1l On a chain, DBA will not visit the sameproblem
statemore thanonce

Proof.: Assumethe opposite,i.e., DBA canvisit a statetwice
in aprocessasfollows, S, — Sy = --- =+ S, = S,. Obvi-
ouslyno constraim weightis allowedto increaseat ary state
onthis cycle. Supmsethatnode z changsits valueat state
Sz to resohe a conflict C' involving z. In the worst casea
new conflict at the otherside of the noce will becreated.C
is thus“pushed”to the neigtbor of z, sayy. Two possibili-
tiesexist. First, C' is resolhed aty or anotter nodealongthe
chain,sothatno statecycle will form. SecondC retunsto
x, causingz to charge its valuebackto its previous value.
Sincenodesareorderd,i.e.,they have prioritized identifiers,



violations may only move in onedirection andC' canna re-
turnto z from y without charging a constrain weight. This
meanghatC' mustmove backto z from anotter path,which
contralictsthefactthatthe structureis achain. O

Lemma 2 Onachainofn variables,ead of which hasa do-
mainsizeat leasttwo, DBA canincreasea constaint weight
to at most|n/2].

Proof. The weight of the first constrant on the left of the
chainwill neverchang andthusremainat one sincetheleft
endnode canalwayschargeits valueto satisfyits only con-
straint. The weightof the secondconstraim on the left can
increaseto two at the most. Whenthe weight of the second
constraim is two andthe seconcconstrainton theleft is vio-
lated,the seconchock will alwayschang its valueto satisfy
the secondconstrainbecausét hasa higher weightthanthe
first constraih. This will pushthe violation to the left end
nodeandforceit to changats value andthusresohe thecon-
flict. This amgumentcanbe inductively appliedto the other
internalnodesandconstraintsalongthe chain. In fact,it can
be appliedto both endsof the chain. So the maximd con-
straintweightonthechainwill be |n/2|. O

Immedate corollaies of thislemmaarethebestandworst
arrangmentf varieble identifiers.In the bestcasetheend
nodes of the chain shouldbe mostactive, alwaystrying to
satisfytheonly constraintandresolvingary conflict. Thete-
fore,theendnodesshouldhave the highestpriority, followed
by their neighbors,andsoonto the middle of thechain The
worst caseis simply the opposite of the bestcase;the end
nodes aremostinactive andhave thelowestpriority, followed
by their neighbors,andsoon.

Theorem 1 On a chain of n nodes, DBA terminatesin at
mostn? stepswith a solution,if it exists,or with an answer
of no solution,if it doesnot exist.

Proof. As achainis always2-colaable,the combiration of
the abore lemmasgivesthe resultfor a chainwith nodes of
doman sizesat leasttwo. It is possible,however, that no
solutionexistsif somevarigbleshave domain sizeslessthan
two. In this case,it is easyto createa conflict betweerntwo
nodes with domainsize one which will never be resohed
As aresult,the weightsof the corstraintsbetweerthesetwo
nodeswill beraisedo n. If eachagenknowsthechainlength
n, DBA canbeterminatel whena constrint weightis more
thann. (In fact, the chainlengthcanbe compitedin O(n)
stepsasfollows. An endnode first sendsiumter 1 to its only
neighbor. The neighhoring node addsoneto the numter re-
ceivedandthenpasseshenev numbe to theotherneighbor.
Thenunberreactedat theotherendof thechainis the chain
length,which canbe subsequatly disseminatetb therestof
thechain. Thewholeprocesstakes2n steps.)Furthemore,a
nodeneed atmostn — 1 stepgoincrease corstraintweight.
This worst caseoccus whena chaincontairs two variables
attwo endsof the chainwhich have the lowestpriorities and
unity domainsizesso neitherof them canchargeits value.
Onsucha chain,a conflictcanbepushedarourd betweerthe
two endnodes mary time. Every time a conflict reachesan
endnoce, thenodeincreasesheconstrant weightto pushthe

conflictback. Sincea constraintweightwill beno morethan
n, theresultfollows. O

A significantimplication of theseresultsis a terminatio
condtion for DBA onachain If DBA doesnotfind asolution
in n? steps,it canterminde with an answerof no solution
This new terminationcondition andDBA's original termira-
tion condtion of my-teminationcounterguaanteeDBA to
terminateon a chain.

Trees

Thekey to theprod for thechainandtreestructuesis thatno
cycleexistsin anagydlic graph, sothatthe samecorflict can-
notreturnto a noce withoutincreasinga constrain weight.

Theamumentsonthemaxmal constraintveightfor chains
hold for generalagyclic graghs or trees. First consicer the
casethateachvarialle hasa domainsizeat leasttwo. In an
agyclic graph, an arbitray constrant (link) C conrectstwo
disjointagyclic graphs,G1 andG,. AssumeG; andG» have
ny1 andns nodesrespectidy, andn; < ns. Thenthemaxi-
mal possibleweightWW on C canrot be morethann 1, which
is proveninductively asfollows. If thenodev associatewvith
C is theonly noce of G, thenthe claim is true sincev can
alwaysaccommdateC'. If G; is achain,thentheamuments
for Lemma2 apgy directly andthe maximalpossibleweight
of a constraintis the nunber of links the constrain is awvay
from the endvariableof G . If v is theonly noce in G that
conrectsto morethanoneconstraintin G'1, whichwe call a
branding node,thena conflictat C may be pushednto G 4
whentheweightof C' is greatethanthe sumof the weights
of all constraintsn G, linkedto v, whichis at mostequal to
thenumberof nodesof G;. Thesameargumentsequallyap-
ply whenv is nottheonly brarchingnode of G1. Therebre,
themaximalcorstraintweightis boundedby n.

The worst-casecompexity canbe derived similarly. A
worstcaseoccus whenall endvariablesof anagyclic gragh
have fixedvalues,sothata conflict may never be pushedut
of thegraph A corstraintweightcanbe bumpedup by one
after a conflict hastraveled from an endnodeto otherend
nodes andback,within atmostn steps.

Basedontheseargumentswe have thefollowing result.

Theorem 2 On an acyclic graphwith n noces, DBA termi-
natesin at mostn? stepswith eitheran optimalsolution,if it
exists,or an answerof no solution,if it doesnot exist.

Theabove comgetenessesultcanbedirectly translatedo
centralizedbrealout algorithm, leadingto its competeness
onagyclic grapls aswell. Moreover, sinceeachstepin DBA
is equialert to n stepsin the centralizedalgoithm, eachof
which examinesa distinctvariable, the compleity resulton
DBA alsomears that the worst-casecomgexity of the cen-
tralizedalgoithm is O(n®). Theseanalyticalresultsreveal
the superigity of centralizedbre&out algorithm and DBA
over corventicnal local searchmethod on agyclic graghs,
whicharenotcomgeteevenonachain.

Ourexpeimentalresultsalsoshav thatthenuntberof steps
taken by DBA is muchsmallerthanthe n2 upper bourd, as
shavn in Figure 1. In our expeiments, we useddifferent
sizechainsandtreesandaveragel the resultsover 100ran-
dom trials. We consideed the best-and worst-casddenti-
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Figurel: Thenumnberof stepstakenby DBA on chainswith
the bestandworstvariable identifierarrargementgleft) and
ontreeswith worstidentifierarrargemeits (right).

fier arrangenentsfor chains(Figurel left) andworst-caser-
rangenentfor treeg(where more actve nodesarecloserto the
centersof the trees)with differentbrarchingfactors. As the
figure shows, the averagenumbe of stepstaken by DBA is
nearlinearfor the worst-casadentifierarrargemen, andthe
numter of stepsis linearon treeswith aworst-casedentifier
arrangment(Figurel right). Furtrermore for a fixed num
ber of nodesthe nunmber of stepsdecrasesinverselywhen
branding factorsof thetreesincreaseln short,DBA is effi-
cienton agyclic graghs.

3.2 Cyclicgraphs

Unfortunately DBA is not compete on cyclic corstraint
grapts. Thiswill include non-binaryprodemsasthey canbe
corvertedto binary prablemswith cycles.Thisis alsotherea-
sonthatbrealout algorithmis not completeon Booleansat-
isfiability with threevariades perclause[6], whichis equiv-
alentto a constraimwith threevariables.

Figure2: A worstcasefor DBA onaring.

Whentherearecyclesin a gragh, conflicts may walk on
thesecyclesforever. To seethis, considera prodem of col-
oring a ring with an even numker of nodesusingtwo colors
(blackandwhite),asshavnin Figure2, wherethenockeiden-
tifiers and constraim weightsare respectrely next to nodes
andedges.Figure2(1) shaovs a casewheretwo conflictsap-
pearatlocationsbetweemodesl and3 andbetweemodes 4
and5, thatarenotadjacento eachother Theweightsof the
correspndirg edgesareincreasedccordngly in Figure2(2).
As nock 1 (nock 4) hasahigherpriority thannode3 (nade5),
it changsits valueandpushea the conflict onestepcourter
clockwisein Figure2(3). Therestof Figure2 depictsthesub-
sequenstepsuntil all constrait weighs have beenincreased
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Figure3: Stepgakenby DBA andvariantsontheexanple of
Figure2 with randm initial assignmets (left) andthe spe-
cific assignmenof Figure2 (right).

to 2. This processcancontinie foreverwith thetwo conflicts
moving in the samedirectionon the chainatthe samespeed,
chasingeachotherendesslyandmakingDBA inconplete.

4 Stochastic Variations

A lessonthat canbe learnedfrom the above worst-casesce-
nariois thatconflictsshouldnot move atthe samespeedWe
thusintroducerandbmnesdgo alterthespeedsf possiblecon-
flict movementson cyclesof agraph. This stochastideatue
may increaseDBA’s charcesof finding a solution possibly
with a penaltyon convergenceto solutionfor somecases.

4.1 DBA(wp) and DBA(sp)

We canaddrandannesgo DBA in two ways. In thefirst, we
usea probability for tie breakirg. Thealgorittm will proceel
asbefor, excep thatwhentwo neighloring variableshave
thesamamprovemert for thenext step they will changtheir
valuesprohabilistically. This mears thatbothvarablesmay
chang or notcharge,or just oneof them.We call this varia-
tion weakprolabilistic DBA, derotedasDBA(wp).

In the secondmethal, which was inspired by the dis-
tributedstochasti@lgorithm[3; 4; 13], avariablewill chang
if it hasthe bestimprovement amony its neigtbors. How-
ever, whenit canimprove but theimprovemert is notthebest
amory its neigtbors, it will chang basedon a probability.
This variation is more active than DBA andthe weak prob
abilistic variation. We thuscall it strongprolabilistic DBA,
DBA(sp) for short.

Onefavorablefeatureof thesevariantsis that no varialde
identifiersareneededwhich maybeimportantfor someap-
plicationswherenodeidentifiels acrossthe whole network
is expersive to compue. Moreover, thesevariars give two
familiesof variatiors to DBA, depenthg ontheprokabilities
used.It will beinterestingo seehow they vary uncer differ-
entparametss, thetopic thatwe conside next.

4.2 DBA(wp) versus DBA(sp)

We first studythetwo variants onthe examge of coloiling an
8-nadering of Figure2. In thefirst setof tests,nock identi-
fiersandinitial colorsarerandanly geneatedand10,00tri-

alsaretested.DBA is unalle to terminateon 15%of thetotal
trials aftermorethan100,@0 steps, while onthe other85%

'Our additionaltestsalsoshav thatDBA's failureratedecreases
asthering sizeincreases.
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of thetrials DBA findsa solutionafter5 stepson averag as
shawvn in Figure3(left). In contrast DBA(wp) andDBA(sp)

alwaysfind solutionsbut requre almosttwice asmary steps
onaverag with the bestprobability around 0.6.

In thesecondsetof tests we usetheexad worst-casénitial
assignmenasshavnin Figure2. As expected DBA failedto
terminate DBA(wp) andDBA(sp) find all solutionson 1,0
trials. Sincethey arestochasticeachtrial mayrun adifferent
numter of steps.Theaverag numter of stepsunderdifferent
probability is shovn in Figure3(right).

Next we study thesetwo families of variarts on grids,
grapls andtrees. We corsider coloring thesestructues us-
ing 2 colors. For grids, we consider20 x 20, 40 x 40, and
60 x 60 gridswith connectiities equalto k = 4 andk = 8.
To simulateinfinitely large grids in our experiments,we re-
move the grid bourdariesby conrectingthe nodeson thetop
to thoseonthebottomaswell asthenodesontheleft to those
ontheright of thegridsto createk = 4 grid. For k = 8 grid,
we further link a nodeto four more neightors, one eachto
thetop left, top right, bottomleft andbottomright. Thisren-
dersthe problemoverconstraird for two-coloting. Hence,
the algorithms may only try to improve the solution quality
by minimizing the nunberof violatedconstraints.

The resultsof 20 x 20 grids with k& = 4 are shavn in
Figure 4, averaged over 2,00 trials. As the figuresshaw,
thehigherthe prokability thebetterDBA(wp)'s performane.
For DBA(sp) p = 0.5 is the bestprobability.

We generate2,00 graphs with 400 nodes with an av-
erageconnetivity pernoce equdto £k = 4 andk = 8
by addirg, respectiely, 1,6 and 3,20 edges to rancbmly
picked pairs of unmnnectednodes. Thesetwo grapls are
geneatedto make a correspadene to the grid structures
of k = 4 andk = 8 consideed previously, exceptthat
both randbm graghs are not two-cdorable. All algoithms
areappied to the samesetof grapls for a meanimgful com-
parison Figure5 shaws the resultson grapts with & = 8.
Thereis no significantdifferencewithin the DBA(wp) fam-
ily. However, DBA(sp) with large probailities can signifi-
cantly degrade to very poa performance,exhibiting a phe-
nomenon similar to phase transitions. Since DBA(sp) with
highprobability is closeto distributedstochasti@lgoritim [3;
4; 13|, theresultsherearein line with thoseof [13].

We alsoconsideDBA(wp) andDBA(sp) onrancdm trees
with various deptls andbrarchingfactors.Dueto spacdim-
itations,we do notincludedetailedexperimentalresultshere,
but give a brief summary As expected,they all find op-
timal solutionsfor all 10,000 2-cdoring instances. Within
DBA(wp) family, thereis no significantdifference.However,
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Figure5: DBA(wp) (left) andDBA(sp) (right) on graphwith
400nodesandk=8.
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Figure6: DBA andrancdmDBAs ongrid 20 x 20 andk = 4.

DBA(sp) with a high prabability hasa poorarytime perfa-
mance.

Combinirg all the resultson the constrain structurs we
consideed, DBA(sp) appeargo bea pooralgorithm in some
casesespeciallywhenits prokability is very high.

4.3 DBA(wp) and DBA(sp) versus DBA

Theremainirg issueis how DBA(wp) andDBA(sp) compae

with DBA. Here we usethe bestparametes for thesetwo

variarts from the previous testsand compae themdirectly

with DBA. We average theresultsoverthe samesetsof prob

lem instanceswve usedin Section4.2. Figures6, 7 and 8

shav the expeiimental resultson grids, rancm grapts and
treesrespectiely. With their bestparametes, DBA(wp) and
DBA(sp) appeato becommtiblewith DBA. Furthernore,as
discusseearlie; DBA(wp) andDBA(sp) increasehe proba-

bility of corvergenceto optimal solutions.DBA(wp), in par

ticular, is a betteralternatve in mary casesdf its probability

is chesencarefully Stochastideaturesdo not seemto im-

pair DBA’s anytime periormane onmary prablemstructures
andhelpovercometheproblemof incompetenes®f DBA on

grapls with cycles.

5 Reated Work and Discussions

It is well known that agyclic constraim problems can be
solved in linear time by an arc consisteng algorithm fol-
lowed by a backtack-free value assignmen{5]. However,
on agyclic graphsthere exists no uniform distributed algo-
rithm thatis self-stabilizablein the sensethatit is guaran
teedto reacha solution from an arbitray initial state [2].
In a uniform distributedalgoritm [8], all nodesexecue the
sameprocedureand two nodesdo not differentiate them-
seles. Therebre, DBA is not a uniform algorithm astwo
adjacentnoces candiffer from eachotherby their different
prionties. It hasalsobeenshavn thatby introducingonly one
unigue nodeto a constraingraph anexponential-canplexity
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self-stabilizationalgaithm exists [2]. In thatregad, our re-
sultsof DBA onagyclic graphindicatethatnodeprioritiesare
merelyatool for reducirg compexity.

Onerelatedalgoiithm for distributedCSPis asynchroous
weak-canmitmert (AWC) searchalgoithm [9; 10]. One
major differencebetweenAWC and DBA is that nocke pri-
orities in AWC may charge dynanically while noce prior-
ities in DBA arestationary In contrast,constraintweights
may increasedynamically in DBA while they are staticin
AWC. With a sufficient amownt of memoryto recod the
states(agen views) thatan agenthasvisited, AWC is guar
anteedo corverge to asolutionif it exists. In theworstcase,
the amount of memoryrequired is exponentialof the prob
lemsize.In contrast, DBA convergesto a solutiononagyclic
grapls without ary additiona memoy. It may be alsothe
casethat AWC doesnot requre an exponential amount of
memoy to reacha solutionon agyclic gragh, aninteresting
future researchopic.

Anothe relatedalgoithm for distributedCSPis distributed
stochasticalgorithm (DSA) [3; 4; 13]. DSA is a family of
stochastisearchalgoithmswith two memlersbeingdiffer-
ent from eachother on the degrees of parallelismof agent
actions.Contrastingo DBA, DSA doesnotrequite priorities
amory agens andis not guaanteedo find a solutioneither
evenif oneexists. Our limited experimentalresultsshoved
thatDBA is moreefficientthanDSA onagyclic grapts, which
is suppated by our analyticalresultsin this paper and on
mary underonstrainedyclic constrént problens. Ourcom-
pleteresultscompaing thesewo algoithmswill beincluded
in ourfinal repot of thisresearch

6 Conclusions

We closely examned the comgetenessand computational
compexity of distributed brealout algorithm (DBA) in this
paper We shavedthatDBA is completeandhaslow polyno-
mial comgexity on agyclic graghs. This resultis important

asit shaws the supeiority of DBA over corventiona local
searchwhich doesnot guarartee the comgetenessven on
a chain. The resultalsoimplies that DBA canbe usedas
a methodfor self stabilizationin tree-stretureddistributed
systemsWe alsoidentifieda simpleworst-casenoce identi-
fier arrargementon aring in which DBA maynottermirate.
This helpsto uncerstandhe behaior of DBA ongrapts and
nonbinaryconstrainprodems.We furtherproposedandex-
perimenally demorstratedthatrandmizationcanovercome
suchworst-casesituationswithout a significant peralty to
DBA's arytime perfamance.
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