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A Portrait of the
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Action
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The Web’s phenomenal growth rate makes it increasingly difficult to locate, orga-

nize, and integrate the available information. To cope with the enormous quan-

tity of data, we need to hand off portions of these tasks to machines. However, because

natural-language processing is still an unsolved problem, machines cannot understand 

the Web pages to the extent required to perform the
desired tasks.

An alternative is to change the Web to make it
more understandable by machines, thereby creating
a Semantic Web. Many researchers believe the key to
building this new Web lies in the development of
semantically enriched languages. Early languages,
such as the resource description framework,1 Sim-
ple HTML Ontology Extensions (SHOE),2 and
Ontobroker,3 have led to more recent efforts, such as
the Defense Advanced Research Projects Agency’s
Agent Markup Language (DAML). Some say that
languages such as these will revolutionize the Web.
If so, how will the new Web work?

In this article, we put a Semantic Web language
through its paces and try to answer questions about
how people can use it, such as:

• How do authors generate semantic descriptions?
• How do agents discover these descriptions?
• How can agents integrate information from dif-

ferent sites?
• How can users query the Semantic Web?

We present a system that addresses these ques-
tions and describe tools that help users interact with
the Semantic Web. We motivate the design of our
system with a specific application: semantic markup
in the computer science domain.

Producing semantic markup
Describing a set of Web pages using a Semantic

Web language can be challenging. (For an overview
of Semantic Web languages, see the related sidebar.)
The first step is to consider the pages’ domain and
choose an appropriate ontology. As Semantic Web
languages evolve, knowledge engineers will likely
provide huge ontology libraries, as well as numerous
search mechanisms to help users find relevant ontolo-
gies. Meanwhile, some of the common languages
provide starter ontology libraries. (Knowledge engi-
neering, which covers the difficult process of design-
ing ontologies, is outside this article’s scope.)

Our running example uses the SHOE language,
which has served as a testbed for Semantic Web ideas
over the past five years, although technically the dis-
cussion could apply to any Semantic Web language.
SHOE has a computer science department ontology
that includes classes such as Student, Faculty, Course,
Department, Publication, and Research, and relations such
as publicationAuthor, member, emailAddress, and advisor. This
ontology’s scope makes it relevant to faculty and stu-
dent homepages, department Web pages, research
project Web pages, and publication indices. Authors
can use a number of methods to produce SHOE
markup for these pages.

Authoring tools
As with HTML, authors can use a text editor to
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add semantic markup to a page. However,
unlike HTML processors, Semantic Web
processors are not very forgiving, and errors
can result in the processors ignoring large
portions of the annotations. One solution is to
provide authoring tools that let authors cre-
ate markup by making selections and filling
in forms. For the SHOE project, we devel-
oped the Knowledge Annotator (see Figure
1) to perform this function.

In SHOE, a document references a set of
ontologies that provide the vocabulary used
to describe entities (called instances). Each
assertion about an instance is called a claim,
to denote that it may not necessarily be true.

The Knowledge Annotator has an interface
that displays instances, ontologies, and claims,
and a user can add, edit, or remove any of
these objects. When creating a new object, the
Knowledge Annotator prompts the user for
the necessary information. In the case of
claims, the user can choose the source ontol-
ogy from a list and then choose categories or
relations defined in that ontology from another
list. The available relations are automatically
filtered based on whether the instances entered
can fill the argument positions.

Users have access to various methods for
viewing the knowledge in the document.
These include a view of the source HTML, a

logical notation view, and a view that orga-
nizes claims by subject and describes them
using simple English. In addition to prompt-
ing the user for inputs, the tool performs error
checking to ensure correctness and converts
the inputs into legal SHOE syntax. For these
reasons, only a rudimentary understanding
of SHOE is necessary to mark up Web pages.
If developers enhance contemporary Web
authoring tools with semantic markup
authoring capabilities, adding semantic
markup could become a regular activity in
the Web-page design process.

Members of our research group provided
markup for their homepages and those of the
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Unlike Extensible Markup Language (XML), which uses a
name or prose description to imply meaning in documents, a
Semantic Web language must describe meaning in a machine-
readable way. Therefore, the language needs not only the
ability to specify a vocabulary, but also to formally define the
vocabulary so that it will work in automated reasoning. As
such, the subfield of AI known as knowledge representation
greatly influences Semantic Web languages.

However, to meet the needs of the Web, Semantic Web lan-
guages must also differ from traditional KR languages. The
most obvious difference is syntactical: Language designers
base Semantic Web syntaxes on existing standards such as
Hypertext Markup Language (HTML) or XML so that integra-
tion with other Web technologies is possible. Other differences
depend on the nature of the Web.

Because the Web is decentralized, the language must allow
for the definition of diverse—and potentially conflicting—
vocabularies. To handle the Web’s rapid evolution, the lan-
guage must let the vocabularies evolve as human understand-
ing of their use improves. Finally, the Web’s size requires that
scalability play a role in any solution.

An author can formally specify a Semantic Web vocabulary
using an ontology or a schema. Such ontologies and schemas
are also typically sharable (so users can agree to use the same
definitions) and extensible (so users can agree on some common
set of definitions but add terms and definitions as necessary).
Researchers expect that ontology hierarchies will develop, with
top-level abstract ontologies at the root and domain-specific
ontologies at the leaves. Thus, automatic interoperability
between a pair of ontologies exists to the degree that they
share a common ancestor. The language’s expressivity deter-
mines the potential richness of an ontology’s definitions. Most
languages let ontologies define class taxonomies so that it is
possible to say, for example, a car is a type of vehicle. They also
allow for the definition of properties for each class and relation-
ships between multiple classes. Some languages might also
allow the formation of more complex definitions, using axioms
from some form of logic.

Major differences exist between the leading Semantic Web
languages. The resource description framework (RDF) Schema1

is the least expressive. It is based on a semantic network

model, with special links for defining category and property
taxonomies and links for applying domain and range
constraints to properties. Simple HTML Ontology Extensions
(SHOE)2 is based on a frame system but also allows Horn clause
axioms (essentially, simple if–then rules), which authors can use
to define things not possible in RDF. More so than its peers,
SHOE focuses on dealing with the problems of a dynamic, dis-
tributed environment.3 The Ontology Inference Layer (OIL),
based on a frame system augmented with description logic,
lets authors express different kinds of definitions.4 The
Defense Advanced Research Projects Agency Agent Markup
Language (DAML) is a language under development with the
intent to combine the best features of RDF, SHOE, and OIL.

Although ontologies are crucial to making a Semantic Web
language work, they merely serve to standardize and provide
interpretations for Web content. To make this content machine
understandable, the Web pages must contain semantic
markup—that is, descriptions which use the terminology that
one or more ontologies define. The semantic markup might
state that a particular entity is a member of a class, an entity has
a particular property, or two entities have some relationship
between them. By committing to an ontology, the semantic
markup sanctions inferences based on the ontology definitions
and lets agents conclude things that the markup implies.
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group’s Web site. Most used the Knowledge
Annotator, but some preferred a text editor.
Although we produced detailed markup for
a set of pages, the set is too small to be of use
for anything but controlled demos.

Generating markup on a large
scale

For semantic markup to be really useful,
it needs to be ubiquitous, but using an author-
ing tool to generate a lot of markup is tedious.
Detractors of the Semantic Web language
approach often cite the difficulty of produc-
ing markup as the main reason it won’t work.
Fortunately, there are automatic and semi-
automatic approaches for generating seman-
tic markup.

Running SHOE. Some Web pages have reg-
ular structure, with labeled fields, lists, and
tables. Often, an analyst can map these struc-
tures to an ontology and write a program to
translate portions of the Web page into the
semantic markup language. We developed
Running SHOE (see Figure 2), a tool that
helps users specify how to extract SHOE
markup from these kinds of Web pages. The
user selects a page to markup and creates a
wrapper for it by specifying a series of delim-
iters that describe how to extract interesting
information. These delimiters indicate the
start of a list (so that the program can skip
header information) and end of a list (so that
it can ignore trailing information); the start
and end of a record; and for each field of

interest, a pair of start and end delimiters.
A fundamental problem in distributed sys-

tems is knowing when markup from different
people describes the same entity. If we are to
integrate descriptions about such an entity,
we must use a common identifier (or key)
when referring to it. A URL can often serve
as this key because it identifies exactly one
Web page, which a single person or organi-
zation owns. The regular pages that work best
with Running SHOE tend to have lists of
things, and each item in each list typically
contains a hyperlink to a thing’s homepage.
However, these hyperlinks often use relative
URLs, which are not unique. To handle this
problem, the user can specify that a particu-
lar field is a URL, so that when the program
extracts the data, it expands all relative URLs
using the page’s URL as a base.

After the user has specified the delimiters,
the tool can display a table with a row for
each record and a column for each field.
Irregularities in a page’s HTML code can
often cause the program to extract fields or
records improperly; this table lets the user
verify the results before proceeding. The next
step is to convert the table into SHOE
markup. In the top-right panel, the user can
specify ontology information and a series of
templates for SHOE classification and rela-
tion declarations.

For each classification or relation argu-
ment, the user can specify a literal value or
reference a field. At the user’s command, the
tool can then iterate through these templates

and the table of records to create a series of
SHOE statements. Using this tool, a trained
user can extract substantial markup from a
Web page in minutes. Furthermore, because
Running SHOE lets users save and retrieve
templates, it is easy to regenerate new SHOE
markup if the page’s content changes.

Computer science department Web sites
often have faculty, project, course, and user
lists that have ideal formats for Running
SHOE. Each item in each list contains an <A>
tag that provides the URL of the item’s home-
page, and this element’s content is often the
name of the entity being linked to, providing
us with a value for the “name” relation. Other
properties of the instance often follow and are
delimited by punctuation, emphasis, or spe-
cial spacing. With this tool, a single user can
create SHOE markup about the faculty,
courses, and projects of 15 major computer
science departments in a day.

Although there are many pages for which
Running SHOE is useful, there are other
important resources from which it cannot
extract information. An example of such a site
is CiteSeer (http://citeseer.nj.nec.com/cs), an
index of online computer science publications
that we wanted to integrate with our depart-
ment Web pages. Interaction with CiteSeer
involves issuing a query to one page, view-
ing a results page, and then selecting a result
to get a page about a particular publication.
This multistep process prevents Running
SHOE from extracting markup from the Cite-
Seer site.

Publication SHOE Maker. To extract SHOE
from CiteSeer, we built a tool called Publi-
cation SHOE Maker. PSM issues a query to
get publications likely to be from a particu-
lar institution and retrieves a fixed number
of publication pages from the results. The
publication pages contain the publication’s
title, authors, year, links to online copies, and
occasionally additional BibTex information.
Each publication page’s layout is very simi-
lar, so PSM can extract the values of the
desired fields easily.

An important issue is how to link the
author information with the faculty instances
extracted from the department Web pages.
Fortunately, CiteSeer includes homepage
information, which HomePageSearch (http://
hpsearch.uni-trier.de) generates for each
author. By using these URLs (as opposed to
the authors’names), PSM can establish links
to the appropriate instances.

Running SHOE and PSM are only two
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Figure 1. The Knowledge Annotator. Here, the interface is being used to view semantic
markup about a Simple HTML Ontology Extensions (SHOE) publication.



examples of tools with which authors can
generate markup. Other extraction tools
might include machine-learning4,5 or natural-
language-processing techniques. As Exten-
sible Markup Language becomes ubiquitous
on the Web, generating wrappers will
become easier, and authors will be able to
use style sheets to transform a simple XML
vocabulary into a semantically enriched one.

If a Web page’s provider is willing to
include semantic markup, the process can be
even easier. For example, databases hold
much of the Web’s data, and scripts produce
Web pages from that data. Because databases
are structured resources, an analyst can deter-
mine the semantics of a database schema,
map the schema to an ontology, and modify
the scripts that produce the Web pages to
include the appropriate semantic markup.

Integrating resources
After authors have described a number of

diverse Web sites with semantic markup, the
next problem is determining how to integrate
the information. Information integration sys-
tems, such as Ariadne,6 can be useful when
developing an application that combines data
from a finite number of predetermined
sources, but are less helpful when integrat-
ing information “on the fly” is necessary.
One solution mirrors the operation of con-
temporary search engines by crawling the
Web and storing the information in a central
repository.

Exposé
Exposé is a Web crawler that searches for

Web pages with SHOE markup and interns
the knowledge. A Web crawler essentially
performs a graph traversal where the nodes
are Web pages and the arcs are the hypertext
links between them. When Exposé discovers
a new URL, it assigns the page a cost and
uses this cost to schedule when it will load
that page. Thus, the cost function determines
a traversal order. We assume SHOE pages
will tend to be localized and interconnected.
Therefore, we use a cost function that
increases with distance from the start node,
where paths through nonSHOE pages are
more expensive than those through SHOE
pages, and paths that stay within the same
directory on the same server are cheaper than
those that do not.

Exposé parses each Web page, and if a
page references an ontology that Exposé is
unfamiliar with, it loads the ontology also.
To update its list of pages to visit, Exposé

identifies all of the hypertext links, category
instances, and relation arguments within the
page and evaluates each new URL as we dis-
cussed. Finally, the agent stores SHOE cat-
egory and relation statements and any new
ontology information in a knowledge base. 

This KB will determine the system’s query
capabilities, and thus we must choose an
appropriate knowledge representation sys-
tem. Our SHOE tools all use a generic appli-
cation programming interface for interaction
with the KB, letting us easily use different
backends. We have implemented versions of
this API for Parka, a high-performance frame
system;7 XSB, a deductive database;8 and
Open Knowledge Base Connectivity-com-
pliant KBs.9

By changing the back-end knowledge rep-
resentation system, we get varying trade-offs
between query response time and the degree
to which the system uses inference to com-
pute answers. For example, Parka answers
recognition queries on large KBs (contain-
ing millions of assertions) in seconds, and
when used on parallel machines, it provides
even better performance. However, Parka’s
only inferential capabilities are class mem-
bership and inheritance, so it cannot use the
extra Horn clause rules that SHOE allows.
However, XSB can reason with these rules

but is not as efficient as Parka. Alternately,
the KB could be a relational or object data-
base, providing the greatest scalability and
best query response times but sacrificing the
ability to infer additional answers. Clearly,
the choice of the back-end system depends
on the application’s expected query needs.

We let Exposé crawl the various computer
science Web pages described earlier, and it
was able to gather approximately 40,000
assertions. The crawler stored these asser-
tions in both Parka and XSB KBs. Techni-
cally we did not need a Web crawler for our
example, because we knew the locations of
all the relevant pages a priori. However, in
an ideal Semantic Web situation, the markup
is the product of many individuals working
independently, and users could not easily
locate it without a crawler.

Querying the Semantic Web
Both general-purpose and domain-specific

query tools can access the SHOE knowledge
after it has been loaded into the KB. The
SHOE Search tool (see Figure 3) is a gen-
eral-purpose tool that gives users a new way
to browse the Web by letting them submit
structured queries and open documents by
clicking on the URLs in the results. The user
first chooses an ontology against which to
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Figure 2. Running SHOE. A user can specify delimiters for recognizing fields and
records, verify that they are extracted correctly, then create templates that translate
the data into SHOE format.



issue the query (which essentially establishes
a context for the query).

The user then chooses the desired object’s
class from a hierarchical list and is presented
with a list of all properties that could apply to
that object. After entering desired values for
one or more of these properties, the user
issues a query and receives a set of results in
a table. If the user double-clicks on a bind-
ing that is a URL, the corresponding Web
page will open in a new browser window.
Thus, the user can browse the Semantic Web.

If SHOE markup does not describe all of
the relevant Web pages, SHOE Search’s stan-
dard query method will not be able to return an
answer or might only return partial answers.
Therefore, we also have a Web Search feature
that translates the user’s query into a similar
search engine query and submits it to any of a
number of popular search engines. Using
SHOE Search in this way has two advantages
over using the search engines directly:

• By prompting the user for values of prop-
erties, it increases the chance that the user
will provide distinguishing information for
the desired results.

• By automatically creating the query, it can
exploit helpful features that users often
overlook, such as quoting phrases or using
the plus sign to indicate a mandatory term.

We build a query string that comprises a
quoted short name for the selected category

and, for each property value that the user
specifies, a short phrase describing the prop-
erty. The user’s value, which we quote and
precede with a plus sign to indicate that it is
a mandatory phrase, follows the phrase
describing the property.

With SHOE Search, a user can submit
many queries pertinent to our computer sci-
ence domain. Figure 3 shows a sample query
to locate University of Washington faculty
members and their publications. The com-
puter science ontology serves as a unifying
framework for integrating information from
the university’s faculty page with publication
information from CiteSeer. Furthermore, the
ontology lets the query system recognize that
anyone declared a Professor is also Faculty.

Sample queries to the KB exposed one
problem with the system: Sometimes it didn’t
integrate information from a department Web
page and CiteSeer as expected. These sites
occasionally use different URLs to refer to
the same person. This is a fundamental prob-
lem with using URLs as keys in a Semantic
Web system: Multiple URLs can refer to the
same Web page because of multiple host
names for a given IP address, default pages
for a directory URL, host-dependent short-
cuts such as a tilde for the users directory,
symbolic links within the host, and so on.
Additionally, some individuals might have
multiple URLs that make equally valid keys
for them, such as the URLs of both profes-
sional and personal homepages. These prob-

lems would be partially alleviated if the lan-
guage included the ability to specify identifier
equivalence—a feature absent from SHOE
but present in DAML.

We created a search engine called Se-
mantic Search that is based on the tech-
nologies we describe. Semantic Search
uses the SHOE Search tool as a query inter-
face and provides utilities for authors,
including links to an ontology library, the
Knowledge Annotator, an online SHOE
validation form, and a form for submitting
new pages to the repository. We encourage
readers to add markup to their own Web
pages and submit them. Semantic Search
is available at http://www.cs.umd.edu/
projects/plus/SHOE/search/.

We have described a simple archi-
tecture for a Semantic Web system

that parallels the way contemporary Web
tools and search engines work. As Figure 4
shows, authors use various tools to add
markup to Web pages, and a Web crawler dis-
covers the information and stores it in a
repository, which other tools can then query.
Generally, authors need not produce all
markup by hand; in many cases, simple
extraction tools can generate accurate mark-
up with minimal human effort. Although the
tools that comprise this architecture are
designed for use with the SHOE language,
developers can create similar tools for other
Semantic Web languages. Because any num-
ber of tools can produce and process the
semantic markup on a Web page, other archi-
tectures are also possible. For example,
developers could create an agent that queries
pages directly as opposed to issuing queries
to a Web-crawler-constructed repository.

If we achieve the Semantic Web vision,
locating useful information on the Internet
will be easier, and integrating diverse
resources will be simpler. The first step is to
design languages that we can use to express
explicit semantics. The next step is to
improve the systems and tools we describe,
so users can naturally provide and receive
information on the Semantic Web. Obvi-
ously, we must still overcome some obsta-
cles: We need better schemes for ensuring
interoperability between independently
developed ontologies and approaches for
determining who and what to trust. However,
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Figure 3. SHOE Search. With this tool, a user issues a query by choosing an ontology,
choosing a category from that ontology, and then filling in desired values for proper-
ties that instances of that category might have.



these challenges do not appear to be insur-
mountable, and the Semantic Web could be
just around the corner. 
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