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Abstract. The development of the semantic Web will require agents to use common domain ontologies to

facilitate communication of conceptual knowledge. However, the proliferation of domain ontologies may also

result in conflicts between the meanings assigned to the various terms. That is, agents with diverse ontologies may

use different terms to refer to the same meaning or the same term to refer to different meanings. Agents will need

a method for learning and translating similar semantic concepts between diverse ontologies. Only until recently

have researchers diverged from the last decade’s ‘‘common ontology’’ paradigm to a paradigm involving agents

that can share knowledge using diverse ontologies. This paper describes how we address this agent knowledge

sharing problem of how agents deal with diverse ontologies by introducing a methodology and algorithms for

multi-agent knowledge sharing and learning in a peer-to-peer setting. We demonstrate how this approach will

enable multi-agent systems to assist groups of people in locating, translating, and sharing knowledge using our

Distributed Ontology Gathering Group Integration Environment (DOGGIE) and describe our proof-of-concept

experiments. DOGGIE synthesizes agent communication, machine learning, and reasoning for information

sharing in the Web domain.

Keywords: ontology learning, knowledge sharing, semantic interoperability, machine learning, multi-agent

systems.

1. Introduction

Although it is easier for agents to communicate and share knowledge if they share a

common ontology, in the real world this does not always happen. People and agents may

use different words that have the same meaning, or refer to the same concrete or abstract

object [3] or they may use the same word to refer to different meaning [11]. What is

needed is a methodology for agents to teach each other what they mean. There are several

questions related to this knowledge sharing problem [13] in a multi-agent system setting:

1) How do agents determine if they know the same semantic concepts?

2) How do agents determine if their different semantic concepts actually have the same

meaning?

3) How can agents improve their interpretation of semantic objects by recursively learning

missing discriminating attribute rules?

4) How do these methods affect the group performance at a given collective task?
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1.1. Ontologies and meaning

The definition of agency used in this paper states that an agent is a computing entity with

or without a ‘‘body’’ that has varying degrees of the following capabilities or character-

istics: autonomy, reasoning, social, learning, communication, and mobility [19, 30]. A

group of these interacting agents are referred to as a multi-agent system [28]. Since the

ontology problem [13] deals with how agents share meaning, we must provide a more

precise definition of meaning. This requires that we must first differentiate between a

conceptualization of the world, which only exists in a human or agent’s mind and an

ontology, which is a mapping of language symbols to that conceptualization and provides

meaning to the symbols of the language. A conceptualization consists of all the objects

and their interrelationships with each other that an agent hypothesizes or presumes to exist

in the world and is represented by a tuple consisting of a universe of discourse, a

functional basis set, and a relational basis set [9].

An agent’s ontology consists of the specification of a conceptualization, which includes

the terms used to name objects, functions, and relations in the agent’s world [10].

An object is anything that we can say something about. An object can be concrete or

abstract, primitive or composite, fictional or non-fictional. A set of objects can be grouped

to form an abstract object called a class. We can use machine learning to learn a target

function to map individual concrete objects to a particular class [21]. This target function

will be referred to as a concept description of a class. The entire set of objects that

we want to describe knowledge about is called a universe of discourse, U. U consists

of both concrete objects, X ¼ {x1, . . . xn} and abstract objects, C ¼ {c1, . . . c1}. This
semiotic relationship between the world, universe of discourse (UOD) containing {X}

and {C}, and an agent’s conceptualization, interpretation function, and ontology is

illustrated in Figure 1. A functional basis set contains the functions used for a particular

universe of discourse. A relational basis set contains the relations used in a particular

universe of discourse. The difference between the UOD and the ontology is that the

Figure 1. Semiotic relationship between world, universe of discourse (UOD) and conceptualization.
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UOD are the objects that exist but until they are placed in an agent’s ontology, the

agent does not have a vocabulary to specify objects in the UOD. No matter how a human

or computing agent conceptualizes the world, there are other conceptualizations that can

be created. There may or may not exist a correspondence between two different agents’

conceptualizations.

An agent’s invention of its conceptualization is its first step towards describing

knowledge about the world. Declarative knowledge can be used to represent an agent’s

environment and guide it in making intelligent decisions regarding its behavior in the

environment [25]. This knowledge is represented by describing the world in sentences

composed of a language such as natural language or first-order predicate calculus.

Declarative semantics gives a precise way of defining meaning for an agent. The particular

meaning defined for objects in a conceptualization are specified by elements in the

representational language. The object constant is the label given to a particular object

using the language. This mapping of objects in the conceptualization to elements in the

language for a particular agent Ai can be described by an interpretation function, IAi(�). If
� is an object constant, then we can say that IAi(�) 2 UAi, where UAi is the universe of

discourse for agent Ai. A semantic concept, is a term in a language that represents the

meaning of a particular set of objects in the conceptualization. A semantic concept is an

abstract object constant for a particular agent that is mapped to a set of concrete objects in

the universe of discourse. A semantic object is an object taken from the universe of

discourse and mapped to a particular semantic concept for an agent. The semantic concept

set consists of all the semantic objects in a particular agent’s semantic concept.

1.2. Distributed collective memory

A distributed collective memory (DCM) is the entire set of concrete objects X ¼ {x1 . . . xn}
that exist in the world at a unique location and is accessible by any agent, Ai, in the multi-

agent system, A ¼ {A1, . . . An}, but is only selectively conceptualized by each agent

[7, 29]. This means that not every agent has every object in its conceptualization. We will

denote U to represent the ‘‘global’’ universe of discourse where each agent A1 has its own

universe of discourse UA1 � U, which is a union of its known concrete and abstract

objects, UA1 ¼ XA1 [ CA1.

Stated another way, our research addresses the ontological diversity of artificial

intelligence, which states that any conceptualization of the world can be invented and

accommodated based on how useful it is to an agent [9]. With our approach, agents that

share a distributed collective memory of objects will be able to overcome their lack of

shared meaning to gain the ability to share knowledge between each other. The rest of this

paper discusses our approach in more detail in section 2. Section 3 describes how we

evaluated our system and section 4 discusses related work. Section 5 presents our

conclusions and describes future work.

2. Approach

This section describes how DOGGIE agents addressed various aspects of the ontol-

ogy problem. Before describing our approach we state the key assumptions of this
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work. We also describe how supervised inductive learning is used to enable the agents

to learn representations for their ontologies. Descriptions for how agents are able to

discover similar semantic concepts, translate these concepts, and improve interpretation

of these concepts through recursive semantic context rule learning (RSCRL) are also

given.

2.1. Assumptions

Several key assumptions exist for this work.

1) Agents live in a closed world represented by the distributed collective memory.

2) The identity of the objects in this world are accessible to all the agents and can be

known by the agents.

3) Agents use a knowledge structure that can be learned using objects in the distributed

collective memory.

4) The agents do not have any errors in their perception of the world even though their

perceptions may differ.

2.2. Semantic concept learning

In a system of distributed, intelligent agents with diverse ontologies, there are opportu-

nities for both individual and group semantic concept learning. In a following section we

describe another type of group learning we employ related to semantic concept trans-

lation. Then we describe in detail our two novel algorithms we use for other types of

individual learning. Individual learning refers to learning individual ontologies for each

agent. Group learning is accomplished as the agents learn agent models. Agent model

learning consists of one agent learning that another agent knows a particular concept. For

example, Agent A learns that Agent B knows its concepts X, Y, and Z.

2.3. An example of semantic concept representation in the World Wide Web domain

An example of how concepts are represented in the World Wide Web domain is given. For

the World Wide Web domain, Web pages contain semantic content related to a variety of

subjects. The Web page contains text formatted using Hypertext Markup Language

(HTML). The HTML may also be used to place images and sound recordings in the

Web page. This example focuses on using the symbolic tokens in a Web page rather than

actual audio recordings or images. A Web page is located using a Web browser by a

unique Internet address specified by its Universal Resource Locator (URL). For this

example, a Web page may be thought of as a specific semantic object, which can be

grouped with similar Web pages to fit under a generalized class category, or semantic

concept. For example, the USA Today Web page, http://www.usatoday.com, contains a

variety of news subjects but can be classified by a user as a ‘‘Newspaper’’. Another user

may label it, ‘‘Web News’’ or ‘‘Gannett Publications’’. A user can store, or ‘‘bookmark’’,

the location of this Web page by placing the URL location in her bookmark list under

the class category she defines it as. These bookmark lists are graphical hierarchies that

group similar Web pages under categories. This can be viewed as a taxonomy that
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represents how a user views various Web pages on the Internet and becomes her repre-

sentation of conceptualization for her agent’s ontology. In essence, an agent representing

the user can find a semantic object, interpret it according to its existing ontology and then

store its location under the same semantic concept of other similar semantic objects. How

two or more agents interpret and store the same semantic object will depend upon their

individual ontologies.

A semantic concept comprises a group of semantic objects that describe that concept.

The semantic object representations we use define each token, i.e. word and HTML tag

from the Web page, as a boolean feature. The entire collection of Web pages, or semantic

objects, that were categorized by a user’s bookmark hierarchy is tokenized to find a

vocabulary of unique tokens. This vocabulary is used to represent a Web page by a vector

of ones and zeroes corresponding to the presence or absence of a token in a Web page.

This combination of a unique vocabulary and a vector of corresponding ones and zeroes

makes up an object vector. The object vector represents a specific Web page and the actual

semantic concept is represented by a group of concept vectors judged to be similar by

the user.

2.4. Ontology learning

Our agents use supervised inductive learning to learn their individual ontologies. The

output of this ontology learning is semantic concept descriptions (SCD) in the form of

interpretation rules as shown in Figure 2. These are intensional definitions of concepts as

opposed to extensional definitions.

Each Web page bookmark folder label represents a semantic concept name. AWeb page

bookmark folder can contain bookmarks, or URL’s, pointing to a semantic concept object,

or Web page. A bookmark folder can also contain additional folders. Each set of

bookmarks in a folder is used as training instances for the semantic concept learner. The

semantic concept learner learns a set of interpretation rules for all of the agent’s known

semantic concept objects. An entire set of these types of semantic concept descriptions can

then be used for future semantic concept interpretation.

Figure 2. Semantic concept learning.
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2.5. Initial ontology learning

Each agent uses a machine learning algorithm to learn a representation of its ontology.

Each of the rules has an associated certainty value which can be used to calculate the

positive interpretation threshold that will be described further in this section. Each rule

consists of the rule name followed by the rule preconditions, or left hand side, and the rule

postconditions, or right hand side. If the descriptors in the rule preconditions exist or

do not exist as described in the rule clause, then the concept fact is asserted as stated in the

rule postcondition. Examples of a set of concept descriptions for an agent’s ontologies

are given below.

The above semantic concept descriptions in Figure 3 resulted from learning an ontology

consisting of concepts from the Magellan ontology such as Arts:Books:Talk:Reviews and

Computer:CS:Research:Resources. The concept label, Arts:Books:Talk:Reviews, is from

the ontology hierarchy consisting of the Arts superconcept with Books being a subconcept

of Arts, Talk a subconcept of Books and Reviews a subconcept of Talk. Some of the

descriptors that were learned using the machine learning algorithm appear to be more

appropriate then others. For example, rule 31 in Figure 3 says that the presence of the

learning descriptor and the absence of the descriptor, methods, indicates that the object

instance belongs in the Education_Adult category. However, for rule 26 in Figure 3, the

presence of the because descriptor and the absence of the danny descriptor indicates that

the object instance may belong to the Life_Anim_Pets_Dogs concept. These semantic

concept descriptions result due to the particular object instances each have tokens that

result in sometimes a peculiar learned descriptor vocabulary.

Figure 3. Example semantic concept descriptions (SCD).
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2.6. Locating similar semantic concepts

The DOGGIE approach to enabling agents with diverse ontologies to locate similar

semantic concepts can be summarized in the following steps:

1. An agent queries acquaintance agents for similar semantic concepts by sending

them the name of the semantic concept and pointers to a sample of the semantic

objects in the distributed collective memory. In essence, the agent is teaching the

other agents what it means by a semantic concept by showing them examples of

it.

2. The acquaintance agents receive the query and use their learned representations for

their own semantic concepts to infer whether or not they know the same semantic

concept. In other words, the acquaintance agents attempt to interpret the semantic

objects based on their own ontology.

3. The acquaintance agents reply to the querying agent with a a) ‘‘Yes, I know that

semantic concept’’, b) ‘‘I may know that semantic concept’’, or c) ‘‘No, I don’t know

that concept’’. If an acquaintance agent knows or may know that semantic concept, it

returns a sample of pointers to its corresponding semantic concept.

4. The original querying agent receives the responses from the acquaintance agents

and attempts to verify whether or not the other agents know a similar semantic concept.

It does this by attempting its own interpretation of the semantic objects that were

sent back to it using pointers.

5. If the original querying agent verifies the acquaintance’s semantic concept, then it

incorporates this applicable group knowledge into its knowledge base. This group

knowledge is, in essence, ‘‘My acquaintance agent X knows my concept Y’’. A

related hypothesis investigated dealt with how this type of group knowledge can

improve group search performance for similar semantic concepts. Intuitively, the next

time an agent can selectively send queries for knowledge regarding semantic concept

Y to only agent X instead of all of its acquaintance agents.

The concept similarity location situation arises when one agent wants to find other

agents in the MAS who know a similar semantic concept. Stated more formally, we

have a multi-agent system, A ¼ {A1, . . . , An}. Agent A1 knows the semantic concept �,
or K(A1, �). This agent wants to find any other agent, Ai, that also knows the same

concept �, or K(Ai, �). With our approach, agent A1 sends a concept-based query (CBQ)

to its acquaintance agents, Aacquaintance � A. The concept-based query is a tuple

consisting of the semantic concept and a set of DCM addresses pointing to examples

of that concept in the distributed collective memory , or CBQ ¼ <�, X�> . For each

semantic concept � that an agent Ai knows in its ontology, Oi, there is a set of object

instances that make up this semantic concept, or X� ¼ {x1 . . . xn}. For �, there exists a

function, c, such that c(x) ¼ �. Using supervised inductive machine learning [21],

the agent can learn the target function, h, such that h(x) c c(x). In order to learn this

target function, the decision tree [23], k-nearest neighbor [24], and Naı̈ve Bayes [21]

supervised machine learning algorithms were used in trial experiments. The initial

experiments used the C4.5 decision tree algorithm [23] for its easy production of rules

from the decision tree.
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Given two agents, A1 and A2, that know concept �, we can state the following:

KðA1;fÞ ^ KðA2;fÞ ð1Þ

However, due to the size of the DCM, it is possible that each semantic concept

corresponds to sets of objects that only overlap since the agents may not store the same

objects in their local ontologies. That is, given the set of objects for �A1 for agent A1, or

X�,A1 ¼ {x1, . . . xn} and the set of objects for �A2 for agent A2, or X�,A2 ¼ {x1, . . . xm},
then ((X�,A1 � X�,A2) _ (X�,A2 � X�,A2)) _ (X�,A1 \ X�,A2) 6¼ F. Also, it is possible

that there is no overlap of objects in each of the semantic concept sets for each agent,

(X�,A1 \ X�,A2) ¼ F. It was hypothesized that supervised inductive learning can be used

to generalize each of the semantic concept sets and to implement an algorithm that

will enable the agents to find concept similarity. Since supervised inductive learning is

dependent upon the set of example objects used, we cannot assume that the target function

learned for concept �1 is equal to the target function of concept �2. That is, h�1(x) 6¼
h�2(x). Because of this, a method for estimating concept membership using the learned

target functions was developed. The machine learning algorithm learned a set of concept

descriptions for every semantic concept in the agent’s ontology. So H(x) ¼ {h1, . . . hn}
where h1(x) ¼ �1 and hn(x) ¼ �n. This was used as the agent’s knowledge base, or set of

representations of facts about the world. If agent A1 wants to determine if agent A2 knew

its concept �, then it sends over a concept-based query consisting of the concept being

queried � along with a set of example objects of size k. Some example concept

descriptions learned from an agent’s ontology are given below:

These semantic concept descriptions resulted from learning an ontology consisting of the

Life:Animals:Pets:Dogs and Computer:CS:Research:Resource concepts from the Magel-

lan [18] ontology. For each learned concept description hi in H�(x), there exists a

corresponding percentage describing how often this particular concept description cor-

rectly determined an object in the training set belonged to concept �. This percentage is

called the positive interpretation threshold for concept �, or �þ. The negative interpre-

tation threshold was initially set at 1 � �þ ¼ ��. These thresholds were used to develop a

similarity estimation function for two semantic concepts. If agent A2 sends k addresses of

its concept � to agent A1, then agent A1 uses its set of concept descriptions, H(x), as

inference rules and seeks to interpret the example objects sent to it, XA2 ¼ {x1, . . . xk}.
Given knowledge base H(x) and the object, xi, represented as facts, the agent A1 seeks to

determine if it can infer one of its own concepts �j,

H ^ xi ‘� fj ð2Þ
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The interpretation value, v, of concept �j is the frequency concept �j is inferred, f�j, versus
the total number of objects, k, in the CBQ,

f�j

k
¼ v�j

ð3Þ

The agent then compares the interpretation value v�j to that concept’s positive interpre-

tation threshold, �jþ. If the interpretation value is greater than the concept’s positive

interpretation value then we say the agent knows the concept �j, or that the interpretation

value falls into the K region.

v�j
� fjþ ) K ð4Þ

If the interpretation value for the concept is less than the negative interpretation

threshold, then we say the agent does not know the concept �j designated by the D region.

vfj
� fj� ) D ð5Þ

If the resulting interpretation value is between the positive and negative interpretation

thresholds then we say the agent may know the concept designated by the M region.

fj� < vfj
< fjþ ) M ð6Þ

Depending on which region the interpretation value falls into, the responding agent A2

can send back a sample set of semantic objects of size j from its semantic concept set. The

original querying agent A1 can repeat the interpretation and membership estimation

process described above. It does this to verify whether agent A2 does in fact know the

same semantic concept A1 knows. If so, agent A1 can incorporate the following group

knowledge into its knowledge base,

KðA1; ðKðA2;fÞÞ ð7Þ

This states that agent A1 knows that agent A2 knows its concept �.
In this context, group knowledge consists of any rule describing what semantic concept

another agent in the MAS knows. This group knowledge is distinguished from joint or

mutual knowledge. Group knowledge as referred to in this paper then refers to knowledge

one agent has about what another agent knows rather than global knowledge known by

the group. Individual knowledge is any rule that an agent knows or learns about its

environment that does not incorporate group knowledge. The verification process for this

knowledge interchange maintains the truth in the original querying agent’s knowledge

base.

2.7. Translating semantic concepts

The elegance of our approach is reflected in the fact that the algorithm for locating similar

semantic concepts is essentially the same as the algorithm for translating semantic

concepts. The key is that the algorithm relies on looking at the semantic concept objects

themselves rather than relying on an inherent definition of meaning for the semantic
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concept (term) itself. If the querying agent and the responding agents agree to their

different semantic concepts’ meaning via the interpretation and verification process

performed by each agent, then these semantic concepts translate to each other. The main

difference between these two algorithms is how the group knowledge is stored. After the

verification is successful, the original querying agent examines whether its semantic

concept and the other agent’s semantic concept are syntactically equivalent (i.e. same

symbol). If so, the querying agent stores group knowledge that states ‘‘Agent B knows my

semantic concept X as Y’’. This group knowledge will be used to direct the querying

agents’ future queries for concept X in order to improve the quality of information

received in terms of precision and recall. Also, this group knowledge is used to improve

group communication costs. It will know to ask agent B about concept Y if it wants to

retrieve information on its own semantic concept X.

In this situation, the problem is that one agent may refer to the same semantic concept

using different object constants.

KðA1; �1Þ ^ KðA2; �2Þ ^ simð�1; �2Þ ð8Þ

The hypothesis we investigated is that it is feasible for two agents to determine

whether their semantic concepts are similar using inductive machine learning combined

with agent communication. Another related hypothesis states that this knowledge could

be used by the group to improve its group task performance. This situation deals with

how these agents will be able to determine that their two different semantic concept

constants refer to the same concept. Agent A1 has a set of semantic objects associated

with concept �1, X�1 ¼ {x1, . . . , xn} and agent A2 has a set for �2, X�2 ¼ {x1, . . . , xn}
for its concept. The problem is determining whether concepts �1 and �2 are similar,

sim(�1, �2). As in the concept similarity location situation, we have the situation where

the sets used by the two agents may have an overlap in their semantic concept sets,

[((Xf,A1 � Xf,A2) _ (Xf,A2 � Xf,A1)) ^ (Xf,A1 \ Xf,A2) 6¼ F]. On the other hand,

the two agents might not have an overlap in their semantic concept sets, _ [(Xf,A1 \
Xf,A2) ¼ F] _ [(Xf,A1 \ Xf,A2) 6¼ F]. Since the notion of strict semantic concept

equality, Xf1 ¼ Xf2, is improbable due to the relative size of the distributed collective

memory, the definition of semantic concept similarity described in the previous section

was used. A concept is similar to another if their learned target functions can be used to

successfully interpret a given set of semantic objects for a particular concept.

We can describe the input/output (I/O) behavior of two agents A1 and A2 during a CBQ

interchange. The I/O behavior of agent A2 responding to a CBQ can be described as

follows:
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The input into the agent A2 responding to the query from A1 is X�1, a sample set of

semantic objects from agent A1’s concept �1, plus agent A2’s own knowledge base,

HA2(x), consisting of semantic concept descriptions learned using the inductive machine

learning algorithm. The output that is sent back to the original querying agent A1 is

VA2 which consists of a set of tuples,{<f1, v1, region, X1>, . . . , <fn, vn, region, Xn>}.

Each fi is a possible matching concept, vi is its interpretation value, region is the

corresponding K, M, or D region symbol, and a corresponding sample set of semantic

object addresses in the DCM.

The I/O behavior when agent A1 receives its query response from agent A2 to verify that

they are referring to similar semantic concepts is described as follows:

Agent A1 receives the interpretation value set of tuples from agent A2 as input and the

output is any new knowledge agent A1 learns regarding agent A2’s known semantic

concepts. In the concept translation situation, agent A1 learns that agent A2 knows a

concept �2 that is similar to its semantic concept �1.

Agent A1 uses this algorithm to verify the results sent back to it by its acquaintance

A2. Agent A1 will only perform the verification process for those concepts sent back

from agent A2 as K region concepts. If this occurs the agent first retrieves the objects by

using the addresses received in the interpretation value set. Then the agent computes

the frequency of inferences of a particular concept using its semantic concept de-

scriptions. These frequencies are compared to the positive and negative interpretation

thresholds to determine whether the candidate semantic concepts are actually known

by the agent. If agent A1 determines a K region for a particular candidate concept sent

back from agent A2 then it determines that its concept can be translated by the agent’s

concept and incorporates this knowledge into its knowledge base containing group

knowledge:

KBA1  KðA2;fjÞ ^ simðf1;f2Þ ð9Þ

2.8. Learning key missing descriptors

These experiments were done to deal with key missing descriptors that may affect

the semantic concept interpretation process. Two similar semantic concepts may not

have overlapping semantic objects in the distributed collective memory. If this is the

case, the HA(x) target function learned using supervised inductive learning for agent

A’s semantic concept descriptions, and agent B’s HB(x) may have different key

discriminating descriptors, or attributes, in them. For example, agent B attempts to
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interpret the semantic objects sent to it by agent A in a concept-based query using its

knowledge base. The knowledge base HB contains semantic concept descriptions in the

form:

Each q precondition is a proposition representing the presence of a particular attribute,

or word, in the semantic object, e.g. Web page. The rule postcondition, C, represents a

particular semantic concept known by the agent A2. For example, if object x1 contains

the following attributes, x1 ¼ {q1, q2, q3, q5, q6}, then it would be interpreted as

belonging to the concept C1. However, it would not be interpreted as belonging to concept

C3. In this hypothetical example, Rule 2 would state that x1 does not belong to concept

C1. Our approach would deal with this disconfirming evidence by only counting the

Rule 1 firing in calculating the interpretation value and ignoring the fact that Rule 2 did

not fire for that particular instance.

If object x2 ¼ {q2, q3, q5, q6, q10, q11} then it would not belong to any of the

semantic concepts. After attempting interpretation of all the semantic objects in the CBQ,

let us suppose that the interpretation value is calculated as explained in the previous

section to be 0.6. Let us also suppose that the positive interpretation threshold is 0.7 and

the negative interpretation threshold is 0.2. This results in an interpretation value in the M

region. We believe that the agents could use Recursive Semantic Context Rule Learning

(RSCRL) in order to improve interpretation. Since the original CBQ may have been for

concept C3 and the agent responding to the query may in fact know concept C3 but may

be missing a key discriminating attribute. As in our above example, the agent A1 is

missing the attribute q4 in the example x2. RSCRL attempts to learn a semantic context

rule for attribute q4.

The algorithm for RSCRL can be summarized as follows.

1) Determine the names of the semantic concepts in the agent’s ontology.

2) Create meta-rules for the semantic concept descriptions using its rules.

3) Use the meta-rules and the interpreter to find which attributes to learn semantic context

rules for.

4) Create new categories for these RSCRL indicators.

5) Re-learn the semantic concept description rules.

6) Create the semantic context rules from the semantic concept description rules indicated

by the RSCRL indicators.

7) Re-interpret the CBQ using the new semantic context rules and the original semantic

concept descriptions.

8) Determine whether the semantic concept was verified with the new semantic context

rules.

9) If the concept is verified, learn the applicable group knowledge rules.
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If the concept is not verified, recursively learn the next level of semantic context rules

by repeating the above steps if the user-defined maximum recursion depth limit is not

reached.

This RSCRL algorithm becomes a type of rule search for rules describing missing

attributes in a semantic concept description. The meta-rules are automatically generated

following the form for rules with two and three preconditions:

Therefore, using the example Rule_33,

the following meta-rule is automatically generated for it during the RSCRL process:

This meta-rule will flag the agent that the CBQ’s example semantic objects do not

contain the attributes methods and ink and that the agent needs to reorganize to learn a

pseudo-concept for this attribute methods. This will enable the agent to learn additional
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ontology rules for this descriptor. Once these RSCRL tokens are determined, the

agent searches each ontology semantic concept directory for that token. If the token

exists in a concept instance, it is removed from the current semantic object and placed in

a concept holder named after the token. This builds up these pseudo-concepts with

semantic objects, i.e. Web pages, which contain these tokens. Then using the supervised

inductive learning algorithm, the agent generates additional interpretation rules for

the agent’s knowledge base. The semantic context rule generated for the descriptor

method is:

This rule states that for the current CBQ, if the methods token does not exist but the

tokens this and management do exist, then we can assert the fact that the methods token

does exist within the context of the current ontology. This is a unique method for

determining whether an attribute ‘‘exists’’ given the current attribute set even though the

exact attribute symbol is not used in the particular semantic concept set.

2.8.1. Automated meta-rule generation

The RSCL algorithm follows the principle of only learning semantic context rules for

descriptors that will cause the original SCD rule to fire if a fact is asserted for that missing

descriptor. That is, if the semantic context rule describing the missing descriptor as a

pseudo concept fires, this will in turn fire the SCD rule. Therefore, our meta-rules are

responsible for determining which descriptors to learn semantic context rules for. The

meta-rules we automatically generate assert flags to indicate which descriptors need to be

grouped into a new pseudo concept category. If a single descriptor is missing in a SCD

rule with two or three precondition clauses, then we learn a meta-rule to indicate we need

to learn a semantic context rule for that descriptor. The automated rule generation follows

the following form (shown for rules with two and three preconditions):

� If A and B then Concept X
>> If fA and B then learn semantic context rule for A
>> If A and fB then learn semantic context rule for B

� If A and B and C then Concept X
>> If fA and B and C then learn semantic context rule for A
>> If A and fB and C then learn semantic context rule for B
>> If A and B and fC then learn semantic context rule for C

Meta-rules such as this are used to determine whether the ontology needs to be

transformed to create a pseudo concept, or descriptor subdirectory, for methods from

the existing semantic objects within the agent’s ontology.
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2.8.2. Creating descriptor pseudo concepts

After the meta-rules have been created, the original CBQ is sent to the agent’s semantic

concept interpreter to determine which descriptors need to have semantic context rules

learned for them. Given the above example, if the CBQ’s example semantic objects do not

contain the descriptors ‘‘methods’’ and ‘‘ink’’ then the RSCRL flag for the token

‘‘methods’’ is asserted. This indicates to the agent that it needs to transform its ontology

to learn a pseudo concept for this descriptor. A pseudo concept is a concept created for a

descriptor by the agent to enable it to learn additional ontology rules for that descriptor.

This additional learning will help improve the interpretation process for the given CBQ.

We create these pseudo concepts in the existing ontology from data already found in it.

Once the RSCRL tokens are determined, we search each ontology concept directory for

that token. If the token exists, we remove it from the current semantic object and place it in

a concept holder named after the token. This builds up these pseudo concepts with

semantic objects, i.e. Web pages, which contain these tokens. Then using our supervised

inductive learning algorithm, we are able to generate additional ontology rules.

2.8.3. Semantic context rules

The semantic context rule generated for the descriptor given in our current descriptor is:

ðdefrule Rule 29 ðnot ðmethods 1ÞÞ ðthis 1Þ ðmanagement 1ÞÞ )
ðassert ðmethods 1Þ:

This rule states that for the current CBQ, if the ‘‘methods’’ token does not exist but the

tokens ‘‘this’’ and ‘‘management’’ do exist, then we can assert the fact that the methods

token does exist within the context of the current ontology. This is a novel method for

determining whether a descriptor’s ‘‘meaning’’ exists given the current vocabulary even

though the exact token is not used in the current category. This is a key point in addressing

the different vocabularies problem when learning ontologies in a multiagent system

comprised of agents having diverse ontologies.

3. Evaluation

This section discusses how we evaluated our approach using DOGGIE and the results for

these experiments.

3.1. Experiment design

We used Web search engine ontologies from Magellan [18] and Lycos [17]. Each agent

had an ontology constructed from 8 to 12 ontology concepts. With the Magellan ontology

data, we ran experiments on groups of 4, 8, and 16 agents using 10 examples per concept.

In these experiments, there was no overlap between the training and testing data. With the

Lycos ontology, we ran experiments in groups of 4 and 8 agents. In these experiments

there was 100% overlap between training and testing data. We compared the group
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performance when using the C4.5 [23] machine learning algorithm versus the Naı̈ve Bayes

[21] learning algorithm in these Lycos experiments.

Unlike traditional information retrieval, our agents do not send individual queries

consisting of a few terms. The concept-based queries sent consist of the query concept

term along with locations of instances that represent that concept. Since we want to

evaluate the overall performance of the agents as a group, we look at average concept

precision and recall as well as the communication costs.

3.1.1. Agent ontologies

The concepts used were each assigned a unique ID and are listed in the Table 1 below.

For some of the agent ontologies, concepts were randomly chosen to construct the

individual agent ontologies. In others, the concepts were selected to build ‘‘narrow’’

ontologies that only included closely related concepts.

The actual agent ontologies used are given in Table 2 below. Agents 1 through 8 were

constructed by randomly selecting 12 concepts from this list of 50 concepts. Agents 9

through 16 were hand constructed to be specialized ontologies containing concepts related

to certain areas such as Arts, Business, Computing, Health and Regional Travel, Hobbies,

Regional Travel and Science, Shopping, and Science and Sports, respectively. The concept

ID numbers are used from Table 1 instead of their full titles for each of the concepts.

When performing concept translation, these concept ID’s were modified to be unique

yet they still referenced the same underlying concept. For example, concept ID 3504 may

have been changed to 3504a3 for Agent 3, 3504a4 for Agent 4, and so on.

3.1.2. Performance measurements

In order to measure DOGGIE’s performance, each agent keeps logs of its activities in files

named for the agent. For example, an agent named, Agent1, will keep track of its Agent

Control and Agent Engine components in files named Agent1Control.log and Agent1En-

gine.log, respectively. Also, some of an agent’s activities are written to the standard output

and can be redirected and stored for analysis. This information is particularly useful when

tracking how queries are forwarded from one agent to another. The statistics used to

measure the performance include concept precision, concept recall, and communication

costs.

3.1.2.1. Concept precision. Concept precision, cp, is the ratio of the number of relevant

concepts retrieved to the total number of concepts retrieved and is given by the following

equation.

cp ¼ K

T

where K is the number of relevant concept retrieved and T is the total number of concepts

retrieved.

Concept precision differs slightly from traditional information retrieval (IR) precision

since it is actually seeking a particular concept name rather than a particular document.
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Table 1. Selected Magellan ontology concepts.

# ID Concept Name with Location in Magellan Ontology

1 3 Arts/Architecture/Firms

2 5 Arts/Architecture/Resources_and_Professional_Organizations

3 9 Arts/Books/Authors/Authors_A-H

4 42 Arts/Books/Genres/Non-Fiction

5 57 Arts/Books/Publishers/Educational

6 59 Arts/Books/Publishers/Major_Houses

7 60 Arts/Books/Publishers/Small_Presses

8 86 Arts/Fine_Arts/Galleries/International

9 97 Arts/Fine_Arts/Museums_Around_the_World/International

10 109 Arts/Fine_Arts/Resources/Connections_for_Artists

11 135 Business/Business_News_and_Directories

12 136 Business/Business_News_and_Directories/Directories

13 138 Business/Business_News_and_Directories/Trade_Publications

14 166 Business/Companies/Agriculture_and_Fisheries

15 170 Business/Companies/Chemicals_Petrochemicals_and_Pharmaceuticals

16 172 Business/Companies/Diversified_Biggies

17 1012 Computing/Hardware/LAN_Hardware

18 1014 Computing/Hardware/Microprocessors_And_ICs

19 1017 Computing/Hardware/Peripherals

20 1023 Computing/Internet/Bulletin_Boards

21 1026 Computing/Internet/E-mail

22 1027 Computing/Internet/For_Net_Novices

23 1029 Computing/Internet/Guides_To_The_Net

24 1033 Computing/Internet/Technoland

25 1041 Computing/Multimedia/Service_Providers

26 1047 Computing/Networks/Consultants

27 1051 Computing/Networks/Networking_Software

28 1054 Computing/Networks/Suppliers

29 2024 Health_and_Medicine/Medicine/Clinics/University_Medical_Centers

30 2078 Health_and_Medicine/Medicine/Technology/Radiology_and_Imaging

31 2090 Health_and_Medicine/Mental_Health/Resources

32 2114 Hobbies/Antiques_and_Collectibles/Sundry_Collectibles

33 2120 Hobbies/Arts_and_Crafts/Knitting_and_Stitching

34 2137 Hobbies/Cars_and_Trucks/Sundry_Auto_Info

35 2157 Hobbies/Games/Casino

36 2171 Hobbies/Games/Computer/Game_Biz

37 3504 Regional/Travel/Travel_Agencies/P_through_Z

38 3505 Regional/Travel/Travel_Agencies/A_through_F

39 3535 Science/Academies_and_Organizations/Research_Institutes

40 3549 Science/Astronomy_and_Space/NASA/Resources

41 3561 Science/Astronomy_and_Space/Research_Institutes

42 3562 Science/Astronomy_and_Space/Resources

43 4002 Shopping/Mixed_Bag/Names_All_Sound_The_Same

44 4003 Shopping/Mixed_Bag/Northeastern_USA

45 4004 Shopping/Mixed_Bag/Southeastern_USA

46 4017 Shopping/Novelties/Promotional_Items

47 4030 Shopping/Prized_Possessions/Collectibles

48 4074 Sports/Auto_Racing/Road_and_Track_Talk

49 4115 Sports/Basketball/NCAA

50 4127 Sports/College/School_Home_Pages
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For our research, relevance is defined as being either similar or related to the target, or

query, concept. Since the results of a concept-based query can be either a K (know), M

(may know), or D (Do not know) region, we define relevance to be a K region result.

3.1.2.2. Concept recall. Concept recall, cr, is the ratio of the number of relevant

concepts retrieved to the total number of relevant concepts in the distributed knowledge

base (KB) and is given by the following equation.

cr ¼ K

TK

where K is the total number of relevant concepts retrieved and TK is the total number of

relevant concepts in the entire distributed knowledge base.

The number of relevant concepts is the number of K region results from the concept-

based queries. The total number of relevant concepts is the total number located among all

the agents in the entire group of agents. For our experiments, this will be either among the

group of 4, 8, or 16 agents.

3.1.2.3. Communication costs. Communication costs, C, are the total number of

messages transmitted per query.

C ¼
X

mðtÞ

where m is a message sent at time t.

In a basic concept-based query (CBQ), the query sent is counted as one message and the

reply is counted as another message. When queries are forwarded, each forwarded query is

counted as a CBQ, i.e. two messages. Attempted queries for a concept may not be sent due

to knowledge not existing for the concept. This attempted query counts as half a message.

Table 2. Agent ontologies by concept ID.

Agent # Concept ID #

1 59 138 172 1012 1023 1054 2078 2090 2114 3504 3549 3562

2 3 5 59 86 135 1012 1026 2120 2171 3504 4030 4115

3 3 5 136 170 1029 1041 1047 3504 4002 4017 4030 4127

4 5 42 136 1014 1026 2024 2078 2137 3504 3535 3561 4002

5 5 42 135 170 1041 2137 2157 3504 3549 3561 4002 4017

6 57 97 1027 1029 1033 1041 2090 2157 3504 3505 3562 4074

7 9 59 135 1012 1017 1054 2024 2114 2137 2171 3504 3535

8 3 60 138 1014 1041 2024 2114 2171 3504 3505 4004 4074

9 3 5 9 42 57 59 60 86 97 — — —

10 135 136 138 166 170 172 — — — — — —

11 1012 1014 1017 1023 1026 1027 1029 1033 1041 1047 1051 1054

12 2024 2078 2090 3504 3505 — — — — — — —

13 2114 2120 2137 2157 2171 — — — — — — —

14 3504 3505 3535 3549 3561 3562 — — — — — —

15 4002 4003 4004 4017 4030 — — — — — — —

16 3535 3549 3561 3562 4074 4115 4129 — — — — —
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The rest of this section describes the results of our concept similarity, concept

translation, and recursive semantic context rule learning experiments. In all of the

experiments, the agents sent random queries of their known concepts to each other. Each

agent sent queries for each of all of its known concepts twice.

3.2. Concept similarity experiments

In these experiments, we determined how well DOGGIE would perform in locating similar

semantic concepts in the group. For these experiments, we set up groups of 4, 8, and 16

agents for the experiments. Each agent was set up to randomly send concept-based queries

for each of its known concepts in two iterations. That is, each agent sent out a query for

one of its concepts, waited for and processed the reply, and then sent out another query

until it was finished with all of its concepts. Then it would repeat these queries by going

through its lists of concepts again. The first iteration of all of an agent’s concepts sent as

query is known as the learning phase. During the learning phase, agents had the

opportunity to send out queries and learn group knowledge, or knowledge concerning

who in the group knows what concepts. During the post-learning phase, agents can use

this group knowledge to direct their future queries to improve concept precision. Next we

will show the learning phase’s cumulative concept precision for each agent and contrast it

with the post-learning phase’s concept precision for each agent. Then we will summarize

the group performance using the cumulative concept precision and recall measures.

Understanding the learning phase behavior of the group compared with the post-learning

phase behavior explains the reason for the low concept precision values summarized in the

tables. The actual group performance of the system after learning (post-learning phase)

shows a much higher precision rate.

Figure 4 show how the concept precision in the concept similarity experiments

improved from the learning phase to the post-learning phase on the second iteration due

to the learned group knowledge for 4, 8, and 16 agents, respectively. The graphs are given

to show how the learning process over time influences the precision. The summary tables

provide the cumulative concept precision that is used to measure the group performance

(i.e. average performance of individual agents) for the concept similarity, concept

translation, and recursive semantic context rule learning experiments.

The equation used to determine the values plotted cumulative concept precision for the

learning phase is:

cpðxÞ ¼
P

KM ðxÞP
TM ðxÞ

where cp(x) is the value of concept precision taken at a log point before the next query is

sent, KM(x), is the number of relevant concepts found at that point, and TM(x) is the total

number of concepts retrieved at that point. The values plotted in the post-learning phase

graphs use the equation for concept precision given in section 3.1. In the above 4, 8, and

16 agent scenarios, the value is a perfect 1.0 since the agent model rules were learned

without error. The post learning phase plots have zero values when the concept precision

(post-learning phase) is undefined. Since the agents are designed to only send queries
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when it has an applicable learned agent model rule, the concept precision in the post-

learning phase is very high. The query responses refer to the responses that were received

from agents from single queries. The data points were taken from the logs at the time just

prior to where each new query was recorded.

The results of these experiments where there was no overlap between the training and

testing examples are given in the table below.

These results from these experiments can be summarized as showing that this approach

to finding concept similarity in a MAS is feasible. The fact that there is no overlap

between the examples used for training and testing along with the very small sample set

size of 10 semantic objects for the training examples are reflected in the low precision and

recall values. The reason why a small sample size was initially chosen was to reflect the

nominal size of a Web bookmark category and to show that our method works for very

small sample sizes. Also reflected in these low values are the missing key attributes due to

the different ontologies as we will describe in subsection 3.4. Another explanation of why

these values are so low is that initially the agents were ‘‘blindly’’ sending queries to agents

that may not even know the concepts. However, as the agents were able to learn agent

model knowledge, the concept precision and concept recall should increase. The results in

Table 3 were an average of all the agents performance and can be used to show the

improvement resulting from using the recursive semantic context rule learning algorithm

shown in subsection 3.4.

Figure 4. Plots of the concept precision (learning phase then post-learning phase phase) for 4, 8, and 16 agents

respectively versus the number of query responses (time). Shows cumulative concept precision in learning phase

and the improvement in precision during post-learning phase since agents have learned which agents know

particular concepts.
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3.2.1. Comparison between different learning methods

In addition to the above experiments using the Magellan Ontology, we ran experiments

using DOGGIE with different machine learning methods: C4.5 and the Naı̈ve Bayes using

data from the Lycos ontology. In these experiments there was 100% overlap between the

training and testing examples used. Also, we varied the number of examples used for each

concept ranging from 10 per concept to 40 per concept and plotted learning curves as they

related to concept precision and concept recall.

In Figures 5 and 6 below, we see how the performance of the DOGGIE MAS was

effected by the type of individual learning algorithm used. There is a general upward

learning trend for both the concept precision and recall with 4 and 8 agent configurations

between 20 and 40 samples per concept. However, for the 40 samples per concept using

C4.5 for 4 and 8 agent configurations there was a downward trend for concept precision

and recall. This could possibly be due to overfitting caused by too many training samples

for each concept in an agent’s ontology. The 40 samples per concept experiments were not

Table 3. Concept similarity MAS performance with no overlap between test and

train data (Magellan ontology).

# Agents Concept Precision Concept Recall Comm. Costs

4 0.02 0.09 63

8 0.034 0.126 156.22

16 0.035 0.166 274.29

Figure 5. MAS concept precision with 100% overlap between train and test data (Lycos ontology).

Figure 6. MAS concept recall with 100% overlap between train and test data (Lycos ontology).
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performed using the Naive Bayes algorithm due to not having enough training examples

to construct the test ontologies.

In Figure 7 above, we see that the communication costs have a downward trend as the

number of samples per concept increase. In general we observe that the improvement in

individual learning seems to reduce the amount of inter-agent communication required to

locate the queried semantic concepts.

3.3. Concept translation experiments

In the concept translation experiments, we set up the agents in the same way we did for the

concept similarity experiments except that this time we changed the names, or labels, for

each concept to make them unique. The summary of these experiments with no overlap

between test and train data using the Magellan ontology is given in Table 4 below.

The results of these experiments in 4-,8-, and 16-agent configurations is similar to the

locating similar concepts experiments. Although these experiments demonstrated the

feasibility of this approach, they also indicated the problem that two agents with diverse

ontologies have, i.e. missing key attributes in their semantic concept sets. This problem is

dealt with using the recursive semantic context rule learning algorithm (RSCRL). The

following results will show that the RSCRL algorithm improves the concept similarity and

translation algorithms considerably.

3.4. Recursive semantic context rule learning

In the recursive semantic context rule learning experiments (RSCRL) we demonstrate how

this algorithm is used to find key discriminating features in order to improve the MAS

performance in locating similar semantic concepts.

Figure 7. MAS communication costs with 100% overlap between test and train data (Lycos ontology).

Table 4. Concept translation MAS performance with no overlap between test

and train data (Magellan ontology).

# Agents Concept Precision Concept Recall Comm. Costs

4 0.022 0.116 63

8 0.047 0.17 159.94

16 0.027 0.132 271.94
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Table 5 shows the summary averages for these experiments testing this algorithm with

4, 8, and 16 agents. This table shows the average values for concept precision, concept

recall, and communication costs.

As in the other experiments, the concept precision was relatively small but relative to

the baseline, there was much improvement.

The graphs in Figures 8 and 9 show the group precision and recall comparison between

the concept similarity location, the concept translation, and RSCRL performance. We can

see that the RSCRL outperformed the other methods by attempting to solve the missing

key attributes problem. In relation to the baseline experiments, the concept precision

improved up to 150% and the concept recall improved up to 166% over the baseline

experiments as shown in the graphs below. The results for the sixteen agents were not as

good for eight agents due to an unanticipated but insightful occurrence. When sixteen

agents were sending and processing concept-based queries, their processing resources

were not able to keep up with the demand. Therefore, they were not able to learn the agent

Table 5. Learning key missing attributes.

# Agents Concept Precision Concept Recall Comm. Costs

4 0.035 0.142 78.6

8 0.085 0.336 157.5

16 0.069 0.345 273.47

Figure 8. Concept precision MAS performance with no overlap between test and train data (Magellan ontology).

Figure 9. Concept recall MAS performance with no overlap between test and train data (Magellan ontology).
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model rules fast enough to keep with the new queries being sent. We include these results

because they show that the amount of processing cycles, available memory, network

bandwidth, and frequency of queries impact the quality of the interpretation performance.

3.4.1. Query forwarding in a non-fully connected network

We ran two experiments to compare how the RSCRL algorithm would affect the

performance of agents in a non-fully connected network that forwarded their queries.

These experiments also used the Magellan ontology data with no overlap between the

training and testing data. In the first experiment we set up eight agents with randomly

selected neighbors as depicted in Figure 10 below. Each agent was given ontologies with

unique concept names. We set up each DOGGIE agent to perform concept translation and

query forwarding with a maximum of two hops for a particular query. In the second

experiment we had the same configuration except we also used RSCRL to see how the

group performance was affected. For each of these experiments, the DOGGIE agents

randomly send concept-based queries for two complete iterations of their concepts.

The results of these experiments are summarized in Table 6 below.

This table’s ‘‘No RSCRL’’ column corresponds to the first experiment, which performed

concept translation and query forwarding without the use of the RSCRL algorithm. The

‘‘RSCRL’’ column corresponds to the second experiment, which performed concept

translation query forwarding with the RSCRL algorithm. The agents were able to find

some of the concepts through concept translation and query forwarding as expected. The

Figure 10. Query forward configuration for RSCRL experiments with eight agents using uni-directional

communication.

Table 6. Query forward / concept translation summary.

No RSCRL RSCRL Change (%)

CP 0.052 0.082 57.8%

CR 0.191 0.265 38.7%

Comm. 37.94 38.28 0.9%
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RSCRL algorithm improved group performance as follows. The concept precision

improved 57.8% and the concept recall improved 38.7% with the application of the

RSCRL algorithm. Only a slight increase in communication costs was incurred at

0.9%. As in our other concept translation experiments with non-overlapping training

and testing data, the concept precision and concept recall were relatively small. However,

as expected, these values were greater than the fully-connected network configurations

since there were fewer neighbors assigned in these experiments. The fewer neighbors in

these experiments meant fewer messages were sent out during the group learning phase of

the experiment.

4. Related work

In the previous decade, researchers in artificial intelligence realized that different

knowledge bases and associated expert systems used different representations for

knowledge. This made the re-use of knowledge bases between different expert systems

very difficult and expensive. Through the Knowledge Sharing Effort (KSE) researchers

developed technologies for sharing knowledge between expert systems and intelligent

agents [6]. The KSE resulted in the development of methods for agents to communicate

and share knowledge. In particular, the three aspects of communications were part of their

focus – the syntax, semantics, and pragmatics of communication. One of the underlying

ideas of the KSE paradigm was that in order for agents to communicate, they needed to

share a common ontology. However, any human or computing agent has in his or its

‘‘mind’’ what objects and concepts exist in the world and can invent the particular concept

label used to represent that concept. This creates difficulty when agents with these diverse

ontologies attempt to share knowledge and communicate since they may refer to similar

semantic concepts using different terms. An agent’s ontology consists of the vocabulary of

terms in the language mapped to the elements of the agent’s conceptualization. A

conceptualization consists of all the objects and their interrelationships with each other

that an agent hypothesizes or presumes to exist in the world [9]. Meaning is given to

objects in a conceptualization by mapping these objects in the world to elements in the

language specified by the agent’s ontology.

In recent times, research has been performed that directly addresses this ontology

problem dealing with agents that originally handle diverse ontologies. [26] describes

an innovative evolutionary computation approach that enables a multi-agent system

(MAS) to converge to a common ontology using a language game. Since his research

is closely related to the proposed research it is important to point out the similarities

and differences. His research addresses a different, albeit important, problem of ontology

consensus. That is, how can other agents converge to using a common ontology, or a

shared lexicon, in what he refers to as a winner-take-all situation [26]. However, our

proposed research recognizes that agents may often want to maintain their own diverse

ontology but still be able to identify when they are referring to the same concept. For

example, in the future, a GE purchasing software agent might want to keep its own

ontology but know how it can communicate with a Siemens purchasing software

agent. This allows for each agent to maintain control over its own ontology but still be

able to communicate with each other. It is true that our proposed agents start off with
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diverse ontologies but their goal is not to converge to a common one as in [26]. The

language game described in [26] relies on the speaker and hearer agents determining

whether they use the same name to describe a single object but not a class of objects

(i.e. concept) as in the Distributed Ontology Gathering Group Integration Environment

(DOGGIE) system. This game assumes that meaning is defined as a pointer to a

single object. However, in our research, our agents are given the ability to generalize

several objects in order to find a ‘‘generic’’ description of concepts. In humans, this is

analogous to Web users organizing the information and knowledge in Web pages by

placing them in groups in a bookmark hierarchy, for example. [26] also demonstrates

how agents might finding discriminating features for concepts using sets of feature

detectors. The discrimination game is described for one object at a time rather than a

class of objects, or concept, as in our proposed research. Again, this is because our

approach makes use of machine learning techniques while [26] uses primarily evolutionary

learning techniques.

Differentiated ontologies having terms that are formally defined as concepts and

have local concepts that are shared have been addressed [27]. The relations they find

between concepts are based on the assumption that local concepts inherit from con-

cepts that are shared. In our approach, ontologies are not assumed to share commonly

labeled concepts but rather a distributed collective memory of objects that can be

selectively categorized into the agent’s ontology. Their approach uses rough mapping to

identify syntactic and semantic similarity between graphs of concepts with description

logic. Unlike most approaches, they allow agents to communicate directly rather than

translating to a central, shared language. However, they assume that the unshared

terms inherit from terms in shared ontologies while we assume DOGGIE agents do not

use shared ontologies. Their system was evaluated by generating description logic

ontologies in artificial worlds while the DOGGIE approach uses Web pages to construct

lightweight ontologies.

[8] argues the need for mechanisms for multi-agent systems to interoperate by using a

non-learning approach to enable different multi-agent systems to translate messages or

queries, for example. We tackle a different but slightly related problem when dealing with

agents that have diverse ontologies. Our approach uses learning to enable agents to

discover concept translations.

Machine learning algorithms have been used to learn how to extract information from

Web pages [4]. Their approach uses manually constructed ontologies with their classes

and relations and training data. Their approach uses machine learning to perform a form

of text categorization. The objective of their work is to construct a knowledge base

from the World Wide Web and not to find translations or relations between concepts in a

multi-agent system.

Several information agent systems attempt to deal with some issues in using ontologies

to find information. In the SIMS [15] system information agents use domain knowledge

and information source knowledge to query multiple, heterogeneous databases. Our work

builds upon their general notion of agents learning where to find relevant information and

using machine learning to aid in this. However, agents in the DOGGIE system are both

information sources and sinks and interact as both clients and servers. IICA [12], or

Intelligent Information Collector and Analyzer, gathers, classifies and reorganizes infor-

mation from the Internet using a common ontology rather than a group of diverse ones.
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OBIWAN [31] uses agents to organize information on the Web using ontologies by

mapping to centralized ontologies rather than each other agents’ ontologies. The

InfoSleuth Project [1] uses multiple representations of ontologies to help in semantic

brokering. Their agents advertise their capabilities in terms of more than one ontology in

order to increase the chances of finding a semantic match of concepts in the distributed

information system. The InfoSleuth system, however, is not an attempt to discover

translations between concepts in the different ontologies.

The Common Interest Seeker (COINS) uses local concept corpus functions like the

common ontology of the SHADE matchmaker [16]. [16] states that the COINS match-

maker clients do not have to agree on a shared ontology explicitly other than sharing a

common natural language. They state that COINS attempts to learn the ontology already

shared by the other clients by revising its corpus to get a better estimate of the information

content of words. Our approach differs from COINS in several key points. First, concepts

in DOGGIE system are represented explicitly using symbolic rules rather than just

document vectors. Second, our approach develops a method for locating and translating

similar semantic concepts, while COINS does not perform semantic translation. In the

DOGGIE system, the ‘‘matchmaking’’ is done by individual agents in a distributed manner

and not by a centralized matchmaker as in the COINS system.

The DOGGIE approach differs from the natural language processing approach taken in

the SENSUS system [14] by using ontologies created by individual agents and seeking to

find translations and relationships between these concepts by using inductive learning

techniques. Our research looks at how MAS performance is effected when locating and

translating concepts using an instance-based approach.

The OBSERVER [20] system uses predefined inter-ontology relations to deals with the

vocabulary sharing problem but the method of acquiring relationships whereas our

DOGGIE approach builds relationships with different ontology data. [20] outlines a

method for estimating loss of information based on terminological differences which may

provide valuable performance information for future DOGGIE experiments. The SCOPES

[22] multi-agent system views semantic reconciliation as a query dependent process that

requires flexible interpretation of the query context. It provides a mechanism to flexibly

construct a query context during coordinated knowledge elicitation.

[32] has promising results for mapping between ontologies using machine learning but

it is not studied in a multi-agent setting as in this work. Also, their mapping process uses

whole ontologies be used as input while our approach uses subsets of instances contained

in an agent’s single concept within its ontology. [33] demonstrate a method for integrating

documents into a master catalog using information present in the source catalog and

enhancing the use of the Naive Bayes classifier.

5. Conclusions and future work

We demonstrated how we address the ontology problem in a multi-agent system made up

of agents with diverse ontologies. We described how our agents learn representations of

their own ontologies using a machine learning algorithm and then seek to locate and/or

translate semantic concepts by using examples of their concepts to query each other. In

essence, our DOGGIE agents are able to teach each other what their concepts mean using
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their own conceptualization of the world. The learning method that used C4.5 with

RSCRL worked best due to its ability to handle missing descriptors in the ontology rules.

We plan to conduct experiments with this methodology for using more complex ontologies

represented with DAML + OIL [5]. We will continue to investigate how DOGGIE agents

perform when diverse learning styles are used. Although this work mainly deals with

polysemy, it is our hope that it can be extended to deal with other relationships such as

hyponymy, hypernymy, and meronymy. Classification by committee approaches may also

be used in future work to enhance the machine learning techniques used. This work serves

to introduce a novel methodology that may, in the future, prove useful for agents on the

semantic web [2] when dealing with the knowledge sharing issues resulting from diverse

ontologies.
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