
WISE - Building Simple Intelligence into Web Services

Soe-Tsyr Yuan1 and Kwei-Jay Lin2

1Dept. of Management Information System
National Chengchi University, Taipei, Taiwan

2Dept. of EECS
University of California, Irvine, CA 92697, USA

ABSTRACT

Web Services are self contained and self described
modular applications that can be published, discovered and
employed on the Web. Many standard protocols supporting
web services have been adopted and more are being
proposed. In this paper, we study the issues on providing
intelligent web services. We propose the enhancement of
web service functionalities by deploying software agents on
both server side and/or client side. Our goal of designing
the WISE web service architecture is to provide a working
middle ground between the current web service standards
and the Semantic Web architecture. The WISE software
agent architecture for web services is presented. We discuss
the design issues of WISE. We also present the QoS
management protocol and algorithm that can be used by
WISE servers.

1. INTRODUCTION

With the steady expansion of global Internet connection
and servers, and the availability of rich, resourceful content,
World Wide Web has grown from a small research-oriented
network into a ubiquitous connection for businesses of all
sizes. Companies have used Internet to attract and identify
new customers, to explore new product ideas, and to expand
global new market. Moreover, in the last few years, Internet
has become an invaluable B2B infrastructure to streamline
supply chains, to lower business cost, and to provide real-
time information and feedback to suppliers, vendors and
consumers.

In the past, web servers were used mainly to supply
information, either static or dynamic. With companies
adopting more and more IT systems in their business
processes, Internet servers are becoming service-oriented,
providing automated responses to requests and queries from
both human users and business machines. Companies have
allowed their partners and customers to access on-line
information from their web servers using company-specific
access mechanisms built on top of standard Internet
protocols. The ease of use and the efficiency of such
mechanisms make services from web connections an instant
attraction.

However, despite the success of service-oriented web
computing for some, a major impediment for its wide
adoption and deployment for others is the non-standard
access mechanisms and protocols used by most of today’s
web servers. Different e-commerce web sites and web
servers have utilized different mechanisms to connect
buyers, suppliers, marketplaces, and partners. In working
with different customers, a company may need to have many
communication modules each to connect to a specific
customer site using a specific protocol. For companies with
complex business processes it will be close to impossible to
work with all of the different protocols when trying to serve
a wide range of vendors and customers.

To solve the problem, standard web services protocols
have been proposed to describe, to discover, to connect, and
to integrate services provided by different companies’ web
servers. Under the proposed framework, web services are
supposed to be “self-contained, modular business
applications that have open, Internet connected, standard
based interfaces.” Standards such as SOAP, WSDL and
UDDI have been defined to provide the foundation for an
open web service framework. The goal of the web services
framework is to solve the problems with proprietary
business protocols but still provide enough flexibility for
different industry domains so that each web service site can
deliver its service correctly and efficiently when requested.

Although current web services standards provide a good
start, there is still much to be explored to make web services
powerful and flexible. In this paper, we study two such
issues for web services: service delivery and QoS. Service
delivery, that demands an effective and efficient
performance, is critical for web applications and platforms
that must adapt to dynamic user demands and mobile target
environment when delivering services and information. QoS,
that defines service quality such as latency, availability,
timeliness and reliability, is important for many web
applications that process real-time information, have
multimedia content, or must have a guaranteed level of
service. For many web services, service delivery and QoS
are as critical as service’s functional data result.

1.1 WISE Web Services
Instead of refining the current web services standards

(such as the Semantic Web initiative [8]), which will need a
big effort to go through the standard approval process, we

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

propose to utilize software agents to enhance current web
services. Using agents allow us to monitor and to modify the
behavior of a web service module without making changes
to the module itself. Software agents have prevailed
throughout the years. They were explained as software
things that know how to do things that you could probably
do yourself if you had the time [9]. They embody certain
characteristics such as autonomy, proactivity, adaptation,
social ability, etc. [7]. Accordingly, software agents, by
nature, come into being as a technique to (partially) realize
the automation of assessment and management of customer
demands so as to select the service with the best achievable
quality and make the most effective web service delivery.

In this research, we investigate the deployment of
simple web service agents that are easy to implement and
efficient to execute. As many have suggested, systems that
are implemented with the “keep it simple and stupid” (KISS)
principle actually have a much better chance of success than
anything that is supposed to be powerful but complex. In
this paper, we present the design of WISE (Working,
Intelligent, yet Simple E-commerce) web services. WISE
web servers are supposed to work under standard web
service protocols, yet have simple service intelligence and
friendly user convenience built in. WISE agents rely on
many simple strategies to make their host web services
perform better without a major effort or perception from
users (or target automated applications). Our goal of
designing WISE web services is to provide a middle ground
between the current web service standards and the Semantic
Web initiative. Although Semantic Web [8] provides a good
plan for fully intelligent web (in terms of automated web
service discovery, execution, composition and
interoperation), it will still take much effort and time to
make it a practical reality. On the other hand, by building
WISE servers using the current web service interface
protocol, we can easily build a web of WISE servers. In
other words, WISE is to be a working model today, building
lightweight intelligence into today’s web services. Efficiency
and Effectiveness will be our main concern rather than
powerfulness and completeness. In the future, WISE may
further play as the middleware utilizing the automatic
intelligence gathered from the web of services by the Web
Intelligence initiative.

The rest of this paper is organized as follows. Section 2
reviews the requirements on web service delivery and QoS
management. Section 3 discusses the possibilities on how
software agents may be used to make web services more
intelligent and easy to use. We present the WISE system
architecture in Section 4. The implementation of the WISE
infrastructure and QoS management protocol are briefly
shown in Section 5. The paper is concluded in Section 6.

2. Requirements of Service Delivery and QoS
2.1 Issues on Service Delivery

Plain web service delivery simply transmits the specific
service outcomes the service intends to accomplish. The
service outcomes can be as simple as a few returned three-
digit area codes for a particular state or as complex as
searching and manipulating information on the web.

However, the new vision of the web is to provide a
platform for service sharing, interoperation, and delivery in
intelligent ways. Accordingly, plain web service delivery
should be upgraded so as to exhibit certain level of
intelligence. The fundamental issues involved in a service
delivery strategy are as follows: (excluding the decision of a
service choice, that is, a designated service is presumed for
conducting the service delivery):

• Demand assessment: In assessing the demand for
services the following questions need to be answered:
for whom, where, when, for how long, at what level,
at what cost, etc.

• Demand monitoring and analysis: Assessment and
management of demand is a continuous process.
Subsequent analysis of demand may reveal that
current usage has altered. Demand should therefore be
monitored regularly to avoid unpleasant surprises and
to assure certain performance of the service.

• Demand Communication: Means of customer
communication with the service should be effortless
and without trouble.

• Demand prioritization: Resources available to the
services are finite. However, there might be demand
for services in excess of the resources required to
provide them. Therefore, it is imperative to prioritize
service delivery for maximizing benefits to the set of
service requestors as a whole.

Plain web service delivery does not consider assessment
and management of customer demands and may result in
ineffective service delivery. To provide an intelligent
platform for service sharing and interoperation, it is crucial
to find methods to (partially) achieve the automation of
assessment and management of customer demands. On the
other hand, more and more people will be accessing the web
from mobile phones, personal digital assistants (PDAs), auto
PCs, and a variety of information appliances other than
desktop PCs. Therefore, web service delivery has to
consider physical limitations of these Internet-enabled
mobile devices.

2.2 QoS for Web Services
Future business systems require a seamless integration

of business processes, business applications, business
intelligence, and web services over the Internet. Delivering
QoS for most web services is a critical and significant
challenge because of the dynamic and unpredictable nature
of business applications and Internet traffic. Business

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

applications with very different characteristics and
requirements compete for the resources used to provide the
web services. Without a careful management of web service
QoS, critical business applications may suffer detrimental
performance degradation, and resulting in customer
dissatisfaction or financial losses.

The area of QoS management covers a wide range of
techniques that match the needs of service requestors with
those of the service provider's. QoS has been a major area of
study in computer networking [5, 13], real-time computing
[10, 17], system middleware [1, 3]. For web services, QoS
guarantee and enhancement have started to receive some
attention [11, 12]. However, to our knowledge, no
commonly agreed framework and major performance result
has been reported yet.

In our study, we consider the following quality
attributes as part of the web service parameters.

1. Response time: the amount of time to get a service
request responded at the client side. This includes the
total time for service and round-trip communication.

2. Service cost: assuming that some or future web
services will be fee-based, cost is the dollar amount for
each unit of service. A web service may be priced
differently depending on the quality of the service
requested.

3. Network bandwidth: the network bandwidth required
to receive the service. This is especially important for
services with multimedia content such as video or large
graphics. The bandwidth attribute will also be
important for web service brokers to decide if a service
should be invoked if the client is using a low bandwidth
network such as some of today’s wireless connection.

4. Service availability: the probability that the service is
available. This only measures the server availability in
terms of responding to a request, not the result quality.

5. Result dependability: the quality of the result
produced by the web service. The dependability index
is a number between 0 and 1, with 0 being
unacceptable and 1 being a perfect result. This index
may be generated from a complex formula combing
several other factors such as timeliness of data,
precision of calculation, etc.

Since our goal is to build simple intelligence into web
services, the QoS attributes to be considered must be easy to
understand and to measure. Except for result dependability,
all of the above attributes can be easily collected by a
software agent on a system without any user intervention or
input. For example, before and after each connection and
invocation of a web service, a software agent can
automatically measure the response time, the service cost,
the bandwidth used, and the number of connection attempts
before the service is successfully fulfilled. The problem with
the dependability measurement is that its rating is quite

subjective. It is up to the user to make a judgment on how
good the service has just been received.

3. Software Agents and Web Services
In this section, we present different ways software

agents may be deployed in WISE. We also provide
references to some of our projects implementing those
capabilities.

3.1 Agent-Based Demand Assessment
The demand of a customer for a designated service

unfolds as a combination of the answers to the questions as
for whom, where, when, for how long, at what level, at what
cost, etc. This combination of information is also denoted as
a context according to the notion of context defined by Dey,
et. al. [6]. Agents can be used to overcome the inherent
input/output limitations of mobile devices and enable certain
degrees of demand-assessment automation. In other words,
agents embody the capabilities of understanding the context
within which their users operate, such as the environment-
centric contextual attributes (their locations, nearby persons
or objects) and the human-centric contextual attributes (the
activities they are engaged in, who their friends and
colleagues are, and interaction histories and preferences).
That is, they are agents with context awareness.
Subsequently, agents invoke1 the designated services with
the contextualized demands.

An agent-based assessment of contextualized demands
has been implemented in the Voice-Based Mobile
Community Web Services (CAVBMC) project [14].
CAVBMC is a highly interactive voice-based mobile
community server. CAVBMC embodies two services:
TakeService and OfferService. TakeService enables a user to
acquire from CAVBMC relevant voice information, while
OfferService allows a user to render to CAVBMC his/her
valuable experience that is expressed in audio format and
location-tagged. A server with multiple software agents
residing on top of the CAVBMC server manages and
exploits the contexts of all of its customers. The multiagent
server records and analyzes users’ locations, past
interactions, and other users’ interactions at the same
locations in order to enable contextualized use of the web
services.

3.2 Agent-Based Demand Monitoring and
Analysis

Agents may also be used to monitor the progression of
the context and discover the possible patterns of context
evolution so as to generate additional demands that are also
of interest to the customer (in addition to the demand with
respect to the current context). We have built the Mobile
Advertising Web Services (MALCR) [22] which provides

1 This invocation won’t take effect unless it is confirmed by the

customer. In other words, the customer still retains the control of
service execution.

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

mobile advertising web services for the advertisement of
commercial/non-commercial activities in order to
complement the Internet and interactive television
advertising and made it possible for advertisers to create
tailor-made campaigns targeting users according to where
they are, their needs of the moment and the devices they are
using. MALCR has two services: PullService and
PushService. These services generate the recommendations
of the Mobile Ads that are relevant to the interests of the
mobile users and the locations where the mobile users
requested PullService or the locations where the mobile
users last made use of their mobile devices so as to avoid the
expensive location tracking of the users during the use of
PushService.

A multiagent server lodging on top of the MALCR
server manages and employs the contexts of all of the
customers. The multiagent server records, monitors, and
analyzes the historical interactions of the customers in order
to discover the possible customers needs that can be further
served with PushService.

3.3 Agent-Based Demand Communication
Agents can embody the capabilities of (multi-modal)

speech processing for facilitating the customer-to-service
information-exchange interactions. Our Voice-Based
Knowledge Management Web Services (VBKM) [18]
project has been built to facilitate knowledge acquisition and
knowledge queries by speech so as to enable the employees
to act as mobile workforce. VBKM attains a high quality of
knowledge acquisitions and queries based on the structures
of the speech documents. VBKM involves the technologies
such as wireless communication, speech recognition for
English, ontology, text mining, and knowledge base.

VBKM has two services: QueryService and
AcqusitionService. QueryService enables a mobile worker to
acquire from the organization memory the most relevant
knowledge to a given oral query, while AcquisitionService
allows a mobile worker to render to the organization
memory his/her oral working experience that would
subsequently be classified into a cluster of similar
documents. Upon the request of these web services, an agent
residing at the mobile device of a mobile worker processes
the oral inputs and manages the context of the worker in
order to enable effective service communication and
delivery.

3.4 Agent-Based QoS Negotiation and
Prioritization

Agents enable service resource allocation among
service requests from many customers in order to prioritize
service deliveries so as to maximize the benefit among
service requestors as a whole. The allocation method can be
the likes of market-based task allocation, contract-net based
allocation, etc. Web service QoS concerns the allocations
among web service providers (and thus their resources) and

service requestors. Automated negotiation [15], which often
is deployed to automate task/resource allocation in
electronic commerce, then can be employed to automate
web service QoS negotiation. Automated negotiation
denotes the interactions among the agents representing
service providers and service consumers based on
communication for the purpose of coming to an agreement
for distributed conflict resolution or distributed decision
making.

In WISE, we concentrate only on simple QoS strategies
as we assume that most web services to be deployed will
have very simple cost structure or even can be used for free.
The decision of which server to use or what service level to
request is probably based more on context information such
as the connection bandwidth available to a mobile device or
the location of the user at the time.

4. Architecture of WISE Web Services
From the above, we can see that WISE web services can

be built in several ways: placing agents on user devices, on
web service servers, and on both sides of the connection. In
this section, we describe each of these architectures.

4.1 Agents on WISE User Devices
The agents used in VBKM [18] exemplify the first

WISE service architecture in which agents residing on
mobile devices manage and utilize the context of the
customers in order to assure effective services. This type of
agents often embodies the characteristics of light processing
(that might involve simple agent strategies) and not relating
to other users of the designated web services.

Figure 1 shows a generic architecture for this type of
WISE services. Without loss of generality, an agent at a
mobile device is delegated to deal with a web service server
(that encompasses m web services). This delegation involves
management and utilization of the profiles, the context, and
the strategies indirectly through a manager (that aims to
coerce a coherent management and utilization).

Web Service Server i

Agents in a Mobile Device

Service1

Service2

Servicem

…

Service3

Service Request &

Delivery

Internet

Agent1

Agent2

Agentn

…

Agent3

Strategy

Pool

Stg.1

Stg.2

�

Stg.p

Context

Profiles

Context

Sensors

manager

Figure 1. Architecture for WISE device agents

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

For each web service that is requested by a WISE
device, the WSDL information of the service is kept at the
mobile device. In addition, a WISE device also maintains
certain QoS information about the service so that agents may
use them to make more intelligent services. Information such
as response time history (or simply the last response time),
network bandwidth requirement (or usage) can be utilized to
come up with various strategies when making service
selections and delivery decisions.

4.2 Agents at a WISE Server
The agents deployed in the examples of CAVBMC [14]

and MALCR [22] demonstrate the second WISE service
architecture in which agents residing on the WS server
capture and manage the context of the customers in order to
assure more effective services. This type of agents often
takes the forms of multiagent systems that embody the
characteristics of heavy processing and might relate a user to
other users of the designated web services.

Web Service

Server

Muliagent at a WS server

Service Request

&

Delivery

Internet

Service1

Service2

Servicem

…

Service3

MAS

Context i

Profile i

mobile user i

Context Sensors

 Figure 2. Architecture for WISE server agents

Figure 2 shows a generic architecture of WISE servers.
The multiagent system (MAS) is delegated to deal with the
web service server (that encompasses m web services). This
delegation involves management and utilization of the
profiles and the context of all of its customers. In addition,
since the server needs to make sure all customers are happy,
a QoS agent may be deployed to perform QoS service
admission and management. The agent will inspect the QoS
requirements of all customers and decide which customer
should get how much resource to meet its QoS needs. On-
line QoS monitoring is performed by each customer agent
and reported back to the QoS agent so that it can make
dynamic resource control.

The QoS capability of a WISE server may be published
on its UDDI registry so that service requestors may decide if
and which WISE server should be contacted for the desired
service. Since QoS attributes are not part of the standard
UDDI definition, only those clients that understand WISE
QoS definition can talk to each other for QoS negotiation
and delivery.

4.3 Agents on Both Ends
With WISE servers and WISE devices, web services

may utilize yet another type of architecture, with software
agents on both ends of web service connections. Such
architecture opens door for very powerful multi-agent
negotiation and cooperation scenarios. For example, it is
possible for two or more agents to go into sophisticated
bargain negotiations, involving rounds of offers and counter-
offers, in order to search for the best deal. It is also possible
to involve multiple user agents in auction-style negotiation,
granting services to only those who are willing to pay a good
price.

Rather than pursuing effort on multi-agent negotiation,
we believe that multi-agent cooperation for QoS service and
delivery provides a real opportunity for showing the real
benefit of the WISE web service model. Since most users
and applications have dynamic resource requirements at run-
time, it is beneficial for servers to allocate only enough
resources to applications at any time. Therefore dynamic
QoS adjustment should be done aggressively to better utilize
server resources and to achieve the best performances for all
users. However, the WISE model is different from the
traditional multi-agent model where all agents are assumed
to be equally powerful. We envision that most WISE user
devices have only very simple computing power. Therefore
server agents should do most of the processing and make
complex decisions and leave only rudimentary monitoring
and responses to device agents.

5. Implementing WISE
One of the main goals for the WISE project is to

provide working intelligent web services. Therefore, we
must show that the WISE architecture can be efficiently
implemented. In this section, we show a WISE web service
implementation on top of J2EE web services and also the
QoS web services protocol.

5.1 A WISE Implementation on J2EE
Web services are not tied to a specific platform like

JVM or .NET since they focus on the protocols used to
exchange messages, rather than the implementation that
supports those protocols. However, since WISE is not part
of the standard protocols, we must design our own WISE
infrastructure support for each specific platform.

Figure 3. J2EE WISE server agents (non-WSDL)

Endpoint interface

EJB 2.1
SOAP

J2EE WISE
Server Agents

JAX
RPC

J2EE

Mobile Users or
Applications

Stateless
Session Bean

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

J2EE provides a service-oriented infrastructure to
automatically support and manage distributed components
called Enterprise JavaBeans (EJBs). Enterprise developers
can therefore concentrate on application components. J2EE
web services (EJB 2.1) include web services APIs (e.g.,
JAX-RPC) that can be used to communicate with other web
services and allow EJBs to act as web services. When
developing a web service as a stateless session bean, an
endpoint interface must be defined in order to generate the
JAX-RPC client stubs (Figure 3), a WSDL document, or
both. The JAX-RPC client stub can then be packaged with
the WISE server agents in a J2EE client JAR and used to
access the stateless session bean, using the SOAP protocol.
If a WSDL document is generated from the endpoint
interface, other SOAP toolkits such as the Microsoft SOAP
Type Library (modeling either WISE server agents or device
agents) can use the document to access the stateless bean
(Figure 4).

Figure 4. J2EE WISE sever/device agents (WSDL)

Figure 5. J2EE web service stacks vs WISE stacks

WISE web servers work on top of standard web service
interface protocols, yet have very simple built-in intelligence
and convenience. WISE server agents exert simple strategies
to make their host web services perform better without a
major effort or perception from users. Figure 3 shows a
working WISE structure in which the WISE server agents
provide lightweight intelligence (on behalf of mobile users
or applications) to J2EE web services through the JAX-RPC
client stubs. Figure 5 shows the WISE application
infrastructure stack that includes the layer of WISE server
agents to endow applications with “intelligent” web services

(versus “plain” web services delivered by current application
infrastructure stack). More details on our implementation
and its performance will be reported in future reports.

5.2 WISE QoS Protocol
Many real-time web services have a short duration but

need to have a reasonably firm guarantee on the
performance. It is important to make sure that a minimum
level of performance can be achieved. If the performance
cannot be guaranteed, it is better to reject the request as
early as possible so that the customer can try to locate
another server that can perform the web service.

In WISE, we adopt a session-based QoS management
[3] to reduce the overheads in making decisions. Every
WISE device (or client) keeps a profile on the resource
needs for each of the web services it may request. Every
WISE server maintains its current QoS grant levels on all
resources under its control. When a WISE device requests
for a new service with QoS, the following steps are
performed:
1. A WISE device sends to a WISE server the request for

the establishment of a QoS web service with the desired
range of QoS parameters.

2. The QoS agent on the WISE server performs the QoS
admission process to check if the QoS request can be
granted.

3. The server QoS agent responds with an offered QoS
level to the WISE agent on the device notifying it the
available resources at the time.

4. If the offered QoS level is acceptable, a web service
contract is established. The WISE device then sends in
the actual request to initiate the service.
The distinct features of the WISE QoS algorithm are the

efficiency for making QoS admissions and the adaptability
to the dynamic behaviors of WISE devices. The WISE QoS
algorithm is based on the share-driven scheduling [19] that
has been shown to be very effective for managing dynamic
network traffic [5] and also multimedia computing [1].
Using the share-driven scheduling, each active session is
committed a certain share (i.e. percentage) of the resource
(CPU, network, etc.). This committed share is the minimum
level of service that can be used by the session and will not
be reduced regardless of the total load in the system.
However, if a session has a certain unused share due to its
lack of workload, this extra share will be used by all other
sessions with active workloads waiting to be processed. The
usage of the extra share among active sessions is divided in
proportional to their previously-assigned shares. The will
keep the system fully utilized at any time, avoiding any
reserved but unused system time.

The WISE QoS algorithm is easy to implement and
works very well for each resource managed independently.
However, most web service applications may need QoS
control for more than just one resource. For example, a
multimedia session may require a sufficient capacity on both

Applications
WISE server

agents

Web services

J2EE

JVM

OS

Hardware

Applications

Web services

J2EE

JVM

OS

Hardware

J2EE+Web Services J2EE+Web Services +WISE agents

SOAP Toolkit

WSDL

EJB 2.1 Container

Stateless
Session Bean Listener

WISE server
agents / WISE
device agents

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

CPU and memory. We are studying ways to integrate several
resources in the WISE QoS management framework [19].

6. Conclusions
Web services have recently received much interest and

support form industry to make the World Wide Web more
service oriented. With the proposed standards such as
SOAP, WSDL, UDDI and others, web services are
becoming more ubiquitous. To make them even more “web-
friendly”, some lightweight intelligence can be inserted into
the web service infrastructure.

In this paper we present the WISE web service
architecture. WISE servers and devices are built on top of
existing web service protocols but have simple web service
intelligence to assist decision-makings. We have shown how
WISE may be used to build intelligent web service delivery
and QoS guarantee. The WISE web service architecture has
been presented and QoS algorithm discussed. Our goal in
this project is to show the benefit of deploying simple web
service agents on the client (mobile) device and on servers.
Rather than jumping into the intelligent web concept
directly, which may still take many years to come, we
believe the WISE approach will be much cheaper to
implement and much easier to deploy.

7. References
[1] Abeni, L. and G. Buttazzo, Integrating Multimedia

Applications in Hard Real-Time Systems, Proceedings of the
IEEE Real-Time Systems Symposium, Madrid, Spain, pp. 4-
13, December 1998.

[2] Cheng, John and Wellman, Michael, The walras algorithm: A
convergent distributed implementation of general equilibrium
outcomes. Computational Economics, Vol. 12(1), pp. 1-24,
1998.

[3] Cherkasova, L. and Phaal, P., Session-Based Admission
Control: A Mechanism for Peak Load Management of
Commercial Web Sites, IEEE Transactions on Computers,
Vol. 51(6), pp. 669-685, 2002.

[4] Conitzer, V. and Sandholm, T., Vote Elicitation: Complexity
and Strategy-Proofness, National Conference on Artificial
Intelligence, 2002.

[5] Demers, A., Keshav, S., and Shenker, S., Analysis and
Simulation of a Fair Queueing Algorithm. In Journal of
Internetworking Research and Experience, pp.3-26. October
1990. Also in Proc. of ACM SIGCOMM'89, pp.3-12.

[6] Dey, A. K., Salber, D., & Abowd, G. D., A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications. Human-Computer Interaction,
16, 2001.

[7] Genesereth, M. R. and Ketchpel, S. P., Software Agents.
Communications of the ACM, Vol. 37(7), pp. 48-53, 1994.

[8] Hendler, James., Agents and the Semantic Web, IEEE
Intelligent Systems, Special Issue on the Semantic Web, Vol.
16, No. 2, pp. 30-37, March/April 2001.

[9] Janca, Peter. Pragmatic Application of Information Agents.
BIS Strategic Decisions, Norwell, United States, 1995.

[10] Lee, Chen, John Lehoczky, Dan Siewiorek, Raj Rajkumar and
Jeff Hansen, A Scalable Solution to the Multi-Resource QoS
Problem. In Proceedings of the 20th IEEE Real-Time Systems
Symposium, December 1999.

[11] Mani, Anbazhagan and Arun Nagarajan, Understanding
quality of service for Web services, IBM Technical Report,
Jan. 2002, “www6.software.ibm.com/software/developer/
library/ws-quality.pdf”

[12] Menasce, Daniel A., QoS Issues in Web Services, IEEE
Internet Computing, November-December, pp. 72-75, 2002.

[13] Parekh, A. K. and Gallager, R. G., A Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Single Node Case. IEEE/ACM Trans.
Networking, Vol. 1, no.3, pp.344-357, June 1993.

[14] Peng, K. S. and Yuan, Soe-Tsyr, Location Based and
Customerized Voice Information Service for Mobile
Community, International Conference on Electronic
Commerce, HongKong, 2002.

[15] Sandholm, T., Distributed Rational Decision Making,
Multiagent Systems edited by Gerhard Weiss, The MIT Press,
London, England, 1999.

[16] Sandholm, T, eMediator: A Next Generation Electronic
Commerce Server, Computational Intelligence Vol. 18(4), pp.
656-676, 2002.

[17] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke,
J., and Plaxton, G., A Proportional Share Resource Allocation
Algorithm for Real-Time, Time-shared Systems. In Proc. of
IEEE Real-Time Systems Symposium, pp.288-299, December
1996.

[18] Sun, J. W. and Yuan, Soe-Tsyr, Ontology-Based Task-
Oriented Voice Mining for Mobile B2E Applications,
International Conference of Information Management
Research and Practice, Taiwan, 2002.

[19] Wang, Song and Kwei-Jay Lin, A General Resource
Management Framework for Real-Time Operating Systems,
Proc. International Conference on Parallel and Distributed
Systems (ICPADS), Chungli, Taiwan, December 2002.

[20] Wang, Y.C. and Lin, K.J., Implementing a general real-time
scheduling framework in the RED-Linux real-time kernel. In
Proc. IEEE Real-Time Systems Symposium, Phoenix,
Arizona, Dec 1999.

[21] Wellman, M. and Wurman, P., Market-aware agents for a
multiagent world. Robotics and Autonomous Systems
Journal, Vol. 24, pp.115-125, 1998.

[22] Yuan, Soe-Tsyr and Tsao, Y. W., A Recommendation
Mechanism for Contextualized Mobile Advertising, Expert
Systems with Applications, Vol. 24(4), pp. 399-414, 2003.

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

