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Abstract

This paper surveys the emerging science of how to design a “COllective INtelli-

gence” (COIN). A COIN is a large multi-agent system where:

i) There is little to no centralized communication or control.

ii) There is a provided world utility function that rates the possible histories of the

full system.

In particular, we are interested in COINs in which each agent runs a reinforce-

ment learning (RL) algorithm. The conventional approach to designing large dis-

tributed systems to optimize a world utility does not use agents running RL al-

gorithms. Rather, that approach begins with explicit modeling of the dynamics

of the overall system, followed by detailed hand-tuning of the interactions between

the components to ensure that they “cooperate” as far as the world utility is con-

cerned. This approach is labor-intensive, often results in highly nonrobust systems,

and usually results in design techniques that have limited applicability.

In contrast, we wish to solve the COIN design problem implicitly, via the “adaptive”

character of the RL algorithms of each of the agents. This approach introduces an

entirely new, profound design problem: Assuming the RL algorithms are able to

achieve high rewards, what reward functions for the individual agents will, when

pursued by those agents, result in high world utility? In other words, what reward

functions will best ensure that we do not have phenomena like the tragedy of the

commons, Braess’s paradox, or the liquidity trap?

Although still very young, research specifically concentrating on the COIN design

problem has already resulted in successes in artificial domains, in particular in

packet-routing, the leader-follower problem, and in variants of Arthur’s El Farol

bar problem. It is expected that as it matures and draws upon other disciplines re-

lated to COINs, this research will greatly expand the range of tasks addressable by

human engineers. Moreover, in addition to drawing on them, such a fully developed

science of COIN design may provide much insight into other already established

scientific fields, such as economics, game theory, and population biology.
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1 INTRODUCTION

Over the past decade or so two separate developments have occurred in computer science

whose intersection promises to open a vast new area of research, an area extending far

beyond the current boundaries of computer science. The first of these developments is

the growing realization of how useful it would be to be able to control distributed systems

that have little (if any) centralized communication, and to do so “adaptively”, with min-

imal reliance on detailed knowledge of the system’s small-scale dynamical behavior. The

second development is the maturing of the discipline of reinforcement learning (RL).

This is the branch of machine learning that is concerned with an agent who periodi-

cally receives “reward” signals from the environment that partially reflect the value of

that agent’s private utility function. The goal of an RL algorithm is to determine how,

using those reward signals, the agent should update its action policy to maximize its

utility [142, 258, 272]. (Until our detailed discussions below, we will use the term “re-

inforcement learning” broadly, to include any algorithm of this sort, including ones that

rely on detailed Bayesian modeling of underlying Markov processes [225, 48, 98].

Intuitively, one might hope that RL would help us solve the distributed control prob-

lem, since RL is adaptive, and, in particular, since it is not restricted to domains having

sufficient breadths of communication. However, by itself, conventional single-agent RL

does not provide a means for controlling large, distributed systems. This is true even

if the system does have centralized communication. The problem is that the space of

possible action policies for such systems is too big to be searched. We might imagine as

a variant using a large set of agents, each controlling only part of the system. Since the

individual action spaces of such agents would be relatively small, we could realistically

deploy conventional RL on each one. However, now we face the central question of how

to map the world utility function concerning the overall system into private utility func-

tions for each of the agents. In particular, how should we design those private utility

functions so that each agent can realistically hope to optimize its function, and at the

same time the collective behavior of the agents will optimize the world utility?

We use the term “COllective INtelligence” (COIN) to refer to any pair of a large,

distributed collection of interacting computational processes among which there is little

to no centralized communication or control, together with a ‘world utility’ function

that rates the possible dynamic histories of the collection. The central COIN design

problem we consider arises when the computational processes run RL algorithms: How,

without any detailed modeling of the overall system, can one set the utility functions

for the RL algorithms in a COIN to have the overall dynamics reliably and robustly

achieve large values of the provided world utility? The benefits of an answer to this

question would extend beyond the many branches of computer science, having major

ramifications for many other sciences as well. Section 2 discusses some of those benefits.

Section 3 reviews previous work that has bearing on the COIN design problem. Section 4

section constitutes the core of this chapter. It presents a quick outline of a promising
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mathematical framework for addressing this problem in its most general form, and then

experimental illustrations of the prescriptions of that framework. Throughout, we will

use italics for emphasis, single quotes for informally defined terms, and double quotes to

delineate colloquial terminology.

2 Background

There are many design problems that involve distributed computational systems where

there are strong restrictions on centralized communication (“we can’t all talk”); or there

is communication with a central processor, but that processor is not sufficiently powerful

to determine how to control the entire system (“we aren’t smart enough”); or the pro-

cessor is powerful enough in principle, but it is not clear what algorithm it could run by

itself that would effectively control the entire system (“we don’t know what to think”).

Just a few of the potential examples include:

i) Designing a control system for constellations of communication satellites or for

constellations of planetary exploration vehicles (world utility in the latter case being

some measure of quality of scientific data collected);

ii) Designing a control system for routing over a communication network (world utility

being some aggregate quality of service measure)

iii) Construction of parallel algorithms for solving numerical optimization problems

(the optimization problem itself constituting the world utility);

iv) Vehicular traffic control, e.g., air traffic control, or high-occupancy toll-lanes for

automobiles. (In these problems the individual agents are humans and the associated

utility functions must be of a constrained form, reflecting the relatively inflexible kinds

of preferences humans possess.);

v) Routing over a power grid;

vi) Control of a large, distributed chemical plant;

vii) Control of the elements of an amorphous computer;

viii) Control of the elements of a ‘noisy’ phased array radar;

ix) Compute-serving over an information grid.

Such systems may be best controlled with an artificial COIN. However, the potential

usefulness of deeper understanding of how to tackle the COIN design problem extends

far beyond such engineering concerns. That’s because the COIN design problem is an

inverse problem, whereas essentially all of the scientific fields that are concerned with

naturally-occurring distributed systems analyze them purely as a “forward problem.”

That is, those fields analyze what global behavior would arise from provided local dy-

namical laws, rather than grapple with the inverse problem of how to configure those

laws to induce desired global behavior. (Indeed, the COIN design problem could almost

be defined as decentralized adaptive control theory for massively distributed stochastic
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environments.) It seems plausible that the insights garnered from understanding the

inverse problem would provide a trenchant novel perspective on those fields. Just as

tackling the inverse problem in the design of steam engines led to the first true un-

derstanding of the macroscopic properties of physical bodes (aka thermodynamics), so

may the cracking of the COIN design problem may improve our understanding of many

naturally-occurring COINs. In addition, although the focuses of those other fields are

not on the COIN design problem, in that they are related to the COIN design problem,

that problem may be able to serve as a “touchstone” for all those fields. This may then

reveal novel connections between the fields.

As an example of how understanding the COIN design problem may provide a novel

perspective on other fields, consider countries with capitalist human economies. Al-

though there is no intrinsic world utility in such systems, they can still be viewed from

the perspective of COINs, as naturally occurring COINs. For example, one can declare

world utility to be a time average of the Gross Domestic Product (GDP) of the country

in question. (World utility per se is not a construction internal to a human economy,

but rather something defined from the outside.) The reward functions for the human

agents in this example could then be the achievements of their personal goals (usually

involving personal wealth to some degree).

Now in general, to achieve high world utility in a COIN it is necessary to avoid having

the agents work at cross-purposes. Otherwise the system is vulnerable to economic

phenomena like the Tragedy of the Commons (TOC), in which individual avarice works

to lower world utility [115], or the liquidity trap, where behavior that helps the entire

system when employed by some agents results in poor global behavior when employed by

all agents [158]. One way to avoid such phenomena is by modifying the agents’ utility

functions. In the context of capitalist economies, this kind of effect can be achieved via

punitive legislation that modifies the rewards the agents receive for engaging in certain

kinds of activity. A real world example of an attempt to make just such a modification

was the creation of anti-trust regulations designed to prevent monopolistic practices.

In designing a COIN we usually have more freedom than anti-trust regulators though,

in that there is no base-line “organic” private utility function over which we must su-

perimpose legislation-like incentives. Rather, the entire “psychology” of the individual

agents is at our disposal when designing a COIN. This obviates the need for honesty-

elicitation (‘incentive compatible’) mechanisms, like auctions, which form a central com-

ponent of conventional economics. Accordingly, COINs can differ in certain crucial re-

spects from human economies. The precise differences — the subject of current research

— seem likely to present many insights into the functioning of economic structures like

anti-trust regulators.

To continue with this example, consider the usefulness, as far as the world utility

is concerned, of having (commodity, or especially fiat) money in the COIN. Formally,

from a COIN perspective, the use of ‘money’ for trading between agents constitutes
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a particular class of couplings between the states and utility functions of the various

agents. For example, if one agent’s ‘bank account’ variable goes up in a ‘trade’ with

another agent, then a corresponding ‘bank account’ variable in that other agent must

decrease to compensate. In addition to this coupling between the agents’ states, there

is also a coupling between their utilities, if one assume that both agents will prefer to

have more money rather than less, everything else being equal. However one might

formally define such a ‘money’ structure, we can consider what happens if it does (or

does not) obtain for an arbitrary dynamical system, in the context of an arbitrary world

utility. For some such dynamical systems and world utilities, a money structure will

improve the value of that world utility. But for the same dynamics, the use of a money

structure will simultaneously induce low levels of other world utilities (a trivial example

being a world utility that equals the negative of the first one). This raises a host of

questions, like how to formally specify the most general set of world utilities that benefits

significantly from using money-based private utility functions. If one is provided a world

utility that is not a member of that set, then an “economics-like” configuration of the

system is likely to result in poor performance. Such a characterization of how and when

money helps improve world utilities of various sorts might have important implications

for conventional human economics, especially when one chooses world utility to be one

of the more popular choices for social welfare function. (See [251, 74] and references

therein for some of the standard economics work that is most relevant to this issue.)

There are many other scientific fields that are currently under investigation from a

COIN-design perspective. Some of them are, like economics, part of (or at least closely

related to) the social sciences. These fields typically involve RL algorithms under the

guise of human agents. An example of such a field is game theory, especially game

theory of bounded rational players. As illustrated in our money example, viewing such

systems from the perspective of a non-endogenous world utility, i.e., from a COIN-design

perspective, holds the potential for providing novel insight into them. (In the case of

game theory, it holds the potential for leading to deeper understanding of many-player

inverse stochastic game theory.)

However there are other scientific fields that might benefit from a COIN-design per-

spective even though they study systems that don’t even involve RL algorithms. The idea

here is that if we viewed such systems from an “artificial” teleological perspective, both

in concentrating on a non-endogenous world utility and in casting the nodal elements of

the system as RL algorithms, we could learn a lot about the form of the ‘design space’

in which such systems live. (Just as in economics, where the individual nodal elements

are RL algorithms, investigating the system using an externally imposed world utility

might lead to insight.) Examples here are ecosystems (individual genes, individuals, or

species being the nodal elements) and cells (individual organelles in Eukaryotes being

the nodal elements). In both cases, the world utility could involve robustness of the

desired equilibrium against external perturbation, efficient exploitation of free energy in

the environment, etc.
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3 Review of Literature Related to COINs

The following list elaborates what we mean by a COIN:

1) There are many processors running concurrently, performing actions that affect

one another’s behavior.

2) There is little to no centralized personalized communication, i.e., little to no be-

havior in which a small subset of the processors not only communicates with all the

other processors, but communicates differently with each one of those other processors.

Any single processor’s “broadcasting” the same information to all other processors is not

precluded.

3) There is little to no centralized personalized control, i.e., little to no behavior in

which a small subset of the processors not only controls all the other processors, but

controls each one of those other processors differently. “Broadcasting” the same control

signal to all other processors is not precluded.

4) There is a well-specified task, typically in the form of extremizing a utility function,

that concerns the behavior of the entire distributed system. So we are confronted with

the inverse problem of how to configure the system to achieve the task.

The following elements characterize the sorts of approaches to COIN design we are

concerned with here:

5) The approach for tackling (4) is scalable to very large numbers of processors.

6) The approach for tackling (4) is very broadly applicable. In particular, it can work

when little (if any) “broadcasting” as in (2) and (3) is possible.

7) The approach for tackling (4) involves little to no hand-tailoring.

8) The approach for tackling (4) is robust and adaptive, with minimal need to “get

the details exactly right or else,” as far as the stochastic dynamics of the system is

concerned.

9) The individual processors are running RL algorithms. Unlike the other elements of

this list, this one is not an a priori engineering necessity. Rather, it is a reflection of the

fact that RL algorithms are currently the best-understood and most mature technology

for addressing the points (8) and (9).

There are many approaches to COIN design that do not have every one of those

features. These approaches constitute part of the overall field of COIN design. As

discussed below though, not having every feature in our list, no single one of those

approaches can be extended to cover the entire breadth of the field of COIN design.

(This is not too surprising, since those approaches are parts of fields whose focus is not

the COIN design problem per se.)

The rest of this section consists of brief presentations of some of these approaches, and

in particular characterizes them in terms of our list of nine characteristics of COINs and

of our desiredata for their design. Of the approaches we discuss, at present it is probably
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the ones in Artificial Intelligence and Machine Learning that are most directly applicable

to COIN design. However it is fairly clear how to exploit those approaches for COIN

design, and in that sense relatively little needs to be said about them. In contrast, as

currently employed, the toolsets in the social sciences are not as immediately applicable

to COIN design. However, it seems likely that there is more yet to be discovered about

how to exploit them for COIN design. Accordingly, we devote more space to those social

science-based approaches here.

We present an approach that holds promise for covering all nine of our desired features

in Section 4.

3.1 AI and Machine Learning

There is an extensive body of work in AI and machine learning that is related to COIN

design. Indeed, one of the most famous speculative works in the field can be viewed as

an argument that AI should be approached as a COIN design problem [188]. Much

work of a more concrete nature is also closely related to the problem of COIN design.

3.1.1 Reinforcement Learning

As discussed in the introduction, the maturing field of reinforcement learning provides a

much needed tool for the types of problems addressed by COINs. Because RL generally

provides model-free1 and “online” learning features, it is ideally suited for the distributed

environment where a “teacher” is not available and the agents need to learn successful

strategies based on “rewards” and “penalties” they receive from the overall system at

various intervals. It is even possible for the learners to use those rewards to modify how

they learn [234, 235].

Although work on RL dates back to Samuel’s checker player [226], relatively recent

theoretical [272] and empirical results [60, 263] have made RL one of the most active

areas in machine learning. Many problems ranging from controlling a robot’s gait to

controlling a chemical plant to allocating constrained resource have been addressed with

considerable success using RL [113, 133, 196, 215, 294]. In particular, the RL algorithms

TD(λ) (which rates potential states based on a value function) [258] and Q–learning

(which rates action-state pairs) [272] have been investigated extensively. A detailed

investigation of RL is available in [142, 259, 272].

Although powerful and widely applicable, solitary RL algorithms will not perform

well on large distributed heterogeneous problems in general. This is due to the very

big size of the action-policy space for such problems. In addition, without centralized

communication and control, how a solitary RL algorithm could run the full system at

all, poorly or well, becomes a major concern.2 For these reasons, it is natural to con-

1There exist some model-based variants of traditional RL. See for example [7].
2One possible solution would be to run the RL off-line on a simulation of the full system and then
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sider deploying many RL algorithms rather than a single one for these large distributed

problems. We will discuss the coordination issues such an approach raises in conjunction

with multi-agent systems in Section 3.1.3 and with learnability in COINs in Section 4.

3.1.2 Distributed Artificial Intelligence

The field of Distributed Artificial Intelligence (DAI) has arisen as more and more tra-

ditional Artificial Intelligence (AI) tasks have migrated toward parallel implementation.

The most direct approach to such implementations is to directly parallelize AI production

systems or the underlying programming languages [93, 221]. An alternative and more

challenging approach is to use distributed computing, where not only are the individual

reasoning, planning and scheduling AI tasks parallelized, but there are different modules

with different such tasks, concurrently working toward a common goal [137, 138, 166].

In a DAI, one needs to ensure that the task has been modularized in a way that im-

proves efficiency. Unfortunately, this usually requires a central controller whose purpose

is to allocate tasks and process the associated results. Moreover, designing that con-

troller in a traditional AI fashion often results in brittle solutions. Accordingly, recently

there has been a move toward both more autonomous modules and fewer restrictions on

the interactions among the modules [229].

Despite this evolution, DAI maintains the traditional AI concern with a pre-fixed set

of particular aspects of intelligent behavior (e.g. reasoning, understanding, learning etc.)

rather than on their cumulative character. As the idea that intelligence may have more

to do with the interaction among components started to take shape [44, 45], focus shifted

to concepts (e.g., multi-agent systems) that better incorporated that idea [140].

3.1.3 Multi-Agent Systems

The field of Multi-Agent Systems (MAS) is concerned with the interactions among the

members of such a set of agents [42, 108, 140, 239, 260], as well as the inner workings

of each agent in such a set (e.g., their learning algorithms) [38, 39, 40]. As in compu-

tational ecologies and computational markets (see below), a well-designed MAS is one

that achieves a global task through the actions of its components. The associated design

steps involve [140]:

1. Decomposing a global task into distributable subcomponents, yielding tractable

tasks for each agent;

2. Establishing communication channels that provide sufficient information to each

of the agents for it to achieve its task, but are not too unwieldly for the overall

convey the results to the components of the system at the price of a single centralized initialization (e.g.,

[195]). In general though, this approach will suffer from being extremely dependent on “getting the

details right” in the simulation.
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system to sustain; and

3. Coordinating the agents in a way that ensures that they cooperate on the global

task, or at the very least does not allow them to pursue conflicting strategies in

trying to achieve their tasks.

Step (3) is rarely trivial; one of the main difficulties encountered in MAS design is

that agents act selfishly and artificial cooperation structures have to be imposed on their

behavior to enforce cooperation [12]. An active area of research, which holds promise

for addressing parts the COIN design problem, is to determine how selfish agents’ “in-

centives” have to be engineered in order to avoid the tragedy of the commons (TOC)

[244]. (This work draws on the economics literature, which we review separately below.)

When simply providing the right incentives is not sufficient, one can resort to strategies

that actively induce agents to cooperate rather than act selfishly. In such cases coor-

dination [240], negotiations [156], coalition formation [228, 230, 296] or contracting [2]

among agents may be needed to ensure that they do not work at cross purposes.

Unfortunately, all of these approaches share with DAI and its offshoots the problem

of relying excessively on hand-tailoring, and therefore being difficult to scale and often

nonrobust. In addition, except as noted in the next subsection, they involve no RL, and

therefore the constituent computational elements are usually not as adaptive and robust

as we would like.

3.1.4 Reinforcement Learning-Based Multi-Agent Systems

Because it neither requires explicit modeling of the environment nor having a “teacher”

that provides the “correct” actions, the approach of having the individual agents in a

MAS use RL is well-suited for MAS’s deployed in domains where one has little knowledge

about the environment and/or other agents. There are two main approaches to designing

such MAS’s:

(i) One has ‘solipsistic agents’ that don’t know about each other and whose RL rewards

are given by the performance of the entire system (so the joint actions of all other agents

form an “inanimate background” contributing to the reward signal each agent receives);

(ii) One has ‘social agents’ that explicitly model each other and take each others’ actions

into account.

Both (i) and (ii) can be viewed as ways to (try to) coordinate the agents in a MAS in a

robust fashion.

Solipsistic Agents: MAS’s with solipsistic agents have been successfully applied to

a multitude of problems [60, 112, 122, 227, 233]. Generally, these schemes use RL

algorithms similar to those discussed in Section 3.1.1. However much of this work lacks

a well-defined global task or broad applicability (e.g., [227]). More generally, none of the

work with solipsistic agents scales well. (As illustrated in our experiments on the “bar

problem”, recounted below.) The problem is that each agent must be able to discern
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the effect of its actions on the overall performance of the system, since that performance

constitutes its reward signal. As the number of agents increases though, the effects of

any one agent’s actions (signal) will be swamped by the effects of other agents (noise),

making the agent unable to learn well, if at all. (See the discussion below on learnability.)

In addition, of course, solipsistic agents cannot be used in situations lacking centralized

calculation and broadcast of the single global reward signal.

Social agents: MAS’s whose agents take the actions of other agents into account syn-

thesize RL with game theoretic concepts (e.g., Nash equilibrium). They do this to try

to ensure that the overall system both moves toward achieving the overall global goal

and avoids often deleterious oscillatory behavior [57, 99, 130, 131, 132]. To that end, the

agents incorporate internal mechanisms that actively model the behavior of other agents.

In Section 3.3.1, we discuss a situation where such modeling is necessarily self-defeating.

More generally, this approach usually involves extensive hand-tailoring for the problem

at hand.

3.2 Social Science–Inspired Systems

Some human economies provides examples of naturally occurring systems that can be

viewed as a (more or less) well-performing COIN. The field of economics provides much

more though. Both empirical economics (e.g., economic history, experimental economics)

and theoretical economics (e.g., general equilibrium theory [3], theory of optimal taxa-

tion [189]) provide a rich literature on strategic situations where many parties interact.

In fact, much of the entire field of economics can be viewed as concerning how to max-

imize certain constrained kinds of world utilities, when there are certain (very strong)

restrictions on the individual agents and their interactions, and in particular when we

have limited freedom in setting either the utility functions of those agents or modifying

their RL algorithms in any other way.

In this section we summarize just two economic concepts, both of which are very

closely related to COINs, in that they deal with how a large number of interacting agents

can function in a stable and efficient manner: general equilibrium theory and mechanism

design. We then discuss general attempts to apply those concepts to distributed compu-

tational problems. We follow this with a discussion of game theory, and then present a

particular celebrated toy-world problem that involves many of these issues.

3.2.1 General Equilibrium Theory

Often the first version of “equilibrium” that one encounters in economics is that of

supply and demand in single markets: the price of the market’s good is determined by

where the supply and demand curves for that good intersect. In cases where there is

interaction among multiple markets however, even when there is no production but only

trading, one cannot simply determine the price of each market’s good individually, as
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both the supply and demand for each good depends on the supply/demand of other

goods. Considering the price fluctuations across markets leads to the concept of ‘general

equilibrium’, where prices for each good are determined in such a way to ensure that all

markets ‘clear’ [3, 250]. Intuitively, this means that prices are set so the total supply of

each good is equal to the demand for that good.3 The existence of such an equilibrium,

proven in [3], was first postulated by Leon Walras [271]. A mechanism that calculates the

equilibrium (i.e., ‘market-clearing’) prices now bears his name: the Walrasian auctioner.

In general, for an arbitrary goal for the overall system, there is no reason to believe

that having markets clear achieves that goal. In other words, there is no a priori reason

why the general equilibrium point should maximize one’s provided world utility function.

However, consider the case where one’s goal for the overall system is in fact that the

markets clear. In such a context, examine the case where the interactions of real-world

agents will induce the overall system to adopt the general equilibrium point, so long as

certain broad conditions hold. Then if we can impose those conditions, we can cause the

overall system to behave in the manner we wish. However general equilibrium theory is

not sufficient to establish those “broad conditions”, since it says little about real-world

agents. In particular, general equilibrium theory suffers from having no temporal aspect

(i.e., no dynamics) and from assuming that all the agents are perfectly rational.

Another shortcoming of general equilibrium theory as a model of real-world systems

is that despite its concerning prices, it does not readily accommodate the full concept of

money [96]. Of the three main roles money plays in an economy (medium of exchange

in trades, store of value for future trades, and unit of account) none are essential in a

general equilibrium setting. The unit of account aspect is not needed as the bookkeeping

is performed by the Walrasian auctioner. Since the supplies and demands are matched

directly there is no need to facilitate trades, and thus no role for money as a medium

of exchange. And finally, as the system reaches an equilibrium in one step, through the

auctioner, there is no need to store value for future trading rounds [209].

The reason that money is not needed can be traced to the fact that there is an

“overseer” with global information who guides the system. If we remove the centralized

communication and control exerted by this overseer, then (as in a real economy) agents

3More formally, each agent’s utility is a function of that agent’s allotment of all the possible goods.

In addition, every good has a price. (Utility functions are independent of money.) Therefore, for any set

of prices for the goods, every agent has a ‘budget’, given by their initial allotment of goods. We pool

all the agents’ goods together. In the ‘tatonnement’ (single step) version of market clearing, we next

allocate the goods back among the agents in such a way that each agent is given a total value of goods

(as determined by the prices) equal to that agent’s budget (as determined by the prices and by that

agent’s initial allotment). As a (formally identical) alternative, we can have a two-step process, in which

first each agent is given funds equal to its budget, and then each agent decides how to use those funds

to purchases goods from the central pool. In either case, the ‘market clearing’ prices are those prices for

which exactly all of the goods in the pool are reallocated back among the agents (no “excess supply”),

and for which each agent views its allocation of goods as optimizing its utility, subject to its budget and

to those prices for the goods (no “excess demand”). Similar definitions hold for a ‘production’ rather

than ‘endowment’ economy.
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will no longer know the exact details of the overall economy. They will be forced to

makes guesses as in any learning system, and the differences in those guesses will lead

to differences in their actions [160, 161].

Such a decentralized learning-based system more closely resembles a COIN than does

a conventional general equilibrium system. In contrast to general equilibrium systems,

the three main roles money plays in a human economy are crucial to the dynamics of

such a decentralized system [13]. This comports with the important effects in COINs of

having the agents’ utility functions involve money (see Background section above).

3.2.2 Mechanism Design

Even if there exists centralized communication so that we aren’t considering a full-blown

COIN, if there is no centralized Walras-like control, it is usually highly non-trivial to

induce the overall system to adopt the General Equilibrium point. One way to try

to do so is via an auction. (This is the approach usually employed in computational

markets — see below.) Along with optimal taxation and public good theory [157],

the design of auctions is the subject of the field of mechanism design. More generally,

mechanism design is concerned with the incentives that must be applied to any set

of agents that interact and exchange goods [189, 267] in order to get those agents to

exhibit desired behavior. Usually that desired behavior concerns pre-specified utility

functions of some sort for each of the individual agents. In particular, mechanism design

is usually concerned with incentive schemes which induce ‘(Pareto) efficient’ (or ‘Pareto

optimal’) allocations in which no agent can be made better off without hurting another

agent [100, 101].

One particularly important type of such an incentive scheme is an auction. When

many agents interact in a common environment often there needs to be a structure that

supports the exchange of goods or information among those agents. Auctions provide

one such (centralized) structure for managing exchanges of goods. For example, in the

English auction all the agents come together and ‘bid’ for a good, and the price of the

good is increased until only one bidder remains, who gets the good in exchange for the

resource bid. As another example, in the Dutch auction the price of a good is decreased

until one buyer is willing to pay the current price.

All auctions perform the same task: match supply and demand. As such, auctions are

one of the ways in which price equilibration among a set of interacting agents (perhaps an

equilibration approximating general equilibrium, perhaps not) can be achieved. However,

an auction mechanism that induces Pareto efficiency does not necessarily maximize some

other world utility. For example, in a transaction in an English auction both the seller

and the buyer benefit. They may even have arrived at an allocation which is efficient.

However, in that the winner may well have been willing to pay more for the good, such

an outcome may confound the goal of the market designer, if that designer’s goal is to

maximize revenue. This point is returned to below, in the context of computational
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economics.

3.2.3 Computational Economics

‘Computational economies’ are schemes inspired by economics, and more specifically by

general equilibrium theory and mechanism design theory, for managing the components

of a distributed computational system. They work by having a ‘computational market’,

akin to an auction, guide the interactions among those components. Such a market is

defined as any structure that allows the components of the system to exchange infor-

mation on relative valuation of resources (as in an auction), establish equilibrium states

(e.g., determine market clearing prices) and exchange resources (i.e., engage in trades).

Such computational economies can be used to investigate real economies and biological

systems [32, 36, 37, 149]. They can also be used to design distributed computational

systems. For example, such computational economies are well-suited to some distributed

resource allocation problems, where each component of the system can either directly

produce the “goods” it needs or acquire them through trades with other components.

Computational markets often allow for far more heterogeneity in the components than

do conventional resource allocation schemes. Furthermore, there is both theoretical and

empirical evidence suggesting that such markets are often able to settle to equilibrium

states. For example, auctions find prices that satisfy both the seller and the buyer which

results in an increase in the utility of both (else one or the other would not have agreed

to the sale). Assuming that all parties are free to pursue trading opportunities, such

mechanisms move the system to a point where all possible bilateral trades that could

improve the utility of both parties are exhausted.

Now restrict attention to the case, implicit in much of computational market work,

with the following characteristics: First, world utility can be expressed as a monotonically

increasing function F where each argument i of F can in turn be interpreted as the value

of a pre-specified utility function fi for agent i. Second, each of those fi is a function

of an i-indexed ‘goods vector’ xi of the non-perishable goods “owned” by agent i. The

components of that vector are xi,j, and the overall system dynamics is restricted to

conserve the vector
∑

i xi,j. (There are also some other, more technical conditions.) As

an example, the resource allocation problem can be viewed as concerning such vectors

of “owned” goods.

Due to the second of our two conditions, one can integrate a market-clearing mecha-

nism into any system of this sort. Due to the first condition, since in a market equilibrium

with non-perishable goods no (rational) agent ends up with a value of its utility function

lower than the one it started with, the value of the world utility function must be higher

at equilibrium than it was initially. In fact, so long as the individual agents are smart

enough to avoid all trades in which they do not benefit, any computational market can

only improve this kind of world utility, even if it does not achieve the market equilibrium.

(See the discussion of “weak triviality” below.)
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This line of reasoning provides one of the main reasons to use computational markets

when they can be applied. Conversely, it underscores one of the major limitations of

such markets: Starting with an arbitrary world utility function with arbitrary dynamical

restrictions, it may be quite difficult to cast that function as a monotonically increasing

F taking as arguments a set of agents’ goods-vector-based utilities fi, if we require that

those fi be well-enough behaved that we can reasonably expect the agents to optimize

them in a market setting.

One example of a computational economy being used for resource allocation is Hu-

berman and Clearwater’s use of a double–blind auction to solve the complex task of

controlling the temperature of a building. In this case, each agent (individual temper-

ature controller) bids to buy or sell cool or warm air. This market mechanism leads to

an equitable temperature distribution in the system [135]. Other domains where market

mechanisms were successfully applied include purchasing memory in an operating sys-

tems [53], allocating virtual circuits [89], “stealing” unused CPU cycles in a network of

computers [79, 269], predicting option futures in financial markets [214], and numerous

scheduling and distributed resource allocation problems [159, 165, 245, 255, 275, 276].

Computational economics can also be used for tasks not tightly coupled to resource

allocation. For example, following the work of Maes [174] and Ferber [88], Baum shows

how by using computational markets a large number of agents can interact and cooperate

to solve a variant of the blocks world problem [23, 24].

Viewed as candidate COINs, all market-based computational economics fall short in

relying on both centralized communication and centralized control to some degree. Often

that reliance is extreme. For example, the systems investigated by Baum not only have

the centralized control of a market, but in addition have centralized control of all other

non-market aspects of the system. (Indeed, the market is secondary, in that it is only

used to decide which single expert among a set of candidate experts gets to exert that

centralized control at any given moment). There has also been doubt cast on how well

computational economies perform in practice [264], and they also often require extensive

hand-tailoring in practice.

Finally, return to consideration of a world utility function that is a monotonically

increasing function f whose arguments are the utilities of the agents. In general, the

maximum of such a world utility function will be a Pareto optimal point. So given the

utility functions of the agents, by considering all such f we map out an infinite set S

of Pareto optimal points that maximize some such world utility function. (S is usually

infinite even if we only consider maximizing those world utilities subject to an overall

conservation of goods constraint.) Now the market equilibrium is a Pareto optimal point,

and therefore lies in S. But it is only one element of S. Moreover, it is usually set in

full by the utilities of the agents, in concert with the agents’ initial endowments. In

particular, it is independent of the world utility. In general then, given the utilities of

the agents and a world utility f , there is no a priori reason to believe that the particular
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element in S picked out by the auction is the point that maximizes that particular world

utility. This subtlety is rarely addressed in the work on using computational markets

to achieve a global goal. It need not be uncircumventable however. For example, one

obvious idea would be to to try to distort the agents’ perceptions of their utility functions

and/or initial endowments so that the resultant market equilibrium has a higher value

of the world utility at hand.4

3.2.4 Perfect Rationality Noncooperative Game Theory

Game theory is the branch of mathematics concerned with formalized versions of “games”,

in the sense of chess, poker, nuclear arms races, and the like [31, 101, 87, 242, 75, 170,

20, 10]. It is perhaps easiest to describe it by loosely defining some of its terminology,

which we do here and in the next subsection.

The simplest form of a game is that of ‘non-cooperative single-stage extensive-form’

game, which involves the following situation: There are two or more agents (called

‘players’ in the literature), each of which has a pre-specified set of possible actions that

it can follow. (A ‘finite’ game has finite sets of possible actions for all the players.)

In addition, each agent i has a utility function (also called a ‘payoff matrix’ for finite

games). This maps any ‘profile’ of the action choices of all agents to an associated utility

value for agent i. (In a ‘zero-sum’ game, for every profile, the sum of the payoffs to all

the agents is zero.)

The agents choose their actions in a sequence, one after the other. The structure

determining what each agent knows concerning the action choices of the preceding agents

is known as the ‘information set’.5 Games in which each agent knows exactly what the

preceding (‘leader’) agent did are known as ‘Stackelberg games’. (A variant of such a

game is considered in our experiments below. See also [153].)

In a ‘multi-stage’ game, after all the agents choose their first action, each agent is

provided some information concerning what the other agents did. The agent uses this

4In fact, the second theorem of welfare economics [250] states that given any world utility such that:

i) its global maximum can be written as a Pareto optimal point for agents’ utilities all of whose level sets

are convex; ii) no other maximum of that world utility is Pareto optimal for those agents’ utilities; then

one can always set initial endowments of the agents so that that Pareto optimal point corresponds to

the price-clearing point for those endowments. Note though that that setting of endowments requires a

centralized process. Moreover, even if we are allowed such a process to set the endowments, we still may

not be able to successfully exploit this theorem to arrive at the world utility maximum, if we use markets

involving iterative trading with dynamic associated prices, like those in the real world. This is because

an intermediate trade with “incorrect” prices may have resulted in some particular agent’s having its

utility rise beyond the level it has at the point maximizing world utility, and since that agent will never

afterward engage in a trade that diminishes its utility, the system will never arrive at the world utility

maximum.
5While stochastic choices of actions is central to game theory, most of the work in the field assumes

the information in information sets is in the form of definite facts, rather than a probability distribution.

Accordingly, there has been relatively little work incorporating Shannon information theory into the

analysis of information sets.
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information to choose its next action. In the usual formulation, each agent gets its payoff

at the end of all of the game’s stages.

An agent’s ‘strategy’ is the rule it elects to follow mapping the information it has at

each stage of a game to its associated action. It is a ‘pure strategy’ if it is a deterministic

rule. If instead the agent’s action is chosen by randomly sampling from a distribution,

that distribution is known a ‘mixed strategy’. Note that an agent’s strategy concerns

all possible sequences of provided information, even any that cannot arise due to the

strategies of the other agents.

Any multi-stage extensive-form game can be converted into a ‘normal form’ game,

which is a single-stage game in which each agent is ignorant of the actions of the other

agents, so that all agents choose their actions “simultaneously”. This conversion is

acieved by having the “actions” of each agent in the normal form game correspond to

an entire strategy in the associated multi-stage extensive-form game. The payoffs to all

the agents in the normal form game for a particular strategy profile is then given by the

associated payoff matrices of the multi-stage extensive form-game.

A ‘solution’ to a game, or an ‘equilibrium’, is a profile in which every agent behaves

“rationally”. This means that every agent’s choice of strategy optimizes its utility sub-

ject to a pre-specified set of conditions. In conventional game theory those conditions

involve, at a minimum, perfect knowledge of the payoff matrices of all other players, and

often also involve specification of what strategies the other agents adopted and the like.

In particular, a ‘Nash equilibrium’ is a a profile where each agent has chosen the best

strategy it can, given the choices of the other agents. A game may have no Nash equilib-

ria, one equilibrium, or many equilibria in the space of pure strategies. A beautiful and

seminal theorem due to Nash proves that every game has at least one Nash equilibrium

in the space of mixed strategies [199].

There are several different reasons one might expect a game to result in a Nash equi-

librium. One is that it is the point that perfectly rational Bayesian agents would adopt,

assuming the probability distributions they used to calculate expected payoffs were con-

sistent with one another [9, 143]. A related reason, arising even in a non-Bayesian

setting, is that a Nash equilibrium equilibrium provides “consistent” predictions, in that

if all parties predict that the game will converge to a Nash equilibrium, no one will

benefit by changing strategies. Having a consistent prediction does not ensure that all

agents’ payoffs are maximized though. The study of small perturbations around Nash

equilibria from a stochastic dynamics perspective is just one example of a ‘refinement’ of

Nash equilibrium, that is a criterion for selecting a single equilibrium state when more

than one is present [176].

In cooperative game theory the agents are able to enter binding contracts with one

another, and thereby coordinate their strategies. This allows the agents to avoid being

“stuck” in Nash equilibria that are Pareto inefficient, that is being stuck at equilibrium

profiles in which all agents would benefit if only they could agree to all adopt different
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strategies, with no possibility of betrayal. The characteristic function of a game involves

subsets (‘coalitions’) of agents playing the game. For each such subset, it gives the

sum of the payoffs of the agents in that subset that those agents can guarantee if they

coordinate their strategies. An imputation is a division of such a guaranteed sum among

the members of the coalition. It is often the case that for a subset of the agents in a

coalition one imputation dominates another, meaning that under threat of leaving the

coalition that subset of agents can demand the first imputation rather than the second.

So the problem each agent i is confronted with in a cooperative game is which set of other

agents to form a coalition with, given the characteristic function of the game and the

associated imputations i can demand of its partners. There are several different kinds

of solution for cooperative games that have received detailed study, varying in how the

agents address this problem of who to form a coalition with. Some of the more popular

are the ‘core’, the ‘Shapley value’, the ‘stable set solution’, and the ‘nucleolus’.

In the real world, the actual underlying game the agents are playing does not only

involve the actions considered in cooperative game theory’s analysis of coalitions and

imputations. The strategies of that underlying game also involve bargaining behavior,

considerations of trying to cheat on a given contract, bluffing and threats, and the like.

In many respects, by concentrating on solutions for coalition formation and their relation

with the characteristic function, cooperative game theory abstracts away these details

of the true underlying game. Conversely though, progress has recently been made in

understanding how cooperative games can arise from non-cooperative games, as they

must in the real world [10].

3.3 Evolution and Learning in Games

Not surprisingly, game theory has come to play a large role in the field of multi-agent

systems. In addition, due to Darwinian natural selection, one might expect game theory

to be quite important in population biology, in which the “utility functions” of the

individual agents can be taken to be their reproductive fitness. As it turns out, there is

an entire subfield of game theory concerned with this connection with population biology,

called ‘evolutionary game theory’ [178, 181].

To introduce evolutionary game theory, consider a game in which all players share the

same space of possible strategies, and there is an additional space of possible ‘attribute

vectors’ that characterize an agent, along with a probability distribution g across that

new space. (Examples of attributes in the physical world could be things like size,

speed, etc.) We select a set of agents to play a game by randomly sampling g. Those

agents’ attribute vectors jointly determine the payoff matrices of each of the individual

agents. (Intuitively, what benefit accrues to an agent for taking a particular action

depends on its attributes and those of the other agents.) However each agent i has

limited information concerning both its attribute vector and that of the other players

in the game, information encapsulated in an ‘information structure’. The information
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structure specifies how much each agent knows concerning the game it is playing.

In this context, we enlarge the meaning of the term “strategy” to not just be a

mapping from information sets and the like to actions, but from entire information

structures to actions. In addition to the distribution g over attribute vectors, we also

have a distribution over strategies, h. A strategy s is a ‘population strategy’ if h is a

delta function about s. Intuitively, we have a population strategy when each animal in a

population “follows the same behavioral rules”, rules that take as input what the animal

is able to discern about its strengths and weakness relative to those other members of

the population, and produce as output how the animal will act in the presence of such

animals.

Given g, a population strategy centered about s, and its own attribute vector, any

player i in the support of g has an expected payoff for any strategy it might adopt. When

i’s payoff could not improve if it were to adopt any strategy other than s, we say that s

is ‘evolutionary stable’. Intuitively, an evolutionary stable strategy is one that is stable

with respect to the introduction of mutants into the population.

Now consider a sequence of such evolutionary games. Interpret the payoff that any

agent receives after being involved in such a game as the ‘reproductive fitness’ of that

agent, in the biological sense. So the higher the payoff the agent receives, in comparison

to the fitnesses of the other agents, the more “offspring” it has that get propagated

to the next game. In the continuum-time limit, where games are indexed by the real

number t, this can be formalized by a differential equation. This equation specifies the

derivative of gt evaluated for each agent i’s attribute vector, as a montonically increasing

function of the relative difference between the payoff of i and the average payoff of all

the agents. (We also have such an equation for h.) The resulting dynamics is known as

‘replicator dynamics’, with an evolutionary stable population strategy, if it exists, being

one particular fixed point of the dynamics.

Now consider removing the reproductive aspect of evolutionary game theory, and

instead have each agent propagate to the next game, with “memory” of the events of

the preceding game. Furthermore, allow each agent to modify its strategy from one

game to the next by “learning” from its memory of past games, in a bounded rational

manner. The field of learning in games is concerned with exactly such situations [100, 11,

17, 27, 80, 146, 205, 202]. Most of the formal work in this field involves simple models

for the learning process of the agents. For example, in ‘ficticious play’ [100], in each

successive game, each agent i adopts what would be its best strategy if its opponents

chose their strategies according to the empirical frequency distribution of such strategies

that i has encountered in the past. More sophisticated versions of this work employ

simple Bayesian learning algorithms, or re-inventions of some of the techniques of the

RL community [222]. Typically in learning in games one defines a payoff to the agent

for a sequence of games, for example as a discounted sum of the payoffs in each of

the constituent games. Within this framework one can study the long term effects of
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strategies such as cooperation and see if they arise naturally and if so, under what

circumstances.

Many aspects of real world games that do not occur very naturally otherwise arise

spontaneously in these kinds of games. For example, when the number of games to be

played is not pre-fixed, it may behoove a particular agent i to treat its opponent better

than it would otherwise, since i may have to rely on that other agent’s treating it well

in the future, if they end up playing each other again. This framework also allows us to

investigate the dependence of evolving strategies on the amount of information available

to the agents [184]; the effect of communication on the evolution of cooperation [185, 187];

and the parallels between auctions and economic theory [123, 186].

In many respects, learning in games is even more relevant to the study of COINs than

is traditional game theory. However it suffers from the same major shortcoming; it is

almost exclusively focused on the forward problem rather than the inverse problem. In

essence, COIN design is the problem of inverse game theory.

3.3.1 El Farol Bar Problem

The “El Farol” bar problem and its variants provide a clean and simple testbed for

investigating certain kinds of interactions among agents [4, 50, 241]. In the original

version of the problem, which arose in economics, at each time step (each “night”),

each agent needs to decide whether to attend a particular bar. The goal of the agent in

making this decision depends on the total attendance at the bar on that night. If the total

attendance is below a preset capacity then the agent should have attended. Conversely,

if the bar is overcrowded on the given night, then the agent should not attend. (Because

of this structure, the bar problem with capacity set to 50% of the total number of agents

is also known as the ‘minority game’; each agent selects one of two groups at each time

step, and those that are in the minority have made the right choice). The agents make

their choices by predicting ahead of time whether the attendance on the current night

will exceed the capacity and then taking the appropriate course of action.

What makes this problem particularly interesting is that it is impossible for each

agent to be perfectly “rational”, in the sense of correctly predicting the attendance on

any given night. This is because if most agents predict that the attendance will be low

(and therefore decide to attend), the attendance will actually high, while if they predict

the attendance will be high (and therefore decide not to attend) the attendance will be

low. (In the language of game theory, this essentially amounts to the property that there

are no pure strategy Nash equilibria [52, 292].) Alternatively, viewing the overall system

as a COIN, it has a Prisoner’s Dilemma-like nature, in that “rational” behavior by all

the individual agents thwarts the global goal of maximizing total enjoyment (defined as

the sum of all agents’ enjoyment and maximized when the bar is exactly at capacity).

This frustration effect is similar to what occurs in spin glasses in physics, and makes

the bar problem closely related to the physics of emergent behavior in distributed sys-
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tems [49, 50, 51, 295]. Researchers have also studied the dynamics of the bar problem

to investigate economic properties like competition, cooperation and collective behavior

and especially their relationship to market efficiency [64, 141, 232].

3.4 Biologically Inspired Systems

Properly speaking, biological systems do not involve utility functions and searches across

them with RL algorithms. However it has long been appreciated that there are many

ways in which viewing biological systems as involving searches over such functions can

lead to deeper understanding of them [238, 290]. Conversely, some have argued that the

mechanism underlying biological systems can be used to help design search algorithms

[124].6

These kinds of reasoning which relate utility functions and biological systems have

traditionally focussed on the case of a single biological system operating in some external

environment. If we extend this kind of reasoning, to a set of biological systems that

are co-evolving with one another, then we have essentially arrived at biologically-based

COINs. This section discusses some of how previous work in the literature bears on this

relationship between COINs and biology.

3.4.1 Population Biology and Ecological Modeling

The fields of population biology and ecological modeling are concerned with the large-

scale “emergent” processes that govern the systems that consist of many (relatively)

simple entities interacting with one another [25, 116]. As usually cast, the “simple en-

tities” are members of one or more species, and the interactions are some mathematical

abstraction of the process of natural selection as it occurs in biological systems (involving

processes like genetic reproduction of various sorts, genotype-phenotype mappings, inter

and intra-species competitions for resources, etc.). Population Biology and ecological

modeling in this context addresses questions concerning the dynamics of the resultant

ecosystem, and in particular how its long-term behavior depends on the details of the

interactions between the constituent entities. Broadly construed, the paradigm of ecolog-

ical modeling can even be broadened to study how natural selection and self-regulating

feedback creates a stable planet-wide ecological environment—Gaia [167].

The underlying mathematical models of other fields can often be usefully modified

to apply to the kinds of systems population biology is interested in [14]. (See also the

discussion in the game theory subsection above.) Conversely, the underlying mathe-

matical models of population biology and ecological modeling can be applied to other

non-biological systems. In particular, those models shed light on social issues such as

the emergence of language or culture, warfare, and economic competition [81, 82, 102].

6See [173, 285] though for some counter-arguments to the particular claims most commonly made in

this regard.

20



They also can be used to investigate more abstract issues concerning the behavior of

large complex systems with many interacting components [103, 114, 179, 203, 213].

Going a bit further afield, an approach that is related in spirit to ecological modeling is

‘computational ecologies’. These are large distributed systems where each component of

the system’s acting (seemingly) independently results in complex global behavior. Those

components are viewed as constituting an “ecology” in an abstract sense (although much

of the mathematics is not derived from the traditional field of ecological modeling).

In particular, one can investigate how the dynamics of the ecology is influenced by

the information available to each component and how cooperation and communication

among the components affects that dynamics [134, 136].

Although in some ways the most closely related to COINs of the current ecology-

inspired research, the field of computational ecologies has some significant shortcomings

if one tries to view it as a full science of COINs. In particular, it suffers from not

being designed to solve the inverse problem of how to configure the system so as to

arrive at a particular desired dynamics. This is a difficulty endemic to the general

program of equating ecological modeling and population biology with the science of

COINs. These fields are primarily concerned with the “forward problem” of determining

the dynamics that arises from certain choices of the underlying system. Unless one’s

desired dynamics is sufficiently close to some dynamics that was previously catalogued

(during one’s investigation of the forward problem), one has very little information on

how to set up the components and their interactions to achieve that desired dynamics. In

addition, most of the work in these fields does not involve RL algorithms, and viewed as a

context in which to design COINs suffers from a need for hand-tailoring, and potentially

lack of robustness and scalability.

3.4.2 Swarm Intelligence

The field of ‘swarm intelligence’ is concerned with systems that are modeled after so-

cial insect colonies, so that the different components of the system are queen, worker,

soldier, etc. It can be viewed as ecological modeling in which the individual entities

have extremely limited computing capacity and/or action sets, and in which there are

very few types of entities. The premise of the field is that the rich behavior of social

insect colonies arises not from the sophistication of any individual entity in the colony,

but from the interaction among those entities. The objective of current research is to

uncover kinds of interactions among the entity types that lead to pre-specified behavior

of some sort.

More speculatively, the study of social insect colonies may also provide insight into

how to achieve learning in large distributed systems. This is because at the level of the

individual insect in a colony, very little (or no) learning takes place. However across

evolutionary time-scales the social insect species as a whole functions as if the various

individual types in a colony had “learned” their specific functions. The “learning” is the
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direct result of natural selection. (See the discussion on this topic in the subsection on

ecological modeling.)

Swarm intelligences have been used to adaptively allocate tasks in a mail com-

pany [34], solve the traveling salesman problem [69, 70] and route data efficiently in

dynamic networks [33, 236, 257] among others. Despite this, such intelligences do not

really constitute a general approach to designing COINs. There is no general framework

for adapting swarm intelligences to maximize particular world utility functions. Accord-

ingly, such intelligences generally need to be hand-tailored for each application. And

after such tailoring, it is often quite a stretch to view the system as “biological” in any

sense, rather than just a simple and a priori reasonable modification of some previously

deployed system.

3.4.3 Artificial Life

The two main objectives of Artificial Life, closely related to one another, are under-

standing the abstract functioning and especially the origin of terrestrial life, and creating

organisms that can meaningfully be called “alive” [163].

The first objective involves formalizing and abstracting the mechanical processes un-

derpinning terrestrial life. In particular, much of this work involves various degrees of

abstraction of the process of self-replication [43, 247, 268]. Some of the more real-

world-oriented work on this topic involves investigating how lipids assemble into more

complex structures such as vesicles and membranes, which is one of the fundamental

questions concerning the origin of life [66, 77, 208, 212, 201]. Many computer models

have been proposed to simulate this process, though most suffer from overly simplifying

the molecular morphology.

More generally, work concerned with the origin of life can constitute an investigation of

the functional self-organization that gives rise to life [180]. In this regard, an important

early work on functional self-organization is the lambda calculus, which provides an

elegant framework (recursively defined functions, lack of distinction between object and

function, lack of architectural restrictions) for studying computational systems [56]. This

framework can be used to develop an artificial chemistry “function gas” that displays

complex cooperative properties [92].

The second objective of the field of Artificial Life is less concerned with understand-

ing the details of terrestrial life per se than of using terrestrial life as inspiration for

how to design living systems. For example, motivated by the existence (and persistence)

of computer viruses, several workers have tried to design an immune system for com-

puters that will develop “antibodies” and handle viruses both more rapidly and more

efficiently than other algorithms [94, 148, 248]. More generally, because we only have

one sampling point (life on Earth), it is very difficult to precisely formulate the process

by which life emerged. By creating an artificial world inside a computer however, it is

possible to study far more general forms of life [217, 218, 219]. See also [286] where the
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argument is presented that the richest way of approaching the issue of defining “life” is

phenomenologically, in terms of self-dissimilar scaling properties of the system.

3.4.4 Training cellular automata with genetic algorithms

Cellular automata can be viewed as digital abstractions of physical gases [35, 85, 277,

278]. Formally, they are discrete-time recurrent neural nets where the neurons live on a

grid, each neuron has a finite number of potential states, and inter-neuron connections

are (usually) purely local. (See below for a discussion of recurrent neural nets.) So the

state update rule of each neuron is fixed and local, the next state of a neuron being a

function of the current states of it and of its neighboring elements.

The state update rule of (all the neurons making up) any particular cellular automaton

specifies the mapping taking the initial configuration of the states of all of its neurons

to the final, equilibrium (perhaps strange) attractor configuration of all those neurons.

So consider the situation where we have a desired such mapping, and want to know an

update rule that induces that mapping. This is a search problem, and can be viewed as

similar to the inverse problem of how to design a COIN to achieve a pre-specified global

goal, albeit a “COIN” whose nodal elements do not use RL algorithms.

Genetic algorithms are a special kind of search algorithm, based on analogy with the

biological process of natural selection via recombination and mutation of a genome [190].

Although genetic algorithms (and ‘evolutionary computation’ in general) have been stud-

ied quite extensively, there is no formal theory justifying genetic algorithms as search

algorithms [172, 285] and few empirical comparisons with other search techniques. One

example of a well-studied application of genetic algorithms is to (try to) solve the in-

verse problem of finding update rules for a cellular automaton that induce a pre-specified

mapping from its initial configuration to its attractor configuration. To date, they have

used this way only for extremely simple configuration mappings, mappings which can be

trivially learned by other kinds of systems. Despite the simplicity of these mappings, the

use of genetic algorithms to try to train cellular automata to exhibit them has achieved

little success [61, 62, 191, 192].

3.5 Physics-Based Systems

3.5.1 Statistical Physics

Equilibrium statistical physics is concerned with the stable state character of large num-

bers of very simple physical objects, interacting according to well-specified local deter-

ministic laws, with probabilistic noise processes superimposed [5, 220]. Typically there is

no sense in which such systems can be said to have centralized control, since all particles

contribute comparably to the overall dynamics.

Aside from mesoscopic statistical physics, the numbers of particles considered are usu-
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ally huge (e.g., 1023), and the particles themselves are extraordinarily simple, typically

having only a few degrees of freedom. Moreover, the noise processes usually considered

are highly restricted, being those that are formed by “baths”, of heat, particles, and the

like. Similarly, almost all of the field restricts itself to deterministic laws that are read-

ily encapsulated in Hamilton’s equations (Schrodinger’s equation and its field-theoretic

variants for quantum statistical physics). In fact, much of equilibrium statistical physics

isn’t even concerned with the dynamic laws by themselves (as for example is stochastic

Markov processes). Rather it is concerned with invariants of those laws (e.g., energy),

invariants that relate the states of all of the particles. Trivially then, deterministic

laws without such readily-discoverable invariants are outside of the purview of much of

statistical physics.

One potential use of statistical physics for COINs involves taking the systems that

statistical physics analyzes, especially those analyzed in its condensed matter variant

(e.g., spin glasses [252, 253]), as simplified models of a class of COINs. This approach

is used in some of the analysis of the Bar problem (see above). It is used more overtly

in (for example) the work of Galam [104], in which the equilibrium coalitions of a set of

“countries” are modeled in terms of spin glasses. This approach cannot provide a general

COIN framework though. In addition to the restrictions listed above on the kinds of

systems it considers, this is due to its not providing a general solution to arbitrary COIN

inversion problems, and to its not employing RL algorithms.7

Another contribution that statistical physics can make is with the mathematical tech-

niques it has developed for its own purposes, like mean field theory, self-averaging ap-

proximations, phase transitions, Monte Carlo techniques, the replica trick, and tools to

analyze the thermodynamic limit in which the number of particles goes to infinity. Al-

though such techniques have not yet been applied to COINs, they have been successfully

applied to related fields. This is exemplified by the use of the replica trick to analyze

two-player zero-sum games with random payoff matrices in the thermodynamic limit of

the number of strategies in [28]. Other examples are the numeric investigation of iter-

ated prisoner’s dilemma played on a lattice [261], the analysis of stochastic games by

expressing of deviation from rationality in the form of a “heat bath” [176], and the use

of topological entropy to quantify the complexity of a voting system studied in [182].

Other quite recent work in the statistical physics literature is formally identical to that

in other fields, but presents it from a novel perspective. A good example of this is [246],

which is concerned with the problem of controlling a spatially extended system with a

single controller, by using an algorithm that is identical to a simple-minded proportional

7In regard to the latter point however, it’s interesting to speculate about recasting statistical physics

as a COIN, by viewing each of the particles in the physical system as running an “RL algorithm” that

perfectly optimizes the “utility function” of its Lagrangian, given the “actions” of the other particles.

In this perspective, many-particle physical systems are multi-stage games that are at Nash equilibrium

in each stage. So for example, a frustrated spin glass is such a system at a Nash equilibrium that is not

Pareto optimal.
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RL algorithm (in essence, a rediscovery of RL).

3.5.2 Action Extremization

Much of the theory of physics can be cast as solving for the extremization of an actional,

which is a functional of the worldline of an entire (potentially many-component) sys-

tem across all time. The solution to that extremization problem constitutes the actual

worldline followed by the system. In this way the calculus of variations can be used to

solve for the worldline of a dynamic system. As an example, simple Newtonian dynamics

can be cast as solving for the worldline of the system that extremizes a quantity called

the ‘Lagrangian’, which is a function of that worldline and of certain parameters (e.g.,

the ‘potential energy’) governing the system at hand. In this instance, the calculus of

variations simply results in Newton’s laws.

If we take the dynamic system to be a COIN, we are assured that its worldline

automatically optimizes a “global goal” consisting of the value of the associated actional.

If we change physical aspects of the system that determine the functional form of the

actional (e.g., change the system’s potential energy function), then we change the global

goal, and we are assured that our COIN optimizes that new global goal. Counter-intuitive

physical systems, like those that exhibit Braess’ paradox [21], are simply systems for

which the “world utility” implicit in our human intuition is extremized at a point different

from the one that extremizes the system’s actional.

The challenge in exploiting this to solve the COIN design problem is in translating

an arbitrary provided global goal for the COIN into a parameterized actional. Note that

that actional must govern the dynamics of the physical COIN, and the parameters of the

actional must be physical variables in the COIN, variables whose values we can modify.

3.5.3 Active Walker Models

The field of active walker models [22, 117, 118] is concerned with modeling “walkers” (be

they human walkers or instead simple physical objects) crossing fields along trajectories,

where those trajectories are a function of several factors, including in particular the

trails already worn into the field. Often the kind of trajectories considered are those

that can be cast as solutions to actional extremization problems so that the walkers can

be explicitly viewed as agents optimizing a private utility.

One of the primary concerns with the field of active walker models is how the trails

worn in the field change with time to reach a final equilibrium state. The problem

of how to design the cement pathways in the field (and other physical features of the

field) so that the final paths actually followed by the walkers will have certain desirable

characteristics is then one of solving for parameters of the actional that will result in the

desired worldline. This is a special instance of the inverse problem of how to design a

COIN.
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Using active walker models this way to design COINs, like action extremization in

general, probably has limited applicability. Also, it is not clear how robust such a design

approach might be, or whether it would be scalable and exempt from the need for hand-

tailoring.

3.6 Other Related Subjects

This subsection presents a “catch-all” of other fields that have little in common with one

another except that they bear some relation to COINs.

3.6.1 Stochastic Fields

An extremely well-researched body of work concerns the mathematical and numeric

behavior of systems for which the probability distribution over possible future states

conditioned on preceding states is explicitly provided. This work involves many aspects

of Monte Carlo numerical algorithms [200], all of Markov Chains [95, 204, 254], and

especially Markov fields, a topic that encompasses the Chapman-Kolmogorov equations

[105] and its variants: Liouville’s equation, the Fokker-Plank equation, and the Detailed-

balance equation in particular. Non-linear dynamics is also related to this body of work

(see the synopsis of iterated function systems below and the synopsis of cellular automata

above), as is Markov competitive decision processes (see the synopsis of game theory

above).

Formally, one can cast the problem of designing a COIN as how to fix each of the

conditional transition probability distributions of the individual elements of a stochastic

field so that the aggregate behavior of the overall system is of a desired form.8 Unfor-

tunately, almost all that is known in this area instead concerns the forward problem, of

inferring aggregate behavior from a provided set of conditional distributions. Although

such knowledge provides many “bits and pieces” of information about how to tackle the

inverse problem, those pieces collectively cover only a very small subset of the entire

space of tasks we might want the COIN to perform. In particular, they tell us very little

about the case where the conditional distribution encapsulates RL algorithms.

8In contrast, in the field of Markov decision processes, discussed in [48], the full system may be a

Markov field, but the system designer only sets the conditional transition probability distribution of a

few of the field elements at most, to the appropriate “decision rules”. Unfortunately, it is hard to imagine

how to use the results of this field to design COINs because of major scaling problems. Any decision

process must accurately model likely future modifications to its own behavior — often an extremely

daunting task [173]. What’s worse, if multiple such decision processes are running concurrently in the

system, each such process must also model the others, potentially needing to model them in their full

complexity.
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3.6.2 Iterated Function Systems

The technique of iterated function systems [19] grew out of the field of nonlinear dy-

namics [223, 256, 262]. In such systems a function is repeatedly and recursively applied

to itself. The most famous example is the logistic map, xn+1 = rxn(1 − xn) for some r

between 0 and 4 (so that x stays between 0 and 1). More generally the function along

with its arguments can be vector-valued. In particular, we can construct such functions

out of affine transformations of points in a Euclidean plane.

Iterated functions systems have been applied to image data. In this case the succes-

sive iteration of the function generically generates a fractal, one whose precise character

is determined by the initial iteration-1 image. Since fractals are ubiquitous in natural

images, a natural idea is to try to encode natural images as sets of iterated function

systems spread across the plane, thereby potentially garnering significant image com-

pression. The trick is to manage the inverse step of starting with the image to be

compressed, and determining what iteration-1 image(s) and iterating function(s) will

generate an accurate approximation of that image.

In the language of nonlinear dynamics, we have a dynamic system that consists of a

set of iterating functions, together with a desired attractor (the image to be compressed).

Our goal is to determine what values to set certain parameters of our dynamic system

to so that the system will have that desired attractor. The potential relationship with

COINs arises from this inverse nature of the problem tackled by iterated function sys-

tems. If the goal for a COIN can be cast as its relaxing to a particular attractor, and

if the distributed computational elements are isomorphic to iterated functions, then the

tricks used in iterated functions theory could be of use.

Although the techniques of iterated function systems might prove of use in designing

COINs, they are unlikely to serve as a generally applicable approach to designing COINs.

In addition, they do not involve RL algorithms, and often involve extensive hand-tuning.

3.6.3 Recurrent Neural Nets

A recurrent neural net consists of a finite set of “neurons” each of which has a real-valued

state at each moment in time. Each neuron’s state is updated at each moment in time

based on its current state and that of some of the other neurons in the system. The

topology of such dependencies constitute the “inter-neuronal connections” of the net,

and the associated parameters are often called the “weights” of the net. The dynamics

can be either discrete or continuous (i.e., given by difference or differential equations).

Recurrent nets have been investigated for many purposes [107, 128, 210, 293]. One of

the more famous of these is associative memories. The idea is that given a pre-specified

pattern for the (states of the neurons in the) net, there may exist inter-neuronal weights

which result in a basin of attraction focussed on that pattern. If this is the case, then the

net is equivalent to an associative memory, in that a complete pre-specified pattern across
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all neurons will emerge under the net’s dynamics from any initial pattern that partially

matches the full pre-specified pattern. In practice, one wishes the net to simultaneously

possess many such pre-specified associative memories. There are many schemes for

“training” a recurrent net to have this property, including schemes based on spin glasses

[125, 126, 127] and schemes based on gradient descent [224].

As can the fields of cellular automata and iterated function systems, the field of

recurrent neural nets can be viewed as concerning certain variants of COINs. Also like

those other fields though, recurrent neural nets has shortcomings if one tries to view it

as a general approach to a science of COINs. In particular, recurrent neural nets do

not involve RL algorithms, and training them often suffers from scaling problems. More

generally, in practice they can be hard to train well without hand-tailoring.

3.6.4 Network Theory

Packet routing in a data network [29, 129, 249, 270, 147, 110] presents a particularly

interesting domain for the investigation of COINs. In particular, with such routing:

(i) the problem is inherently distributed;

(ii) for all but the most trivial networks it is impossible to employ global control ;

(iii) the routers have only access to local information (routing tables);

(iv) it constitutes a relatively clean and easily modified experimental testbed; and

(v) there are potentially major bottlenecks induced by ‘greedy’ behavior on the part of

the individual routers, which behavior constitutes a readily investigated instance of the

Tragedy Of the Commons (TOC).

Many of the approaches to packet routing incorporate a variant on RL [41, 46, 54,

169, 175]. Q–routing is perhaps the best known such approach and is based on routers

using reinforcement learning to select the best path [41]. Although generally successful,

Q–routing is not a general scheme for inverting a global task. This is even true if one

restricts attention to the problem of routing in data networks — there exists a global

task in such problems, but that task is directly used to construct the algorithm.

A particular version of the general packet routing problem that is acquiring increased

attention is the Quality of Service (QoS) problem, where different communication pack-

ets (voice, video, data) share the same bandwidth resource but have widely varying

importances both to the user and (via revenue) to the bandwidth provider. Determining

which packet has precedence over which other packets in such cases is not only based

on priority in arrival time but more generally on the potential effects on the income of

the bandwidth provider. In this context, RL algorithms have been used to determine

routing policy, control call admission and maximize revenue by allocating the available

bandwidth efficiently [46, 175].

Many researchers have exploited the noncooperative game theoretic understanding

of the TOC in order to explain the bottleneck character of empirical data networks’

behavior and suggest potential alternatives to current routing schemes [26, 76, 153, 154,
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162, 164, 206, 207, 243]. Closely related is work on various “pricing”-based resource

allocation strategies in congestable data networks [171]. This work is at least partially

based upon current understanding of pricing in toll lanes, and traffic flow in general (see

below). All of these approaches are particularly of interest when combined with the RL-

based schemes mentioned just above. Due to these factors, much of the current research

on a general framework for COINs is directed toward the packet-routing domain (see

next section).

3.6.5 Traffic Theory

Traffic congestion typifies the TOC public good problem: everyone wants to use the

same resource, and all parties greedily trying to optimize their use of that resource not

only worsens global behavior, but also worsens their own private utility (e.g., if everyone

disobeys traffic lights, everyone gets stuck in traffic jams). Indeed, in the well-known

Braess’ paradox [21, 58, 59, 155], keeping everything else constant — including the

number and destinations of the drivers — but opening a new traffic path can increase

everyone’s time to get to their destination. (Viewing the overall system as an instance

of the Prisoner’s dilemma, this paradox in essence arises through the creation of a novel

‘defect-defect’ option for the overall system.) Greedy behavior on the part of individ-

uals also results in very rich global dynamic patterns, such as stop and go waves and

clusters [119, 120].

Much of traffic theory employs and investigates tools that have previously been ap-

plied in statistical physics [119, 150, 151, 211, 216] (see subsection above). In particular,

the spontaneous formation of traffic jams provides a rich testbed for studying the emer-

gence of complex activity from seemingly chaotic states [119, 121]. Furthermore, the

dynamics of traffic flow is particular amenable to the application and testing of many

novel numerical methods in a controlled environment [16, 30, 237]. Many experimental

studies have confirmed the usefulness of applying insights gleaned from such work to real

world traffic scenarios [119, 198, 197].

3.6.6 Topics from further afield

Finally, there are a number of other fields that, while either still nascent or not extremely

closely related to COINs, are of interest in COIN design:

Amorphous computing: Amorphous computing grew out of the idea of replacing

traditional computer design, with its requirements for high reliability of the components

of the computer, with a novel approach in which widespread unreliability of those com-

ponents would not interfere with the computation [1]. Some of its more speculative

aspects are concerned with “how to program” a massively distributed, noisy system

of components which may consist in part of biochemical and/or biomechanical compo-

nents [152, 274]. Work here has tended to focus on schemes for how to robustly induce
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desired geometric dynamics across the physical body of the amorphous computer — issue

that are closely related to morphogenesis, and thereby lend credence to the idea that

biochemical components are a promising approach. Especially in its limit of computers

with very small constituent components, amorphous computing also is closely related to

the fields of nanotechnology [71] and control of smart matter (see below).

Control of smart matter:. As the prospect of nanotechnology-driven mechanical

systems gets more concrete, the daunting problem of how to robustly control, power,

and sustain protean systems made up of extremely large sets of nano-scale devices looms

more important [111, 112, 122]. If this problem were to be solved one would in essence

have “smart matter”. For example, one would be able to “paint” an airplane wing with

such matter and have it improve drag and lift properties significantly.

Morphogenesis: How does a leopard embryo get its spots, or a zebra embryo its

stripes? More generally, what are the processes underlying morphogenesis, in which

a body plan develops among a growing set of initially undifferentiated cells? These

questions, related to control of the dynamics of chemical reaction waves, are essentially

special cases of the more general question of how ontogeny works, of how the genotype-

phenotype mapping is carried out in development. The answers involve homeobox (as

well as many other) genes [18, 73, 144, 91, 266]. Under the presumption that the

functioning of such genes is at least in part designed to facilitate genetic changes that

increase a species’ fitness, that functioning facilitates solution of the inverse problem, of

finding small-scale changes (to DNA) that will result in “desired” large scale effects (to

body plan) when propagated across a growing distributed system.

Self Organizing systems The concept of self-organization and self-organized crit-

icality [15] was originally developed to help understand why many distributed physical

systems are attracted to critical states that possess long-range dynamic correlations in

the large-scale characteristics of the system. It provides a powerful framework for analyz-

ing both biological and economic systems. For example, natural selection (particularly

punctuated equilibrium [78, 109]) can be likened to self-organizing dynamical system,

and some have argued it shares many the properties (e.g., scale invariance) of such sys-

tems [63]. Similarly, one can view the economic order that results from the actions of

human agents as a case of self-organization [65]. The relationship between complexity

and self-organization is a particularly important one, in that it provides the potential

laws that allow order to arise from chaos [145].

Small worlds (6 Degrees of Separation): In many distributed systems where each

component can interact with a small number of “neighbors”, an important problem is how

to propagate information across the system quickly and with minimal overhead. On the

one extreme the neighborhood topology of such systems can exist on a completely regular

grid-like structure. On the other, the topology can be totally random. In either case,

certain nodes may be effectively ‘cut-off’ from other nodes if the information pathways

between them are too long. Recent work has investigated “small worlds” networks
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(sometimes called 6 degrees of separation) in which underlying grid-like topologies are

“doped” with a scattering of long-range, random connections. It turns out that very little

such doping is necessary to allow for the system to effectively circumvent the information

propagation problem [183, 273].

Control theory: Adaptive control [6, 231], and in particular adaptive control involv-

ing locally weighted RL algorithms [8, 194], constitute a broadly applicable framework

for controlling small, potentially inexactly modeled systems. Augmented by techniques

in the control of chaotic systems [55, 67, 68], they constitute a very successful way of

solving the “inverse problem” for such systems. Unfortunately, it is not clear how one

could even attempt to scale such techniques up to the massively distributed systems

of interest in COINs. The next section discusses in detail some of the underlying rea-

sons why the purely model-based versions of these approaches are inappropriate as a

framework for COINs.

4 A FRAMEWORK DESIGNED FOR COINs

Summarizing the discussion to this point, it is hard to see how any already extant

scientific field can be modified to encompass systems meeting all of the requirements of

COINs listed at the beginning of Section 3. This is not too surprising, since none of those

fields were explicitly designed to analyze COINs. This section first motivates in general

terms a framework that is explicitly designed for analyzing COINs. It then presents the

formal nomenclature of that framework. This is followed by derivations of some of the

central theorems of that framework.9 Finally, we present experiments that illustrate the

power the framework provides for ensuring large world utility in a COIN.

4.1 Problems with a model-based approach

What mathematics might one employ to understand and design COINs? Perhaps the

most natural approach, related to the stochastic fields work reviewed above, involves the

following three steps:

1) First one constructs a detailed stochastic model of the COIN’s dynamics, a model

parameterized by a vector θ. As an example, θ could fix the utility functions of the

individual agents of the COIN, aspects of their RL algorithms, which agents communicate

with each other and how, etc.

2) Next we solve for the function f(θ) which maps the parameters of the model to

the resulting stochastic dynamics.

3) Cast our goal for the system as a whole as achieving a high expected value of some

“world utility”. Then as our final step we would have to solve the inverse problem: we

9A much more detailed discussion, including intuitive arguments, proofs and fully formal definitions

of the concepts discussion in this section, can be found in [283].
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would have to search for a θ which, via f , results in a high value of E(world utility | θ).
Let’s examine in turn some of the challenges each of these three steps entrain:

I) We are primarily interested in very large, very complex systems, which are noisy,

faulty, and often operate in a non-stationary environment. Moreover, our “very complex

system” consists of many RL algorithms, all potentially quite complicated, all running

simultaneously. Clearly coming up with a detailed model that captures the dynamics

of all of this in an accurate manner will often be extraordinarily difficult. Moreover,

unfortunately, given that the modeling is highly detailed, often the level of verisimilitude

required of the model will be quite high. For example, unless the modeling of the faulty

aspects of the system were quite accurate, the model would likely be “brittle”, and overly

sensitive to which elements of the COIN were and were not operating properly at any

given time.

II) Even for models much simpler than the ones called for in (I), solving explicitly for

the function f can be extremely difficult. For example, much of Markov Chain theory

is an attempt to broadly characterize such mappings. However as a practical matter,

usually it can only produce potentially useful characterizations when the underlying

models are quite inaccurate simplifications of the kinds of models produced in step (I).

III) Even if one can write down an f , solving the associated inverse problem is often

impossible in practice.

IV) In addition to these difficulties, there is a more general problem with the model-

based approach. We wish to perform our analysis on a “high level”. Our thesis is that

due to the robust and adaptive nature of the individual agents’ RL algorithms, there

will be very broad, easily identifiable regions of θ space all of which result in excellent

E(world utility | θ), and that these regions will not depend on the precise learning

algorithms used to achieve the low-level tasks (cf. the list at the beginning of Section 3).

To fully capitalize on this, one would want to be able to slot in and out different learning

algorithms for achieving the low-level tasks without having to redo our entire analysis

each time. However in general this would be possible with a model-based analysis only

for very carefully designed models (if at all). The problem is that the result of step

(3), the solution to the inverse problem, would have to concern aspects of the COIN

that are (at least approximately) invariant with respect to the precise low-level learning

algorithms used. Coming up with a model that has this property while still avoiding

problems (I-III) is usually an extremely daunting challenge.

Fortunately, there is an alternative approach which avoids the difficulties of detailed

modeling. Little modeling of any sort ever is used in this alternative, and what modeling

does arise has little to do with dynamics. In addition, any such modeling is extremely

high-level, intented to serve as a decent approximation to almost any system having

“reasonable” RL algorithms, rather than as an accurate model of one particular system.

We call any framework based on this alternative a descriptive framework. In

such a framework one identifies certain salient characteristics of COINs, which are
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characteristics of a COIN’s entire worldline that one strongly expects to find in COINs

that have large world utility. Under this expectation, one makes the assumption that if

a COIN is explicitly modified to have the salient characteristics (for example in response

to observations of its run-time behavior), then its world utility will benefit. So long as

the salient characteristics are (relatively) easy to induce in a COIN, then this assumption

provides a ready indirect way to cause that COIN to have large world utility.

An assumption of this nature is the central leverage point that a descriptive frame-

work employs to circumvent detailed modeling. Under it, if the salient characteristics

can be induced with little or no modeling (e.g., via heuristics that aren’t rigorously and

formally justified), then they provide an indirect way to improve world utility without

recourse to detailed modeling. In fact, since one does not use detailed modeling in a

descriptive framework, it may even be that one does not have a fully rigorous mathe-

matical proof that the central assumption holds in a particular system for one’s choice of

salient characteristics. One may have to be content with reasonableness arguments not

only to justify one’s scheme for inducing the salient characteristics, but for making the

assumption that characteristics are correlated with large world utility in the first place.10

Of course, the trick in the descriptive framework is to choose salient characteristics that

both have a beneficial relationship with world utility and that one expects to be able to

induce with relatively little detailed modeling of the system’s dynamics.

4.2 Nomenclature

There exist many ways one might try to design a descriptive framework. In this subsec-

tion we present nomenclature needed for a (very) cursory overview of one of them. (See

[283] for a more detailed exposition, including formal proofs.)

This overview concentrates on the four salient characteristics of intelligence, learn-

ability, factoredness, and the wonderful life utility, all defined below. Intelligence is a

quantification of how well an RL algorithm performs. We want to do whatever we can

to help those algorithms achieve high values of their utility functions. Learnability is

a characteristic of a utility function that one would expect to be well-correlated with

how well an RL algorithm can learn to optimize it. A utility function is also factored if

whenever its value increases, the overall system benefits. Finally, wonderful life utility

is an example of a utility function that is both learnable and factored.

After the preliminary definitions below, this section formalizes these four salient char-

acteristics, derives several theorems relating them, and illustrates in some computer ex-

periments how those theorems can be used to help the system achieve high world utility.

10Despite only being implicit, such reasonableness arguments are all that underpins fields like non-

Bayesian learning. See [279, 281, 280].
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4.2.1 Preliminary Definitions

1) We refer to an RL algorithm by which an individual component of the COIN modifies

its behavior as a microlearning algorithm. We refer to the initial construction of the

COIN, potentially based upon salient characteristics, as the COIN initialization. We

use the phrase macrolearning to refer to externally imposed run-time modifications to

the COIN which are based on statistical inference concerning salient characteristics of

the running COIN.

2) For convenience, we take time, t, to be discrete and confined to the integers, Z.

When referring to COIN initialization, we implicitly have a lower bound on t, which

without loss of generality we take to be less than or equal to 0.

3) All variables that have any effect on the COIN are identified as components of

Euclidean-vector-valued states of various discrete nodes. As an important example, if

our COIN consists in part of a computational “agent” running a microlearning algorithm,

the precise configuration of that agent at any time t, including all variables in its learning

algorithm, all actions directly visible to the outside world, all internal parameters, all

values observed by its probes of the surrounding environment, etc., all constitute the

state vector of a node representing that agent. We define ζ
η,t

to be a vector in the

Euclidean vector space Zη,t, where the components of ζ
η,t

give the state of node η at

time t. The i’th component of that vector is indicated by ζ
η,t;i

.

Observation 3.1: In practice, many COINs will involve variables that are most nat-

urally viewed as discrete and symbolic. In such cases, we must exercise some care in

how we choose to represent those variables as components of Euclidean vectors. There

is nothing new in this; the same issue arises in modern work on applying neural nets to

inherently symbolic problems. In our COIN framework, we will usually employ the same

resolution of this issue employed in neural nets, namely representing the possible values

of the discrete variable with a unary representation in a Euclidean space. Just as with

neural nets, values of such vectors that do not lie on the vertices of the unit hypercube

are not meaningful, strictly speaking. Fortunately though, just as with neural nets, there

is almost always a most natural way to extend the definitions of any function of interest

(like world utility) so that it is well-defined even for vectors not lying on those vertices.

This allows us to meaningfully define partial derivatives of such functions with respect

to the components of ζ, partial derivatives that we will evaluate at the corners of the

unit hypercube.

4) For notational convenience, we define ζ
,t
∈ Z,t to be the vector of the states of all

nodes at time t; ζ
η̂,t

∈ Z η̂,t to be the vector of the states of all nodes other than η at

time t; and ζ ≡ ζ
,
∈ Z ≡ Z′ to be the entire vector of the states of all nodes at all times.

Z is infinite-dimensional in general, and usually assumed to be a Hilbert space. We will

often assume that all spaces Z,t over all times t are isomorphic to a space Z(0), i.e., Z is

a Cartesian product of copies of Z(0).

Also for notational convenience, we define gradients using ∂-shorthand. So for exam-
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ple, ∂ζ
,t
F (ζ

,
) is the vector of the partial derivative of F (ζ

,
) with respect to the compo-

nents of ζ
,t
. Also, we will sometimes treat the symbol “t” specially, as delineating a range

of components of ζ. So for example an expression like “ζ
,t<t′

” refers to all components

ζ
,t

with t < t′.

5) To avoid confusion with the other uses of the comma operator, we will often use

x • y rather than (x,y) to indicate the vector formed by concatenating the two ordered

sets of vector components x and y. For example, ζ
η,t<0

• ζ
η′,t>0

refers to the vector

formed by concatenating those components of the worldline ζ involving node η for times

less than 0 with those components involving node η′ that have times greater than 0.

6) We take the universe in which our COIN operates to be completely deterministic.

This is certainly the case for any COIN that operates in a digital system, even a system

that emulates analog and/or stochastic processes (e.g., with a pseudo-random number

generator). More generally, this determinism reflects the fact that since the real world

obeys (deterministic) physics, any real-world system, be it a COIN or something else,

is, ultimately, embedded in a deterministic system.11

The perspective to be kept in mind here is that of nonlinear time-series analysis. A

physical time series typically reflects a few degrees of freedom that are projected out of

the underlying space in which the full system is deterministically evolving, an underlying

space that is actually extremely high-dimensional. This projection typically results in

an illusion of stochasticity in the time series.

7) Formally, to reflect this determinism, first we bundle all variables we are not

directly considering — but which nonetheless affect the dynamics of the system — as

components of some catch-all environment node. So for example any “noise processes”

and the like affecting the COIN’s dynamics are taken to be inputs from a deterministic,

very high-dimensional environment that is potentially chaotic and is never directly ob-

served [86]. Given such an environment node, we then stipulate that for all t, t′ such

that t′ > t, ζ
,t

sets ζ
,t′

uniquely.

Observation 7.1: When nodes are “computational devices”, often we must be care-

ful to specify the physical extent of those devices. Such a node may just be the associated

CPU, or it may be that CPU together with the main RAM, or it may include an external

storage device. Almost always, the border of the device η will end before any external

system that η is “observing” begins. This means that since at time t η only knows the

value of ζ
η,t

, its “observational knowledge” of that external system is indirect. That

knowledge reflects a coupling between ζ
η,t

and ζη ,t
, a coupling that is induced by the

dynamical evolution of the system from preceding moments up to the time t. If the

dynamics does not force such a coupling, then η has no observational knowledge of the

11This determinism holds even for systems with an explicitly quantum mechanical character. Quantum

mechanical systems evolve according to Schrodinger’s equation, which is purely deterministic; as is now

well-accepted, the “stochastic” aspect of quantum mechanics can be interpreted as an epiphenomenon of

Schrodinger’s equation that arises when the Hamiltonian has an “observational” or “entangling” coupling

between some of its variables [84, 297, 106], a coupling that does not obviate the underlying determinism.
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outside world.

8) We express the dynamics of our system by writing ζ
,t′≥t

= C(ζ
,t
). (In this paper

there will be no need to be more precise and specify the precise dependency of C(.) on t

and/or t′.) We define {C} to be a set of constraint equations enforcing that dynamics,

and also, more generally, fixing the entire manifold C of vectors ζ ∈ Z that we consider

to be ‘allowed’. So C is a subset of the set of all ζ ∈ Z that are consistent with

the deterministic laws governing the COIN, i.e., that obey ζ
,t′≥t

= C(ζ
,t
) ∀ t, t′. We

generalize this notation in the obvious way, so that (for example) C,t≥t0 is the manifold

consisting of all vectors ζ
,t≥t0

∈ Z,t≥t0 that are projections of a vector in C.

Observation 8.1: Note that C,t≥t0 is parameterized by ζ
,t0

, due to determinism. Note

also that whereas C(.) is defined for any argument of the form ζ
,t
∈ Z,t for some t (i.e., we

can evolve any point forward in time), in general not all ζ
,t
∈ Z,t lie in C,t. In particular,

there may be extra restrictions constraining the possible states of the system beyond

those arising from its need to obey the relevant dynamical laws of physics. Finally,

whenever trying to express a COIN in terms of the framework presented here, it is a

good rule to try to write out the constraint equations explicitly to check that what one

has identified as the space Z,t contains all quantities needed to uniquely fix the future

state of the system.

Observation 8.2: We do not want to have Z be the phase space of every particle

in the system. We will instead usually have Z consist of variables that, although still

evolving deterministically, exist at a larger scale of granularity than that of individual

particles (e.g., thermodynamic variables in the thermodynamic limit). However we will

often be concerned with physical systems obeying entropy-driven dynamic processes that

are contractive at this high level of granularity. Examples are any of the many-to-one

mappings that can occur in digital computers, and, at a finer level of granularity, any

of the error-correcting processes in the electronics of such a computer that allow it to

operate in a digital fashion. Accordingly, although the dynamics of our system will

always be deterministic, it need not be invertible.

Observation 8.3: Intuitively, in our mathematics, all behavior across time is pre-fixed.

The COIN is a single fixed worldline through Z, with no “unfolding of the future”

as the die underlying a stochastic dynamics get cast. This is consistent with the fact

that we want the formalism to be purely descriptive, relating different properties of any

single, fixed COIN’s history. We will often informally refer to “changing a node’s state

at a particular time”, or to a microlearner’s “choosing from a set of options”, and the

like. Formally, in all such phrases we are really comparing different worldlines, with the

indicated modification distinguishing those worldlines.

Observation 8.4: Since the dynamics of any real-world COIN is deterministic, so is the

dynamics of any component of the COIN, and in particular so is any learning algorithm

running in the COIN, ultimately. However that does not mean that those deterministic

components of the COIN are not allowed to be “based on”, or “motivated by” stochastic
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concepts. The motivation behind the algorithms run by the components of the COIN

does not change their underlying nature. Indeed, in our experiments below, we explicitly

have the reinforcement learning algorithms that are trying to maximize private utility

operate in a (pseudo-) probabilistic fashion, with pseudo-random number generators and

the like.

More generally, the deterministic nature of our framework does not preclude our su-

perimposing probabilistic elements on top of that framework, and thereby generating

a stochastic extension of our framework. Exactly as in statistical physics, a stochas-

tic nature can be superimposed on our space of deterministic worldlines, potentially by

adopting a degree of belief perspective on “what probability means” [282, 139]. Indeed,

the macrolearning algorithms we investigate below implicitly involve such a superimpos-

ing; they implicitly assume a probabilistic coupling between the (statistical estimate of

the) correlation coefficient connecting the states of a pair of nodes and whether those

nodes are in the one another’s “effect set”.

Similarly, while it does not salient characteristics that involve probability distribu-

tions, the descriptive framework does not preclude such characteristics either. As an

example, the “intelligence” of an agent’s particular action, formally defined below, mea-

sures the fraction of alternative actions an agent could have taken that would have

resulted in a lower utility value. To define such a fraction requires a measure across the

space of such alternative actions, even if only implicitly. Accordingly, intelligence can be

viewed as involving a probability distribution across the space of potential actions.

In this paper though, we concentrate on the mathematics that obtains before such

probabilistic concerns are superimposed. Whereas the deterministic analysis presented

here is related to game-theoretic structures like Nash equilibria, a full-blown stochastic

extension would in some ways be more related to structures like correlated equilibria [9].

9) Formally, there is a lot of freedom in setting the boundary between what we call

“the COIN”, whose dynamics is determined by C, and what we call “macrolearning”,

which constitutes perturbations to the COIN instigated from “outside the COIN”, and

which therefore is not reflected in C. As an example, in much of this paper, we have

clearly specified microlearners which are provided fixed private utility functions that they

are trying to maximize. In such cases usually we will implicitly take C to be the dynamics

of the system, microlearning and all, for fixed private utilities that are specified in ζ. For

example, ζ could contain, for each microlearner, the bits in an associated computer

specifying the subroutine that that microlearner can call to evaluate what its private

utility would be for some full worldline ζ.

Macrolearning overrides C, and in this situation it refers (for example) to any statis-

tical inference process that modifies the private utilities at run-time to try to induce the

desired salient characteristics. Concretely, this would involve modifications to the bits

{bi} specifying each microlearner i’s private utility, modifications that are not accounted

for in C, and that are potentially based on variables that are not reflected in Z. Since

37



C does not reflect such macrolearning, when trying to ascertain C based on empirical

observation (as for example when determining how best to modify the private utilities),

we have to take care to distinguish which part of the system’s observed dynamics is due

to C and which part instead reflects externally imposed modifications to the private

utilities.

More generally though, other boundaries between the COIN and macrolearning-based

perturbations to it are possible, reflecting other definitions of Z, and other interpretations

of the elements of each ζ ∈ Z. For example, say that under the perspective presented

in the previous paragraph, the private utility is a function of some components s of ζ,

components that do not include the {bi}. Now modify this perspective so that in addition

to the dynamics of other bits, C also encapsulates the dynamics of the bits {bi}. Having

done this, we could still view each private utility as being fixed, but rather than take the

bits {bi} as “encoding” the subroutine that specifies the private utility of microlearner i,

we would treat them as “parameters” specifying the functional dependence of the (fixed)

private utility on the components of ζ. In other words, formally, they constitute an extra

set of arguments to i’s private utility, in addition to the arguments s. Alternatively, we

could simply say that in this situation our private utilities are time-indexed, with i’s

private utility at time t determined by {bi,t}, which in turn is determined by evolution

under C. Under either interpretation of private utility, any modification under C to the

bits specifying i’s utility-evaluation subroutine constitutes dynamical laws by which the

parameters of i’s microlearner evolves in time. In this case, macrolearning would refer

to some further removed process that modifies the evolution of the system in a way not

encapsulated in C.

For such alternative definitions of C/Z, we have a different boundary between the

COIN and macrolearning, and we must scrutinize different aspects of the COIN’s dynam-

ics to infer C. Whatever the boundary, the mathematics of the descriptive framework,

including the mathematics concerning the salient characteristics, is restricted to a system

evolving according to C, and explicitly does not account for macrolearning. This is why

the strategy of trying to improve world utility by using macrolearning to try to induce

salient characteristics is almost always ultimately based on an assumption rather than a

proof.

10) We are provided with some Von Neumann world utility G : Z → R that ranks

the various conceivable worldlines of the COIN. Note that since the environment node

is never directly observed, we implicitly assume that the world utility is not directly

(!) a function of its state. Our mathematics will not involve G alone, but rather the

relationship between G and various sets of personal utilities gη,t : Z ⊗ Z → R.

Intuitively, as discussed below, for many purposes such personal utilities are equivalent

to arbitrary “virtual” versions of the private utilities mentioned above. In particular,

it is only private utilities that will occur within any microlearning computer algorithms

that may be running in the COIN as manifested in C. Personal utilities are external
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mathematical constructions that the COIN framework employs to analyze the behavior

of the system. They can be involved in learning processes, but only as tools that are

employed outside of the COIN’s evolution under C, i.e., only in macrolearning. (For

example, analysis of them can be used to modify the private utilities.)

Observation 10.1: These utility definitions are very broad. In particular, they do not

require casting of the utilities as discounted sums. Note also that our world utility is

not indexed by t. Again reflecting the descriptive, worldline character of the formalism,

we simply assign a single value to an entire worldline of the system, implicitly assuming

that one can always say which of two candidate worldlines are preferable. So given some

“present time” t0, issues like which of two “potential futures” ζ
,t>t0

, ζ ′
,t>t0

is preferable

are resolved by evaluating the relevant utility at two associated points ζ and ζ ′ , where

the t > t0 components of those points are the futures indicated, and the two points share

the same (usually implicit) t ≤ t0 “past” components.

This time-independence of G automatically avoids formal problems that can occur

with general (i.e., not necessarily discounted sum) time-indexed utilities, problems like

having what’s optimal at one moment in time conflict with what’s optimal at other

moments in time.12 For personal utilities such formal problems are often irrelevant

however. Before we begin our work, we as COIN designers must be able to rank all

possible worldlines of the system at hand, to have a well-defined design task. That is

why world utility cannot be time-indexed. However if a particular microlearner’s goal

keeps changing in an inconsistent way, that simply means that that microlearner will

grow “confused”. From our perspective as COIN designers, there is nothing a priori

unacceptable about such confusion. It may even result in better performance of the

system as a whole, in whic case we would actually want to induce it. Nonetheless, for

simplicity, in most of this paper we will have all gη,t be independent of t, just like world

utility.

World utility is defined as that function that we are ultimately interested in optimiz-

ing. In conventional RL it is a discounted sum, with the sum starting at time t. In

other words, conventional RL has a time-indexed world utility. It might seem that in

this at least, conventional RL considers a case that has more generality than that of

the COIN framework presented here. (It obviously has less generality in that its world

utility is restricted to be a discounted sum.) In fact though, the apparent time-indexing

of conventional RL is illusory, and the time-dependent discounted sum world utilty of

conventional RL is actually a special case of the non-time-indexed world utility of our

COIN framework. To see this formally, consider any (time-independent) world utility

12Such conflicts can be especially troublesome when they interfere with our defining what we mean

by an “optimal” set of actions by the nodes at a particular time t. The effects of the actions by the

nodes, adn therefore whether those actions are “optimal” or not, depends on the future actions of the

nodes. However if they too are to be “optimal”, according to their world-utility, those future actions

will depend on their futures. So we have a potentially infinite regress of differing stipulations of what

“optimal” actions at time t entails.
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G(ζ) that equals
∑∞

t=0 γ
tr(ζ

,t
) for some function r(.) and some positive constant γ with

magnitude less than 1. Then for any t′ > 0 and any ζ ′ and ζ ′′ where ζ ′
,t<t′

= ζ ′′
,t<t′

,

sgn[G(ζ ′) − G(ζ ′′)] = sgn[
∑∞

t=0 γ
tr(ζ ′

,t
) − ∑∞

t=0 γ
tr(ζ ′′

,t
)]. Conventional RL merely ex-

presses this in terms of time-dependent utilities ut′(ζ ,t>t′
) ≡ ∑∞

t=t′ γ
t−t′r(ζ

,t
) by writing

sgn[G(ζ ′) −G(ζ ′′)] = sgn[ut′(ζ
′) − ut′(ζ

′′)] for all t′. Since utility functions are, by defi-

nition, only unique up to the relative orderings they impose on potential values of their

arguments, we see that conventional RL’s use of a time-dependent discounted sum world

utility ut′ is identical to use of a particular time-independent world utility in our COIN

framework.

11) As mentioned above, there may be variables in each node’s state which, under

one particular interpretation, represent the “utility functions” that the associated mi-

crolearner’s computer program is trying to extremize. When there are such components

of ζ, we refer to the utilities they represent as private utilities. However even when

there are private utilities, formally we allow the personal utilities to differ from them.

The personal utility functions {gη} do not exist “inside the COIN”; they are not specified

by components of ζ. This separating of the private utilities from the {gη} will allow us

to avoid the teleological problem that one may not always be able to explicitly identify

“the” private utility function reflected in ζ such that a particular computational device

can be said to be a microlearner “trying to increase the value of its private utility”. To

the degree that we can couch the theorems purely in terms of personal rather than pri-

vate utilities, we will have successfully adopted a purely behaviorist approach, without

any need to interpret what a computational device is “trying to do”.

Despite this formal distinction though, often we will implicitly have in mind deploying

the personal utilities onto the microlearners as their private utilities, in which case the

terms can usually be used interchangeably. The context should make it clear when this

is the case.

4.2.2 Intelligence

We will need to quantify how well the entire system performs in terms of G. To do this

requires a measure of the performance of an arbitrary worldline ζ, for an arbitrary utility

function, under arbitrary dynamic laws C. Formally, such a measure is a mapping from

three arguments to R.

Such a measure will also allow us to quantify how well each microlearner performs in

purely behavioral terms, in terms of its personal utility. (In our behaviorist approach, we

do not try to make specious distinctions between whether a microlearner’s performance is

due to its level of “innate sophistication”, or rather due to dumb luck — all that matters

is the quality of its behavior as reflected in its utility value for the system’s worldline.)

This behaviorism in turn will allow us to avoid having private utilities explicitly arise in

our theorems (although they still arise frequently in pedagogical discussion). Even when

private utilities exist, there will be no formal need to explicitly identify some components
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of ζ as such utilities. Assuming a node’s microlearner is competent, the fact that it is

trying to optimize some particular private utility U will be manifested in our performance

measure’s having a large value at ζ for C for that utility U .

The problem of how to formally define such a performance measure is essentially

equivalent to the problem of how to quantify bounded rationality in game theory. Some of

the relevant work in game theory, for example that involving ‘trembling hand equilibria’

or ‘ǫ equilibria’ [97] is concerned with refinements or modifications of Nash equilibria (see

also [161]). Rather than a behaviorist approach, such work adopts a strongly teleological

perspective on rationality. In general, such work is only applicable to those situations

where the rationality is bounded due to the precise causal mechanisms investigated in

that work. Most of the other game-theoretic work first models (!) the microlearner,

as some extremely simple computational device (e.g., a deterministic finite automaton

(DFA). One then assumes that the microlearner performs perfectly for that device, so

that one can measure that learner’s performance in terms of some computational capacity

measure of the model (e.g., for a DFA, the number of states of that DFA) [100, 202, 230].13

However, if taken as renditions of real-world computer-based microlearners — never mind

human microlearners— the models in this approach are often extremely abstracted, with

many important characteristics of the real learners absent or distorted. In addition, there

is little reason to believe that any results arising from this approach would not be highly

dependent on the model choice and on the associated representation of computational

capacity. Yet another disadvantage is that this approach concentrates on perfect, fully

rational behavior of the microlearners, within their computational restrictions.

We would prefer a less model-dependent approach, especially given our wish that the

performance measure be based solely on the utility function at hand, ζ, and C. Now we

don’t want our performance measure to be a “raw” utility value like gη(ζ), since that is

not invariant with respect to monotonic transformations of gη. Similarly, we don’t want

to penalize the microlearner for not achieving a certain utility value if that value was

impossible to achieve not due to the microlearner’s shortcomings, but rather due to C

and the actions of other nodes. A natural way to address these concerns is to generalize

the game-theoretic concept of “best-response strategy” and consider the problem of how

well η performs given the actions of the other nodes. Such a measure would compare the

utility ultimately induced by each of the possible states of η at some particular time,

which without loss of generality we can take to be 0, to that induced by the actual state

ζ
η,0

. In other words, we would compare the utility of the actual worldline ζ to those

of a set of alternative worldlines ζ ′, where ζ
η̂,0

= ζ ′
η̂,0

, and use those comparisons to

quantify the quality of η’s performance.

Now we are only concerned with comparing the effects of replacing ζ with ζ ′ on future

contributions to the utility. But if we allow arbitrary ζ ′
,t<0

, then in and of themselves

13Some of the more popular model-based scenarios for investigating bounded rationality, like ‘ficticious

play’ (see the game theory section above), do not even stipulate one particular way to quantify that

rationality.
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the difference between those past components of ζ ′ and those of ζ can modify the value

of the utility, regardless of the effects of any difference in the future components. Our

presumption is that for many COINs of interest we can avoid this conundrum by restrict-

ing attention to those ζ ′ where ζ ′
,t<0

differs from ζ
,t<0

only in the internal parameters of

η’s microlearner, differences that only at times t ≥ 0 manifest themselves in a form the

utility is concerned with. (In game-theoretic terms, such “internal parameters” encode

full extensive-form strategies, and we only consider changes to the vertices at or below

the t = 0 level in the tree of an extensive-form strategy.)

Although this solution to our conundrum is fine when we can apply it, we don’t

want to restrict the formalism so that it can only concern systems having computational

algorithms which involve a clearly pre-specified set of extensive strategy “internal pa-

rameters” and the like. So instead, we formalize our presumption behaviorally, even for

computational algorithms that do not have explicit extensive strategy internal param-

eters. Since changing the internal parameters doesn’t affect the t < 0 components of

ζ
η,

that the utility is concerned with, and since we are only concerned with changes to

ζ that affect the utility, we simply elect to not change the t < 0 values of the internal

parameters of ζ
η,

at all. In other words, we leave ζ
η,t<0

unchanged. The advantage of

this stipulation is that we can apply it just as easily whether η does or doesn’t have any

“internal parameters” in the first place.

So in quantifying the performance of η for behavior given by ζ we compare ζ to a

set of ζ ′, a set restricted to those ζ ′ sharing ζ’s past: ζ ′
,t<0

= ζ
,t<0

, ζ ′
η̂,0

= ζ
η̂,0

, and

ζ ′
,t≥0

∈ C,t≥0. Since ζ ′
η,0

is free to vary (reflecting the possible changes in the state of η at

time 0) while ζ ′
,t<0

is not, ζ ′ /∈ C, in general. We may even wish to allow ζ ′
,t≥0

/∈ C,t≥0 in

certain circumstances. (Recall that C may reflect other restrictions imposed on allowed

worldlines besides adherence to the underlying dynamical laws, so simply obeying those

laws does not suffice to ensure that a worldline lies on C.) In general though, our

presumption is that as far as utility values are concerned, considering these dynamically

impossible ζ ′ is equivalent to considering a more restricted set of ζ ′ with “modified

internal parameters”, all of which are ∈ C.

We now present a formalization of this performance measure. Given C and a measure

dµ(ζ
,0
) demarcating what points in Zη,0 we are interested in, we define the (t = 0)

intelligence for node η of a point ζ with respect to a utility U as follows:

ǫη,U (ζ) ≡
∫

dµ(ζ ′
,0
) Θ[U(ζ) − U(ζ

,t<0
• C(ζ ′

,0
))] · δ(ζ ′

η̂,0
− ζ

η̂,0
) (1)

where Θ(.) is the Heaviside theta function which equals 0 if its argument is below 0 and

equals 1 otherwise, δ(.) is the Dirac delta function, and we assume that
∫

dµ(ζ ′
η,0

) = 1.

Intuitively, ǫη,U (ζ) measures the fraction of alternative states of η which, if η had

been in those states at time 0, would either degrade or not improve η’s performance (as

measured by U). Sometimes in practice we will only want to consider changes in those

components of ζ
η,0

that we consider as “free to vary”, which means in particular that
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those changes are consistent with C and the state of the external world, ζη ,0
. (This

consistency ensures that η’s observational information concerning the external world is

correct; see Observation 7.1 above.) Such a restriction means that even though ζ
,0

may

not be consistent with C and ζ
,t<0

, by itself it is still consistent with C; in quantifying the

quality of a particular ζ
η,0

. So we don’t compare our point to other ζ
,0

that are physically

impossible, no matter what the past is. Any such restrictions on what changes we are

considering are reflected implicitly in intelligence, in the measure dµ.

As an example of intelligence, consider the situation where for each player η, the

support of the measure dµ(ζ ′
,0
) extends over all possible actions that η could take that

affect the ultimate value of its personal utility, gη . In this situation we recover conven-

tional full rationality game theory involving Nash equilibria, as the analysis of scenarios

in which the intelligence of each player η with respect to gη equals 1.14 As an alterna-

tive, we could for each η restrict dµ(ζ ′
,0
) to some limited “set of actions that η actively

considers”. This provides us with an “effective Nash equilibrium” at the point ζ where

each ǫη,gη (ζ) equals 1, in the sense that as far it’s concerned, each player η has played a

best possible action at such a point. As yet another alternative, we could restrict each

dµ(ζ ′
,0
) to some infinitesimal neighborhood about ζ

,0
, and thereby define a “local Nash

equilibrium” by having ǫη,gη(ζ) = 1 for each player η.

In general, competent greedy pursuit of private utility U by the microlearner control-

ling node η means that the intelligence of η for personal utility U , ǫη,U (ζ), is close to 1.

Accordingly, we will often refer interchangeably to a capable microlearner’s “pursuing

private utility U”, and to its having high intelligence for personal utility U . Alterna-

tively, if the microlearner for node η is incompetent, then it may even be that “by luck”

its intelligence for some personal utility {gη} exceeds its intelligence for the different

private utility that it’s actually trying to maximize, Uη.

Say that we expect that a particular microlearner is “smart”, in that it is more

likely to have high rather than low intelligence. We can model this by saying that

given a particular ζ
η̂,0

, the conditional probability that ζ
η,0

= z is a monotonically

increasing function of ǫη,gη(ζ
,t<0

• C(z • ζ
η̂,0

)). Since for a given ζ
η̂,0

the intelligence

ǫη,gη is a monotonically increasing function of gη, this modelling assumption means that

the probability that ζ
η,0

= z is a monotonically increasing function of gη(ζ ,t<0
• C(z •

ζ
η̂,0

)). An alternative weaker model is to only stipulate that the probability of having

a particular pair (ζ
η,0
, ζ

η̂,0
) with ǫη,gη equal to z is a monotonically increasing function

of z. (This probability is an integral over a joint distribution, rather than a conditional

14As an alternative to such fully rational games, one can define a bounded rational game as one

in which the intelligences equal some vector ~ǫ whose components need not all equal 1. Many of the

theorems of conventional game theory can be directly carried over to such bounded-rational games [284]

by redefining the utility functions of the players. In other words, much of conventional full rationality

game theory applies even to games with bounded rationality, under the appropriate transformation. This

result has strong implications for the legitimacy of the common criticism of modern economic theory that

its assumption of full rationality does not hold in the real world, implications that extend significantly

beyond the Sonnenschein-Mantel-Debreu Theorem equilibrium aggregate demand theorem [177].
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distribution, as in the original model.) In either case, the “better” the microlearner, the

more tightly peaked the associated probability distribution over intelligence values is.

Any two utility functions that are related by a monotonically increasing transforma-

tion reflect the same preference ordering over the possible arguments of those functions.

Since it is only that ordering that we are ever concerned with, we would like to remove

this degeneracy by “normalizing” all utility functions. In other words, we would like to

reduce any equivalence set of utility functions that are monotonic transformations of one

another to a canonical member of that set. To see what this means in the COIN context,

fix ζ
η̂,

. Viewed as a function from Zη, → R, ǫη,U (ζ
η̂,
, .) is itself a utility function, one

that is a monotonically increasing function of U . (It says how well η would have per-

formed for all vectors ζ
η,

.) Accordingly, the integral transform taking U to ǫη,U (ζ
η̂,
, .) is

a (contractive, non-invertible) mapping from utilities to utilities. Applied to any member

of a utility in U ’s equivalence set, this mapping produces the same image utility, one

that is also in that equivalence set. It can be proven that any mapping from utilities

to utilities that has this and certain other simple properties must be such an integral

transform. In this, intelligence is the unique way of “normalizing” Von Neumann utility

functions.

For those conversant with game theory, it is worth noting some of the interesting

aspects that ensue from this normalizing nature of intelligences. At any point ζ that is a

Nash equilibrium in the set of personal utilities {gη}, all intelligences ǫη,gη(ζ) must equal

1. Since that is the maximal value any intelligence can take on, a Nash equilibrium in

the {gη} is a Pareto optimal point in the associated intelligences (for the simple reason

that no deviation from such a ζ can raise any of the intelligences). Conversely, if there

exists at least one Nash equilibrium in the {gη}, then there is not a Pareto optimal point

in the {ǫη,gη(ζ)} that is not a Nash equilibrium.

Now restrict attention to systems with only a single instant of time, i.e., single-stage

games. Also have each of the (real-valued) components of each ζ
η

be a mixing component

of an associated one of η’s potential strategies for some underlying finite game. Then

have gη(ζ) be the associated expected payoff to η. (So the payoff to η of the underlying

pure strategies is given by the values of gη(ζ) when ζ is a unit vector in the space Zη of

η’s possible states.) Then we know that there must exist at least one Nash equilibrium in

the {gη}. Accordingly, in this situation the set of Nash equilibria in the {gη} is identical

to the set of points that are Pareto optimal in the associated intelligences. (See Eq. 5

in the discussion of factored systems below.)

4.2.3 Learnability

Intelligence can be a difficult quantity to work with, unfortunately. As an example, fix

η, and consider any (small region centered about some) ζ along with some utility U ,

where ζ is not a local maximum of U . Then by increasing the values U takes on in that

small region we will increase the intelligence ǫη,U (ζ). However in doing this we will also
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necessarily decrease the intelligence at points outside that region. So intelligence has

a non-local character, a character that prevents us from directly modifying it to ensure

that it is simultaneously high for any and all ζ.

A second, more general problem is that without specifying the details of a mi-

crolearner, it can be extremely difficult to predict which of two private utilities the

microlearner will be better able to learn. Indeed, even with the details, making that

prediction can be nearly impossible. So it can be extremely difficult to determine what

private utility intelligence values will accrue to various choices of those private utilities.

In other words, macrolearning that involves modifying the private utilities to try to

directly increase intelligence with respect to those utilities can be quite difficult.

Fortunately, we can circumvent many of these difficulties by using a proxy for (private

utility) intelligence. Although we expect its value usually to be correlated with that of

intelligence in practice, this proxy does not share intelligence’s non-local nature. In ad-

dition, the proxy does not depend heavily on the details of the microlearning algorithms

used, i.e., it is fairly independent of those aspects of C. Intuitively, this proxy can be

viewed as a “salient characteristic” for intelligence.

We motivate this proxy by considering having gη = G for all η. If we try to actually

use these {gη} as the microlearners’ private utilities, particularly if the COIN is large, we

will invariably encounter a very bad signal-to-noise problem. For this choice of utilities,

the effects of the actions taken by node η on its utility may be “swamped” and effectively

invisible, since there are so many other processes going into determining G’s value. This

makes it hard for η to discern the echo of its actions and learn how to improve its private

utility. It also means that η will find it difficult to decide how best to act once learning

has completed, since so much of what’s important to η is decided by processes outside

of ηs immediate purview. In such a scenario, there is nothing that η’s microlearner can

do to reliably achieve high intelligence.15

In addition to this “observation-driven” signal/noise problem, there is an “action-

driven” one. For reasons discussed in Observation 7.1 above, we can define a distribution

dµ(ζ ′
η̂,0

) reflecting what η does/doesn’t know concerning the actual state of the outside

world η̂ at time 0. If the node η chooses its actions in a Bayes-optimal manner, then

ζ
η,0;act

= argmaxz[
∫

dµ(ζ ′
η̂,0

)U(ζ
,t<0

• C(z • ζ
η,0;act

• ζ ′
η̂,0

))], where z runs over the

allowed action components of η at time 0. Since this will differ from argmaxzU(ζ
,t<0

•
C(z • ζ

η,0;act
• ζ

η̂,0
))] in general, this Bayes-optimal node’s intelligence will be less than

1 for the particular ζ at hand, in general. Moreover, the less U ’s ultimate value (after

the application of C, etc.) depends on ζ
η̂,0

, the smaller the difference in these two

argmax-based z’s, and therefore the higher the intelligence of η, in general.16

15This “signal-to-noise” problem is actually endemic to reinforcement learning as a whole, even some-

times occurring when one has just a single reinforcement learner, and only a few random variables jointly

determining the value of the rewards [287].
16In practice, due to computational limitations if nothing else, the node won’t be exactly Bayes-

optimal. But incorporating such a suboptimality doesn’t affect the thrust of this argument that we want
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We would like a measure of U that captures these efects, but without depending

on function maximization or any other detailed aspects of how the node determines its

actions. One natural way to do this is via the (utility) learnability: Given a measure

dµ(ζ ′
,0
) restricted to a manifold C, the (t = 0) utility learnability of a utility U for a

node η at ζ is:

Λη,U (ζ) ≡
∫

dµ(ζ ′
,0
) |U(ζ

,t<0
• C(ζ

η̂,0
• ζ ′

η,0
)) − U(ζ)|

∫

dµ(ζ ′
,0
) |U(ζ

,t<0
• C(ζ ′

η̂,0
• ζ

η,0
)) − U(ζ)| . (2)

Intelligence learnability is defined the same way, with U(.) replaced by ǫη,U (.). Note

that any affine transformation of U has no effect on either the utility learnability Λη,U (ζ)

or the associated intelligence learnability, Λη,ǫη,U
(ζ).

The integrand in the numerator of the definition of learnability reflects how much

of the change in U that results from replacing ζ
,0

with ζ ′
,0

is due to the change in η’s

t = 0 state (the “signal”). The denominator reflects how much of the change in U that

results from replacing ζ with ζ ′ is due to the change in the t = 0 states of nodes other

than η (the “noise”). So learnability quantifies how easy it is for the microlearner to

discern the “echo” of its behavior in the utility function U . Our presumption is that the

microlearning algorithm will achieve higher intelligence if provided with a more learnable

private utility.

Intuitively, the (utility) differential learnability of U at a point ζ is the learnability

with dµ restricted to an infinitesimal ball about ζ. We formalize it as the following ratio

of magnitudes of a pair of gradients, one involving η, and one involving η̂:

λη,U (ζ) ≡
||∂ζ

η,0
U(ζ

,t<0
• C(ζ

,0
))||

||∂ζ
η̂,0
U(ζ

,t<0
• C(ζ

,0
))|| . (3)

Note that a particular value of differential utility learnability, by itself, has no sig-

nificance. Simply rescaling the units of ζ
η,0

will change that value. Rather what is

important is the ratio of differential learnabilities, at the same ζ, for different U ’s. Such

a ratio quantifies the relative preferability of those U ’s.

One nice feature of differential learnability is that unlike learnability, it does not

depend on choice of some measure dµ(.). This independence can lead to trouble if one

is not careful however, and in particular if one uses learnability for purposes other than

choosing between utility functions. For example, in some situations, the COIN designer

will have the option of enlarging the set of variables from the rest of the COIN that are

“input” to some node η at t = 0 and that therefore can be used by η to decide what

action to take. Intuitively, doing so will not affect the RL “signal” for η’s microlearner

(the magnitude of the potential “echo” of η’s actions are not modified by changing some

aspect of how it chooses among those actions). However it will reduce the “noise”, in

that η’s microlearner now knows more about the state of the rest of the system.

U ’s ultimate value to not depend on ζ
η̂,0

.
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In the full integral version of learnability, this effect can be captured by having the

support of dµ(.) restricted to reflect the fact that the extra inputs to η at t = 0 are

correlated with the t = 0 state of the external system. In differential learnability however

this is not possible, precisely because no measure dµ(.) occurs in its definition. So we

must capture the reduction in noise in some other fashion.17

Alternatively, if the extra variables are being input to η for all t ≥ 0, not just at

t = 0, and if η “pays attention” to those variables for all t ≥ 0, then by incorporating

those changes into our system C itself has changed, ∀ t ≥ 0. Hypothesize that at

those t the node η is capable of modifying its actions to “compensate” for what (due

to our augmentation of η’s inputs) η now knows to be going on outside of it. Under

this hypothesis, those changes in those external events will have less of an effect on

the ultimate value of gη than they would if we had not made our modification. In this

situation, the noise term has been reduced, so that the differential learnabiliity properly

captures the effect of η’s having more inputs.

Another potential danger to bear in mind concerning differential learnability is that

it is usually best to consider its average over a region, in particular over points with

less than maximal intelligence. It is really designed for such points; in fact, at the

intelligence-maximizing ζ, λη,U (ζ) = 0.

Whether in its differential form or not, and whether referring to utilities or intel-

ligence, learnability is not meant to capture all factors that will affect how high an

intelligence value a particular microlearner will achieve. Such an all-inclusive definition

is not possible, if for no other reason the fact that there are many such factors that

are idiosyncratic to the particular microlearner used. Beyond this though, certain more

general factors that affect most popular learning algorithms, like the curse of dimension-

ality, are also not (explicitly) designed into learnability. Learnability is not meant to

provide a full characterization of performance — that is what intelligence is designed to

do. Rather (relative) learnability is ony meant to provide a guide for how to improve

performance.

A system that has infinite (differential, intelligence) learnability for all its personal

utilities is said to be “perfectly” (differential, intelligence) learnable. It is straight-

forward to prove that a system is perfectly learnable ∀ζ ∈ C iff ∀η,∀ζ ∈ C, gη(ζ) can

17One way to capture this noise reduction is to replace the noise term ∂ζ
η̂,0

U(ζ
,t<0

•C(ζ
,0

)) occurring

in the definition of differential learnability with something more nuanced. For example, one may wish

to replace it with the maximum of the dot product of u ≡ ∂ζ
,

U(ζ) with any Z vector v, subject not only

to the restrictions that ||v|| = 1 and vη,0 = 0, but also subject to the restriction that v must lie in the

tangent plane of C at ζ. The first two restrictions, in concert with the extra restriction that v,t<0 = 0,

give the original definition of the noise term. If they are instead joined with the third, new restriction,

they will enforce any applicable coupling between the state of η at time 0 and the rest of the system at

time 0. Solving with Lagrange multipliers, we get v ∝ u − λ2α − λ3β, where α is the normal to C at ζ,

β
η′,t′

≡ δη′,η δt′,t, and λ2 =
α·u−(β·u)(α·β)

1−(α·β)2
while λ3 =

β·u−(α·u)(α·β)

1−(α·β)2
. As a practical matter though, it is

often simplest to assume that the ζ
η̂,0

can vary arbitrarily, independent of ζ
η,0

, so that the noise term

takes the form in Eq. 3.
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be written as ψη(ζη,0
) for some function ψη(.). (See the discussion below on the general

condition for a system’s being perfectly factored.)

4.3 A descriptive framework for COINs

With these definitions in hand, we can now present (a portion of) one descriptive frame-

work for COINs. In this subsection, after discussing salient characteristics in general,

we present some theorems concerning the relationship between personal utilities and the

salient characteristic we choose to concentrate on. We then discus how to use these

theorems to induce that salient characteristic in a COIN.

4.3.1 Candidate salient characteristics of a COIN

The starting point with a descriptive framework is the identification of “salient charac-

teristics of a COIN which one strongly expects to be associated with its having large

world utility”. In this chapter we will focus on salient characteristics that concern the re-

lationship between personal and world utilities. These characteristics are formalizations

of the intuition that we want COINs in which the competent greedy pursuit of their pri-

vate utilities by the microlearners results in large world utility, without any bottlenecks,

TOC, “frustration” (in the spin glass sense) or the like.

One natural candidate for such a characteristic, related to Pareto optimality [100,

101], is weak triviality. It is defined by considering any two worldlines ζ and ζ ′

both of which are consistent with the system’s dynamics (i.e., both of which lie on C),

where for every node η, gη(ζ) ≥ gη(ζ
′).18 If for any such pair of worldlines where one

“Pareto dominates” the other it is necessarily true that G(ζ) ≥ G(ζ ′), we say that the

system is weakly trivial. We might expect that systems that are weakly trivial for the

microlearners’ private utilities are configured correctly for inducing large world utility.

After all, for such systems, if the microlearners collectively change ζ in a way that ends

up helping all of them, then necessarily the world utility also rises. More formally, for

a weakly trivial system, the maxima of G are Pareto-optimal points for the personal

utilities (although the reverse need not be true).

As it turns out though, weakly trivial systems can readily evolve to a world utility

minimum, one that often involves TOC. To see this, consider automobile traffic in the

absence of any traffic control system. Let each node be a different driver, and say their

private utilities are how quickly they each individually get to their destination. Identify

world utility as the sum of private utilities. Then by simple additivity, for all ζ and ζ ′,

whether they lie on C or not, if gη(ζ) ≥ gη(ζ
′) ∀η it follows that G(ζ) ≥ G(ζ ′); the

system is weakly trivial. However as any driver on a rush-hour freeway with no carpool

lanes or metering lights can attest, every driver’s pursuing their own goal definitely does

18An obvious variant is to restrict ζ′

,t<0
= ζ

,t<0
, and require only that both of the “partial vectors”

ζ′

,t≥0
and ζ

,t≥0
obey the relevant dynamical laws, and therefore lie in C,t≥0.
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not result in acceptable throughput for the system as a whole; modifications to private

utility functions (like fines for violating carpool lanes or metering lights) would result

in far better global behavior. A system’s being weakly trivial provides no assurances

regarding world utility.

This does not mean weak triviality is never of use. For example, say that for a set

of weakly trivial personal utilities each agent can guarantee that regardless of what the

other agents do, its utility is above a certain level. Assume further that, being risk-averse,

each agent chooses an action with such a guarantee. Say it is also true that the agents

are provided with a relatively large set of candidate guaranteed values of their utilities.

Under these circumstances, the system’s being weakly trivial provides some assurances

that world utility is not too low. Moreover, if the overhead in enforcing such a future-

guaranteeing scheme is small, and having a sizable set of guaranteed candidate actions

provided to each of the agents does not require an excessively centralized infrastructure,

we can actually employ this kind of scheme in practice. Indeed, in the extreme case,

one can imagine that every agent is guaranteed exactly what its utility would be for

every one of its candidate actions. (See the discussion on General Equilibrium in the

Background Section above.) In this situation, Nash equilibria and Pareto optimal points

are identical, which due to weak triviality means that the point maximizing G is a Nash

equilibrium. However in any less extreme situation, the system may not achieve a value

of world utility that is close to optimal. This is because even for weakly trivial systems

a Pareto optimal point may have poor world utility, in general.

Situations where one has guarantees of lower bounds on one’s utility are not too com-

mon, but they do arise. One important example is a round of trades in a computational

market (see the Background Section above). In that scenario, there is an agent-indexed

set of functions {fη(z ∈ Z(0))} and the personal utility of each agent η ∈ {1, 2, ...} is

given by fη(ζη,t∗
), where t∗ is the end of the round of trades. There is also a function

F (z ∈ Z(0)) ≡ F (f1(z), f2(z), ...) that is a monotonically increasing function of its argu-

ments, and world utility G is given by F (ζ
,t∗

) = F (f1(ζ ,t∗
), f2(ζ ,t∗

), ...). So the system

is weakly trivial. In turn, each fη(z) is determined solely by the “allotment of goods”

possessed by η, as specified in the appropriate components of zη. To be able to remove

uncertainty about its future value of fη in this kind of system, in determining its trad-

ing actions each agent η must employ some scheme like inter-agent contracts. This is

because without such a scheme, no agent can be assured that if it agrees to a proposed

trade with another agent that the full proposed transaction of that trade actually occurs.

Given such a scheme, if in each trade round t each agent η myopically only considers

those trades that are assured of increasing the corresponding value of fη, then we are

guaranteed that the value of the world utility is not less than the initial value F (ζ
,0
).

The problem with using weak triviality as a general salient characteristic is precisely

the fact that the individual microlearners are greedy. In a COIN, there is no system-

wide incentive to replace ζ with a different worldline that would improve everybody’s

private utility, as in the definition of weak triviality. Rather the incentives apply to each
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microlearner individually and motivate the learners to behave in a way that may well

hurt some of them. So weak triviality is, upon examination, a poor choice for the salient

characteristic of a COIN.

One alternative to weak triviality follows from consideration of the stricture that we

must ‘expect’ a salient characteristic to be coupled to large world utility in a running

real-world COIN. What can we reasonably expect about a running real-world COIN? We

cannot assume that all the private utilities will have large values — witness the traffic

example. But we can assume that if the microlearners are well-designed, each of them

will be doing close to as well it can given the behavior of the other nodes. In other words,

within broad limits we can assume that the system is more likely to be in ζ than ζ ′ if for

all η, ǫη,gη(ζ) ≥ ǫη,gη(ζ ′). We define a system to be coordinated iff for any such ζ and

ζ ′ lying on C, G(ζ) ≥ G(ζ ′). (Again, an obvious variant is to restrict ζ ′
,t<0

= ζ
,t<0

, and

require only that both ζ
,t≥0

and ζ ′
,t≥0

lie in C,t≥0.) Traffic systems are not coordinated,

in general. This is evident from the simple fact that if all drivers acted as though there

were metering lights when in fact there weren’t any, they would each be behaving with

lower intelligence given the actions of the other drivers (each driver would benefit greatly

by changing its behavior by no longer pretending there were metering lights, etc.). But

nonetheless, world utility would be higher.

4.3.2 The Salient Characteristic of Factoredness

Like weak triviality, coordination is intimately related to the economics concept of Pareto

optimality. Unfortunately, there is not room in this chapter to present the mathematics

associated with coordination and its variants. We will instead discuss a third candidate

salient characteristic of COINs, one which like coordination (and unlike weak triviality)

we can reasonably expect to be associated with large world utility. This alternative fixes

weak triviality not by replacing the personal utilities {gη} with the intelligences {ǫη,gη}
as coordination does, but rather by only considering worldlines whose difference at time

0 involves a single node. This results in this alternative’s being related to Nash equilibria

rather than Pareto optimality.

Say that our COIN’s worldline is ζ. Let ζ ′ be any other worldline where ζ
,t<0

= ζ ′
,t<0

,

and where ζ ′
,t≥0

∈ C,t≥0. Now restrict attention to those ζ ′ where at t = 0 ζ and ζ ′ differ

only for node η. If for all such ζ ′

sgn[gη(ζ) − gη(ζ ,t<0
• C(ζ ′

,0
))] = sgn[G(ζ) −G(ζ

,t<0
• C(ζ ′

,0
))] , (4)

and if this is true for all nodes η, then we say that the COIN is factored for all those

utilities {gη} (at ζ, with respect to time 0 and the utility G).

For a factored system, for any node η, given the rest of the system, if the node’s state

at t = 0 changes in a way that improves that node’s utility over the rest of time, then

it necessarily also improves world utility. Colloquially, for a system that is factored for

a particular microlearner’s private utility, if that learner does something that improves
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that personal utility, then everything else being equal, it has also done something that

improves world utility. Of two potential microlearners for controlling node η (i.e., two

potential ζ
η
) whose behavior until t = 0 is identical but which differ there, the mi-

crolearner that is smarter with respect to g will always result in a larger g, by definition

of intelligence. Accordingly, for a factored system, the smarter microlearner is also the

one that results in better G. So as long as we have deployed a sufficiently smart mi-

crolearner on η, we have assured a good G (given the rest of the system). Formally, this

is expressed in the fact [283] that for a factored system, for all nodes η,

ǫη,gη(ζ) = ǫη,G(ζ) . (5)

One can also prove that Nash equilibria of a factored system are local maxima of world

utility. Note that in keeping with our behaviorist perspective, nothing in the definition

of factored requires the existence of private utilities. Indeed, it may well be that a system

having private utilities {Uη} is factored, but for personal utilities {gη} that differ from

the {Uη}.
A system’s being factored does not mean that a change to ζ

η,0
that improves gη(ζ)

cannot also hurt gη′(ζ) for some η′ 6= η. Intuitively, for a factored system, the side

effects on the rest of the system of η’s increasing its own utility do not end up decreasing

world utility — but can have arbitrarily adverse effects on other private utilities. (In

the language of economics, no stipulation is made that η’s “costs are endogenized.”) For

factored systems, the separate microlearners successfully pursuing their separate goals

do not frustrate each other as far as world utility is concerned.

In addition, if gη,t′ is factored with respect to G, then a change to ζ
η,t′

that improves

gη,t′(ζ ,t<t′
, C(ζ

,t′
)) improvesG(ζ

,t<t′
, C(ζ

,t′
)). But it may hurt some gη,t′′ 6=t′(ζ ,t<t′

, C(ζ
,t′

))

and/or ǫ(η,t′′),gη,t′′
(ζ

,t<t′
, C(ζ

,t′
)). (This is even true for a discounted sum of rewards per-

sonal utility, so long as t′′ > t′.) An example of this would be an economic system cast as

a single individual, η, together with an environment node, whereG is a steeply discounted

sum of rewards η receives over his/her lifetime, t′′ > t′, and ∀t, gη,t(ζ) = G(CL,t<t′(ζ)).

For such a situation, it may be appropriate for η to live extravagantly at the time t′, and

“pay for it” later.

As an instructive example of the ramifications of Eq. 5, say node η is a conventional

computer. We want ǫη,G(ζ) to be as high as possible, i.e., given the state of the rest of

the system at time 0, we want computer η’s state then to be the best possible, as far as

the resultant value of G is concerned. Now a computer’s “state” consists of the values

of all its bits, including its code segment, i.e., including the program it is running. So

for a factored personal utility gη, if the program running on the computer is better than

most others as far as gη is concerned, then it is also better than most other programs as

far as G is concerned.

Our task as COIN designers engaged in COIN initialization or macrolearning is to find

such a program and such an associated gη. One way to approach this task is to restrict
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attention to programs that consist of RL algorithms with private utility specified in the

bits {bi} of η. This reduces the task to one of finding a private utility {bi} (and thereby

fully specifying ζ
η,0

) such that our RL algorithm working with that private utility has

high ǫη,gη , i.e., such that that algorithm outperforms most other programs as far as the

personal utility gη is concerned.

Perhaps the simplest way to address this reduced task is to exploit the fact that for a

good enough RL algorithm ǫη,{bi} will be large, and therefore adopt such an RL algorithm

and fix the private utility to equal gη. In this way we further reduce the original task,

which was to search over all personal utilities gη and all programs R to find a pair such

that both gη is factored with respect to G and there are relatively few programs that

outperform R, as far as gη. The task is now instead to search over all private utilities {bi}
such that both {bi} is factored with respect to G and such that there are few programs

(of any sort, RL-based or not) that outperform our RL algorithm working on {bi}, as far

as that self-same private utility is concerned. The crucial assumption being leveraged

in this approach is that our RL algorithm is “good enough”, and the reason we want

learnable {bi} is to help effect this assumption.

In general though, we can’t have both perfect learnability and perfect factoredness.

As an example, say that ∀t,Zη,t = Z η̂,t = R, and that the dynamics is the identity

operator: ∀t, C(ζ
,0
),t = ζ

,0
. Then if G(ζ

,0
) = ζ

η,0
· ζ

η̂,0
and the system is perfectly

learnable, it is not perfectly factored. This is because perfect learnability requires that

∀ζ ∈ C, gη(ζ) = ψη(ζη,0
) for some function ψη(.). However any change to ζ

η,0
that

improves such a gη will either help or hurt G(ζ), depending on the sign of ζ
η̂,0

. For

the “wrong” sign of ζ
η̂,0

, this means the system is actually “anti-factored”. Due to such

incompatibility between perfect factoredness and perfect learnability, we must usually be

content with having high degree of factoredness and high learnability. In such situations,

the emphasis of the macrolearning process should be more and more on having high

degree of factoredness as we get closer and closer to a Nash equilibrium. This way the

system won’t relax to an incorrect local maximum.

In practice of course, a COIN will often not be perfectly factored. Nor in practice

are we always interested only in whether the system is factored at one particular point

(rather than across a region say). These issues are discussed in [283], where in particular

a formal definition of of the degree of factoredness of a system is presented.

If a system is factored for utilities {gη}, then it is also factored for any utilities {g′η}
where for each η g′η is a monotonically increasing function of gη. More generally, the

following result characterizes the set of all factored personal utilities:

Theorem 1: A system is factored at all ζ ∈ C iff for all those ζ, ∀η, we can write

gη(ζ) = Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ)) (6)

for some function Φη(., ., .) such that ∂GΦη(ζ ,t<0
, ζ

η̂,0
, G) > 0 for all ζ ∈ C and associated

G values. (The form of the {gη} off of C is arbitrary.)
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Proof: For fixed ζ
η,0

and ζ
,t<0

, any change to ζ
η,0

which keeps ζ
,t≥0

on C and which at

the same time increasesG(ζ) = G(ζ
,t<0

•C(ζ
η̂,0

•ζ
η,0

)) must increase Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ)),

due to the restriction on ∂GΦη(ζ ,t<0
, ζ

η̂,0
, G). This establishes the backwards direction

of the proof.

For the forward direction, write gη(ζ) = gη(ζ,G(ζ)) = gη(ζ ,t<0
•C(ζ

η̂,0
•ζ

η,0
), G(ζ)) ∀ ζ ∈

C. Define this formulation of gη as Φη(ζ ,t<0
, ζ

,0
, G(ζ)), which we can re-express as

Φη(ζ ,t<0
, ζ

η̂,0
• ζ

η,0
, G(ζ)). Now since the system is factored, ∀ζ ∈ C,∀ζ ′

,t≥0
∈ C,t≥0,

Φη(ζ ,t<0
, ζ

η̂,0
• ζ

η,0
, G(ζ

,t<0
• C(ζ

η̂,0
• ζ

η,0
))) = Φη(ζ ,t<0

, ζ
η̂,0

• ζ ′
η,0
, G(ζ

,t<0
• C(ζ

η̂,0
• ζ ′

η,0
)))

⇐⇒

G(ζ
,t<0

• C(ζ
η̂,0

• ζ
η,0

))) = G(ζ
,t<0

• C(ζ
η̂,0

• ζ ′
η,0

)) .

So consider any situation where the system is factored, and the values of G, ζ
,t<0

, and

ζ
η̂,0

are specified. Then we can find any ζ
η,0

consistent with those values (i.e., such that

our provided value of G equals G(ζ
,t<0

• C(ζ
η̂,0

• ζ
η,0

))), evaluate the resulting value

of Φη(ζ ,t<0
, ζ

η̂,0
• ζ

η,0
, G), and know that we would have gotten the same value if we

had found a different consistent ζ
η,0

. This is true for all ζ ∈ C. Therefore the mapping

(ζ
,t<0

, ζ
η̂,0
, G) → Φη is single-valued, and we can write Φη(ζ ,t<0

, ζ
η̂,0
, G(ζ)). QED.

By Thm. 1, we can ensure that the system is factored without any concern for

C, by having each gη(ζ) = Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ)) ∀ζ ∈ Z. Alternatively, by only re-

quiring that ∀ζ ∈ C does gη(ζ) = Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ)) (i.e., does gη(ζ ,t<0

• C(ζ
,0
)) =

Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ

,t<0
• C(ζ

,0
)))), we can access a broader class of factored utilities, a

class that does depend on C. Loosely speaking, for those utilities, we only need the

projection of ∂ζ
,t≥0

G(ζ) onto Cη,0 to be parallel to the projection of ∂ζ
,t≥0

gη(ζ) onto

Cη,0. Given G and C, there are infinitely many ∂ζ
,t≥0

gη(ζ) having this projection (the

set of such ∂ζ
,t≥0

gη(ζ) form a linear subspace of Z). The partial differential equations

expressing the precise relationship are discussed in [283].

As an example of the foregoing, consider a ‘team game’ (also known as an ‘exact

potential game’ [83, 193]) in which gη = G for all η. Such COINs are factored, trivially,

regardless of C; if gη rises, then G must as well, by definition. (Alternatively, to confirm

that team games are factored just take Φη(ζ ,t<0
, ζ

η̂,0
, G) = G ∀η in Thm. 1.) On the

other hand, as discussed below, COINs with ‘wonderful life’ personal utilities are also

factored, but the definition of such utilities depends on C.

4.3.3 Wonderful life utility

Due to their often having poor learnability and requiring centralized communication

(among other infelicities), in practice team game utilities often are poor choices for
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personal utilities. Accordingly, it is often preferable to use some other set of factored

utilities. To present an important example, first define the (t = 0) effect set of node η

at ζ, Ceff
η (ζ), as the set of all components ζ

η′,t
for which ∂ζ

η,0
(C(ζ

,0
))η′,t 6= ~0. Define the

effect set Ceff
η with no specification of ζ as ∪ζ∈CC

eff
η (ζ). (We take this latter definition

to be the default meaning of “effect set”.) We will also find it useful to define Ĉeff
η as

the set of components of the space Z that are not in Ceff
η .

Intuitively, η’s effect set is the set of all components ζ
η′,t

which would be affected

by a change in the state of node η at time 0. (They may or may not be affected by

changes in the t = 0 states of the other nodes.) Note that the effect sets of different

nodes may overlap. The extension of the definition of effect sets for times other than 0

is immediate. So is the modification to have effect sets only consist of those components

ζ
η,t;i

that vary with with the state of node η at time 0, rather than consist of the full

vectors ζ
η,t

possessing such a component. These modifications will be skipped here, to

minimize the number of variables we must keep track of.

Next for any set σ of components (η′, t), define CLσ(ζ) as the “virtual” vector formed

by clamping the σ-components of ζ to an arbitrary fixed value. (In this paper, we

take that fixed value to be ~0 for all components listed in σ.) Consider in particular a

Wonderful Life set σ. The value of the wonderful life utility (WLU for short) for σ

at ζ is defined as:

WLUσ(ζ) ≡ G(ζ) −G(CLσ(ζ)) . (7)

In particular, the WLU for the effect set of node η is G(ζ) − G(CL
Ceff

η
(ζ)), which for

ζ ∈ C can be written as G(ζ
,t<0

• C(ζ
,0
)) −G(CL

Ceff
η

(ζ
,t<0

• C(ζ
,0
))).

We can view η’s effect set WLU as analogous to the change in world utility that would

have arisen if node η “had never existed”. (Hence the name of this utility - cf. the Frank

Capra movie.) Note however, that CL is a purely “fictional”, counter-factual operation,

in the sense that it produces a new ζ without taking into account the system’s dynamics.

Indeed, no assumption is even being made that CLσ(ζ) is consistent with the dynamics

of the system. The sequence of states the node η is clamped to in the definition of the

WLU need not be consistent with the dynamical laws embodied in C.

This dynamics-independence is a crucial strength of the WLU. It means that to

evaluate the WLU we do not try to infer how the system would have evolved if node η’s

state were set to 0 at time 0 and the system evolved from there. So long as we know ζ

extending over all time, and so long as we know G, we know the value of WLU. This is

true even if we know nothing of the dynamics of the system.

An important example is effect set wonderful life utilities when the set of all nodes is

partitioned into ‘subworlds’ in such a way that all nodes in the same subworld ω share

substantially the same effect set. In such a situation, all nodes in the same subworld ω

will have essentially the same personal utilities, exactly as they would if they used team

game utilities with a “world” given by ω. When all such nodes have large intelligence

values, this sharing of the personal utility will mean that all nodes in the same subworld
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are acting in a coordinated fashion, loosely speaking.

The importance of the WLU arises from the following results:

Theorem 2: i) A system is factored at all ζ ∈ C iff for all those ζ, ∀η, we can write

gη(ζ) = Φ̂η(ζ Ĉeff
η
, G(ζ)) (8)

for some function Φ̂η(., .) such that ∂GΦ̂η(ζ Ĉeff
η
, G) > 0 for all ζ ∈ C and associated G

values. (The form of the {gη} off of C is arbitrary.)

ii) In particular, a COIN is factored for personal utilities set equal to the associated

effect set wonderful life utilities.

Proof: To prove (i), first write ζ
Ĉeff

η
= ζ

,t<0
•ζ

η̂,0
•ζ

( Ĉeff
η ),t>0

. For all ζ ∈ C, ζ
( Ĉeff

η ),t>0

is independent of ζ
η,0

, and so by definition of C(.) it is a single-valued function of ζ
η̂,0

for such ζ. Therefore ζ
Ĉeff

η
= ζ

,t<0
• ζ

η̂,0
• f(ζ

η̂,0
) for some function f(.). Accordingly,

by Thm. 1, for {gη} of the form stipulated in (i), the system is factored. Going the other

way, if the system is factored, then by Thm. 1 it can be written as Φη(ζ ,t<0
, ζ

η̂,0
, G(ζ)).

Since both ζ
,t<0

and ζ
η̂,0

6∈ Ceff
η , we can rewrite this as Φη([̂C

eff
η ],t<0, [̂C

eff
η ] η̂,0, G(ζ)).

QED.

Part (ii) of the theorem follows immediately from part (i). For pedagogical value though,

here we instead derive it directly. First, since CL
Ceff

η
(ζ) is independent of ζ

η′,t
for

all (η′, t) ∈ Ceff
η , so is the Z vector CL

Ceff
η

(ζ
,t<0

• C(ζ
,0
)), i.e., ∂ζ

η,0
[CL

Ceff
η

(ζ
,t<0

•
C(ζ

,0
))]η′,t = ~0 ∀(η′, t) ∈ Ceff

η . This means that viewed as a ζ
,t<0

-parameterized

function from C,0 to Z, CL
Ceff

η
(ζ

,t<0
• C(.)) is a single-valued function of the ζ

,̂η,0

components. Therefore G(CL
Ceff

η
(ζ

,t<0
•C(ζ

,0
))) can only depend on ζ

,t<0
and the non-

η components of ζ
,0
. Accordingly, the WLU for Ceff

η is just G minus a term that is a

function of ζ
,t<0

and ζ
,̂η,0

. By choosing Φη(., ., .) in Thm. 1 to be that difference, we see

that η’s effect set WLU is of the form necessary for the system to be factored. QED.

As a generalization of (ii), the system is factored if each node η’s personal utility is (a

monotonically increasing function of) the WLU for a set ση that contains Ceff
η .

For conciseness, except where explicitly needed, for the remainder of this subsection

we will suppress the argument “ζ
,t<0

”, taking it to be implicit. The next result concerning

the practical importance of effect set WLU is the following:

Theorem 3: Let σ be a set containing Ceff
η . Then

λη,WLUσ(ζ)

λη,G(ζ)
=

||∂ζ
η̂,0
G(C(ζ

,0
))||

||∂ζ
η̂,0
G(C(ζ

,0
)) − ∂ζ

η̂,0
G(CLσ(C(ζ

,0
)))|| .
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Proof: Writing it out,

λη,WLUσ(ζ) =
||∂ζ

η,0
G(C(ζ

,0
)) − ∂ζ

η,0
G(CLσ(C(ζ

,0
)))||

||∂ζ
η̂,0
G(C(ζ

,0
)) − ∂ζ

η̂,0
G(CLσ(C(ζ

,0
)))|| .

The second term in the numerator equals 0, by definition of effect set. Dividing by the

similar expression for λη,G(ζ) then gives the result claimed. QED.

So if we expect that ratio of magnitudes of gradients to be large, effect set WLU has

much higher learnability than team game utility — while still being factored, like team

game utility. As an example, consider the case where the COIN is a very large system,

with η being only a relatively minor part of the system (e.g., a large human economy

with η being a “typical John Doe living in Peoria Illinois”). Often in such a system, for

the vast majority of nodes η′ 6= η, how G varies with ζ
η′,

will be essentially independent

of the value ζ
η,0

. (For example, how GDP of the US economy varies with the actions of

our John Doe from Peoria, Illinois will be independent of the state of some Jane Smith

living in Los Angeles, California.) In such circumstances, Thm. 3 tells us that the effect

set wonderful life utility for η will have a far larger learnability than does the world

utility.

For any fixed σ, if we change the clamping operation (i.e., change the choice of the

“arbitrary fixed value” we clamp each component to), then we change the mapping

ζ
,0

→ CLσ(C(ζ
,0
)), and therefore change the mapping (ζ

η,0
, ζ

η̂,0
) → G(CLσ(C(ζ

,0
))).

Accordingly, changing the clamping operation can affect the value of ∂ζ
η̂,0
G(CLσ(C(ζ

,0
))

evaluated at some point ζ
,0
. Therefore, by Thm. 3, changing the clamping operation

can affect λη,WLUσ(ζ). So properly speaking, for any choice of σ, if we are going to

use WLUσ, we should set the clamping operation so as to maximize learnability. For

simplicity though, in this paper we will ignore this phenomenon, and simply set the

clamping operation to the more or less “natural” choice of 0, as mentioned above.

Next consider the case where, for some node η, we can write G(ζ
,
) as G1(ζCeff

η
) +

G2(ζ ,t<0
• ζ

Ĉeff
η

). Say it is also true that η’s effect set is a small fraction of the set of

all components. In this case it often true that the values of G(.) are much larger than

those of G1(.), which means that partial derivatives of G(.) are much larger than those of

G1(.). In such situations the effect set WLU is far more learnable than the world utility,

due to the following results:

Theorem 4: If for some node η there is a set σ containing Ceff
η , a function G1(ζσ

∈ Zσ),

and a function G2(ζ σ̂
∈ Z σ̂), such that G(ζ) = G1(ζσ

) +G2(ζ σ̂
), then

λη,WLUσ(ζ)

λη,G(ζ)
=

||∂ζ
η̂,0
G(C(ζ

,0
))||

||∂ζ
η̂,0
G(CL σ̂(C(ζ

,0
)))|| .

Proof: For brevity, write G1 and G2 both as functions of full ζ ∈ Z, just such func-
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tions that are only allowed to depend on the components of ζ that lie in σ and those

components that do not lie in σ, respectively. Then the σ WLU for node η is just

gη(ζ) = G1(ζ)−G1(CLσ(ζ)). Since in that second term we are clamping all the compo-

nents of ζ that G1(.) cares about, for this personal utility ∂ζ
,0
gη(C(ζ

,0
)) = ∂ζ

,0
G1(C(ζ

,0
)).

So in particular ∂ζ
η̂,0
gη(C(ζ

,0
)) = ∂ζ

η̂,0
G1(C(ζ

,0
)) = ∂ζ

η̂,0
G(CL σ̂(C(ζ

,0
))). Now by def-

inition of effect set, ∂ζ
η,0
G2(ζ ,t<0

• C(ζ
,0
)) = ~0, since σ̂ does not contain Ceff

η . So

∂ζ
η,0
G(C(ζ

,0
)) = ∂ζ

η,0
G1(C(ζ

,0
)) = ∂ζ

η,0
gη(C(ζ

,0
)). QED.

The obvious extensions of Thm.’s 3 and 4 to effect sets with respect to times other than

0 can also be proven [283].

An important special case of Thm. 4 is the following:

Corollary 1: If for some node η we can write

i) G(ζ) = G1(ζσ
) +G2([ζ σ̂

]t≥0) +G3(ζ ,t<0
)

for some set σ containing Ceff
η , and if

ii) ||∂ζ
η̂,0
G(C(ζ

,0
))|| ≫ ||∂ζ

η̂,0
G1([C(ζ

,0
)]σ)||,

then

λη,WLUσ(ζ) ≫ λη,G(ζ).

In practice, to assure that condition (i) of this corollary is met might require that σ

be a proper superset of Ceff
η . Countervailingly, to assure that condition (ii) is met will

usually force us to keep σ as small as possible.

One can often remove elements from an effect set and still have the results of this

section hold. Most obviously, if (η′, t) ∈ Ceff
η but ∂ζ

η′,t
G(ζ) = 0, we can remove

(η′, t) from Ceff
η without invalidating our results. More generally, if there is a set

σ′ ∈ Ceff
η such that for each component (η, 0; i) the chain rule term

∑

(η′,t)∈σ′ [∂ζ
η′,t
G(ζ)] ·

[∂ζ
η,0;i

[C(ζ
,0
)]η′,t] = 0, then the effects on G of changes to ζ

η,0
that are “mediated” by

the members of σ′ cancel each other out. In this case we can usually remove the elements

of σ′ from Ceff
η with no ill effects.

4.3.4 Inducing our salient characteristic

Usually the mathematics of a descriptive framework — a formal investigation of the

salient characteristics — will not provide theorems of the sort, “If you modify the COIN

the following way at time t, the value of the world utility will increase.” Rather it

provides theorems that relate a COIN’s salient characteristics with the general properties

of the COIN’s entire history, and in particular with those properties embodied in C.

In particular, the salient characteristic that we are concerned with in this chapter is

that the system be highly intelligent for personal utilities for which it is factored, and

57



our mathematics concerns the relationship between factoredness, intelligence, personal

utilities, effect sets, and the like.

More formally, the desideratum associated with our salient characteristic is that we

want the COIN to be at a ζ for which there is some set of {gη} (not necessarily consisting

of private utilities) such that (a) ζ is factored for the {gη}, and (b) ǫη,gη(ζ) is large for

all η. Now there are several ways one might try to induce the COIN to be at such a

point. One approach is to have each algorithm controlling η explicitly try to “steer” the

worldline towards such a point. In this approach η needn’t even have a private utility

in the usual sense. (The overt “goal” of the algorithm controlling η involves finding

a ζ with a good associated extremum over the class of all possible gη, independent of

any private utilities.) Now initialization of the COIN, i.e., fixing of ζ
,0
, involves setting

the algorithm controlling η, in this case to the steering algorithm. Accordingly, in this

approach to initialization, we fix ζ
,0

to a point for which there is some special gη such

that both C(ζ
,0
) is factored for gη, and ǫη,gη(C(ζ

,0
)) is large. There is nothing peculiar

about this. What is odd though is that in this approach we do not know what that

“special” gη is when we do that initialization; it’s to be determined, by the unfolding of

the system.

In this chapter we concentrate on a different approach, which can involve either ini-

tialization or macrolearning. In this alternative we deploy the {gη} as the microlearners’

private utilities at some t < 0, in a process not captured in C, so as to induce a factored

COIN that is as intelligent as possible. (It is with that “deploying of the {gη}” that we

are trying to induce our salient characteristic in the COIN.) Since in this approach we

are using private utilities, we can replace intelligence with its surrogate, learnability. So

our task is to choose {gη} which are as learnable as possible while still being factored.

Solving for such utilities can be expressed as solving a set of coupled partial differential

equations. Those equations involve the tangent plane to the manifold C, a functional

trading off (the differential versions of) degree of factoredness and learnability, and any

communication constraints on the nodes we must respect. While there is not space in the

current chapter to present those equations, we can note that they are highly dependent on

the correlations among the components of ζ
η,t

. So in this approach, in COIN initialization

we use some preliminary guesses as to those correlations to set the initial {gη}. For

example, the effect set of a node constitutes all components ζ
η′,t>0

that have non-zero

correlation with ζ
η,0

. Furthermore, by Thm. 2 the system is factored for effect set WLU

personal utilities. And by Coroll. 1, for small effect sets, the effect set WLU has much

greater differential utility learnability than does G. Extending the reasoning behind this

result to all ζ (or at least all likely ζ), we see that for this scenario, the descriptive

framework advises us to use Wonderful Life private utilities based on (guesses for) the

associated effect sets rather than the team game private utilities, gη = G ∀η.
In macrolearning we must instead run-time estimate an approximate solution to our
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partial differential equations, based on statistical inference.19 As an example, we might

start with an initial guess as to η’s effect set, and set its private utility to the associated

WLU. But then as we watch the system run and observe the correlations among the

components of ζ, we might modify which components we think comprise η’s effect set,

and modify η’s personal utility accordingly.

4.4 Illustrative Simulations of our Descriptive Framework

As implied above, often one can perform reasonable COIN initialization and/or macrolearn-

ing without writing down the partial differential equations governing our salient char-

acteristic explicitly. Simply “hacking” one’s way to the goal of maximizing both degree

of factoredness and intelligibility, for example by estimating effect sets, often results in

dramatic improvement in performance. This is illustrated in the experiments recounted

in the next two subsections.

4.4.1 COIN Initialization

Even if we don’t exactly know the effect set of each node η, often we will be able to make

a reasonable guess about which components of ζ comprise the “preponderance” of η’s

effect set. We call such a set a guessed effect set. As an example, often the primary

effects of changes to η’s state will be on the future state of η, with only relatively minor

effects on the future states of other nodes. In such situations, we would expect to still

get good results if we approximated the effect set WLU of each node η with a WLU

based on the guessed effect set ζ
η,t≥0

. In other words, we would expect to be able to

replace WLU
Ceff

η
with WLUζ

η,t≥0
and still get good performance.

This phenomenon was borne out in the experiments recounted in [288] that used

COIN initialization for distributed control of network packet routing. In a conventional

approach to packet routing, each router runs what it believes (based on the information

available to it) to be a shortest path algorithm (SPA), i.e., each router sends its packets in

the way that it surmises will get those packets to their destinations most quickly. Unlike

with an approach based on our COIN framework, with SPA-based routing the routers

have no concern for the possible deleterious side-effects of their routing decisions on the

global performance (e.g., they have no concern for whether they induce bottlenecks).

We performed simulations in which we compared such a COIN-based routing system

to an SPA-based system. For the COIN-based system G was global throughput and

no macrolearning was used. The COIN initialization was to have each router’s private

19Recall that in the physical world, it is often useful to employ devices using algorithms that are

based on probabilistic concepts, even though the underlying system is ultimately deterministic. (Indeed,

theological Bayesians invoke a “degree of belief” interpretation of probability to demand such an approach

— see [282] for a discussion of the legitimacy of this viewpoint.) Similarly, although we take the

underlying system in a COIN to be deterministic, it is often useful to use microlearners or — as here —

macrolearners that are based on probabilistic concepts.
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utility be a WLU based on an associated guessed effect set generated a priori. In addition,

the COIN-based system was realistic in that each router’s reinforcement algorithm had

imperfect knowledge of the state of the system. On the other hand, the SPA was an

idealized “best-possible” system, in which each router knew exactly what the shortest

paths were at any given time. Despite the handicap that this disparity imposed on the

COIN-based system, it achieved significantly better global throughput in our experiments

than did the perfect-knowledge SPA-based system, and in particular, avoided the Braess’

Paradox that was built-in to some of those systems [265].

The experiments in [288] were primarily concerned with the application of packet-

routing. To concentrate more precisely on the issue of COIN initialization, we ran

subsequent experiments on variants of Arthur’s famous “El Farol bar problem” (see

Section 3). To facilitate the analysis we modified Arthur’s original problem to be more

general, and since we were not interested in directly comparing our results to those in

the literature, we used a more conventional (and arguably “dumber”) machine learning

algorithm than the ones investigated in [4, 47, 50, 64].

In this formulation of the bar problem [289], there are N agents, each of whom picks

one of seven nights to attend a bar the following week, a process that is then repeated.

In each week, each agent’s pick is determined by its predictions of the associated rewards

it would receive. These predictions in turn are based solely upon the rewards received

by the agent in preceding weeks. An agent’s “pick” at week t (i.e., its node’s state at

that week) is represented as a unary seven-dimensional vector. (See the discussion in the

definitions subsection of our representing discrete variables as Euclidean variables.) So

η’s zeroing its state in some week, as in the CLζ
η,t

operation, essentially means it elects

not to attend any night that week.

The world utility is

G(ζ) =
∑

t

R(ζ
,t
),

where: R(ζ
,t
) =

∑7
k=1 γk(xk(ζ ,t

)); xk(ζ ,t
) is the total attendance on night k at week

t; γk(y) ≡ αky exp (−y/c); and c and each of the {αk} are real-valued parameters.

Intuitively, the “world reward” R is the sum of the global “rewards” for each night in

each week. It reflects the effects in the bar as the attendance profile of agents changes.

When there are too few agents attending some night, the bar suffers from lack of activity

and therefore the global reward for that night is low. Conversely, when there are too

many agents the bar is overcrowded and the reward for that night is again low. Note

that γk(·) reaches its maximum when its argument equals c.

In these experiments we investigate two different ~α’s. One treats all nights equally;

~α = [1 1 1 1 1 1 1]. The other is only concerned with one night; ~α = [0 0 0 7 0 0 0]. In

our experiments, c = 6 and N is chosen to be 4 times larger than the number of agents

necessary to have c agents attend the bar on each of the seven nights, i.e., there are

4 · 6 · 7 = 168 agents (this ensures that there are no trivial solutions and that for the

world utility to be maximized, the agents have to “cooperate”).
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As explained below, our microlearning algorithms worked by providing a real-valued

“reward” signal to each agent at each week t. Each agent’s reward function is a surrogate

for an associated utility function for that agent. The difference between the two functions

is that the reward function only reflects the state of the system at one moment in time

(and therefore is potentially observable), whereas the utility function reflects the agent’s

ultimate goal, and therefore can depend on the full history of that agent across time.

We investigated three agent reward functions. One was based on effect set WLU. The

other two were “natural” rewards included for comparison purposes. With dη the night

selected by η, the three rewards are:

Uniform Division (UD): rη(ζ ,t
) ≡ γdη (xdη(ζ

,t
))/xdη (ζ

,t
)

Global (G): rη(ζ ,t
) ≡ R(ζ

,t
) =

7
∑

k=1

γk(xk(ζ ,t
))

Wonderful Life (WL): rη(ζ ,t
) ≡ R(ζ

,t
) −R(CLζ

η,t
(ζ

,t
))

= γdη (xdη(ζ
,t
)) − γdη (xdη (CLζ

η,t
(ζ

,t
)))

The conventional UD reward is a natural “naive” choice for the agents’ reward; the

total reward on each night gets uniformly divided among the agents attending that night.

If we take gη(ζ) =
∑

t rη(ζ ,t
) (i.e., η’s utility is an undiscounted sum of its rewards), then

for the UD reward G(ζ) =
∑

η gη(ζ), so that the system is weakly trivial. The original

version of the bar problem in the physics literature [50] is the special case where UD

reward is used but there are only two “nights” in the week (one of which corresponds

to “staying at home”); ~α is uniform; and γk(xk) = xkΘ(ckN − xk) for some vector ~c,

taken to equal (.6, .4) in the very original papers. So the reward to agent η is 1 if it

attends the bar and attendance is below capacity, or if it stays at home and the bar is

over capacity. Reward is 0 otherwise. (In addition, unlike in our COIN-based systems, in

the original work on the bar problem the microlearners work by explicitly predicting the

bar attendance, rather than by directly modifying behavior to try to increase a reward

signal.)

In contrast to the UD reward, providing the G reward at time t to each agent results in

all agents receiving the same reward. This is the team game reward function, investigated

for example in [60]. For this reward function, the system is automatically factored

if we define gη(ζ) ≡ ∑

t rη(ζ ,t
). However, evaluation of this reward function requires

centralized communication concerning all seven nights. Furthermore, given that there

are 168 agents, G is likely to have poor learnability as a reward for any individual agent.

This latter problem is obviated by using the WL reward, where the subtraction of

the clamped term removes some of the “noise” of the activity of all other agents, leaving

only the underlying “signal” of how the agent in question affects the utility. So one

would expect that with the WL reward the agents can readily discern the effects of their

actions on their rewards. Even though the conditions in Coroll. 1 don’t hold20, this
20The t = 0 elements of Ceff

η are just ζ
η,t=0

, but the contributions of ζ
,t=0

to G cannot be written as
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reasoning accords with the implicit advice of Coroll. 1 under the approximation of the

t = 0 effect set as Ceff
η ≈ ζ

η,t≥0
. In other words, it agrees with that corollary’s implicit

advice under the identification of ζ
η,t≥0

as η’s t = 0 guessed effect set.

In fact, in this very simple system, we can explicitly calculate the ratio of the WL

reward’s learnability to that of the G reward, by recasting the system as existing for

only a single instant so that Ceff
η = ζ

η,0
exactly and then applying Thm. 3. So for

example, say that all αk = 1, and that the number of nodes N is evenly divided among

the seven nights. The numerator term in Thm. 3 is a vector whose components are

some of the partials of G evaluated when xk(ζ ,0
) = N/7. This vector is 7(N − 1)

dimensional, one dimension for each of the 7 components of (the unary vector comprising)

each node in η̂. For any particular η′ 6= η and night i, the associated partial derivative is
∑

k[e
−xk(ζ

,0
)/c

(1 − xk(ζ ,0
)/c) · ∂ζ

η′,0;i
(xk(ζ ,0

))], where as usual “ζ
η′,0;i

” indicates the i’th

component of the unary vector ζ
η′,0

. Since ∂ζ
η′,0;i

(xk(ζ ,0
)) = δi,k, for any fixed i and

η′, this sum just equals e(−N/7c) (1 −N/7c). Since there are 7(N − 1) such terms, after

taking the norm we obtain |e(−N/7c) [1 −N/7c]
√

7(N − 1)|.
The denominator term in Thm. 3 is the difference between the gradients of the

global reward and the clamped reward. These differ on only N − 1 terms, one term

for that component of each node η′ 6= η corresponding to the night η attends. (The

other 6N − 6 terms are identical in the two partials and therefore cancel.) This yields

|e(−N/7c) [1 − N/7c] [1 − e1/c(1 − 7
N−7c)]

√
N − 1. Combining with the result of the

previous paragraph, our ratio is |
√

7 N−7c
(N−7c)(1−e1/c)+7e1/c | ≃ 11.

In addition to this learnability advantage of the WL reward, to evaluate its WL

reward each agent only needs to know the total attendance on the night it attended,

so no centralized communication is required. Finally, although the system won’t be

perfectly factored for this reward (since in fact the effect set of η’s action at t would be

expected to extend a bit beyond ζ
η,t

), one might expect that it is close enough to being

factored to result in large world utility.

Each agent keeps a seven dimensional Euclidean vector representing its estimate of

the reward for attending each night of the week. At the end of each week, the component

of this vector corresponding to the night just attended is proportionally adjusted towards

the actual reward just received. At the beginning of the succeeding week, the agent picks

the night to attend using a Boltzmann distribution with energies given by the components

of the vector of estimated rewards, where the temperature in the Boltzmann distribution

decays in time. (This learning algorithm is equivalent to Claus and Boutilier’s [57]

independent learner algorithm for multi-agent reinforcement learning.) We used the

same parameters (learning rate, Boltzmann temperature, decay rates, etc.) for all three

reward functions. (This is an extremely primitive RL algorithm which we only chose

for its pedagogical value; more sophisticated RL algorithms are crucial for eliciting high

intelligence levels when one is confronted with more complicated learning problems.)

a sum of a ζ
η,t=0

contribution and a ζ
η̂,t=0

contribution.
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Figure 1: Average world reward when ~α = [0 0 0 7 0 0 0] (left) and when

~α = [1 1 1 1 1 1 1] (right). In both plots the top curve is WL, middle is G, and

bottom is UD.

Figure 1 presents world reward values as a function of time, averaged over 50 separate

runs, for all three reward functions, for both ~α = [1 1 1 1 1 1 1] and ~α = [0 0 0 7 0 0 0].

The behavior with the G reward eventually converges to the global optimum. This is

in agreement with the results obtained by Crites [60] for the bank of elevators control

problem. Systems using the WL reward also converged to optimal performance. This

indicates that for the bar problem our approximations of effects sets are sufficiently

accurate, i.e., that ignoring the effects one agent’s actions will have on future actions of

other agents does not significantly diminish performance. This reflects the fact that the

only interactions between agents occurs indirectly, via their affecting each others’ reward

values.

However since the WL reward is more learnable than than the G reward, convergence

with the WL reward should be far quicker than with the G reward. Indeed, when

~α = [0 0 0 7 0 0 0], systems using the G reward converge in 1250 weeks, which is 5

times worse than the systems using WL reward. When ~α = [1 1 1 1 1 1 1] systems take

6500 weeks to converge with the G reward, which is more than 30 times worse than the

time with the WL reward.

In contrast to the behavior for reward functions based on our COIN framework, use

of the conventional UD reward results in very poor world reward values, values that

deteriorated as the learning progressed. This is an instance of the TOC. For example,

for the case where ~α = [0 0 0 7 0 0 0], it is in every agent’s interest to attend the same

night — but their doing so shrinks the world reward “pie” that must be divided among

all agents. A similar TOC occurs when ~α is uniform. This is illustrated in fig. 2 which

shows a typical example of daily attendance figures ({xk(ζ ,t
)}) for each of the three

reward functions for t = 2000. In this example optimal performance (achieved with the

WL reward) has 6 agents each on 6 separate nights, (thus maximizing the reward on 6

nights), and the remaining 132 agents on one night.

Figure 3 shows how t = 2000 performance scales with N for each of the reward signals
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Figure 2: Typical daily attendance when ~α = [1 1 1 1 1 1 1] for WL (left), G (center),

and UD (right).
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Figure 3: Behavior of each reward function with respect to the number of agents for

~α = [0 0 0 7 0 0 0].

for ~α = [0 0 0 7 0 0 0]. Systems using the UD reward perform poorly regardless of N .

Systems using the G reward perform well when N is low. As N increases however, it

becomes increasingly difficult for the agents to extract the information they need from the

G reward. (This problem is significantly worse for uniform ~α.) Because of their superior

learnability, systems using the WL reward overcome this signal-to-noise problem (i.e.,

because the WL reward is based on the difference between the actual state and the state

where one agent is clamped, it is much less affected by the total number of agents).

4.5 Macrolearning

In the experiments recounted above, the agents were sufficiently independent that assum-

ing they did not affect each other’s actions (when forming guesses for effect sets) allowed

the resultant WL reward signals to result in optimal performance. In this section we

investigate the contrasting situation where we have initial guesses of effect sets that are

quite poor and that therefore result in bad global performance when used with WL re-

wards. In particular, we investigate the use of macrolearning to correct those guessed

effect sets at run-time, so that with the corrected guessed effect sets WL rewards will

instead give optimal performance. This models real-world scenarios where the system

designer’s initial guessed effect sets are poor approximations of the actual associated

effect sets and need to be corrected adaptively.
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In these experiments the bar problem is significantly modified to incorporate con-

straints designed to result in poor G when the WL reward is used with certain initial

guessed effect sets. To do this we forced the nights actually attended by some of the

agents (followers) to agree with those attended by other agents (leaders), regardless

of what night those followers “picked” via their microlearning algorithms. (For leaders,

picked and actually attended nights were always the same.) We then had the world utility

be the sum, over all leaders, of the values of a triply-indexed reward matrix whose in-

dices are the nights that each leader-follower set attends: G(ζ) =
∑

t

∑

iRli(t),f1i(t),f2i(t)

where li(t) is the night the ith leader attends in week t, and f1i(t) and f2i(t) are the

nights attended by the followers of leader i, in week t (in this study, each leader has two

followers). We also had the states of each node be one of the integers {0, 1, ..., 6} rather

than (as in the bar problem) a unary seven-dimensional vector. This was a bit of a

contrivance, since constructions like ∂ζ
η,0

aren’t meaningful for such essentially symbolic

interpretations of the possible states ζ
η,0

. As elaborated below, though, it was helpful

for constructing a scenario in which guessed effect set WLU results in poor performance,

i.e., a scenario in which we can explore the application of macrolearning.

To see how this setup can result in poor world utility, first note that the system’s

dynamics is what restricts all the members of each triple (li(t), f1i(t), f2i(t)) to equal

the night picked by leader i for week t. So f1i(t) and f2i(t) are both in leader i’s actual

effect set at week t — whereas the initial guess for i’s effect set may or may not contain

nodes other than li(t). (For example, in the bar problem experiments, the guessed effect

set does not contain any nodes beyond li(t).) On the other hand, G and R are defined for

all possible triples (li(t), f1i(t), f2i(t)). So in particular, R is defined for the dynamically

unrealizable triples that can arise in the clamping operation. This fact, combined with

the leader-follower dynamics, means that for certain R’s there exist guessed effect sets

such that the dynamics assures poor world utility when the associated WL rewards are

used. This is precisely the type of problem that macrolearning is designed to correct.

As an example, say each week only contains two nights, 0 and 1. Set R111 = 1 and

R000 = 0. So the contribution to G when a leader picks night 1 is 1, and when that

leader picks night 0 it is 0, independent of the picks of that leader’s followers (since the

actual nights they attend are determined by their leader’s picks). Accordingly, we want

to have a private utility for each leader that will induce that leader to pick night 1. Now

if a leader’s guessed effect set includes both of its followers (in addition to the leader

itself), then clamping all elements in its effect set to 0 results in an R value of R000 = 0.

Therefore the associated guessed effect set WLU will reward the leader for choosing night

1, which is what we want. (For this case WL reward equals R111 −R000 = 1 if the leader

picks night 1, compared to reward R000 −R000 = 0 for picking night 0.)

However consider having two leaders, i1 and i2, where i1’s guessed effect set consists of

i1 itself together with the two followers of i2 (rather than together with the two followers

of i1 itself). So neither of leader i1’s followers are in its guessed effect set, while i1 itself is.

Accordingly, the three indices to i1’s R need not have the same value. Similarly, clamping
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the nodes in its guessed effect set won’t affect the values of the second and third indices

to i1’s R, since the values of those indices are set by i1’s followers. So for example, if i2

and its two followers go to night 0 in week 0, and i1 and its two followers go to night 1 in

that week, then the associated guessed effect set wonderful life reward for i1 for week 0

is G(ζ
,t=0

)−G(CLli1 (0),f1i2
(0),f2i2

(0)(ζ ,t=0
)) = Rli1 (0),f1i1

(0),f2i1
(0) +Rli2 (0),f1i2

(0),f2i2
(0)−

[R0,f1i1
(0),f2i1

(0) +Rli2 (0),0,0]. This equals R111 +R000 −R011 −R000 = 1−R011. Simply

by setting R011 > 1 we can ensure that this is negative. Conversely, if leader i1 had gone

to night 0, its guessed effect WLU would have been 0. So in this situation leader i1 will

get a greater reward for going to night 0 than for going to night 1. In this situation,

leader i1’s using its guessed effect set WLU will lead it to make the wrong pick.

To investigate the efficacy of the macrolearning, two sets of separate experiments

were conducted. In the first one the reward matrix R was chosen so that if each leader is

maximizing its WL reward, but for guessed effect sets that contain none of its followers,

then the system evolves to minimal world reward. So if a leader incorrectly guesses that

some σ is its effect set even though σ doesn’t contain both of that leader’s followers,

and if this is true for all leaders, then we are assured of worst possible performance.

In the second set of experiments, we investigated the efficacy of macrolearning for a

broader spectrum of reward matrices by generating those matrices randomly. We call

these two kinds of reward matrices worst-case and random reward matrices, respectively.

In both cases, if it can modify the initial guessed effect sets of the leaders to include their

followers, then macrolearning will induce the system to be factored.

The microlearning in these experiments was the same as in the bar problem. All

experiments used the WL personal reward with some (initially random) guessed effect

set. When macrolearning was used, it was implemented starting after the microlearning

had run for a specified number of weeks. The macrolearner worked by estimating the

correlations between the agents’ selections of which nights to attend. It did this by exam-

ining the attendances of the agents over the preceding weeks. Given those estimates, for

each agent η the two agents whose attendances were estimated to be the most correlated

with those of agent η were put into agent η’s guessed effect set. Of course, none of this

macrolearning had any effect on global performance when applied to follower agents, but

the macrolearning algorithm cannot know that ahead of time; it applied this procedure

to each and every agent in the system.

Figure 4 presents averages over 50 runs of world reward as a function of weeks using

the worst-case reward matrix. For comparison purposes, in both plots the top curve

represents the case where the followers are in their leader’s guessed effect sets. The

bottom curve in both plots represents the other extreme where no leader’s guessed effect

set contains either of its followers. In both plots, the middle curve is performance when

the leaders’ guessed effect sets are initially random, both with (right) and without (left)

macrolearning turned on at week 500.

The performance for random guessed effect sets differs only slightly from that of hav-
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Figure 4: Leader-follower problem with worst case reward matrix. In both plots, every

follower is in its leader’s guessed effect set in the top curve, no follower is in its leader’s

guessed effect set in the bottom curve, and followers are randomly assigned to guessed

effect sets of the leaders in the middle curve. The two plots are without (left) and with

(right) macrolearning at 500 weeks.

ing leaders’ guessed effect sets contain none of their followers; both start with poor values

of world reward that deteriorates with time. However, when macrolearning is performed

on systems with initially random guessed effect sets, the system quickly rectifies itself

and converges to optimal performance. This is reflected by the sudden vertical jump

through the middle of the right plot at 500 weeks, the point at which macrolearning

changed the guessed effect sets. By changing those guessed effect sets macrolearning

results in a system that is factored for the associated WL reward function, so that those

reward functions quickly induced the maximal possible world reward.
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Figure 5: Leader-follower problem for random reward matrices. The ordering of the

plots is exactly as in Figure 4. Macrolearning is applied at 2000 weeks, in the right plot.

Figure 5 presents performance averaged over 50 runs for world reward as a function of
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weeks using a spectrum of reward matrices selected at random. The ordering of the plots

is exactly as in Figure 4. Macrolearning is applied at 2000 weeks, in the right plot. The

simulations in Figure 5 were lengthened from those in Figure 4 because the convergence

time of the full spectrum of reward matrices case was longer.

In figure 5 the macrolearning resulted in a transient degradation in performance at

2000 weeks followed by convergence to the optimal. Without macrolearning the system’s

performance no longer varied after 2000 weeks. Combined with the results presented in

Figure 4, these experiments demonstrate that macrolearning induces optimal perfor-

mance by aligning the agents’ guessed effect sets with those agents that they actually do

influence the most.

5 CONCLUSION

Many distributed computational tasks cannot be addressed by direct modeling of the

underlying dynamics, or are at best poorly addressed that way due to robustness and

scalability concerns. Such tasks should instead be addressed by model-independent ma-

chine learning techniques. In particular, Reinforcement Learning (RL) techniques are

often a natural choice for how to address such tasks. When — as is often the case — we

cannot rely on centralized control and communication, such RL algorithms have to be

deployed locally, throughout the system.

This raises the important and profound question of how to configure those algorithms,

and especially their associated utility functions, so as to achieve the (global) computa-

tional task. In particular we must ensure that the RL algorithms do not “work at

cross-purposes” as far as the global task is concerned, lest phenomena like tragedy of the

commons occur. How to initialize a system to do this is a novel kind of inverse problem,

and how to adapt a system at run-time to better achieve such a global task is a novel

kind of learning problem. We call any distributed computational system analyzed from

the perspective of such an inverse problem a COllective INtelligence (COIN).

As discussed in the literature review section of this chapter, there are many ap-

proaches/fields that address aspects of COINs. These range from multi-agent systems

through conventional economics and on to computational economics. (Human economies

are a canonical model of a functional COIN.) They range onward to game theory, various

aspects of distributed biological systems, and on through physics, active walker models,

and recurrent neural nets. Unfortunately, none of these fields seems appropriate as a

general approach to understanding COINs.

After this literature review we present a mathematical theory for COINs. We then

present experiments on two test problems that validate the predictions of that theory

for how best to design a COIN to achieve a global computational task. The first set of

experiments involves a variant of Arthur’s famous El Farol Bar problem. The second

set instead considers a leader-follower problem that is hand-designed to cause maximal
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difficulty for the advice of our theory on how to initialize a COIN. This second set of

experiments is therefore a test of the on-line learning aspect of our approach to COINs.

In both experiments the procedures derived from our theory, procedures using only local

information, vastly outperformed natural alternative approaches, even such approaches

that exploited global information. Indeed, in both problems, following the theory sum-

marized in this chapter provides good solutions even when the exact conditions required

by the associated theorems hold only approximately.

There are many directions in which future work on COINs will proceed; it is a vast and

rich area of research. We are already successfully applying our current understanding of

COINs, tentative as it is, to internet packet routing problems. We are also investigating

COINs in a more general optimization context where economics-inspired market mech-

anisms are used to guide some of the interactions among the agents of the distributed

system. The goal in this second body of work is to parallelize and solve numerical opti-

mization problems where the concept of an “agent” may not be in the natural definition

of the problem. We also intend to try to apply our current COIN framework to the prob-

lem of designing high-occupancy toll lanes in vehicular traffic, and to help understand

the “design space” necessary for distributed biochemical entities like pre-genomic cells.
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