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Abstract—In this paper, we develop a formalism called a distributed constraint satisfaction problem (distributed CSP) and
algorithms for solving distributed CSPs. A distributed CSP is a constraint satisfaction problem in which variables and constraints are
distributed among multiple agents. Various application problems in Distributed Artificial Intelligence can be formalized as distributed
CSPs. We present our newly developed technique called asynchronous backtracking that allows agents to act asynchronously and
concurrently without any global control, while guaranteeing the completeness of the algorithm. Furthermore, we describe how the
asynchronous backtracking algorithm can be modified into a more efficient algorithm called an asynchronous weak-commitment
search, which can revise a bad decision without exhaustive search by changing the priority order of agents dynamically. The
experimental results on various example problems show that the asynchronous weak-commitment search algorithm is, by far more,
efficient than the asynchronous backtracking algorithm and can solve fairly large-scale problems.

Index Terms—Backtracking algorithms, constraint satisfaction problem, distributed artificial intelligence, iterative improvement
algorithm, multiagent systems.
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1 INTRODUCTION

ISTRIBUTED Artificial Intelligence (DAI) [1] is a subfield
of artificial intelligence that is concerned with interac-

tion, especially coordination among artificial automated
agents. Since distributed computing environments are
spreading very rapidly due to the advances in hardware
and networking technologies, there are pressing needs for
DAI techniques. Thus DAI is becoming a vital area of
research in artificial intelligence.

In this paper, we develop a formalism called a distributed
constraint satisfaction problem (distributed CSP). A distrib-
uted CSP is a constraint satisfaction problem (CSP) in
which variables and constraints are distributed among
multiple automated agents. A CSP is a problem to find a
consistent assignment of values to variables. Even though
the definition of a CSP is very simple, a surprisingly wide
variety of AI problems can be formalized as CSPs. Similarly,
various application problems in DAI that are concerned

with finding a consistent combination of agent actions can
be formalized as distributed CSPs.

For example, a multiagent truth maintenance system [2]
is a distributed version of a truth maintenance system [3].
In this system, there exist multiple agents, each of which
has its own truth maintenance system. Each agent has un-
certain data that can be IN or OUT, i.e., believed or not be-
lieved, and each shares some data with other agents. Each
agent must determine the label of its data consistently, and
shared data must have the same label. The multiagent truth
maintenance task can be formalized as a distributed CSP,
where each of uncertain data is a variable whose value can
be IN or OUT.

Another example is a distributed resource allocation
problem in a communication network, which is described
in [4]. In this problem, each agent has its own tasks, and
there are several ways (plans) to perform each task. Since re-
sources are shared among agents, there exist constraints/
contention between plans. The goal is to find the combina-
tion of plans that enables all the tasks to be executed si-
multaneously. This problem can be formalized as a distrib-
uted CSP by representing each task as a variable, and pos-
sible plans as variable values.

Many other application problems that are concerned with
finding a consistent combination of agent actions/decisions
(e.g., distributed scheduling [5] and distributed interpreta-
tion problems [6]) can be formalized as distributed CSPs.
Since a variety of DAI application problems can be formal-
ized as distributed CSPs, we can consider distributed algo-
rithms for solving distributed CSPs as an important infra-
structure in DAI.
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It must be noted that although algorithms for solving
distributed CSPs seem to be similar to parallel/distributed
processing methods for solving CSPs [7], [8], research moti-
vations are fundamentally different. The primary concern
in parallel/distributed processing is efficiency, and we can
choose any type of parallel/distributed computer architec-
ture for solving a given problem efficiently.

In contrast, in a distributed CSP there already exists a
situation where knowledge about the problem (i.e., vari-
ables and constraints) is distributed among automated
agents. Therefore, the main research issue is how to reach a
solution from this given situation. If all knowledge about
the problem can be gathered into one agent, this agent can
solve the problem alone using normal centralized con-
straint satisfaction algorithms. However, collecting all in-
formation about a problem requires not only the communi-
cation costs but also the costs of translating one’s knowl-
edge into an exchangeable format. For example, a con-
straint might be stored as a very complicated specialized
internal function within an agent. In order to communicate
the knowledge of this constraint to other agent, which
might be implemented on different computer architecture,
the agent must translate the knowledge into an exchange-
able format, such as a table of allowed (or not allowed)
combinations of variable values. These costs of centralizing
all information to one agent could be prohibitively high.

Furthermore, in some application problems, gather-
ing all information to one agent is undesirable or impos-
sible for security/privacy reasons. In such cases, multiple
agents have to solve the problem without centralizing
all information.

In this paper, we develop a basic algorithm for solving
distributed CSPs called asynchronous backtracking. In this
algorithm, agents act asynchronously and concurrently
based on their local knowledge without any global control,
while the completeness of the algorithm is guaranteed.

Furthermore, we describe how this asynchronous back-
tracking algorithm can be modified into a more efficient
algorithm called asynchronous weak-commitment search,
which is inspired by the weak-commitment search algo-
rithm for solving CSPs [9]. The main characteristic of this
algorithm is as follows:

•� Agents can revise a bad decision without an exhaus-
tive search by changing the priority order of agents
dynamically.

In the asynchronous backtracking algorithm, the priority
order of agents is determined, and each agent tries to find
a value satisfying the constraints with the variables of
higher priority agents. When an agent sets a variable value,
the agent is strongly committed to the selected value, i.e.,
the selected value will not be changed unless an exhaus-
tive search is performed by lower priority agents. There-
fore, in large-scale problems, a single mistake in the selec-
tion of values becomes fatal since such an exhaustive
search is virtually impossible. This drawback is common
to all backtracking algorithms. In the asynchronous weak-
commitment search, when an agent cannot find a value
consistent with the higher priority agents, the priority order
is changed so that the agent has the highest priority. As a

result, when an agent makes a mistake in selecting a value,
the priority of another agent becomes higher; thus the agent
that made the mistake will not commit to the bad decision,
and the selected value is changed.

We will show that the asynchronous weak-commitment
search algorithm can solve various problems, such as the
distributed 1,000-queens problem, the distributed graph-
coloring problem, and the network resource allocation
problem [10] that the asynchronous backtracking algorithm
fails to solve within a reasonable amount of time. These
results are interesting since they imply that a flexible agent
organization, in which the hierarchical order is changed
dynamically, actually performs better than an organization
in which the hierarchical order is static and rigid, if we as-
sume that the priority order represents a hierarchy of agent
authority, i.e., the priority order of decision making.

In the following sections, we describe the definition
of a distributed CSP (Section 2). Then, we show two triv-
ial algorithms for solving distributed CSPs (Section 3),
and describe the asynchronous backtracking algorithm in
detail (Section 4). We show how the asynchronous weak-
commitment search algorithm is obtained by modifying the
asynchronous backtracking algorithm (Section 5). Then, we
present empirical results that compare the efficiency of
these algorithms (Section 6).

2 DISTRIBUTED CONSTRAINT SATISFACTION
PROBLEM

2.1 CSP

A CSP consists of n variables x1, x2, ..., xn, whose values

are taken from finite, discrete domains D1, D2, ..., Dn, re-
spectively, and a set of constraints on their values. A
constraint is defined by a predicate. That is, the con-

straint pk(xk1, ¤, xkj) is a predicate that is defined on the

Cartesian product Dk1 � ¤ � Dkj. This predicate is true iff
the value assignment of these variables satisfies this
constraint. Solving a CSP is equivalent to finding an
assignment of values to all variables such that all
constraints are satisfied.

2.2 Distributed CSP
A distributed CSP is a CSP in which the variables and con-
straints are distributed among automated agents. We as-
sume the following communication model:

•� Agents communicate by sending messages. An agent
can send messages to other agents iff the agent knows
the addresses of the agents.

•� The delay in delivering a message is finite, though
random. For the transmission between any pair of
agents, messages are received in the order in which
they were sent.

It must be noted that this model does not necessar-
ily mean that the physical communication network must
be fully connected (i.e., a complete graph). Unlike most
parallel/distributed algorithm studies, in which the topol-
ogy of the physical communication network plays an im-
portant role, we assume the existence of a reliable underlying
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communication structure among the agents and do not care
about the implementation of the physical communication
network. This is because our primary concern is coopera-
tion among intelligent agents, rather than solving CSPs by
certain multiprocessor architectures.

Each agent has some variables and tries to determine
their values. However, there exist interagent constraints,
and the value assignment must satisfy these interagent con-
straints. Formally, there exist m agents 1, 2, ¤, m. Each vari-
able xj belongs to one agent i (this relation is represented as
belongs(xj, i)).1 Constraints are also distributed among
agents. The fact that an agent l knows a constraint predicate
pk is represented as known(pk, l).

We say that a Distributed CSP is solved iff the following
conditions are satisfied:

•� "i, "xj where belongs(xj, i), the value of xj is assigned
to dj, and "l, "pk where known(pk, l), pk is true under
the assignment xj = dj.

Without loss of generality, we make the following as-
sumptions while describing our algorithms for simplicity.
Relaxing these assumptions to general cases is relatively
straightforward2:

•� Each agent has exactly one variable.
•� All constraints are binary.
•� Each agent knows all constraint predicates relevant to

its variable.

In the following, we use the same identifier xi to represent
an agent and its variable. We assume that each agent (and
its variable) has a unique identifier.

3 TRIVIAL ALGORITHMS FOR SOLVING DISTRIBUTED
CSP

The methods for solving CSPs can be divided into two
groups, namely search algorithms (e.g., backtracking algo-
rithms), and consistency algorithms [12]. Consistency algo-
rithms are preprocessing procedures that are invoked be-
fore search. Consistency algorithms in the Assumption-
based Truth Maintenance System framework [13] are es-
sentially monotonic and can be applied straightfor-
wardly to distributed CSPs. Namely, if each agent has
its own Assumption-based Truth Maintenance System,
these agents can execute the consistency algorithm by ex-
changing their possible values, generating new constraints
(nogoods) using hyper-resolution rules, and further ex-
changing obtained nogoods [14]. Therefore, in this paper
hereafter, we focus on search algorithms for distributed
CSPs. We can consider two trivial algorithms for solving
distributed CSPs.

3.1 Centralized Method
The most trivial algorithm for solving a distributed CSP is
to select a leader agent among all agents, and gather all
information about the variables, their domains, and their

1. We can consider the case that several agents share a variable. However,
such a case can be formalized as these agents have different variables, and
there exist constraints that these variables must have the same value.

2. In [11], an algorithm in which each agent has multiple variables is
described.

constraints, into the leader agent. The leader then solves
the CSP alone using normal centralized constraint satisfac-
tion algorithms.

However, as discussed in Section 1, the cost of collecting
all information about a problem can be prohibitively high.
Furthermore, in some application problems, such as soft-
ware agents in which each agent acts as a secretary of an
individual, gathering all information to one agent is unde-
sirable or impossible for security/privacy reasons.

3.2 Synchronous Backtracking
The standard backtracking algorithm for CSP can be modi-
fied to yield the synchronous backtracking algorithm for
distributed CSPs. Assume the agents agree on an instantia-
tion order for their variables (such as agent x1 goes first,
then agent x2, and so on). Each agent, receiving a partial
solution (the instantiations of the preceding variables) from
the previous agent, instantiates its variable based on the
constraints that it knows about. If it finds such a value, it
appends this to the partial solution and passes it on to the
next agent. If no instantiation of its variable can satisfy the
constraints, then it sends a backtracking message to the pre-
vious agent.

While this algorithm does not suffer from the same
communication overhead as the centralized method, de-
termining the instantiation order still requires certain com-
munication costs. Furthermore, this algorithm cannot take
advantage of parallelism.3 Because, at any given time, only
one agent is receiving the partial solution and acting on it,
the problem is solved sequentially.

4 ASYNCHRONOUS BACKTRACKING

4.1 Overview
Our asynchronous backtracking algorithm removes the
drawbacks of synchronous backtracking by allowing agents
to run concurrently and asynchronously. Each agent in-
stantiates its variable and communicates the variable value
to the relevant agents.

We represent a distributed CSP in which all constraints
are binary as a network, where variables are nodes and
constraints are links between nodes.4 Since each agent has
exactly one variable, a node also represents an agent.
We use the same identifier for representing an agent and
its variable. We also assume that every link (constraint) is
directed. In other words, one of the two agents involved in
a constraint is assigned that constraint, and receives the
other agent’s value. A link is directed from the value-
sending agent to the constraint-evaluating agent. For ex-
ample, in Fig. 1 there are three agents, x1, x2, x3, with vari-
able domains {1, 2}, {2}, {1, 2}, respectively, and constraints
x1 ¡ x3 and x2 ¡ x3.

3. In [7], a variation of the synchronous backtracking algorithm called the
Network Consistency Protocol is presented. In this algorithm, agents construct
a depth-first search tree. Agents act synchronously by passing privilege, but
the agents that have the same parent in the search tree can act concurrently.

4. It must be emphasized that this constraint network has nothing to
do with the physical communication network. The link in the constraint
network is not a physical communication link, but a logical relation be-
tween agents.



676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

Fig. 1. Example of a constraint network.

Each agent instantiates its variable concurrently and
sends the value to the agents which are connected by out-
going links. After that, the agents wait for and respond
to messages. Fig. 2 describes procedures executed by agent
xi for receiving two kinds of messages.5 One kind is an
ok? message, that a constraint-evaluating agent receives
from a value-sending agent asking whether the value
chosen is acceptable (Fig. 2i). The second kind is a nogood
message that a value-sending agent receives, indicating that
the constraint-evaluating agent has found a constraint vio-
lation (Fig. 2ii).

Each agent has a set of values from the agents that
are connected by incoming links. These values constitute
the agent’s agent_view. The fact that x1’s value is 1 is rep-
resented by a pair of the agent identifier and the value,
(x1, 1). Therefore, an agent_view is a set of these pairs,
e.g., {(x1, 1), (x2, 2)}. If an ok? message is sent on an incom-
ing link, the evaluating agent adds the pair to its
agent_view and checks whether its own value assignment
(represented as (xi, current_value)) is consistent with its
agent_view. Its own assignment is consistent with the
agent_view if all constraints the agent evaluates are true un-
der the value assignments described in the agent_view and
(xi, current_value), and if all communicated nogoods are not
compatible6 with the agent_view and (xi, current_value). If its
own assignment is not consistent with the agent_view, agent
xi tries to change the current_value so that it will be consis-
tent with the agent_view.

A subset of an agent_view is called a nogood if the agent is
not able to find any consistent value with the subset. For
example, in Fig. 3a, if agents x1 and x2 instantiate their vari-
ables to 1 and 2, the agent_view of x3 will be {(x1, 1), (x2, 2)}.
Since there is no possible value for x3 which is consistent
with this agent_view, this agent_view is a nogood. If an
agent finds a subset of its agent_view is a nogood,7 the as-
signments of other agents must be changed. Therefore, the
agent causes a backtrack (Fig. 2iii)) and sends a nogood mes-
sage to one of the other agents.

5. Although the following algorithm is described in a way such that an
agent reacts to messages sequentially, an agent can in fact handle multiple
messages concurrently, i.e., the agent first revises the agent_view and
nogood_list according to the messages, and performs check_agent_view
only once.

6. A nogood is compatible with the agent_view and (xi, current_value) if
all variables in the nogood have the same values in the agent_view and
(xi, current_value).

7. Ideally, the nogoods detected in Fig. 2iii-a should be minimal, i.e., no
subset of them should be a nogood. However, since finding all minimal
nogoods requires certain computation costs, an agent can make do with
nonminimal nogoods. In the simplest case, it can use the whole agent_view
as a nogood.

4.2 Avoiding Infinite Processing Loops
If agents change their values again and again and never
reach a stable state, they are in an infinite processing loop.
An infinite processing loop can occur if there exists a value
changing loop of agents, such as if a change in x1 causes x2
to change, then this change in x2 causes x3 to change, which
then causes x1 to change again, and so on. In the network
representation, such a loop is represented by a cycle of di-
rected links.

One way to avoid cycles in a network is to use a total
order relationship among nodes. If each node has an
unique identifier, we can define a priority order among
agents by using the alphabetical order of these identifiers
(the preceding agent in the alphabetical order has higher
priority). If a link is directed by using this priority order
(from the higher priority agent to the lower priority agent),
there will be no cycle in the network. This means that for
each constraint, the lower priority agent will be an evalua-
tor, and the higher priority agent will send an ok? message
to the evaluator. Furthermore, if a nogood is found, a
nogood message is sent to the lowest priority agent in the
nogood (Fig. 2iii-b). Similar techniques to this unique iden-
tifier method are used for avoiding deadlock in distributed
database systems [15].

The knowledge each agent requires for this unique iden-
tifier method is much more local than that needed for syn-
chronous backtracking. In synchronous backtracking, agents
must act in a predefined sequential order. Such a sequential
order cannot be obtained easily just by giving an unique
identifier to each agent. Each agent must know the previous
and next agent, which means polling all of the other agents
to find the closest identifiers above and below it. On the
other hand, in the unique identifier method for asynchro-
nous backtracking, each agent has to know only the identi-
fiers of an agent with which it must establish a constraint in
order to direct the constraint.

4.3 Handling Asynchronous Changes
Because agents change their instantiations asynchronously,
an agent_view is subject to incessant changes. This can lead
to potential inconsistencies, because a constraint-evaluating
agent might send a nogood message to an agent that has
already changed the value of an offending variable as a
result of other constraints. In essence, the nogood message
may be based on obsolete information, and the value-sending
agent should not necessarily change its value again.

We introduce the use of context attachment to deal with
these potential inconsistencies. In context attachment, an
agent couples its message with the nogood that triggered it.
This nogood is the context of backtracking. After receiving
this message, the recipient only changes its value if the
nogood is compatible with its current agent_view and its own
assignment (Fig. 2ii-a). Since the nogood attached to a
nogood message indicates the cause of the failure, asynchro-
nous backtracking includes the function of dependency-
directed backtracking in CSPs [12].

A nogood can be viewed as a new constraint derived
from the original constraints. By incorporating such a new
constraint, agents can avoid repeating the same mistake.
For example, in Fig. 3b, the nogood {(x1, 1), (x2, 2)} represents



YOKOO ET AL.: THE DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM: FORMALIZATION AND ALGORITHMS 677

a constraint between x1 and x2. Since there is no link be-
tween x1 and x2 originally, a new link must be added be-
tween them.8 Therefore, after receiving the nogood mes-
sage, agent x2 asks x1 to add a link between them. In gen-
eral, even if all the original constraints are binary, newly
derived constraints can be among more than two variables.
In such a case, one of the agents, which has the lowest pri-
ority in the constraint, will be an evaluator and the links
will be added between each of the nonevaluator agents and
the evaluator.

8. Since a link in the constraint network represents a logical relation be-
tween agents, adding a link does not mean adding a new physical commu-
nication path between agents.

4.4 Example
In Fig. 3a, by receiving ok? messages from x1 and x2, the
agent_view of x3 will be {(x1, 1), (x2, 2)}. Since there is no
possible value for x3 consistent with this agent_view, this
agent_view is a nogood. Agent x3 chooses the lowest prior-
ity agent in the agent_view, i.e., agent x2, and sends a no-
good message with the nogood. By receiving this nogood
message, agent x2 records this nogood. This nogood, {(x1, 1),
(x2, 2)} contains agent x1, which is not connected with x2 by
a link. Therefore, a new link must be added between x1 and
x2. Agent x2 requests x1 to send x1’s value to x2, and adds
(x1, 1) to its agent_view (Fig. 3b). Agent x2 checks whether its
value is consistent with the agent_view. Since the nogood

Fig. 2. Procedures for receiving messages (asynchronous backtracking).

(a) (b) (c)

Fig. 3. Example of algorithm execution (asynchronous backtracking).
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received from agent x3 is compatible with its assignment
(x2, 2) and its agent_view {(x1, 1)}, the assignment (x2, 2) is
inconsistent with the agent_view. The agent_view {(x1, 1)} is a
nogood because x2 has no other possible values. There is
only one agent in this nogood, i.e., agent x1, so agent x2
sends a nogood message to agent x1 (Fig. 3c).

Furthermore, we illustrate the execution of the algorithm
using a distributed version of the well-known n-queens
problem (where n = 4). There exist four agents, each of
which corresponds to a queen in each row. The goal of the
agents is to find positions on a 4 � 4 chess board so that the
queens do not threaten each other. It must be noted that the
trace of the algorithm execution can vary significantly ac-
cording to the timing/delay of the messages, and this ex-
ample shows one possible trace of execution.

The initial values are shown in Fig. 4a. Agents commu-
nicate these values with each other. The priority order is
determined by the alphabetical order of identifiers. The
agents except x1 change their value, so that the new value is
consistent with its agent_view (Fig. 4b), i.e., agent x2 changes
its value to 3, which is consistent with x1’s value. Agent x3
changes its value to 4, which is consistent with x1’s and x2’s
value (since x2 changes its value, x3’s value is no longer
consistent with the new value.). Since there is no consistent
value for agent x4, it sends a nogood message to x3, and
changes its value so that the value is consistent with its
agent_view, except the value of x3. Note that x3 will ignore
this nogood message since it has changed its value before it
receives this message. The agents send ok? messages to
other agents. Then, x3 does not satisfy constraints with x1
and x2, and there is no consistent value, while other agents’
values are consistent with their agent_view. Therefore, x3
sends a nogood message to x2. After receiving this nogood
message, x2 changes its value to 4 (Fig. 4c). Then, x3 changes
its value to 2. There is no consistent value for agent x4, it
sends a nogood message to x3, and changes its value so that
the value is consistent with its agent_view, except the value
of x3 (Fig. 4d). Again, this nogood message is ignored.
There is no consistent value for agent x4, it sends a nogood
message to x3. After receiving this message, x3 has no other
consistent value, so x3 sends a nogood message to x2. After
receiving this message, x2 also has no other consistent
value, so x2 sends a nogood message to x1. Then, x1 changes
its value to 2 (Fig. 4e). Then, x3 changes its value to 1.
There is no consistent value for agent x4, it sends a nogood
message to x3, and changes its value so that the value
is consistent with its agent_view, except the value of x3.
Again, this nogood message is ignored, and a solution is
found (Fig. 4f).

4.5 Algorithm Soundness and Completeness
We will show that if there exists a solution, this algorithm
reaches a stable state where all the variable values satisfy all
the constraints, and all agents are waiting for an incoming
message,9 and if no solution exists, this algorithm discovers
this fact and terminates. For the agents to reach a stable
state, all their variable values must perforce satisfy all the
constraints. Thus, the soundness of the algorithm is clear.
Furthermore, the algorithm is complete, in that it finds a
solution if one exists and terminates with failure when
there is no solution.

A solution does not exist when the problem is over-
constrained. In an overconstrained situation, our algorithm
eventually generates a nogood corresponding to the empty
set. Because a nogood logically represents a set of assign-
ments that leads to a contradiction, an empty nogood
means that any set of assignments leads to a contradiction.
Thus, no solution is possible. Our algorithm thus termi-
nates with failure if and only if an empty nogood is formed.

So far, we have shown that when the algorithm leads to
a stable state, the problem is solved, and when it generates
an empty nogood, the algorithm terminates with failure.
What remains is to show that the algorithm reaches one of
these conclusions in finite time. The only way that our algo-
rithm might not reach a conclusion is when at least one
agent is cycling among its possible values in an infinite
processing loop. Given our algorithm, we can prove by in-
duction that this cannot happen as follows.

In the base case, assume that the agent with the high-
est priority, x1, is in an infinite loop. Because it has the
highest priority, x1 only receives nogood messages. When
it proposes a possible value, x1 either receives a nogood
message back, or else gets no message back. If it receives
nogood messages for all possible values of its variable, then
it will generate an empty nogood (any choice leads to a
constraint violation) and the algorithm will terminate. If it
does not receive a nogood message for a proposed value,
then it will not change that value. Either way, it cannot be
in an infinite loop.

Now, assume that agents x1 to xk-1 (k > 2) are in a stable
state, and agent xk is in an infinite processing loop. In this
case, the only messages agent xk receives are nogood mes-
sages from agents whose priorities are lower than k, and
these nogood messages contain only the agents x1 to xk. Since
agents x1 to xk-1 are in a stable state, the nogoods agent xk

receives must be compatible with its agent_view, and so xk

9. We should mention that the way to determine that agents as a
whole have reached a stable state is not contained in this algorithm. To
detect the stable state, distributed termination detection algorithms
such as [16] are needed.

(a) (b) (c) (d) (e) (f)

Fig. 4. Example of algorithm execution (asynchronous backtracking).
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will change instantiation of its variable with a different
value. Because its variable’s domain is finite, xk will either
eventually generate a value that does not cause it to receive
a nogood (which contradicts the assumption that xk is in an
infinite loop), or else it exhausts the possible values and
sends a nogood to one of x1 ¤ xk-1. However, this nogood
would cause an agent, which we assumed as being in a sta-
ble state, to not be in a stable state. Thus, by contradiction,
xk cannot be in an infinite processing loop.

Since constraint satisfaction is NP-complete in general,
the worst-case time complexity of the asynchronous back-
tracking algorithm becomes exponential in the number of
variables n. The worst-case space complexity of the algo-
rithm is determined by the number of recorded nogoods. In
the asynchronous backtracking algorithm, an agent can
forget old nogoods after it creates a new nogood from them.
Also, an agent does not need to keep the nogoods that are
not compatible with the agent_view. Therefore, each agent xi
needs to record at most |Di| nogoods, where |Di| is the
number of possible values of xi.

5 ASYNCHRONOUS WEAK-COMMITMENT SEARCH

In this section, we briefly describe the weak-commitment
search algorithm for solving CSPs [9] and describe how
the asynchronous weak-commitment search algorithm is
constructed by modifying the asynchronous backtracking
algorithm.

5.1 Weak-Commitment Search Algorithm
In the weak-commitment search algorithm, all the variables
have tentative initial values. A consistent partial solution is
constructed for a subset of variables, and this partial solu-
tion is extended by adding variables one by one until a
complete solution is found. When a variable is added to the
partial solution, its tentative initial value is revised so that
the new value satisfies all the constraints between the vari-
ables included in the partial solution, and satisfies as many
constraints as possible between variables that are not in-
cluded in the partial solution. This value ordering heuristic
is called the min-conflict heuristic [17]. When there exists no
value for one variable that satisfies all the constraints be-
tween the variables included in the partial solution, this
algorithm abandons the whole partial solution, and starts
constructing a new partial solution from scratch, using the
current value assignment as new tentative initial values.

This algorithm records the abandoned partial solutions
as new constraints, and avoids creating the same partial
solution that has been created and abandoned before.
Therefore, the completeness of the algorithm (always finds
a solution if one exists, and terminates if no solution exists)
is guaranteed. Experimental results on various example
problems in [9] illustrate that this algorithm is three to 10
times more efficient than the min-conflict backtracking [17]
or the breakout algorithm [18].

5.2 Basic Ideas
The main characteristics of the weak-commitment search
algorithm described in the previous subsection are as
follows:

1)�The algorithm uses the min-conflict heuristic as a
value ordering heuristic.

2)� It abandons the partial solution and restarts the search
process if there exists no consistent value with the
partial solution.

Introducing the first characteristic into the asynchronous
backtracking algorithm is relatively straightforward. When
selecting a variable value, if there exist multiple values con-
sistent with the agent_view (those that satisfy the constraints
with variables of higher priority agents), the agent prefers
the value that minimizes the number of constraint viola-
tions with variables of lower priority agents.

In contrast, introducing the second characteristic into the
asynchronous backtracking is not straightforward, since
agents act concurrently and asynchronously, and no agent
has exact information about the partial solution. Further-
more, multiple agents may try to restart the search process
simultaneously.

In the following, we show that a distributed constraint
satisfaction algorithm that commits to the partial solution
weakly can be constructed by changing the priority order
dynamically. We define the way of establishing the priority
order by introducing priority values, and change the priority
values by the following rules:

•� For each variable/agent, a nonnegative integer value
representing the priority order of the variable/agent
is defined. We call this value the priority value.

•� The order is defined such that any variable/agent
with a larger priority value has higher priority.

•� If the priority values of multiple agents are the same,
the order is determined by the alphabetical order of
the identifiers.

•� For each variable/agent, the initial priority value is 0.
•� If there exists no consistent value for xi, the priority

value of xi is changed to k + 1, where k is the largest
priority value of related agents.

It must be noted that the asynchronous weak-commit-
ment search algorithm is fundamentally different from
backtracking algorithms with dynamic variable ordering
(e.g., dynamic backtracking [19] and dependency-directed
backtracking [12]). In backtracking algorithms, a partial
solution is never modified unless it is sure that the par-
tial solution cannot be a part of any complete solution (dy-
namic backtracking or dependency-backtracking is a way
for finding out the true cause of the failure/backtracking).
In the asynchronous weak-commitment search algorithm, a
partial solution is not modified but completely abandoned
after one failure/backtracking.

Furthermore, in the asynchronous backtracking algo-
rithm, agents try to avoid situations previously found to
be nogoods. However, due to the delay of messages, an
agent_view of an agent can occasionally be identical to
a previously found nogood. In order to avoid reacting to
such unstable situations, and performing unnecessary
changes of priority values, each agent performs the fol-
lowing procedure:

•� Each agent records the nogoods that it has sent. When
the agent_view is identical to a nogood that it has al-
ready sent, the agent will not change the priority
value and waits for the next message.
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5.3 Details of Algorithm
In the asynchronous weak-commitment search, each agent
concurrently assigns a value to its variable, and sends the
variable value to other agents. After that, agents wait for
and respond to incoming messages.10 In Fig. 5, the proce-
dures executed at agent xi by receiving an ok? message and
a nogood message are described.11 The differences between
these procedures and the procedures for the asynchronous
backtracking algorithm are as follows:

•� In the asynchronous backtracking algorithm, each
agent sends its variable value only to related lower
priority agents, while in the asynchronous weak-
commitment search algorithm, each agent sends its

10. As in the asynchronous backtracking, although the following algo-
rithm is described in a way that an agent reacts to messages sequentially, an
agent can handle multiple messages concurrently, i.e., the agent first revises
the agent_view and nogood_list according to the messages, and performs
check_agent_view only once.

11. As in the asynchronous backtracking, the way to determine that
agents as a whole have reached a stable state is not contained in this
algorithm.

variable value to both lower and higher priority
agents connected by constraints. We call these related
agents neighbors.

•� The priority value, as well as the current value as-
signment, is communicated through the ok? message
(Fig. 5i).

•� The priority order is determined using the com-
municated priority values. If the current value is not
consistent with the agent_view, i.e., some constraint
with variables of higher priority agents is not satis-
fied, the agent changes its value so that the value is
consistent with the agent_view, and also the value
minimizes the number of constraint violations with
variables of lower priority agents (Fig. 5ii).

•� When xi cannot find a consistent value with its
agent_view, xi sends nogood messages to other agents,
and increments its priority value. If xi has already sent
an identical nogood, xi will not change its priority
value but will wait for the next message (Fig. 5iii).

Fig. 5. Procedures for receiving messages (asynchronous weak-commitment search).
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5.4�Example
We illustrate the execution of the algorithm using the dis-
tributed 4-queens problem described in Section 4.4.

The initial values are shown in Fig. 6a. Agents commu-
nicate these values with each other. The values within pa-
rentheses represent the priority values. The initial priority
values are 0. Since the priority values are equal, the priority
order is determined by the alphabetical order of identifiers.
Therefore, only the value of x4 is not consistent with its
agent_view. Since there is no consistent value, agent x4 sends
nogood messages and increments its priority value. In this
case, the value minimizing the number of constraint viola-
tions is 3, since it conflicts with x3 only. Therefore, x4 selects
3 and sends ok? messages to the other agents (Fig. 6b).
Then, x3 tries to change its value. Since there is no consis-
tent value, agent x3 sends nogood messages, and increments
its priority value. In this case, the value that minimizes
the number of constraint violations is 1 or 2. In this ex-
ample, x3 selects 1 and sends ok? messages to the other
agents (Fig. 6c). After that, x1 changes its value to 2, and a
solution is obtained (Fig. 6d).

In the distributed 4-queens problem, there exists
no solution when x1’s value is 1. We can see that the
bad decision of x1 (setting its value to 1) can be revised
without an exhaustive search in the asynchronous weak-
commitment search.

5.5 Algorithm Completeness
The priority values are changed if and only if a new nogood
is found. Since the number of possible nogoods is finite,12

the priority values cannot be changed infinitely. Therefore,
after a certain time point, the priority values will be stable.
Then, we show that the situations described below will not
occur when the priority values are stable:

1)�There exist agents that do not satisfy some constraints,
and all agents are waiting for incoming messages.

2)�Messages are repeatedly sent/received, and the algo-
rithm will not reach a stable state (infinite process-
ing loop).

If situation 1) occurs, there exist at least two agents
that do not satisfy the constraint between them. Let us as-
sume that the agent ranking kth in the priority order does
not satisfy the constraint between the agent ranking jth
(where j < k), and that all the agents ranking higher than kth
satisfy all constraints within them. The only case that the
kth agent waits for incoming messages even though the
agent does not satisfy the constraint between the jth agent

12. The number of possible nogoods is exponential in the number of
variables n.

is that the kth agent has sent nogood messages to higher
priority agents. This fact contradicts the assumption that
higher priority agents satisfy constraints within them.
Therefore, situation 1) will not occur.

Also, if the priority values are stable, the asynchronous
weak-commitment search algorithm is basically identical to
the asynchronous backtracking algorithm. Since the asyn-
chronous backtracking is guaranteed not to fall into an infi-
nite processing loop, situation 2) will not occur.

From the fact that neither situation 1) nor 2) will occur,
we can guarantee that the asynchronous weak-commitment
search algorithm will always find a solution, or find the fact
that no solution exists.

Since constraint satisfaction is NP-complete in general,
the worst-case time complexity of the asynchronous weak-
commitment search algorithm becomes exponential in
the number of variables n. Furthermore, the worst-case
space complexity is exponential in n. This result seems inevita-
ble since this algorithm changes the search order flexibly
while guaranteeing its completeness. We can restrict the
number of recorded nogoods in the asynchronous weak-
commitment search algorithm, i.e., each agent records only
a fixed number of the most recently found nogoods. In this
case, however, the theoretical completeness cannot be guar-
anteed (the algorithm may fall into an infinite processing
loop in which agents repeatedly find identical nogoods).
Yet, when the number of recorded nogoods is reasonably
large, such an infinite processing loop rarely occurs. Actu-
ally, the asynchronous weak-commitment search can still
find solutions for all example problems when the number
of recorded nogoods is restricted to 10.

5.6 Security/Privacy of Agents
One reason for solving a distributed CSP in a distributed
fashion is that agents might not want to communicate all
the information to the centralized leader agent. Then, how
much information do agents reveal using the asynchronous
backtracking/weak-commitment search algorithm?

In both algorithms, agents communicate current value
assignments and nogoods. By observing the value assign-
ments of agent xi, other agents can gradually accumulate
the information about the domain of xi. However, other
agents cannot tell whether the obtained information of xi’s
domain is complete or not. There might be other values of
xi, which are not selected because they violate some con-
straints with higher priority agents.

Furthermore, agent xi never reveals the information
about its constraints directly. A nogood message sent from
xi is a highly summarized information about its constraints
and nogoods sent from other agents.

(a)        (b)                (c)                        (d)

Fig. 6. Example of algorithm execution (asynchronous weak-commitment search).



682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

Therefore, we can see that the amount of information re-
vealed by these algorithms are much smaller than the cen-
tralized methods, in which agents must declare precise in-
formation about their variable domains and constraints.

6 EVALUATIONS

In this section, we evaluate the efficiency of algorithms by a
discrete event simulation, where each agent maintains its
own simulated clock. An agent’s time is incremented by
one simulated time unit whenever it performs one cycle of
computation. One cycle consists of reading all incoming
messages, performing local computation, and then sending
messages. We assume that a message issued at time t is
available to the recipient at time t + 1. We analyze the per-
formance in terms of the number of cycles required to solve
the problem.13

One cycle corresponds to a series of agent actions, in
which an agent recognizes the state of the world (the value
assignments of other agents), then decides its response to
that state (its own value assignment), and communicates its
decisions.

6.1 Comparison Between Synchronous and
Asynchronous Backtracking

First, we are going to compare the synchronous backtrack-
ing algorithm and the asynchronous backtracking algo-
rithm. Since agents can act concurrently in the asynchro-
nous backtracking algorithm, we can expect that the asyn-
chronous backtracking algorithm will be more efficient than
the synchronous backtracking algorithm. However, the de-
gree of speed-up is affected by the strength of the con-
straints among agents. If the constraints among agents are
weak, we can expect that the agents can easily reach a solu-
tion, even if they concurrently set their values. On the other
hand, if the constraints among agents are strong, we can
assume that until higher priority agents set their values
properly, the lower priority agents cannot choose consistent
values; thus the overall performance of the asynchronous
backtracking algorithm becomes close to the one for syn-
chronous backtracking.

To verify these expectations, we performed experi-
mental evaluations on the distributed n-queens problem
explained in the previous section. Each agent corresponds
to each queen in a row. Therefore, the distributed n-queens
problem is solved by n agents. In the distributed n-queens
problem, constraints among agents become weak as n
increases. Our results are summarized in the graph shown
in Fig. 7. To make the comparisons fair, we included
dependency-directed backtracking in the synchronous
backtracking. Each agent randomly selects a value among
the consistent values with higher priority agents. The
graph shows the average of 100 trials.14 In the distributed
n-queens problem, there exist constraints between any pair

13. One drawback of this model is that it does not take into account the
costs of communication. However, introducing the communication costs
into the model is difficult since we don’t have any standard way for com-
paring communication costs and computation costs.

14. In this evaluation, we did not include the cost of determining the se-
quential order in the synchronous backtracking, nor the cost of the termi-
nation detection in the asynchronous backtracking.

of agents. Therefore, the synchronous backtracking algo-
rithm is basically equivalent to the Network Consistency
Protocol described in [7]. As we expected, the obtained
parallelism of the asynchronous backtracking becomes
larger as n increases. When n > 18, the asynchronous back-
tracking is approximately two times as fast as the syn-
chronous backtracking.15

Traditionally, distributed artificial intelligence applica-
tions involve having agents work on nearly independ-
ent, loosely coupled subproblems [1]. These results con-
firm that, if the local subproblems are loosely coupled,
solving the problem asynchronously by multiple agents
is worthwhile.

6.2 Comparison Between Asynchronous
Backtracking and Asynchronous
Weak-Commitment Search

We are going to compare the following three kinds of
algorithms:

1)�asynchronous backtracking, in which a variable value
is selected randomly from consistent values, and the
priority order is determined by alphabetical order,

2)�asynchronous backtracking with min-conflict heuristic,
in which the min-conflict heuristic is introduced, but
the priority order is statically determined by alpha-
betical order, and

3)�asynchronous weak-commitment search.16

We first applied these three algorithms to the distrib-
uted n-queens problem described in the previous section,
varying n from 10 to 1,000. The results are summarized
in Table 1.17 For each n, we generated 100 problems, each of

15. Since the asynchronous backtracking algorithm requires more mes-
sages than the synchronous backtracking for each cycle, the synchronous
backtracking might be as efficient as the asynchronous backtracking due to
the communication overhead, even though it requires more cycles.

16. The amount of communication overhead of these algorithms are al-
most equivalent. The amounts of local computation performed in each cycle
for 2) and 3) are equivalent. The amount of local computation for 1) can be
smaller since it does not use the min-conflict heuristic, but for the lowest
priority agent, the amounts of local computation of these algorithms are
equivalent.

17. Since the the min-conflict heuristic is very effective when n is very
large [9], [17], we did not include the results for n > 1,000.

Fig. 7. Comparison between synchronous and asynchronous back-
tracking (distributed n-queens).
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which had different randomly generated initial values, and
averaged the results for these problems. For each problem,
in order to conduct the experiments within a reasonable
amount of time, we set the limit for the number of cycles at
1,000, and terminated the algorithm if this limit was ex-
ceeded. We show the average of the successful trials, and
the ratio of problems completed successfully to the total
number of problems in Table 1.

The second example problem is the distributed graph-
coloring problem. This is a graph-coloring problem in
which each node corresponds to an agent. The graph-
coloring problem involves painting nodes in a graph by
k different colors so that any two nodes connected by
an arc do not have the same color. We randomly generated
a problem with n nodes/agents and m arcs by the
method described in [17], so that the graph is connected
and the problem has a solution. We evaluated the prob-
lem for n = 60, 90, and 120, where m = n � 2 and k = 3.
This parameter setting corresponds to the “sparse” prob-
lems for which [17] reported poor performance of the min-
conflict heuristic. We generated 10 different problems, and
for each problem, 10 trials with different initial values were
performed (100 trials in all). As in the distributed n-queens
problem, the initial values were set randomly. The results
are summarized in Table 2.

Then, in order to examine the applicability of the asyn-
chronous weak-commitment search to real-life problems
rather than artificial random problems, we applied these
algorithms to the distributed resource allocation problem
in a communication network described in [10]. In this
problem, there exist requests for allocating circuits between
switching nodes of NTT’s communication network in Japan
(Fig. 8). For each request, there exists an agent assigned
to handle it, and the candidates for the circuits are given.
The goal is to find a set of circuits that satisfies the re-
source constraints. This problem can be formalized as a
distributed CSP by representing each request as a variable
and each candidate as a possible value for the variable. We
generated problems based on data from a 400 Mbps back-
bone network extracted from the network configuration
management database developed in NTT Optical Network
Systems Laboratories [20]. In each problem, there exist 10
randomly generated circuit allocation requests, and for each
request, 50 candidates are given. These candidates represent
reasonably short circuits for satisfying the request. We as-
sume that these candidates are calculated beforehand. The
constraints between requests are that they do not assign
the same circuits. We generated 10 different sets of random-
ly generated initial values for 10 different problems (100
trials in all), and averaged the results. As in the previous

TABLE  1
COMPARISON BETWEEN ASYNCHRONOUS BACKTRACKING AND

ASYNCHRONOUS WEAK-COMMITMENT SEARCH (DISTRIBUTED N-QUEENS)

TABLE  2
COMPARISON BETWEEN ASYNCHRONOUS BACKTRACKING AND ASYNCHRONOUS

WEAK-COMMITMENT SEARCH (DISTRIBUTED GRAPH-COLORING PROBLEM)
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problems, the limit for the required number of cycles was
set at 1,000. The results are summarized in Table 3. We can
see the following facts from these results:

•� The asynchronous weak-commitment search algo-
rithm can solve problems that cannot be solved
within a reasonable amount of computation time by
asynchronous backtracking algorithms. By using only
the min-conflict heuristic, although a certain amount of
speed-up can be obtained, the algorithm fails to solve
many problem instances.

•� When the priority order is static, the efficiency of
the algorithm is highly dependent on the selection of
initial values, and the distribution of required cycles
is quite large. For example, in the network resource
allocation problem, when only the min-conflict heuris-
tic is used, the average number of required cycles for
63 successfully completed trials is only 92.8. How-
ever, the number of required cycles for 37 failed trials
is more than 1,000. When the initial values of higher
priority agents are good, the solution can easily be
found. If some of these values are bad, however, an
exhaustive search is required to revise these values;

this tends to make the number of required cycles ex-
ceed the limit. On the other hand, in the asynchro-
nous weak-commitment search, the initial values
are less critical, and a solution can be found even
if the initial values are far from the final solution,
since the variable values gradually come close to
the final solution.

•� We can assume that the priority order represents a hi-
erarchy of agent authority, i.e., the priority order of
decision making. If this hierarchy is static, the mis-
judgments (bad value selections) of agents with
higher priority are fatal to all agents. On the other
hand, by changing the priority order dynamically and
selecting values cooperatively, the misjudgments of
specific agents do not have fatal effects, since bad de-
cisions are weeded out, and only good decisions sur-
vive. These results are intuitively natural, since they
imply that a flexible agent organization performs
better than a static and rigid organization.

7 CONCLUSIONS

In this paper, we develop the formalism for distributed
constraint satisfaction problems, which can represent vari-
ous application problems in Distributed Artificial Intelli-
gence. We developed a basic algorithm for solving distrib-
uted CSPs, called asynchronous backtracking, in which agents
act asynchronously and concurrently without any global
control. Furthermore, we developed a more efficient algo-
rithm called asynchronous weak-commitment search, which
can revise a bad decision without exhaustive search, just as
the weak-commitment search algorithm does for CSPs. We
presented a series of experimental results to compare the
efficiency of these algorithms. These results show that the
asynchronous weak-commitment search algorithm can
solve fairly large-scale problems such as the distributed
1,000-queens problem, the distributed graph-coloring
problem, and the network resource allocation problem,
within a reasonable amount of time.

Our future work includes examining the effectiveness of
the asynchronous weak-commitment search algorithm in
more practical applications, introducing other heuristics
(e.g., forward-checking) into the asynchronous weak-
commitment search algorithm, and clarifying the appropri-
ate agent/variable ordering heuristics when each agent has
multiple variables.

Fig. 8. Example of the network resource allocation problem.

TABLE  3
COMPARISON BETWEEN ASYNCHRONOUS BACKTRACKING AND ASYNCHRONOUS
WEAK-COMMITMENT SEARCH (NETWORK RESOURCE ALLOCATION PROBLEM)
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