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Negotiation has been extensively discussed in game-theoretic, economic and manage-
ment science literatures for decades. Recent growing interest in autonomous interacting
software agents and their potential application in areas such as electronic commerce has
give increased importance to automated negotiation. Evidence both from theoretical
analysis and from observations of human interactions suggests that if decision makers
can somehow take into consideration what other agents are thinking and furthermore
learn during their interactions how other agents behave, their payoff might increase. In
this paper, we propose a sequential decision-making model of negotiation, called Bazaar.
It provides an adaptive, multi-issue negotiation model capable of exhibiting a rich set of
negotiation behaviors. Within the proposed negotiation framework, we model learning
as a Bayesian belief update process. In this paper, we present both theoretical analysis
and initial experimental results showing that learning is beneficial in the sequential
negotiation model. ( 1998 Academic Press Limited
1. Introduction

Recent growing interest in autonomous interacting software agents and their potential
application in areas such as electronic commerce (Sandholm & Lesser, 1995) has given
increased importance to automated negotiation. Much DAI and game-theoretic research
(Rosenschein & Zlotkin, 1994; Osborne & Rubinstein, 1994) deals with coordination and
negotiation issues by giving pre-computed solutions to specific problems. There has been
much research reported on developing theoretical models in which learning plays an eminent
role, especially in the area of adaptive dynamics of games (e.g. Jordan, 1992; Kalai & Lehrer,
1993). However, to build autonomous agents that improve their negotiation competence
based on learning from their interactions with other agents is still an emerging area.

We are interested in developing autonomous agents capable of reasoning based on
experience and improving their negotiation behavior incrementally. Learning in negoti-
ation is closely coupled with the issue of how to model the overall negotiation process, i.e.
what negotiation protocols are adopted. Standard game-theoretic models (Osborne
& Rubinstein, 1994) tend to focus on outcomes of negotiation in contrast to the
negotiation process itself. DAI research (Rosenschein & Zlotkin, 1994) emphasizes special
protocols articulating compromises while trying to minimize the potential interactions
or communications of the involved agents. Since we are motivated by a different set of
research issues, such as including effective learning mechanisms in the negotiation
process, we adopt a different modeling framework, i.e. a sequential decision-making
paradigm (Bertsekas, 1995; Cyert & DeGroot, 1987).
-This research has been sponsored in part by ONR grant dN00014-95-1-1092, by ARPA Grant dF33615-
93-1-1330, and by NSF grant dIRI-9612131.
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The basic characteristics of a sequential decision-making model are: (1) there is
a sequence of decision-making points (different stages) which are dependent on each
other and (2) the decision maker has a chance to update his knowledge after implemen-
ting the decision made at a certain stage and receiving feedback so that he can make
a more informed decision at the next stage. The following observations support our
choice of sequential decision-making as the baseline negotiation model. First, most
negotiation tasks involve multiple rounds of exchanging proposals and counter-propo-
sals. A sequential decision-making framework provides readily available constructs to
model the iterative nature of inter-agent interactions. Second, negotiating agents indeed
receive feedback after they offer a proposal or a counterproposal in the form of replies
from the recipient agent(s). Third, a sequential decision-making framework supports an
open-world approach. An agent does not need to have a complete world model at the
outset of negotiation. Whenever new information comes in, irrespective of whether the
agent learns the new knowledge by itself or some other information sources become
available, it can make use of the newly acquired knowledge at the next decision making
point. The agent can handle in the same manner more difficult situations where agents
not only do not have complete information, but also the environment and other agents
might be constantly changing. Last but not the least, learning can take place naturally in
a sequential decision-making framework. This type of on-line incremental learning
behavior is highly desirable in an automated negotiation program.

In this paper, we propose such a sequential decision-making model, called Bazaar,
which is able to learn. We address multi-agent learning issues in Bazaar by explicitly
modeling beliefs about the negotiation environment and the participating agents under
a probabilistic framework using a Bayesian learning representation and updating mecha-
nism. We also report our initial experimental results in a simple bargaining scenario. Our
ultimate research goal is to develop an adaptive negotiation model capable of exhibiting
a rich set of negotiation behaviors with modest computational efforts.

2. A survey of existing negotiation models

Traditional single-agent decision-making models typically assume that the decision
maker has complete knowledge of (1) his own preference ordering or utility function, and
(2) the probabilities associated with the various outcomes. When multiple agents are
involved, such as in negotiation, the introduction of strategic interaction, however,
complicates this picture. In making his decision, the rational individual must take into
account the probable choices of others, whose choices are in turn contingent upon his
own. This leads to the well-known outguessing regress (Young, 1975) where no accurate
prediction or confident expectation about the individual choices can be produced.
Therefore, the central theme of all negotiation models is avoiding this dilemma involved
in strategic interaction.

In order to circumvent the outguessing regress of strategic interactions, game-theoretic
models make the following restrictive assumptions:- (1) Both the number of players
- It should be noted that some of the very recent game-theoretic models are directly motivated by considerations
of dropping or relaxing some of these assumptions. Although there has been interesting progress reported in the
literature (e.g. Jordan, 1992), the fundamental framework and methodology of game theory remains almost the same
and it might be too early to tell whether these new results will reshape the current game-theoretic framework.
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and their identity are assumed to be fixed and known to everyone. (2) All the players are
assumed to be fully rational, and each player knows that the others are rational (common
knowledge). Each player’s set of alternatives is fixed and known. (3) Each player’s
risk-taking attitude and expected-utility calculations are also fixed and known to
each and every individual involved in decision-making. These assumptions limit the
applicability of game-theoretic frameworks for solving realistic problems. Another im-
portant limitation of game-theoretic models is that these models are fundamentally static
in the sense that they primarily focus on outcomes in contrast to negotiation processes.
The search for determinate rational decisions within the framework of game theory has
not led to a general model governing rational choice in interdependent situations.
Instead, it has produced a number of special models applicable to specific types of
interdependent decision-making. For instance, the most celebrated solution concept, the
von Neumann—Morgenstern solution, is based on the fact that in a two-person, zero-sum
game, an outguessing regress can be avoided by assuming (not unrealistically) that one
player knows that his opponent will ‘‘do his worst’’, whatever strategy he selects himself.
Analyses of the N-person cooperative game circumvent the difficulties associated with
strategic interaction in a different way by introducing detailed decision rules concerning
such things as the relative power of the players, e.g. the Shapley value and the Nash
solution (Luce & Raiffa, 1957; Nash, 1950).

Some game theorists (e.g. Harsanyi & Selten, 1972) have sought to achieve determinate
solutions for nonzero-sum games by introducing the notion that each player may be able
to assign subjective probabilities to the choices of the other participant. In other words,
it is possible to suppose that each individual proceeds in some subjective fashion
to estimate the probable choices of the other player. In essence, the individual acquires
information in the process so that his choice problem reduces to a situation that
is fundamentally analogous to a game against nature as in a traditional single-
agent decision-making situation. We view this line of research as more closely coupled
with sequential decision-making view of negotiation rather than orthogonal game
models.

To a large extent, these theoretical models are not concerned with computational
issues, i.e. how to deal with inevitable practical complexities that do not have proper
analytic representations and therefore have not found their way into the models. Some of
the AI models, in this sense, can be understood as bridges between applications and
abstract theoretical models. Playing games (e.g. chess, go) has been one of the major foci
of AI. For certain games, game theory is able to provide a theoretically sound mathemat-
ical solution and winning strategy. The existence of the solution, however, does not
guarantee that the player can find the solution. AI models and programs help the players
locate an approximate solution strategy according to bounded rationally principles by
utilizing heuristic search, heuristic evaluation and learning techniques (Russell & Wefald,
1991; Rich & Knight, 1991). Along with the emergence and development of DAI
techniques, there has been increasing interest in using AI methodology and frameworks
in negotiation modeling. Sycara (1990) enriched the negotiation model by integrating AI
planning, case-based reasoning and other decision-theoretic techniques. Multi-agent
resource allocation as a special case of negotiation has been extensively explored by
Kraus & Subrahmanian (1995), in which logic framework and time constraints are taken
into consideration within the traditional framework of game theory. Some recent work
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(e.g. Sen & Sekaran, 1995; Sandholm & Lesser, 1995) in the context of distributed AI
addresses multiagent learning issues in various settings. Our work differs from others by
explicitly modeling negotiation as a sequential decision-making task and using Bayesian
updating as the underlying learning mechanism.

3. Sequential decision-making with rational learning

Our overall research goal is to develop a computational model of negotiation that can
handle multi-agent learning and other complicated issues (e.g. multi-issue multi-criteria
negotiation) that do not have straightforward and computationally efficient analytic
models. We believe that a useful computational model of negotiation should exhibit the
following characteristics. (1) The model should support a concise yet effective way to
represent negotiation context. (2) The model should be prescriptive in nature. (3) The
computational resources required for finding reasonable suggestions/solutions should be
moderate, sometimes at the cost of compromising the rigor of the model and the
optimality of solutions. (4) The model should provide means to model the dynamics of
negotiation. (5) The model should also support the learning capability of participating
agents.

Motivated by these desirable features, we have developed Bazaar, a sequential
decision-making negotiation model that is capable of learning. We describe how the
proposed model works in a simple negotiation scenario for illustrative purposes before
we present the formal description of Bazaar:

Suppose two computer programs are negotiating on behalf of their users in a supply
chain management scenario. Agent 1 is the producer (supplier)’s agent and Agent 2 is
the buyer’s agent. These two agents are involved in a negotiation process where
a detailed contract concerning product mix, delivery date, price, etc., is expected to be
achieved. The overall negotiation process can be modeled as exchanging proposals and
counterproposals, as typically happens in human negotiations..

Let us first view the negotiation from the supplier, i.e. Agent 1’s point of view. We
ignore the problem associated with locating potential buyers and assume that the
existence of Agent 2 is known to Agent 1. We also assume a communication channel
between Agent 1 and Agent 2 is readily available. At the outset, Agent 1 needs to
come up with a solution package detailing its offer with respect to product, price, delivery
date, quality, etc. How to determine the particular value of these variables depends on
the following factors: (1) Agent 1’s own cost and profit structure and evaluation, (2)
Agent 1’s understanding of the current economic situation and potential demand for its
product, (3) Agent 1’s model of Agent 2 and (4) Agent 1’s expectation from Agent 2,
such as potentially profitable future transactions.

Considering all these factors and the trade-offs among them, Agent 1 calculates the
expected payoff value associated with possible offers, and selects the offer that maximizes
his payoff. Agent 2 receives the offer transmitted by Agent 1. To decide whether to
accept this offer or to counterpropose, Agent 2 essentially uses a similar evaluation
procedures as Agent 1.

The next step would be easy if Agent 2 decides to accept the offer. In that case, Agent
2 just needs to send an acceptance message to Agent 1, which finalises the contract. If
Agent 2 is not satisfied with the offer, it can either abort the negotiation or send back
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a counterproposal. Again, the process of determining the counterproposal is similar to
that used by Agent 1 to determine the initial proposal. First, Agent 2 calculates the
payoff function whose domain is all feasible offers. Then the offer that maximizes Agent
2’s payoff is selected. It should be noted that the fact that Agent 1 has sent a proposal
does have an impact on the decision-making process that Agent 2 goes through when
deliberating his counterproposal, since Agent 2’s internal knowledge of Agent 1 and
possibly the knowledge about the supply situation have been updated. Agent 1’s
proposals affects Agent 2’s decision in a quite indirect way by causing changes in
Agent 2’s perception of Agent 1.

After Agent 1 receives the counterproposal offered by Agent 2, Agent 1 first
updates its model of Agent 2, then evaluates the offer in the light of newer knowledge. If
it is deemed as an acceptable offer, the negotiation process is brought to an end.
Otherwise, Agent 1 sends a counterproposal based on its payoff structure and newer
knowledge about its counterpart, Agent 2. Exchanges of proposals and counter-
proposals will go on until one of the agents decides to accept an offer or to quit. The
negotiation process can also end because of other external events such as missing an
agreement deadline, etc.

3.1. Bazaar: A FORMAL DESCRIPTION

In Bazaar, a negotiation process can be modeled by a 10-tuple SN, M, *, A, H, Q, ), P,
C, GT, where

A-1 A set N (the set of players).
A-2 A set M (the set of issues/dimensions covered in negotiation. For instance, in the

supply chain management domain, this set could include product price, product
quality, payment method, transportation method, etc.)

A-3 A set of vectors *,M(D
j
)j3MN (a set of vectors whose elements describe each and

every dimension of an agreement under negotiation).
A set A composed of all the possible actions that can be taken by every member of
the players set.
(i) A,*XMAccept, QuitN.

A-4 For each player i3N a set of possible agreements A
i
.

(i) For each i3N, A
i
LA.

A-5 A set H of sequences (finite or infinite) that satisfies the following properties.
(i) The elements of each sequence are defined over A.
(ii) The empty sequence ' is a member of H.
(iii) If (ak)

k/1,2 ,K3H and ¸(K then (ak)
k/1,2 ,¸3H.

(iv) If (ak)
k/1,2 ,K3H and aK3MAccept, QuitN then akNMAccept, QuitN when

k"1,2 , K!1.
Each member of H is a history; each component of a history is an action taken by
a player. A history (ak)k"1,2 ,K is terminal if there is no a

K`1
such that

(ak)
k/1,2 , K#13H. The set of terminal histories is denoted by Z.

A-6 A function Q that associates each nonterminal history (h3HCZ) to a member
of N. (Q is the player function which determines the orderings of agent
responses.)
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A-7 A set of ) of relevant information entities. ) is introduced to represent the players’
knowledge and belief about the following aspects of negotiation.
(i) The parameters of the environment, which can change over time. For example,

in supply chain management, global economic or industry-wide indices such as
overall product supply and demand and interest rate, belong to ).

(ii) Beliefs about other players. These beliefs can be approximately decomposed
into the following three categories.
(a) Beliefs about the factual aspects of other agents, such as how their payoff

functions are structured, how many resources they have, etc.
(b) Beliefs about the decision-making process of other agents. For example,

what would be other player’s reservation prices.
(c) Beliefs about meta-level issues such as the overall negotiation style of other

players. Are they tough or compliant? How would they perceive a certain
action? What about their risk-taking attitudes? etc.

A-8 For each nonterminal history h and each player i3N, a subjective probability
distribution P

h,i
defined over ). This distribution is a concise representation of the

knowledge held by each player in each stage of negotiation.
A-9 For each player i3N, each nonterminal history h, and each action a3A

i
, there is

an implementation cost C
i,h,a

. C can be interpreted as communication costs or
costs associated with time caused by delaying terminal action (Accept or Quit).

A-10 For each terminal history h and each player i3N, a preference relation )
i
on

h and P
h,i

(x), x3). )
i
in turn results in an evaluation function E(h, i)

X
[G

i
(X,h)].

We will present the solution strategy in Bazaar before we discuss the characteristics
of the model.

3.2. SOLUTION STRATEGY IN Bazaar

Although the role that the players play (e.g. selling or buying) with respect to initiating
the negotiation process can have an impact,- the decision-making process in a negoti-
ation scenario, viz. determining the particular contents of an offer/counteroffer (quit and
accept can be viewed as a special offer), is symmetrical for all the players. So the following
solution framework is not limited by roles of the players.

(1) For each player i, a negotiation strategy is a sequence of actions (ak
i
, k"1,2 ,K), where

(a) k denotes that ak
i
is the kth action (k4K) taken by i,

(b) ak
i
3A

i
,

(c) aK
i
3MAccept, QuitN,

(d) ak
i
NMAccept, QuitN when k"1,2 , K!1.

(2) Before negotiation starts, each player has a certain amount of knowledge about ),
which may include the knowledge about the environment where the negotiation
takes place, and may also include the prior knowledge about other players (from
previous experience or from second-hand knowledge, etc.) This prior knowledge is
denoted (see A-8) as P',i .
- For example, in a two-player supply chain situation, the supplier often is the first one to initiate
a negotiation.
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(3) Suppose player i has been interacting with another player j for k times. In other
words, i has sent exactly k offers or counteroffers to j (presumably received k or k#1
offers or counter-offers from j depending on who initiated the negotiation process).
Let us assume that neither Accept nor Quit has appeared in these offers and
counteroffers. In Bazaar, the following information is available when i tries to figure
out what to do next (the content of its (k#1)th offer).
(i) All the actions taken by all the agents up to the current time point when i makes

decision about the (k#1)th offer. Formally, each and every history h that is
a sequence of k actions is known to i. Let us denote this set of histories by H

i,k
.

(ii) The set of subjective probability distribution over ), P
Hi,k~1,i

,MP
h,i

D h3H
i,k~1

N
is known to i.

The player takes the following steps to decide how to reply to the most recent action
taken by other participant(s).
Step 1. Update his subjective evaluation about the environment and other players
using Bayesian rules. Given prior distribution P

Hi,k~1,i
and newly incoming informa-

tion H
i,k

, calculate the posterior distribution P
Hi,k,i

.
Step 2. For h3H

i,k
, select the best action from A

i
according to the following

recursive evaluation criteria:

»
i,k,h

"E(h,i)
X

[G
i
(X,h)] if h3Z

»
i,k,h

"max
a3A

i

M!C
i,a,h

#:
X
[»

i,k`1,(h,a)
]P

h,i
(X)] dXN otherwise

The first equation represents the termination criterion. The second equation can be
summarized as ‘‘always choose the action that maximizes the expected payoff given
the information available at this stage’’. The implementation cost C at this stage has
been deducted from the future (expected) payoff.

3.3. CHARACTERISTICS OF Bazaar

Most game-theoretic models assume that the player has infinite reasoning and computa-
tion capacity. On the one hand, this infinite rationality assumption eliminates some of
the theoretical problems (e.g. the precise definition of degree of rationality is unknown)
associated with modeling agents with bounded rationality; on the other hand, it is just
because of assuming infinite smartness of players that outguessing regress becomes
a problem, since every participating agent tries to model others in a recursive fashion (e.g.
Gmytrasiewicz & Durfee, 1992). The fact that the agents do not have infinite reasoning
capacity imposes natural termination for otherwise endless outguessing regress. This is
precisely the foundation of Bazaar. Bazaar ignores some aspects of the ‘‘strategic’’ part
of a game by modeling other players explicitly (see A-7) in terms of beliefs and
uncertainty. This, along with its learning capability, differentiates Bazaar from other
negotiation models. Other observations about Bazaar are the following.

f Bazaar aims at modeling multi-issue negotiation processes. By incorporating
multiple dimensions into the action space, Bazaar is able to provide an expressive
language to describe the relationships between these issues and possible trade-offs
among them.
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f Bazaar supports an open-world model. Any change in the outside environment, if
relevant and perceived by a player, will have an impact on the player’s subsequent
decision-making processes. This feature is highly desirable and is seldom found in
other negotiation models.

f In most of existing negotiation models, learning issues have been either simply
ignored or oversimplified for theoretical convenience. Multi-agent learning issues
can be addressed in Bazaar and conveniently supported by the iterative nature of
sequential decision-making and the explicit representation of beliefs about other
agents

4. Learning in negotiation

The importance of learning in negotiation has been recently recognized in the game
research community as fundamental for understanding human behavior as well as for
developing new solution concepts (Jordan, 1992; Kalai & Lehrer, 1993; Osborne
& Rubinstein, 1994). Theoretical results (most of which are partial and preliminary),
however, are available only for the simplest game settings. Multi-agent learning has also
increasingly drawn research efforts from distributed AI community (e.g. Mor, Goldman
& Rosenschein, 1995; Sen & Sekaran, 1995). In the context of Bazaar, we are using the
Bayesian framework to update the knowledge and belief that each agent has about the
environment and other agents. To address the computational complexity issues with
Bayesian analysis, we use the Bayesian belief network representation and updating
mechanism. In addition to providing efficient updating techniques, Bayesian belief
networks offer an expressive modeling language and allow easy and flexible encoding of
domain-specific knowledge (Pearl, 1988).

In this section, we revisit the buyer—supplier example used before to demonstrate how
the Bayesian framework can be utilized in a negotiation setting. For illustrative pur-
poses, we consider the negotiation process only from the viewpoint of the buyer and
assume that the relevant information set ) is comprised of only one item: belief about the
supplier’s reservation price RP

4611-*%3
. An agent’s reservation price is the agent’s threshold

of offer acceptability. Typically, a reservation price is private to each agent, and is
different for each agent for each negotiation issue. For example, a supplier’s reservation
price is the price such that the supplier agent will not accept an offer below this price;
a buyer’s reservation price is the price such that the buyer will not accept an offer above
this price. As shown in Figure 1, when the supplier’s reservation price RP

4611-*%3
is lower
FIGURE 1. An example of reservation prices and ‘‘zone of agreement’’.



FIGURE 2. An example in which no ‘‘zone of agreement’’ exists.
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than the buyer’s reservation price RP
"6:%3

, any point within the ‘‘zone of agreement’’ is
a candidate solution; while, if RP

"6:%3
is lower than RP

4611-*%3
, as shown in Figure 2, the

zone of agreement does not exist and no deal can be reached via negotiation. If a zone of
agreement exists, typically both the buyer and the supplier will make concessions from
their initial proposal. The buyer will increase his initial proposal, while the supplier will
decrease his. Eventually, a proposal within the zone of agreement will be acceptable to
both.

It is obvious that although the buyer knows his own reservation price, the precise
value of RP

4611-*%3
is unknown to him. Therefore, the zone of agreement is not known by

either of the agents. Nevertheless, the buyer is able to update his belief (learn) about
RP

4611-*%3
based on his interactions with the supplier and on his domain knowledge. As

a result of learning, the buyer is expected to gain more accurate expectation of the
supplier’s payoff structure and therefore make more advantageous offers. In this
example, we show how the buyer’s belief about RP

4611-*%3
can be updated during

negotiation.
The buyer’s partial belief about RP

4611-*%3
can be represented by a set of hypotheses H

i
,

i"1, 2,2 , n. For instance, H
1

can be ‘‘RP
4611-*%3

"$100.00’’; H
2

‘‘RP
4611-*%3

"$90.00’’.
A priori knowledge held by the buyer can be summarized as probabilistic evaluation over
the set of hypotheses MH

i
N (e.g. P(H

1
)"0.2, P(H

2
)"0.35,2). The Bayesian updating

occurs when the buyer receives new signals from the outside environment or from the
supplier. Along with domain-specific knowledge, these new signals enable the buyer to
acquire new insights about RP

4611-*%3
in the form of posterior subjective evaluation over

H
i
. In our case, the offers and counteroffers (Offer

4611-*%3
) from the supplier comprise the

incoming signal, while the domain knowledge can be an observation such as ‘‘Usually in
our business people will offer a price which is above their reservation price by 17%’’,
which can be represented by a set of conditional statements of similar form, one of which
is shown as follows: P (e

1
DH

1
)"0.30, where e

1
represents ‘‘Offer

4611-*%3
"$117.00’’, and

H
1

‘‘RP
4611-*%3

"$100.00’’.
Given the encoded domain knowledge in the form of conditional statements and the

signal (e) in the form of offers made by the supplier, the buyer can use the standard
Bayesian updating rule to revise his belief about RP

4611-*%3
:

P(H
i
De)"

P (H
i
)P(e DH

i
)

+n
k/1

P (e DH
k
)P(H

k
)
.
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We use a numerical example to show how this updating works. For simplicity, we
suppose that the buyer knows that the supplier’s reservation price is either $100.00 or
$90.00. In other words, the buyer has only two hypotheses: H

1
: ‘‘RP

4611-*%3
"$100.00’’

and H
2
: ‘‘RP

4611-*%3
"$90.00’’.

At the beginning of the negotiation, the buyer does not have any other additional
information. His a priori knowledge can be summarized as P(H

1
)"0.5, P (H

2
)"0.5.

In addition, we suppose that the buyer is aware of ‘‘Suppliers will typically offer a price
which is above their reservation price by 17%’’, part of which is encoded as:
P(e

1
DH

1
)"0.30 and P (e

1
DH

2
)"0.05, where e

1
denotes the event that the supplier asks

$117.00 for the goods under negotiation.
Now suppose that the supplier offers $117.00 for the product the buyer wants to

purchase. Given this signal and the domain knowledge, the buyer can calculate the
posterior estimation of RP

4611-*%3
as follows:

P(H
1
De

1
)"

P(H
1
)P (e

1
DH

1
)

P (H
1
)P (e

1
DH

1
)#P (H

2
)P (e

1
DH

2
)
"85.7%

P(H
2
De

1
)"

P(H
2
)P (e

1
DH

2
)

P (H
2
)P (e

1
DH

1
)#P (H

2
)P (e

1
DH

2
)
"14.3%.

Suppose that the buyer adopts a simple negotiation strategy: ‘‘Propose a price which is
equal to the estimated RP

4611-*%3
’’. Prior to receiving the supplier’s offer ($117.00), the

buyer would propose $95.00 (the mean of the RP
4611-*%3

subjective distribution). After
receiving the offer from the supplier and updating his belief about RP

4611-*%3
, the buyer

will propose $98.57 instead. Since the new offer is calculated based on a more accurate
estimation of the supplier’s utility structure, it might result in a potentially more
beneficial final outcome for the buyer and may also help both sides reach the agreement
more efficiently.

Some observations about this example are as follows. (1) Parameters contained in
domain knowledge such as the estimated percentage of the supplier’s offer over this
reservation price (17%) can be updated is a similar fashion. For instance, it is not
unrealistic to suppose that this percentage will drop when the negotiation process
continues. (2) The belief updating can be triggered by events such as discovery of
externally available information in addition to the supplier’s offers. For instance, if the
buyer finds out during the negotiation that the overall supply of the particular goods
under negotiation is experiencing a tremendous increase, his estimated supplier’s reserva-
tion price might drop without even receiving any new offers from the supplier. (3) In this
example, we use the traditional Bayesian representation for illustrative purposes. Other
efficient updating mechanisms utilizing more expressive representations such as the
Bayesian network work essentially in the same way.

4.1. THEORETICAL ANALYSIS OF UTILITY OF BAYESIAN LEARNING

In order to examine analytically the impact of learning on negotiation, we make certain
simplifying assumptions.

(1) Model and assumptions. A group of n players play an infinitely repeated game. The
stage game—the one-shot game being played in a repeated fashion—is described by the
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following components:

(i) n finite sets &
1
, &

2
,2 ,&

n
of actions with &"<n

i/1
&
i
denoting the set of action

combinations.
(ii) n payoff functions u

i
: &>R.

We let H
t
denote the set of histories of length t, t"0,1,2,2. Denote by HM "Z

t
H

t
the

set of all finite histories.
A behavior strategy of player i is a function f

i
: HM >*(&

i
) with * (&

i
) denoting the set of

probability distribution on &
i
. Thus, a strategy specifies how a player randomizes over

his choices of actions after every history.
We assume that each player knows his own payoff function and that the players are

fully informed about all realized past action combinations at each stage.
The players’ objective is to maximize their long-term expected discounted payoff,

relative to their individual subjective beliefs, including private probabilistic knowledge
on the unknown parameters of the game, and beliefs about each other’s strategies.
Learning takes place at each stage when the players update their individual subjective
beliefs using the Bayesian mechanism before entering the next stage of negotiation.

The following definitions are standard game-theoretic concepts (Osborne & Rubin-
stein, 1994).

(2) Nash equilibrium. A Nash-equilibrium of a game is a set of actions with the
property that no player can profitably deviate from this equilibrium, given the actions of
the other players.

(3) e-Nash equilibrium. For any e'0, an e-Nash equilibrium of a game is a set of
actions with the property that no player has an alternative action that increases his
payoff by more than e, given the actions of the other players.

Lemma 1: If the players start with a vector of subjectively rational strategies, and if their
individual subjective beliefs regarding opponents strategies are compatible with the truly
chosen strategies, then they must converge in finite time to play according to an e-Nash
equilibrium of the repeated game for arbitrary small e (Kalai & Lehrer, 1993).

By subjectively rational strategies we mean that in each stage, the players take the
action which maximizes their long-term expected discounted payoff, relative to their
individual subjective beliefs. Compatibility with the truly chosen strategies means that
there should be no event in the play of the infinite game which can occur yet be ruled out
by the beliefs of an individual player. Roughly speaking, initially each player assigns
a strictly positive probability to the strategy which could be actually chosen by the
opponent.

Lemma 2: After a sufficiently large time ¹, the real probability distribution over the
future play of the game is e-close to what player i believes the distribution is (Kalai
& Lehrer 1993).

Based on these two lemmas, we prove the following Proposition.

Proposition 1: A player who uses the Bayesian mechanism to update his beliefs about
the unknown parameters of the game and other player’s strategies in a subjectively
rational fashion performs at least as well as without the Bayesian learning.
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Proof: Suppose a player, P, does not have Bayesian learning capability. P will play
without adaptation according to his prior information about other players and unknown
parameters of the game. We know from Lemma 2 that all the other players that are able
to learn through the Bayesian updating will acquire the almost accurate beliefs over the
future play and therefore play according to e-Nash equilibrium. If P happens to select the
right strategy at the very beginning, then in the long run learning does not make
a difference, since eventually all the agents will play optimally. On the other hand, if
P selects a sub-optimal strategy at the outset and cannot adapt its behavior accordingly
given the observations of other players’ behaviors, it is highly probable that his strategy
deviates from e-Nash equilibrium while others’ strategies do not (from Lemma 1).
According to the definition of e-Nash-equilibrium, the proposition immediately follows.

From this proposition, we know that for the simple negotiation setting discussed here,
learning is indeed beneficial, which reinforces our intuition that learning helps an agent
acquire and update relevant negotiation information during the negotiation process and
in turn helps the agent make knowledgeable and advantageous decisions.

5. Experimental study: learning in bargaining

The analytic results given in the previous section ensure the benefit of the Bayesian
learning in general. However, the assumptions made by the theory, such as the compati-
bility of initial subjective beliefs regarding opponent’s strategies and the truly chosen
strategies, are rarely met in a real negotiation setting. In addition, the theory does not
articulate how fast the convergence of the belief update is. The negotiation can be over
well before the asymptotic true estimation is achieved.

We conducted simulations in a simple bargaining setting to observe the interactions
between the agents that learn and the agents that use fixed strategies. We ran experiments in
various situations: learning agents vs. non-learning agents; learning agents vs. learning
agents. Results from non-learning vs. non-learning were used as the baseline for comparison.

5.1. EXPERIMENTAL DESIGN

In our initial experiments, we consider a simple bargaining scenario with the following
characteristics.

f The set of players N is comprised of one buyer and one supplier.
f The set of dimensions M contains only one issue, price.
f For simplicity, the range of possible prices is from 0 to 100 units.
f The set of possible actions (proposed prices by either the buyer or the supplier)

A equals to M0, 1, 2,2 , 100N.
f The player function Q is defined in such a way that the buyer and the supplier make

alternate proposals. Who will be proposing first is decided by coin-tossing.
f For simplicity, the relevant information set ) contains only the supplier’s reserva-

tion price RP
4
and the buyer’s reservation price RP

"
.

f Reservation prices are private information. In other words, each player only knows
his own reservation price.

f The range of possible prices is public information.
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f Each player’s utility is linear to the final price (a number between 0 and 100)
accepted by both players.

f Each agent is allowed to propose only strictly monotonically. For example, the
supplier’s subsequent offers will decrease monotonically, while the buyer’s offers will
increase monotonically. They are not allowed to propose the same value more than
once.

Since the bargaining process (proposals/counterproposals) is symmetrical for the buyer
and the supplier, the following discussions about the strategies with or without learning
apply to both agents. In our experiments, by the non-learning agents, we mean the agent
that makes his decision based solely on his own reservation price. For instance, the
supplier may start proposing 100 initially. The buyer deems it unacceptable and proposes
another value. Since the non-learning supplier does not have a model of the buyer (in terms
of the buyer’s reservation price), the supplier just compares the buyer’s offer with his own
reservation price RP

4
. If the buyer’s offer exceeds RP

4
, the supplier will accept the offer

and the negotiation process ends. If not, the supplier will propose a value which is below
his previous offer by a fixed percentage (in our experiments, the percentage was arbitrar-
ily set to 1.5%) but above RP

4
.- The non-learning buyer behaves essentially in the same

way: whenever the supplier’s offer is below the buyer’s reservation price RP
"
, the buyer

will accept the offer. Otherwise, the buyer counterproposes by increasing his previous
offer by a fixed percentage (again, the proposed value should be below PR

"
).

The learning agent’s negotiation strategy is fundamentally different. Decisions will be
made based on both the agent’s own and the opponent’s reservation price. Note that
reservation prices are private information and there is no way that the agent can know
the exact value of his opponent’s reservation price, even after an agreement has been
reached. However, each learning agent can always have some a priori estimation about
his opponent’s reservation price and update his estimation during the negotiation
process using the Bayesian updating mechanism as shown in the previous section. In our
implementation, the agent represents his subjective beliefs about his opponent’s re-
servation price using a piecewise probability distribution function. This function is
implemented as a vector with 101 elements P"[P

0
,P

1
,2 ,P

100
].‡ In this vector,

P
i

represents the agent’s current estimation of the probability that his opponent’s
reservation price is i. The current estimation of his opponent’s reservation price itself is
calculated as the mean +100

i/0
i*Pi

/101. In general, the buyer and the supplier will have
different initial set of subjective belief vectors P0

4
and P0

"
.

The domain knowledge that the learning agents use to update their estimation of their
opponent’s reservation price is represented by 101 piecewise conditional probability
distribution functions MDK

i
D i"0,1,2 , 100N. The distribution function DK

i
essentially

expresses what the opponent proposals would look like if his reservation price is i.
In our experiments, these conditional probability functions do not change. We define

these functions using a simple heuristic (shown below). In reality, these functions can be
learned by exploration of the space of proposals by an agent in repeated negotiation with
the same opponent.
- The actual proposed price will be rounded up to an integer value. To satisfy the strict monotonicity
assumption about the offers, the minimum difference between the new value and the old one is one unit.

‡ Note that the price range is public knowledge.



FIGURE 3. An example of conditional probability function DK"
i
.
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The buyer and the supplier have a different set of conditional probability functions.
Let us take the buyer’s standpoint. One of the conditional distribution function DK"

i
represents the distribution of the possible proposals made by the supplier given that
RP

4
"i. Figure 3 shows the shape of DK"

i
. In essence, this function says that with a high

probability, the supplier will propose a value 17% above his true reservation price;
higher or lower than that is less probable. Similar functions are defined for the supplier as
well. The difference is that the supplier believes that with a high probability the buyer will
propose a value 17% below his true reservation price.

The price range in our experiments was [0—100]. To set up the initial estimation (a
priori information), we assumed that the agents do not have information about each
other at the beginning and that the agents have an ‘‘optimistic’’ view of each other. The
buyer believes that with high probability the supplier’s reservation price is 0, while the
supplier believes at the beginning of the bargaining that with high probability the buyer’s
reservation price is 100.

The supplier’s negotiation strategy is as follows: given the current estimation of the
buyer’s reservation price RP

"
Y , he will propose a value between RP

4
and RP

"
Y equal to

a]RP
"

Y #(1!a)]RP
4
, where a is a parameter set to 0.10 in our experiments. As in the

non-learning agent case, the proposed price will be rounded up to an integer value and
will be at least one unit less than the previous proposed value. When the counteroffer
from the buyer exceeds RP

4
, a deal is reached. Otherwise, the supplier updates his

estimation of the buyer’s reservation price and continues in essentially the same way. The
buyer’s negotiation strategy mirrors the supplier’s.



TABLE 1
Average performance of three experimental configurations

Configuration Joint utility No. of proposals exchanged

Both learn 0.22 24
Neither learn 0.18 34
Only buyer learns 0.15 28
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5.2. EXPERIMENTAL RESULTS

We conducted experiments in three different settings.

(1) Non-learning buyer vs. non-learning supplier.
(2) Learning buyer vs. learning supplier.
(3) Learning buyer vs. non-learning supplier.

For each configuration, we ran 500 random experiments. Each experiment instance
corresponds to a complete bargaining scenario which involves multiple rounds of
exchanging proposals and counterproposals. We generated these 500 random instances
of experiment by creating 500 pairs of random numbers. Out of each pair, the lower end,
representing the supplier’s reservation price, was a realization of a random number that
is uniformly distributed in the interval [0—49]. The upper end, representing the buyer’s
reservation price, was a realization of a random number that is uniformly distributed in
the interval [50—100]. In this way, we ensured that the zone of agreement always exists.
Note that learning takes place within each run of the experiment rather than between the
experiment runs.

We measured the quality of a particular bargaining process using the normalized joint
utility fashioned after the Nash solution (Luce & Raiffa, 1957). Suppose the buyer and the
supplier agree on a particular price P

*
, the joint utility is then defined as

(P
*
!RP

4
)](RP

"
!P

*
)

(RP
"
!RP

4
)2

.

It can be easily shown that the joint utility reaches the maximum 0.25 when P
*

is
the arithmetic average of RP

"
and RP

4
. Note that in our experimental setting,

this theoretic maximum might not be reached, for RP
"

and RP
4
are not known to both

agents.
The cost of a bargaining process is measured by the number of proposals exchanged

before reaching an agreement. We report in Table 1 the average performance of all three
configurations. Our observations about these experimental results are as follows.

f We noticed that in terms of overall bargaining quality and number of proposals
exchanged to reach a compromise, the ‘‘both learn’’ configuration outperformed the
other two. This confirmed our intuition that building learning capability into agents’
decision-making helps agents form more accurate model of the opponent and results
in better performance and less expensive process.



FIGURE 4. Relations between the size of the zones of agreement & percent improvement of joint utility.
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f Judged from the viewpoint of the joint utility, the ‘‘only buyer learns’’ configuration
does less well compared with ‘‘both learn’’. In effect, it is even worse than ‘‘neither
learn’’. A careful examination of data reveals that although the joint utility suffers,
the buyer (the only learning agent) actually did consistently better for himself (in
terms of maximizing his own individual utility) than he did in the ‘‘both learn’’
configuration. We suspect the reason is that the buyer has formed better estimation
of his non-learning opponent’s reservation price and therefore takes advantage of
the ‘‘dummy’’ supplier. Since the optimal Nash solution requires an even split in the
zone of the agreement, the buyer-dominant solution leads to lower joint utility. The
‘‘neither learn’’ configuration does not show any consistent bias either in favor of
the buyer or the supplier.

We examined the data of ‘‘neither learn’’ and ‘‘both learn’’ in more detail by further
dividing all the 500 experiment instances (1000 instances altogether for both con-
figurations) into different categories according to the size of the zone of agreement. Then,
we calculated the differences of the corresponding joint utilities between ‘‘neither learn’’
and ‘‘both learn’’ and plotted the percentage difference in joint utility improvement
against the size of the zone of agreement. The result is shown in Figure 4. We observed
that there seems to be a positive correlation between these two variables. An intuitive
explanation could be that the greater the room for agreement flexibility (greater the zone
of agreement), the better the learning agents seize the opportunity.

6. Concluding remarks and future work

In this paper, we presented Bazaar, a sequential decision-making model of negotiation
in which multi-agent learning is an integral construct of the model. This model is
motivated by providing a computational framework for negotiation which satisfies the
following features: (1) the model provides an operational algorithm to guide offers
instead of only prescribing the final outcome, and (2) learning can be easily incorporated
into the model. Both theoretical results and initial experiments show that learning is
beneficial in this sequential negotiation model. Current work focuses on conducting
more extensive experiments and theoretical analysis of the impact of learning under
various conditions. Future work will investigate the application of the Bazaar frame-
work on non-trivial negotiation scenarios such as supply chain management.
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