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Testing Ten Theories

David Willer
Pamela Emanuelson
Department of Sociology, University of South Carolina, Columbia,
South Carolina, USA

Using the most comprehensive data set now available, this investigation tests
the precision of all exchange theories that now contend. Beyond precision, the
investigation focuses on broad issues of effectiveness including consistency,
parsimony, and whether the theories can be applied to structures larger than nor-
mally studied in the lab. Seeking greater parsimony, this investigation introduces
a new model by combining parts of two contending theories. We find that all ten
theories have scientific merit for all can predict with some effectiveness for the
exchange structures experimentally investigated. Nevertheless, the ten vary in
precision. Elementary Theory is the most precise. The new Expected-value
Resistance model ranks second in precision and is the simplest. Both apply to large
networks as well as the best of the other theories.

Keywords: experiment, explanation, network exchange, power, precision, prediction,
science, scope, social structure, theory testing

As theories of exchange have proliferated, it has become increasingly
difficult to determine which theory to use. To facilitate use, this paper
brings together all nine existing theories of network exchange,
explaining how each infers from initial conditions to predict sub-
sequent exchange outcome. A new theory, more parsimonious than
any previous outcomes, is introduced. Thus, we test fully ten theories.
The test begins by considering the consistency and parsimony of each.
Then the precision of the ten is tested using the most comprehensive
data set now available. Of necessity, that test is bounded by the scope
over which all ten contend.

Research reported here was supported by grants SBR-9423231, IIS-9817518 and
SBR-9811323 to the first author from the National Science Foundation.

Address correspondence to David Willer or Pamela Emanuelson, Department of
Sociology, University of South Carolina, Columbia, SC 29208. E-mail: dwiller@sc.edu
or pamelaemanuelson@juno.com

Journal of Mathematical Sociology, 32:165–203, 2008

Copyright # Taylor & Francis Group, LLC

ISSN: 0022-250X print/1545-5874 online

DOI: 10.1080/00222500802148743

165

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
7
:
1
2
 
1
8
 
M
a
r
c
h
 
2
0
0
9



These are theories that predict outcomes from social structure,
long a central problematic in sociology. That problematic has been
investigated by theorists as diverse as Marx ([1867] 1967), Weber
([1918] 1968), Blau (1964), and Merton (1968). More specifically, these
are theories of exchange networks that seek to predict exchange ratios
in structures of any configuration. To predict an exchange ratio is
to predict an agreement achieved by those who occupy connected
positions. In turn, the exchange ratios that actually occur indicate
which positions are advantaged and which are disadvantaged by the
structure. By convention, those who gain favorable exchange ratios
are said to exercise power (Lovaglia et al., 1995; Lucas et al., 2001).

This investigation points to a perplexity not anticipated by sociolo-
gists who have focused on theoretic methods such as Wagner (1984),
Cohen (1989), and Berger and Zelditch (1993, 2002), or by philoso-
phers of science such as Popper (1959, 1994), Hempel (1952, 1965),
Toulmin (1953), Kuhn (1970), and Lakatos (1970). Sociologists and
philosophers alike recognize that two or even three theories might
compete with each other, but in network exchange today, fully ten the-
ories contend. Nor are those ten theories simply orienting perspectives
which, like functionalism and conflict theory, disagree but fail to offer
predictions that could be tested against each other. To the contrary, all
ten theories compete over some or all of their scope and offer point pre-
dictions that are eminently testable.

Having as many as ten theories in network exchange points to both
a strength and a weakness of sociology as a science. The strength lies
in the very existence of ten viable theories and the creativity of formu-
lation each can claim. That as many as ten can claim, and indeed have
claimed, experimental support suggests that ‘‘the experimental model’’
is not irrelevant to sociology as some have asserted (e.g., Lieberson,
1985, p. 234). That the experimental method is relevant is good news
because it is a particularly effective method for testing theory.1

That ten theories are current, however, means that the theory
selection process basic to all science is not working. 2 The failure of

1As Lucas (2003) points out, the ‘‘external validity’’ problem, so often attributed to the
experimental method, is resolved when experiments test theory that applies outside the
lab, as do the theories tested here.

2Nevertheless, falsifications have occurred in network exchange. Friedkin demon-
strated that Markovsky et al.’s (1988) graph theoretic power index gave multiple contra-
dictory predictions for some networks (personal communication). That demonstration
and the struggle to fix the index are recounted in Lovaglia et al. (1996). Earlier, Willer
(1986) showed that Power-Dependence’s vulnerability procedure offered logically and
mathematically impossible predictions. It might be thought that if a theory is logically
consistent, it cannot produce inconsistent predictions, but graph theoretic and vulner-
ability procedures show that the suggestion is wrong. Both are internally consistent,
but both produce contradictory predictions.
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the selection process holds back the explanatory use of any of these
theories. Researchers who seek to apply theory to exchange networks,
including historical and contemporary social structures, are con-
fronted with too many theories, the relative capabilities of which are
by no means transparent. Far better, as emphasized by Einstein
(1933) and others, is to offer researchers the one most precise, parsi-
monious, and broadest theory.3

Previous tests of exchange theories (Skvoretz and Willer, 1993;
Lovaglia et al., 1995) considered, at most, half of the theories tested
here. Furthermore, those tests considered only one quality, precision.
We test ten theories and consider four qualities furthering their effec-
tiveness in prediction and explanation. We take it as axiomatic that to
be effective, a theory should

1. be internally consistent and consistent in predictions,
2. be as parsimonious in application as possible,
3. offer precise predictions and explanations
4. over as broad a range of applications as possible.4

We add one further criterion: To be useful, a theory must be easily and
publicly accessible. While a ‘‘private theory’’ may seem an oxymoron,
not all of these theories are readily accessible.

What counts as parsimony in theory deserves comment. At first
glance, it would seem that a count of each theory’s basic assumptions
would give its degree of simplicity, but that is not the case. As Popper
pointed out, judgments of simplicity based on the internal structure of
two or more theories require they be logically equivalent (1959, p. 139).
But as far as we can determine, no two of the ten theories have logi-
cally equivalent structures. Because they do not, there is no criterion
by which ‘‘basic assumptions’’ can be differentiated from assumptions
of other kinds. Thus, in determining parsimony, we follow Popper who

3Also see Lakatos (1970), Popper (1994), and Kuhn (1970). For Kuhn, the evolution-
ary image employed in his 1969 Postscript (found in Kuhn, 1970) is particularly to the
point.

4The four listed criteria are prominent in the works of philosophers of science and
sociologists already referenced and in Fararo and Kosaka (2003). We adopt the following
meaning for precision: ‘‘Theories are precise to the degree that they generate accurate
and detailed statements about phenomena.’’ (Markovsky, 1996, p. 34). Effectively the
same meaning is also found in Wagner and Berger (1985) and Wagner (1984, 1994).
By range of application we mean the variety of phenomena to which a theory can be suc-
cessfully applied. That meaning is drawn from Walker and Cohen (1985) and agrees
with meanings given in the previously cited papers.

Testing Ten Theories 167

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
7
:
1
2
 
1
8
 
M
a
r
c
h
 
2
0
0
9



equated simplicity with falsifiability, which is to say with parsimony,
in application (1959, p. 140ff).5

As defined here, the parsimony of a theory in application varies
with the numbers of steps needed to calculate its predictions. For
all but one of these theories, that number is very large. Why is it
large? Many of the theories are applied iteratively. That is to say,
they are applied once and the results of that application are fed
back to a second application, the second to a third, the third to a
fourth and similarly until successive applications give the same
results. Those results are the theory’s predictions at equilibrium.
As seen below, the only theories found to be parsimonious are not
applied iteratively.

We begin by discussing the ten theories in the order in which
they first occur in the literature, a discussion that centers on their
consistency and parsimony. With ten theories to cover, the dis-
cussion of each is necessarily brief. The aim is to show how each
theory works–how it calculates from structure to activity. For some
readers, more detail will be wanted and they are referred to original
sources that are liberally referenced. While reporting experiments
that test the precision of the ten theories, we offer a test of the
range over which each applies. The test is limited in that it focuses
on size, on whether the theories can be applied to any network sub-
stantially larger than the ones experimentally investigated. Beyond
size other issues of scope are not taken up in this paper for they
would require its size to be at least doubled.6

5To our knowledge no one has suggested that a lack of simplicity is sufficient to reject
a theory; nevertheless, parsimony is a desirable quality. For a theory to become rapidly
more complex is a clue to the theorist that a new start would be fruitful. For example,
shortcomings in the graph theoretic power index found by Friedkin (see footnote 2) were
solved only by making that index massively more complex (Lovaglia et al., 1999) such
that it has been displaced by the much simpler Girard and Borch method given later
in this paper. As will be seen, some of the ten theories have become more complex as they
were developed.

6Some of the theories tested here have no scope of application but that investigated in
the experiments; however, others are broader. Comparing the broader theories, beyond
the scope tested here, there is little or no scope overlap. This lack of overlap introduces
incommensurability blocking judgments of relative breadth of scope. For example,
Expected Value Theory also applies to influence structures, but Elementary Theory does
not. By contrast, Elementary Theory recognizes seven power conditions, but Expected
Value Theory recognizes only exclusion, the one investigated here. Which scope is
broader? Incommensurability blocks any answer to that question.
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SOCIAL STRUCTURES IN THE CONTENDED SCOPE

The experiments of this study test the whole of the scope common to
the ten theories. The scope common to the ten theories is marked by
two conditions that can be traced to the first network exchange experi-
ments (Stolte and Emerson, 1977). The two are: 1) for each round of
negotiation, each position is limited to, at most, a single exchange,
and 2) exchange is simulated by a pool of resources that is divided
upon agreement by subjects in connected positions.7 A pool of 24
resources has become conventional (Cook and Emerson, 1978). As a
result, only the shape of the network determines which positions are
advantaged or disadvantaged, and that advantage=disadvantage is
determined by whether positions are excludable or not (Skvoretz
and Willer, 1993).

The L4 network of Figure 1 is used to show how exclusion works.
The B positions are nonexcludable because each always has its A as
partner for exchange. Each initially has the other B as well. Since
all positions are limited to a single exchange, if the Bs exchange with
each other, the As will have no partner, will be excluded from
exchange, and will receive no payoff. To avoid exclusion, it is reason-
able to infer that the As will make better offers to the Bs than the
Bs will make to each other. Inferring further, the Bs will then
exchange with the As. More generally, the problem for the ten theories
is to predict from the possibility of exclusion to offers and from offers to
exchange ratios.

The justification for studying networks like those of Figure 1, if
such is needed, rests to an important degree on whether exclusion,
as a power condition, is found outside the laboratory. Fortunately
it is. As Corra (2005) points out, exclusion and ‘‘separation’’ refer
to the same phenomenon. The concept of separation was first formu-
lated by Marx, then used by Weber, and has subsequently entered
into much mainstream thinking. For Marx, the ability of the capital-
ist to exploit the worker is based on the worker’s separation from
the means of production ([1867] 1967, p. 37ff). For Weber, the separ-
ation of the official from the means of administration, the warrior
from the means of warfare and the researcher from the means of
research are central to domination ([1918] 1968, p. 980ff). Separ-
ation indicates whether exclusion is possible, a condition ubiquitous
in the field.

7Van Assen (2001) has shown that payoffs from resource pool divisions are similar to
some but not all exchanges.
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Why the Seven Networks Were Selected

Since there is an uncountable number of networks that could be
employed to test the ten theories, it is quite impossible for any study
to be exhaustive. We certainly do not make that claim. To the

FIGURE 1 Seven weak power networks.
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contrary, we first developed criteria for the kind of networks that
would provide the best test and then strategically selected by those cri-
teria. While the resulting data set is discussed later, it should be noted
that, for the criteria 1) this is the only extant data set, and 2) it is lar-
ger by a factor of ten than the largest data set previously employed in
testing exchange theories. Here are the criteria.

First, to evaluate relative precision, network structures must be
selected such that different theories make predictions distinct enough
to be differentiated by experimental results. Within the scope common
to the theories, three types of exchange networks have been identified:
strong, equal, and weak power (Skvoretz and Willer, 1993; Lovaglia
et al., 1995). Applying the four oldest of the ten theories, we now show
that weak power structures offer the best test.

In a previous investigation of a strong power network where 24
point pools were divided, the Core, Power-Dependence Theory, and
Expected Value Theory predicted that the high power position would
receive 24, 24, and 22 points, respectively (Skvoretz and Willer,
1993) while Elementary Theory predicts 23 (Walker et al., 2000).
Far from being distinct, these predictions are very nearly identical.
Moreover, the four theories make these predictions for all strong
power networks. In equal power structures, the four theories make
identical predictions. Since all positions are homomorphically equiva-
lent, all receive equal payoffs.8

Unlike strong and equal power, weak power networks offer many
opportunities to test theories. For the weak power Stem of Figure 1b,
the four predict that the higher power position receives 20.1, 18, 17.8,
and 14.4, respectively. But for the second to third, the predictions are
distinct enough to be differentiated by experimental results. More gen-
erally, as can be seen in Table 1, the predictions of all ten theories for
weak power networks vary substantially and it is for that reason that
the test for precision will focus on that type.9

The second criterion asserts that the conditions of the test should fit
conditions assumed by the theories. With one exception (Burke, 1997),
all of the theories explicitly assume a rational actor model. It follows
that experiments should allow subjects to decide rationally. Since
rational actors consider all ‘‘relevant information’’ in making their

8Homomorphically equivalent positions cannot be distinguished once arbitrary labels
are removed. Since positions are indistinguishable, it is logically and empirically imposs-
ible to assign different payoffs across positions.

9Beyond strong, equal and weak, there are also compound networks that contain
breaks resolving them into strong, weak and/or equal power component parts. See dis-
cussion of Figure 2.
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decisions, the best experimental setting is one that provides subjects
with that information. By convention, the relevant information is all
offers, counteroffers and agreements, not just of exchange partners,
but of others distal in the network. Distal information is significant
because distal events can affect local agreements (Markovsky et al.,
1988; Girard and Borch, 2003). For example, in A–B–B–A network,
all theories agree the As are disadvantaged, but after the A–B
exchange at one end occurs, the pair at the other end are a dyad
and the A’s disadvantage disappears. As explained later, the proce-
dures we employed provide the aforementioned information to all sub-
jects. In fact, the data set of this paper is exhaustive of all research so
conducted on weak power networks (see below).

The third criterion concerns the selection of the seven weak power
networks of Figure 1 from the universe of weak power networks. There
is precedent for the selection of these particular networks. Five of the
seven were proposed as common networks for which predictions
should be generated by three of the oldest theories: Power-Depen-
dence, Expected Value, and Core. Those five networks, the three the-
ories, and their predictions subsequently appeared in a special edition
of Social Networks (1992).10 The authors of all of the ten theories could
have been aware of these networks–and we believe that all were
aware–as they were developing their theories. As a further check,
two more networks will be studied: DBox and Box-Stem. By including
DBox, the investigation is exhaustive of all four-node weak power net-
works while the Box-Stem differs by only one connection from the two
other six-node networks.

The fourth criterion concerns the selection of relations within the
networks. Just as structures are selected such that different theories
made distinct predictions, relations within those structures are simi-
larly selected. Table 1 lists those relations. Other relations, like B–B
in L4 and E–E in K-Stem are not reported because, like relations
in equal power networks, these are relations between identical posi-
tions that offer no opportunity to compare differences in predictive
precision. Relations between very similar positions like C and D of
K-Stem and Borg-6 will also not be reported because, due to that simi-
larity, predicted power differences are too small to be experimentally
differentiated.

10One further network, the Kite also was listed in that special edition, but power dif-
ferences predicted for it by all theories are too small. Thus, by criterion 1, it is not
included here.
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TEN THEORIES

Here we explain how each of the theories predicts for the Figure 1 net-
works and consider their parsimony and consistency. Later sections
explain experimental procedures, report experimental results, evalu-
ate precision of predictions, and compare range of application within
the contended scope. The ten theories are taken up in order of initial
publication date. When the predictive procedure is a part of a larger
theory, it is referred to in the text as a ‘‘model.’’ When the predictive
procedure is the whole of the theory, it is called a ‘‘theory.’’ Two of
the ten theories, X-Net and Identity, are simulations: programs for
them are available from their authors.

Of the ten theories, only two, Network Nash and the Expected
Value - Resistance Model, are simple enough that they can be applied
through hand calculations. Applying the other eight theories calls for
calculations so extensive that hand calculations are not practical if
only because of the risk of error. Those eight theories are applied
through computer programs; unavoidably, many programs were not
written by the author(s) of the theory. Nevertheless, we are confident
that it is the theory in question and not merely the program that is
being tested. When a program not written by the author of the theory
is called into use, we have proved its accuracy by comparing it to all
predictions published by the theory’s author(s).

Power-Dependence Theory

The roots of Power-Dependence Theory are found in Emerson (1972a,b)
where ‘‘social structure is taken as the dependent variable’’ (58 [italics
original]). In that early work, the aim was to predict social structure
from satiation effects on operant actors. In subsequent work the foun-
dations of the theory were reversed such that social structure became
the independent variable and a rational actor model was deployed to
link structure to subsequent activity (Cook and Emerson, 1978; Cook
et al., 1983). More recently, Cook and Yamagishi (1992) predict activity
using an equidependence algorithm–a model that gives point pre-
dictions for exchange ratios in networks like those of Figure 1. In
Power-Dependence Theory, a ‘‘connection is negative if exchange in
one relation is contingent on nonexchange in the other’’ (Cook et al.,
1983). Because positions in the Figure 1 networks are limited to
maximally one exchange, the relations are negatively connected.

Equidependence sees actors as comparing payoffs in their rela-
tion to payoffs they could receive in their best alternative relation.
Negotiations are seen as ongoing to equidependence that occurs when
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differences between payoffs for the two in their relation and payoffs
from their best alternatives are equal (Cook and Yamagishi, 1992,
p. 247). For example, when i’s payoff when exchanging with j is Rij
and i’s payoff in the best alternative relation is Aij, then dependence
for i and j are equal when:

Rij� Aij ¼ Rji� Aji ð1Þ
Consider an i� j relation in which i has an exclusive alternative to
exchanging and j does not. When the i-j relation’s pool has 24 points,
i has a best alternative of 12 points and j has no alternative,
Rij� 12 ¼ Rji� 0. Since, for any agreement, Rijþ Rji ¼ 24, by substi-
tution, at equidependence, Rij ¼ 18 and Rji ¼ 6.

In larger networks, negotiations are seen as ongoing until equidepen-
dence is reached throughout the network. Corresponding to that process
is an algorithm that begins with the default of equal Rij values from
which to calculate initial Aij values. Then Rij values are recalculated
as are Aij values and similarly converging to the solution. Since this
is an iterative solution, it is not practical to hand calculate Rij values.
Instead, the values given for equidependence in Table 1 were produced
by a program written by John Skvoretz.11 His program is limited to 10 or
fewer nodes and may be unsuccessful for highly dense networks. Values
for five of our seven networks were also offered by Cook and Yamagishi
(1992) and their values agree with those given by the program.

There is a consistency problem.12 Some Power-Dependence predic-
tions are not consistent with equidependence. For example, for L5-
Stem of Figure 1g, the algorithm predicts RAB ¼ 8, RBA ¼ 16, RDC ¼ 8,
and PCD ¼ 16. Since A and D have no alternative, plugging these
values into equation 1 we find that B and C each earn 8 in their best
alternative. That best alternative is when B and C exchange with each
other. Since they each gain 8, they are dividing only 16 of 24 points, a
division impossible for the rational actor of Power-Dependence
Theory. That division is impossible because its rational actors in the
B and C positions will not settle for the Pareto suboptimal division
of 16 when fully 24 are available to divide.13

11This program and, with noted exceptions, others mentioned below are available
from the authors of this paper.

12The consistency problem is not due to a glitch in Skvoretz’s program: the inconsist-
ent predictions are given by Cook and Yamagishi (1992).

13As can be seen by examination of equation 1, Power-Dependence predictions for
agreed upon exchange ratios will shift as subject utilities differ. Predictions for experi-
ments just referenced by Power-Dependence theorists are not qualified by those utility
differences nor are ours. Power-Dependence theorists have not tested this part of their
theory nor do we, a scope limit of this study. Still, even if differing utilities do shift agree-
ments, random assignment and systematically changing subject pairings in exchange as
in the reported experiments should wash out the effects.
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Elementary Theory

Elementary Theory can be traced to Willer and Anderson (1981) and
Willer (1984). The theory consists of a modeling procedure for repre-
senting social relations and structures, two principles–the first of
which asserts that theoretic actors are rational–and two laws. The
goal of the theory is to predict from initial conditions of relations in
structures to actions such as rates of coercion and exchange ratios.
For networks like those of Figure 1, three different models for predict-
ing exchange ratios have been offered (Lovaglia et al., 1995; Lovaglia
and Willer, 1999). The simplest of the three, ‘‘GPI-R,’’ has also proved
to be the most precise (Emanuelson, 2005; Burke, 1997). As explicated
in the paragraph to follow, the GPI-R model has two components: A
‘‘seek-likelihood’’ method for calculating the chance that each position
will be included in exchanges (the ‘GPI’), and resistance equations for
predicting exchange ratios from the likelihoods of each pair of posi-
tions (the ‘R’).

GPI-R is a 2-level procedure. At the actor level the ‘R’ refers to
resistance, the values of which are affected by those seek-likelihoods.
At the level of structure, ‘‘GPI’’ originally referred to the graph-theor-
etic power index, but that index was first supplemented and then sup-
planted by seek-likelihoods. While ‘‘Seek-R’’ would be a better term
today, following usage elsewhere we use GPI-R.

Resistance uses each actor’s mixed motives in exchange to predict
exchange ratios and thus power exercise. PA is A’s payoff, PAmax is
A’s best payoff and PAcon is A’s payoff at confrontation, when A–B
agreement does not occur, and similarly for B. Then for an A–B equal
power dyad,

RA ¼
PA max�PA

PA � PAcon
¼ PB max�PB

PB � PBcon
¼ RB ð2Þ

and, when Pmax ¼ 24 and Pcon ¼ 0 for both, by symmetry, PA ¼ 12
and PB ¼ 12.

GPI-R sees actors as exchanging at equiresistance as affected by the
likelihood that their positions are not excluded from exchange. The li

seek-likelihood values are calculated for L4 in the following way. Each
position is seen as seeking exchange equally with all partners. Thus
each B seeks exchange with it’s A .5 of the time and with the other
B .5 of the time while each A seeks exchange with its B 1.0 of the time.
The joint probability that the Bs exchange is .5� .5 ¼ .25 and when
they exchange the As are excluded. Thus, lA ¼ .75 and lB ¼ 1.0. When
resource pools ¼ 24, the weak power model assumes that Pmax varies
between 24 and 24=2 ¼ 12 and Pcon between 24=2 ¼ 12 and 0; and
that both vary proportionally with the likelihood (l) that the position
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is included. That is, PAmax ¼ 12 (1þ lA) and PAcon ¼ 12 lA. Therefore,
PBmax ¼ 24, PBcon ¼ 12, PAmax ¼ 21 and PAcon ¼ 9 and

21� PA

PA � 9
¼ 24� PB

PB � 12

Since the sum of A’s and B’s payoffs is 24, solving PA ¼ 10.5 and
PB ¼ 13.5.

Calculation of l values has proven to be problematic. As numbers of
relations and nodes increase, the procedure for calculating l values
rapidly becomes complex. Furthermore, the procedure given in
Markovsky (1992) and later in Willer (1999) is underdetermined and
produces contradictory l values.14 A new solution by Girard solves
the underdeterminacy problem, but computation is substantially more
complex making hand calculation infeasible. Fortunately, the solution
is available as an applet on the Website of the first author where it is
limited to maximally 13 positions and 33 relations. Girard’s applet
values are used for GPI-R predictions.

X-Net

The third oldest theory of network exchange is X-Net, a simulation
program developed by Markovsky: the program is available by
request.15 Though first described in the 1992 special edition of Social
Networks (Markovsky, 1992) and reviewed in detail three years later
(Markovsky, 1995), the theory was being distributed to interested
scholars by 1990 as a working program. It may be older still:

The core idea for X-Net was the idea of simulating negotiations by hav-
ing actors reduce their offers one unit when included and raising one
unit when excluded. This came directly from simulations by Yamagishi
described in Cook et al. (1983). So it could hardly be said that X-Net was
a new theory. (Markovsky, p.c.)

In fact, X-Net is an agent-based modeling procedure in which
simulated agents using simple rules are interdependently connected
into exchange networks (Macy and R. Willer, 2002). The actors are
backward-looking and the patterns they produce emerge from the con-
ditions of the network in question.

14The simplest network for which contradictions are produced is A–B–C–B–A. Begin-
ning l calculations at either B gives distinct and different values to the two Bs and also to
the two As. Giving different values to the Bs is contradictory because the two are ident-
ical and similarly for the two As.

15In some of the exchange literature, simulation results have been presented as data
supporting theory. Simulations like X-Net are theories and its results are predictions.
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In testing X-Net, something more than a simulation is implicated.
The idea of actors adjusting offers in light of exclusion is a part of the
theory offered by Markovsky, Willer and Patton (1988) where it occurs
as a scope limit. Alternatively, treated as a predictive mechanism,
X-Net is a realization, in simulation form, of that part of their theory.

To generate X-Net’s predictions, we used the program to construct
and run each of the Figure 1 networks. The initial conditions have
already been discussed–one exchange per round and 24 resources in
each relation–but other values could have been chosen. All simulated
actors initially divide resource pools equally and then revise offers in
subsequent rounds by keeping one more unit when included and offer-
ing one more unit when excluded as described above. Agreements occur
between actors with complementary offers and, when any agent
receives more than one complementary offer, one is selected randomly.
All of X-net’s conditions were left at their default settings but for the
number of rounds that the simulation was run. The default is 25 rounds
but 99 were run–the maximum possible for the program–with predic-
tions drawn by averaging resource divisions in the last 10 rounds.

Problems of inconsistency generally show up first in predictions.
(See footnotes 2 and 12.) For the default settings used, X-Net pre-
dictions as given in Table 1 do not appear to include inconsistencies.
Barring the possibility of bugs and glitches for other settings, X-Net
can be applied to any network with 24 nodes or less and any number
of relations–including the 276 relations of a fully connected 24 position
network.

Quantified Core

Bienenstock and Bonacich (1992, 1993) adapt the Core from Game
Theory where it was developed by Shubik (1982) to find the payoffs
that could be gained by coalitions. The Core applies to exchange net-
works by analogy: Exchanges are identified with the Core’s coalitions.
The Core employs Rapoport’s (1970) three kinds of rationality. Individ-
ual rationality asserts that no individual in a coalition will accept less
than she could gain individually; coalition rationality asserts that no
set of actors will accept less than they can earn in a coalition together;
and group rationality asserts that the coalition of all will maximize
total reward. Since actors in exchange networks can gain nothing indi-
vidually, individual rationality asserts only that any actor prefers to
exchange than not. Applying group rationality to exchange networks
infers that no exchanges will occur in ‘‘suboptimal’’ relations. A
relation is suboptimal if, when exchange occurs in it, there are fewer
exchanges in the network than would occur maximally. Examples in
Figure 1 include B–B in L4 and DBox and either B–C in L5-Stem.
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Coalition rationality provides most of the predictive power and does
so by drawing ‘‘characteristic functions’’ and their contingencies in the
following way. For the A–B–C strong power network under the 1-
exchange rule, two possibilities exist: B can exchange with A or with
C. Therefore,

PA þ PB ¼ 24 or PB þ PC ¼ 24

and only PB ¼ 24 satisfies both. That is to say, PB ¼ 24 is the core.
Therefore, the Core predicts here and for any strong power network
that the high power position(s), like B, gains all the pool (or all minus
D, the smallest unit). By extension, for the weak power L4,

PA þ PB ¼ 24 and PB þ PB � 24

Referring to either A–B exchange, ‘‘While an equal division within
each pair is in the core, inequality is also possible if it favors the Bs’’
(Bienenstock and Bonacich, 1992, p. 237). When a weak power net-
work has a core (and some do not), the core offers, not a point predic-
tion, but, following Bienenstock and Bonacich, a range within which
resource divisions should occur. Whereas point predictions are pre-
ferred, both for their precision and falsifiability, the strength of the
core lies in its parsimony.16

Skvoretz and Fararo (1992) offer a quantification for the Core that
averages across a systematic enumeration of all possible outcomes in
the Core. For example, enumerating outcomes for L4, when one A–B
pair divides 0–24, there are 25 divisions possible for the second pair:
24–0, 23–1, 22–2 . . . to 0–24––and similarly for all possible pairs of
divisions. In slightly larger networks, like K-Stem and others with
six nodes, there are triples to enumerate. It is not practical to carry
out this complex enumeration by hand. Having written the program
in Mathematica, Bonacich provided the authors with predictions for
DBox and Box-Stem while the remaining predictions were sourced
from Skvoretz and Fararo (1992). The Quantified Core reverses the
strengths of the Core. The Core is simple but predicts a range of pay-
offs for positions in weak power networks, while the Quantified Core
gives point predictions, but at the cost of substantial complexity.

16But in L4 it is not clear to us that both Bs must gain 12 or more. For example, if one
B gained PB ¼ 18, by the expressions above the other could gain as little as PB ¼ 6. Thus
it seems to us that both Bs need not be favored. Nevertheless, for testing this and other
networks we follow Bienenstock and Bonacich.
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Expected Value Theory

Friedkin’s Expected Value model (1992, 1993, 1995) sees network
structures as defining opportunities to exchange. Each configuration
in which those opportunities are realized is a subnetwork: the set of
all subnetworks that can occur is the sample space. Only maximal
subnetworks, where all exchanges that can occur do occur, are con-
sidered. For example, in the 1993 formulation, the sample space of
A–B–B–A consists of three subnetworks: one where the A–B exchange
to the right occurs before the B–A exchange to the left, one where that
sequence is reversed, and one where the B–B exchange occurs. Assume
that each subnetwork is equally likely. Since the Bs are included in
all subnetworks, the probability that either B is included is 1.0. By
contrast, since each A is included in only two of three subnetworks,
the probability that A is included is 2=3 ¼ .667. Here, as in Elementary
Theory, likelihoods of being included indicate the relative structural
power of each position in the network. A position with a likelihood
of 1.0 is more powerful than its partner with a likelihood of .667 and
will be able to demand and receive better resource divisions.

Resource divisions are predicted in the following way. ‘‘The depen-
dency of actor i on actor j is the probability that actor i is excluded
from an exchange and that the two actors do not exchange with each
other.’’ (Friedkin 1992: 222). For example, the dependency (d) of A on
B in L4 is .333 and of B on A is zero. Friedkin calculates ‘‘f,’’ the initial
offer for each using

f ¼ 24� 23ð1=23Þd ð3Þ

Initial offers do not necessarily match so three compromise rules infer
from them to predicted divisions. If the sum of two initial offers is more
than the resource pool (24), they split the difference back to the pool. If
both ask less than half the pool, they divide the difference equally. If
one asks for half or more of the pool and the other less and the sum is
less than the pool, the difference goes to the actor with the lower claim.

By 1995, the assumption of equal likelihoods for subnetworks is
withdrawn in favor of formulations calculating weights, wij of each
exchange relation and thus each subnetwork. According to Friedkin,
‘‘exchange between actors i and j is likely only when the exchange is
relatively attractive to both parties’’ (1995, p. 215). Following that
logic, wij is set equal to the ratio of the payoff to i in the i� j relation
over the sum of all i’s possible payoffs times the ratio of j’s payoff in
i� j over the sum of all of j’s possible payoffs. This formulation
requires an iterative solution. Beginning with 1993 likelihoods, appli-
cation of Eq. 3 and the compromise rules, wij values are calculated that
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are used to weight subnetworks giving new predicted rates of
exclusion. Then those rates feed back through Eq. 3 and compromise
rules to new payoffs, to new weights, and similarly to equilibrium
when successive calculations give similar payoffs.17

In application to weak power networks, the 1993 version of Expected
Value is more parsimonious than Elementary Theory, Power-
Dependence, or the Quantified Core. Unlike Elementary Theory,
Expected Value’s 1993 procedure for assigning likelihoods to the net-
works of Figure 1 can be easily hand calculated. By contrast, the 1995
version is far more complex. It is at least as complex in application as
Power-Dependence and Quantified Core. Nevertheless, that complexity
buys greater precision, and it is the 1995 predictions that will be used.
Expected Value appears free of contradiction, but its complexity in
application makes hand calculation impractical. We are indebted to
Marcel van Assen whose program gave the predictions of Table 1.

Rational Exchange

Coleman’s Rational Choice Theory (1973, 1990) initially assumes that
every actor can exchange with every other actor, but barriers between
actors that produce network structures are also considered (1990,
p. 892). Skvoretz and Fararo (1992) have offered a modified version
for 1-exchange networks. In that version, network structure is pro-
duced by the distribution of i’s ‘‘consent rights’’ that designate the
positions in the network with which i may exchange. There is an
exchange relation linking i and j if the consent rights of each includes
the other. Following their discussion, in the B–A–C network, assume
that B and C are interested in their own and A’s consent rights, but
A is interested only in B’s and his own consent rights. It follows that
only A and B can exchange and the network collapses into a dyad.
More generally, beginning with an all-to-all network of at least six
nodes, varying the distribution of consent rights produces all possible
connected networks of six or fewer nodes including the experimental
networks of this investigation.

While Skvoretz and Fararo’s description of the theory is sketchy, the
prominence of Coleman’s work and the existence of a modified version
adapted to exchange networks argue strongly for its inclusion–as does
its prior inclusion by Lovaglia et al. (1995).18 The program for it by

17The calculation of wij values allows the 1995 formulation to be applied to networks
in which resource pools are not equal in size. See Bonacich and Friedkin (1998).

18We date the Skvoretz-Fararo version of Coleman’s theory to 1995 for it was then
that predictions from it were first tested (Lovaglia et al., 1995).
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Skvoretz is used here to generate the predictions given in Table 1. The
program is limited to ten or fewer nodes. Beyond the fact that the pro-
gram produces plausible predictions, we can say little about the parsi-
mony or consistency of this theory.

Substitutable Exchange

Borrowing the terms substitutable and complementary from neoclassi-
cal microeconomics, Yamaguchi (1996) offers a theory for exchange
networks grounded in Coleman but developed from those roots in a
way quite different from that offered by Skvoretz and Fararo (1992)
above. Yamaguchi identifies substitutability with Power-Dependence
Theory’s negative connection, but Yamaguchi’s substitutability is a
variable quantity whereas negative connection is dichotomous–it
is either present or absent. The exclusively connected networks of
Figure 1 are negatively connected in the sense that exchange in one
relation is contingent on nonexchange in another (Cook et al., 1983).
But according to Yamaguchi, ‘‘negative connection exists in the rela-
tions B–A–C when, for actor A, resources available from actors B
and C are substitutes for one another.’’ (1996, p. 310)19

For economists, two commodities are substitutable if an increase in
the price of one increases demand for the other (Clower and Due, 1972,
p. 81; Case and Fair, 1994, p. 129). Since exchange networks are not
markets and resource divisions are not commodity purchases, it is
necessary to interpret the term for the network exchange application.
For Yamaguchi, exchange relations ‘‘are closely substitutable (or nega-
tively connected) to the extent that actor A’s exchange of resources
with one actor (say, B) decreases actor A’s demand for exchange of
resources with the other actor C’’ (1996, p. 310 [italics original]). In
fact, the restriction of each position to maximally one exchange,
together with the identity of resources across relations, assures per-
fect substitutability by his definition for all Figure 1 networks.20

19Yamaguchi (2000) identifies complementarity with Power-Dependence Theory’s
positive connection. Since that condition is not within the contended scope it is not dis-
cussed here.

20Details of the experimental design used here had been published prior to Yamaguchi’s
1996 paper. In that paper he suggests that, in these experiments, relations are not per-
fectly substitutable because time constraints introduce transaction costs when switching
partners, but that suggestion is not correct. In these experiments, negotiations do not go
on first in one relation and then switch to become ongoing in another. To the contrary,
subjects negotiate in all of their relations simultaneously and normally have standing
offers in all prior to selecting their best deal. Pretests allow time constraints to be set
so that subjects can optimize across their alternatives.
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Predictions for resource divisions are calculated iteratively using two
equations found in the Appendix of his 1996 paper. These iterative cal-
culations are too complex to be carried out accurately by hand. A pro-
gram written by Simpson and Markovsky allows calculation of the
predictions. As a check, predictions from that program were found to
agree with ones given in Yamaguchi. For Table 1, since these networks
have perfect substitutability, we set s ¼ 200, the highest substitutabil-
ity value that could be run for all of the networks.

It is difficult to evaluate the internal consistency of this theory
because it is incomplete (Markovsky et al., 1997). No procedure is
offered by Yamaguchi–and none is available from microeconomics–to
set values for ‘‘s,’’ the ‘closeness’ of substitutability. Yet as s varies
so do predictions offered by the theory. Resource divisions should be
most unequal when substitutability is perfect–when s is large–because
then positions are free to switch partners to select their best offers.
Differences should decline as s declines because switching across rela-
tions is inhibited. As seen in predictions offered in Yamaguchi’s 1996
paper, however, the inequality of divisions increases as s declines and
decreases as substitutability becomes perfect.

Identity Theory

Burke’s Identity Theory for exchange networks (1997) is a simulation.
The simulation is agent-based and, like X-Net, 1) each actor in each of
the Figure 1 networks is an agent, 2) the actors are backward-looking
adjusting their behavior relative to their goals, and 3) the patterns pro-
duced emerge from the social structural conditions of the network under
consideration. Unlike X-Net, Burke’s simulated actors are engaged in
an identity process in which behavior controls the match of the actor’s
perceptions to assigned goals with the whole process being mediated
by the social structural environment. The assigned goal is to maximize
participation which is to say to avoid exclusion and, to the extent that
that goal is reached, to avoid gaining zero points.

We did not run this simulation. Resource divisions were supplied by
Burke. As in the first resource divisions reported in Burke (1997), the
Figure 1 values are from a run of 40 rounds of the simulation. Burke
calls 40 ‘‘an arbitrary limit’’ (p. 145). Equilibrium values are found by
running the simulation longer. We say more about equilibrium predic-
tions below. Contrary to Identity Theory, (p. 140) the subjects in our
experiments are not instructed to participate in as many exchanges
as they can. Instead they are instructed to earn as many points as they
can. Because the agent’s and subject’s goals are not identical, the
experiments are formally outside the scope of Identity Theory. That
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Identity Theory’s scope is distinct should not, in itself, exclude it from
contending with the other nine theories. Identity Theory may be able
to predict effectively even in experiments that are outside its scope.
Whether it does or not, below we suggest a new line of research inves-
tigating action in structures with subjects motivated like Burke’s
agents.21

Network Nash

Braun and Gautschi (2005) offer a theory that generalizes the Nash
bargaining model to predict resource divisions in exchange networks.
When xij is i’s share of a resource division with j, the Nash solution is
the maximum of the product of the payoff to i and the payoff to j ( max
xij� xji). In exchange networks the sum of xij and xji is v, the size of the
pool.

Braun and Gautschi generalize Nash by adding the term, bi that is
i’s bargaining power:

max bixij � bjxji ð4Þ

or xij ¼ v bi=(biþ bj). In ‘‘negatively connected’’ networks like those of
Figure 1, when w is a constant of proportionality and ci is i’s control,
the bargaining power of i, bi ¼ �1=ln (wci).

Here is how ci and w are calculated. The term ci is i’s control and it
is the sum of the reciprocals of the number of ties of each of i’s
exchange partners divided by the number of i’s partners. For example,
in the Stem, B has three exchange partners, A, C1, and C2, while A has
one partner and each C has two. For B the sum of the reciprocals is
1þ 1/2þ 1/2 ¼ 2. Since B has three partners, cB ¼ 2=3 ¼ .667. Since
A has one partner who has in turn three partners cA ¼ 1=3=1 ¼ .333.
Specific to any given network, w is a constant of proportionality that
is the sum of the number of positions in a network and the number
of relations divided by that sum plus 1. For the Stem,
w ¼ (4þ 4)=(1þ 4þ 4) ¼ 8=9 ¼ .889. Plugging w together with cA and
cB values into the equation for bi above: bB ¼ 1.911 and bA ¼ .8224.
Finally, plugging into the equation for xij, B’s payoff when exchanging
with A is 16.78.

Here are the strengths and a possible shortcoming of Network
Nash. The strengths of Nash when adapted to networks are 1) its par-
simony and 2) freedom from internal contradictions. It is easy to apply

21It is not unusual for theories to be applied outside their scope. The classical gas
laws are for an ‘‘ideal gas’’ that, because its atoms are dimensionless, cannot exist. Thus
all applications of gas laws are formally outside their scope, yet useful predictions result.
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Network Nash: the values of the previous paragraph were found using
a hand calculator. A possible shortcoming is that Network Nash is
simple because it considers only local networks–only two steps from
i–when calculating i’s bargaining power. By contrast, in formulating
predictions, all other theories take into account the whole network
structure. Whether this proves to be a problem is beyond the scope
of this investigation.

Expected Value-Resistance Model: An Exercise
in Theoretical Unification

The Expected Value-Resistance (EV-R) Model, constructed by the
authors of this paper, is presented here for the first time. Looking over
the theories above, we were struck by their complexity yet saw an
opportunity to build a particularly simple model. The opportunity
arose because a central idea is shared by Elementary Theory and
Expected Value Theory. Both measure the structural power of net-
work positions by their likelihood of avoiding exclusion. Each has its
own procedure for calculating likelihoods, and each has its own pro-
cedure for inferring from likelihoods to exchange ratios. From
Expected Value we borrow the 1993 procedure for finding likelihoods
of being included. From Elementary Theory we borrow resistance in
order to calculate exchanges from those likelihoods.

Predictions are generated in just three steps: 1) find likelihoods, 2)
use likelihoods to find Pmax and Pcon values, and 3) plug those values
into the resistance equation and solve. Take as an example the L5-
Stem network. To find likelihoods first list all exchange events that
can happen together in all possible orders as in: 1) A–B, C–D, B–A;
2) A–B, B–A, C–D; 3) C–D, A–B, B–A . . . and similarly through the
ten event possibilities. Looking through the event possibilities, both
Bs occur in all ten events and both As in eight. Assuming all events
are equally likely, lB ¼ 1 and lA ¼ .8. From the discussion of Elemen-
tary Theory above, PAmax ¼ 12 (1þ lA) and PAcon ¼ 12 lA. Therefore,
PAmax ¼ 12 (1þ .8) ¼ 21.6 and PAcon ¼ 12� .8 ¼ 9.6 while
PBmax ¼ 12 (1þ 1) ¼ 24, PBcon ¼ 12� 1 ¼ 12. Plugging into Eq. 2,

21:6� PA

PA � 9:6
¼ 24� PB

PB � 12

PA ¼ 10.8 and PB ¼ 13.2. The ten event possibilities above also give
lC ¼ 1 and lD ¼ .6 that, plugged into the equations just used, give
the B payoff displayed in Table 1.

This conjunction of procedures is more parsimonious than the
models of either theory from which it borrows. It is simpler than
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Elementary Theory’s model because Expected Value’s 1993 method of
calculating likelihoods is substantially less complex. It is simpler than
any Expected Value model because resistance is a simpler way to cal-
culate from likelihoods to resource divisions. In fact, the EV-R Model is
substantially simpler than any of the other theories with the possible
exception of Network Nash.22 Given its simplicity, the lack of internal
contradictions is easily seen. One desirable result is that the model is
fully public and, being parsimonious, its predictions in Table 1 can be
easily calculated with paper and pencil or with hand calculator. The
model is compatible with and could be incorporated into Elementary
Theory. It could also be used in Expected Value Theory.

EXPERIMENTAL DESIGN

Experiments were conducted at a large public university with under-
graduate subjects who participated for pay. Subjects were not misdir-
ected. Instead they were told, truthfully, that 1) the aim was to study
the effects of network structure on negotiation and exchange and 2)
they would be paid by points earned in exchange. All were asked to
seek the best deals they could negotiate. Subjects interacted using
PCs. Each subject’s PC displayed full information on offers and
exchanges throughout the structure in which they interacted. To learn
how to read the PC screen, make offers, and complete exchanges, sub-
jects paged through a tutorial and were allowed to negotiate and
exchange prior to the experiment in a practice network distinct from
the one being studied.

Experiments on the Figure 1 networks were conducted at various
times from the 1990 s to now using the best instrumentation available.
Some data were collected using ExNet 2.0, a Windows-based system.
Using mouse control, subjects seated at PCs in individual rooms
viewed the network being investigated as an active display, and
clicked icons to make offers and complete exchanges. The research
was recently completed using ExNet 3.0, a JAVA-based system that
looked much like ExNet 2.0 to subjects. For ExNet 2.0 and 3.0, because
experimental conditions were actively displayed, interactions were
intuitive and subjects’ training time was substantially reduced.23

22Whereas the Core is the simplest of the theories, it does not make point predictions
for weak power networks.

23Interested scholars can replicate this research on ExNet 3.0 that is located at
weblab.ship.edu. An earlier system, ExNet 1.0 was used to collect some of the data for
L4, Stem and Box-Stem. Though the screen was not active, the network was displayed
at each subject station as were all ongoing offers and exchanges.
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Experiments were organized in sessions, periods and negotiation
rounds. For each session, there was a new group of subjects and in
each there were as many periods as subjects. Within each period there
were a number of rounds of negotiation (see Table 1). At the conclusion
of each period, subjects were rotated to new positions, altering subject
pairings.24

For example, the DBox experiments had four periods each while the
K-Stem experiments had six. Each period had several rounds in which
subjects negotiated and exchanged. Each round was completed when
all exchanges possible for the network were completed or after four
minutes. The experiment concluded when each subject had occupied
each position for one period.

All networks were investigated under the contended conditions.
Each position was limited to, at most, a single exchange per round
and all resource pools were identically sized at 24.

THE DATA SET

The purpose of this section is to explain the relation of the current
data set to ones previously reported. It will be helpful to begin by clari-
fying the ‘n’ values reported in network exchange research. That ‘n’ is
not the number of exchanges completed by subjects. Instead, to avoid
repeated measures, exchange ratios were averaged within each period
to give one datum point. Thus a session with four periods has four data
points for each reported relation. As discussed previously, results from
some, not all relations are reported. For example, the A–B–B–A L4
network has three relations, but only data for the two A–B relations
are reported and, being identical, the two are grouped. That is to
say, data for one relation are reported for L4. More generally, ‘n’ is
the number of periods times number of sessions.

Data previously reported in multiple publications were from a sin-
gle data set and that set forms a small part of the data set used here.
For the networks satisfying the conditions of this research reported by
Skvoretz and Willer (1993) and Lovaglia et al. (1995), n ¼ 36 for each.
Both report on the same two weak power networks, L4 and Stem, each

24Rotating subjects through positions, a procedure that has been used for more than
20 years to control for individual differences, allows stronger inferences from structure
to exchange ratios. By generating new subject pairings, each session gives more than one
datum point. Subject rotation may also reduce equity concerns and reactions to injustice
that might affect power and exchange dynamics (Cook and Emerson, 1978; Molm and
Cook, 1995; Hegtvedt and Killian, 1999). Lovaglia et al. (1995) find that mean payoffs
by position are not significantly different when, under more limited information con-
ditions, subjects are held in a single position.
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with four periods; one had four sessions and one had five. Thus
(4� 4 ¼ 16)þ (4� 5 ¼ 20) ¼ 36. As suggested by these n’s, Skvoretz
and Willer (1993) and Lovaglia et al. (1995) employed exactly the same
data.25 Burke (1997) reports those as two data sources. He also reports
a third data source, Skvoretz and Fararo (1992), but they performed
no experiments. Instead, they reported results from Markovsky et
al. (1991, published as 1993) and Skvoretz and Willer (1991). As might
be inferred from overlapping authorship, these data are also a part of
the Skvoretz and Willer (1993) and Lovaglia et al. (1995) data set.

The data set of this research is more than ten times larger than the
one just discussed. Here n ¼ 380 (see Table 1). Nevertheless, for two net-
works, previously reported data form a part of the set employed here.
More precisely, of the n ¼ 44 we report for the network called ‘Stem,’
n ¼ 16 were reported previously, and of the n ¼ 32 we report for the net-
work called ‘L4,’ n ¼ 20 were reported previously. Data for the remain-
ing five networks are new and were not previously reported.

PRECISION AND RANGE OF APPLICATION
OF THE TEN THEORIES

Sociology is a science in which few theories have had predictive power
of any kind and, of those, fewer still could offer point (metric) predic-
tions. By contrast, the ten theories considered here all offer point pre-
dictions. This section tests those predictions for eleven relations in
seven networks. Table 1 displays those predictions and the results of
the experiments.26 As can be seen by looking through the table, all
ten theories are meritorious for all have predictive power.

Nevertheless, the ten theories vary in precision and two measures
are given in Table 2 to gauge it. The first is ‘‘Deviation Score,’’ a pro-
cedure borrowed from Burke (1997). It is the weighted average devi-
ation of the theory’s predictions from the eleven observed means.
Each deviation is weighted by the likelihood that the exchange will
occur in the relation, a likelihood calculated by the 1993 procedures

25That those data are the same is masked by the different exchange ratios reported in
the two papers. Exchange ratios differ, at least in part, because the two papers use two
different modes of calculation. Skvoretz and Willer (1993) estimate exchange ratios by a
constrained regression whereas Lovaglia et al. (1995) take the mean.

26Previous analyses suggest that means reported in Table 1 represent equilibrium
values. Using the data set of this research, Emanuelson (2005:158) found no significant
differences between the lowest observed mean of the first two experiment periods and
the highest observed mean of the last two experiment periods for all networks studied
here. By Emanuelson’s analysis, exchange ratios of weak power networks, unlike those
of strong power networks, do not increase over time. Following that analysis, means
reported here are taken as equilibrium values.
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of Expected Value Theory explained above. The second measure for
precision is a rank order from most to fewest predictions not signifi-
cantly different from observed means.27 The theories are discussed
in order by the first measure, from least to most precise.28

Beyond precision, the range of application of each of the theories
within the contended scope is also tested. As explained earlier, that
test is concerned with the size of network to which the theory can be
applied. Figure 2 is the test network. While having only 13 nodes,
that network is more than twice the size of any of the experimental
networks. Like the test of precision, the test of range of application
is a test of the current capabilities of each theory. Importantly, in
some cases, current capabilities are determined by the limits of
the program used to apply the theory. Can new programs with
broader scope capabilities be developed? Undoubtedly. Will they be
developed? We do not know. What is known is which of the ten the-
ories now offer predictions for the Figure 2 network.

The Quantified Core

Having the highest Deviation Score, 3.49, the Quantified Core is the
least accurate of the ten theories. It also ranks last (tenth) in number
of supported predictions. Though not an accurate predictor, the

27Here the use of t-tests is unconventional for it is a test of H1 not H0. The predicted
values are tested against the observed. When the two are close, the test is not significant.
More importantly, the purpose is not evaluate a single theory, a use where their liability
for type one error might be considered to be a shortcoming. Instead they are used only to
rank order the relative precision of the ten theories. Standing in the rank order is
determined by the number of predictions not significantly different from observed
values. In principle, that standing can be affected by the cut off point chosen. Fortu-
nately, as the reader can determine, this rank ordering is relatively immune to the cho-
sen cut off point. There are no reversals when < .1 or < .01 are counted as supported
predictions.

28Bonacich objects to the testing of point predictions asserting that it has been shown
that the results of all social science experiments are culture bound. Therefore, all point
prediction tests are meaningless (Personal Communication). We offer two comments on
this objection. First, dispensing with point predictions is undesirable for it dispenses
with precision, a crucial and well established criterion by which scientific theories have
long been compared. Second, it has not been shown that all social science experiments
are culture bound. Some certainly are. Cross cultural studies of ultimatum, public goods
and dictator games have shown very substantial variation (Henrich et al., forthcoming).
Others have not. Experiments on an array of coercive and exchange structures conduc-
ted in the United States and in Communist Bloc Poland failed to show different out-
comes (Willer and Szmatka, 1993). Since those experimental structures are included
in the scope of the theories studied here, they are the ones from which possible cross-
cultural variations should be inferred.
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Quantified Core is complex enough in application to inhibit calcu-
lation of predictions by hand. Turning to the Figure 2 network, the
Core offers a meritoriously simple method for breaking it into sim-
pler parts. It asserts that networks break at suboptimal relations.
As explained above, a relation is suboptimal when exchange in it
reduces the total number of exchanges below the maximum possible
for the network. A maximum of six exchanges can occur in the
Figure 2 network, but if B exchanges with either C or D, at most five
exchanges can occur. Both B–C and B–D are suboptimal. In fact,
B–E, E–H, and H–J are also suboptimal. Removing those five rela-
tions substantially alters the distribution of power in the network.
Now B and A are in a dyad and exchange at equipower as do H
and I. J, K, L and M also exchange at equipower because they are
in an equipower box.29 But the A, B, C, D network is a Stem and
the H, I, J, K, L, M network is a Box-Stem and the predictions of
the Quantified Core for those networks do not agree with an analysis
that breaks them into equipower components–nor do the means
observed for those networks. In fact, it has already been shown that
suboptimality is necessary but not a sufficient condition for breaks
(Simpson and Willer, 1999).

Power-Dependence Theory

By Deviation Score, Power-Dependence ranks ninth in precision with
a score of 2.66. By number of supported predictions, it is tied with Net-
work Nash at rank 7.5. Like the Quantified Core, Power-Dependence
Theory is not an accurate predictor and yet it is complex enough to
inhibit calculation of predictions by hand. Power-Dependence cannot
currently offer predictions for the Figure 2 network because the pro-
gram through which it is applied is limited to networks with ten or
fewer nodes.30 There would still be hope for application were the
theory able to cut the network into smaller parts by finding ‘‘network
breaks’’ prior to application. Power-Dependence recognizes that net-
works break, but finds breaks only after application of the program
that cannot be applied here because the Figure 2 network is too large.

29Above it was noted that, in equal power networks, all positions are identically con-
nected such that, but for their labels, they cannot be distinguished. The same rule
applies when subnetworks, like the J, K, L, M box, when broken from a larger network.

30As already mentioned, the program used here for Power-Dependence was not
developed by the authors of the theory but by Skvoretz who was interested in experi-
mental tests on relatively small networks. (See Skvoretz and Willer, 1993.) Until more
capable programs are developed, the Skvoretz program defines the range over which
the theory can be applied.

Testing Ten Theories 189

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
7
:
1
2
 
1
8
 
M
a
r
c
h
 
2
0
0
9



T
A

B
L

E
1

P
a
y
of

fs
to

th
e

H
ig

h
P

ow
er

P
os

it
io

n
s

in
T

es
te

d
R

el
a
ti

on
s:

{s
d

}
a
n

d
[t

]

P
re

d
ic

ti
on

s

N
et

w
or

k
P

os
it

io
n
=

re
la

ti
on

O
b
se

rv
ed

m
ea

n
P

ow
er

-
D

ep
en

d
en

ce
E

le
m

en
ta

ry
T

h
eo

ry
X

-N
E

T
Q

u
a
n

.
C

or
e

E
x
p

ec
te

d
V

a
lu

e
R

a
ti

on
a
l

E
x
.

S
u

b
st

it
u

te
E

x
.

Id
en

ti
ty

N
et

w
or

k
N

a
sh

E
V

-R
M

od
el

L
4

P
B

in
A
=
B

1
3
.5

8
1
6
��
�

1
3
.5

1
4

1
6
��
�

1
5
.4

8
��
�

1
3
.7

1
1
2
.0

8
��
�

1
3
.8

1
5
.9
��
�

1
4
.0

4
n
¼

3
2
a

{1
.7

8
7
}

[7
.5

4
]

[0
.2

4
9
]

[1
.3

1
]

[7
.5

4
]

[5
.9

3
]

[0
.4

0
5
]

[4
.6

8
]

[0
.6

8
6
]

[7
.2

3
]

[1
.4

3
]

S
te

m
P

B
in

A
=
B

1
4
.4

1
1
8
��
�

1
4
.4

1
6
��
�

2
0
.1
��
�

1
7
.7

6
��
�

1
5
.6
��

1
2
.1

7
��
�

1
5
.6
��

1
6
.7

8
��
�

1
5

n
¼

4
4
b

{2
.7

4
0
}

[8
.5

9
]

[0
.0

2
3
9
]

[3
.8

0
]

[1
3
.4

0
]

[8
.0

2
]

[2
.8

5
]

[5
.3

6
]

[2
.8

5
]

[5
.6

7
]

[1
.4

1
]

D
B

ox
P

B
in

A
=
B

1
2
.8

1
2
�

1
2
.9

1
4
��
�

1
6
��
�

1
4
.8

1
��
�

1
3
.6

1
�

1
2
.0

7
�

1
2
.8

7
1
3
.6

3
�

1
3
.2

n
¼

2
6
c

{1
.6

0
}

[2
.5

0
]

[0
.3

1
3
]

[3
.7

5
]

[1
0
.0

]
[6

.2
8
]

[2
.5

3
]

[2
.2

8
]

[0
.2

1
9
]

[2
.5

9
]

[1
.2

5
]

K
-S

te
m

P
B

in
A
=
B

1
3
.6

9
2
0
��
�

1
4
.5
�

1
8
��
�

2
1
.1
��
�

1
8
.3

5
��
�

1
5
.0

3
��
�

1
2
.2

5
��
�

1
6
.4
��
�

1
6
.2

6
��
�

1
4
.5

8
�

n
¼

4
0
d

{2
.1

6
5
}

[1
8
.2

0
]

[2
.3

4
]

[1
2
.4

3
]

[2
1
.3

7
]

[1
3
.4

4
]

[3
.8

7
]

[4
.1

5
]

[7
.8

2
]

[7
.4

1
]

[2
.5

6
]

B
or

g
-6

P
B

in
A
=
B

1
4
.0

2
1
8
��
�

1
3
.5

1
5
�

1
6
.9
��
�

1
6
.1

3
��
�

1
3
.3

3
1
2
.1

2
��
�

1
3
.9

1
6
.2

1
��
�

1
3
.7

2
n
¼

4
2
e

{2
.9

5
3
}

[8
.5

9
]

[1
.1

3
]

[2
.1

2
]

[6
.2

4
]

[4
.6

0
]

[1
.5

0
]

[4
.1

2
]

[0
.2

6
0
]

[4
.7

5
]

[0
.6

5
0
]

P
D

in
D
=
E

1
4
.5

2
1
8
��
�

1
4
.4

1
4

2
0
.2
��
�

1
7
.9

3
��
�

1
5
.2

8
�

1
2
.1

8
1
5
.7

0
�

1
6
.2

1
��
�

1
4
.5

8
{2

.8
7
7
}

[7
.7

5
]

[0
.2

6
7
]

[1
.1

6
]

[1
2
.2

4
]

[7
.5

8
]

[2
.3

6
]

[0
.7

5
7
]

[2
.6

3
]

[3
.7

6
]

[0
.1

3
4
]

L
5
-S

te
m

P
B

in
A
=
B

1
2
.9

1
1
6
��
�

1
3
.2

1
3

1
4
.9
��
�

1
4
.9

1
��
�

1
3
.4
�

1
2
.0

6
��
�

1
3
.2

1
4
.7

1
��
�

1
3
.2

n
¼

4
7
f

{1
.4

5
9
}

[1
4
.3

7
]

[1
.3

5
]

[0
.4

1
8
]

[9
.2

5
]

[9
.3

2
]

[2
.2

8
]

[3
.9

5
]

[1
.3

5
]

[8
.3

6
]

[1
.3

5
]

P
C

in
C
=
D

1
3
.7

2
1
6
��
�

1
4
.3

1
4

1
8
.1
��
�

1
6
.4

1
��
�

1
4
.9

3
��
�

1
2
.1

2
��
�

1
4
.4
�

1
6
.9

6
��
�

1
4
.4
�

{2
.1

6
2
}

[7
.1

5
]

[1
.8

2
]

[0
.8

7
8
]

[1
3
.7

4
]

[8
.4

3
]

[3
.8

0
]

[5
.1

2
]

[2
.1

3
]

[1
0
.1

6
]

[2
.1

3
]

B
ox

-S
te

m
P

B
in

A
=
B

1
2
.7

1
1
2

1
2
.6

1
1
.0

7
��
�

1
6
��
�

1
4
.1

3
��

1
2
.3

7
1
2
.0

5
1
2
.5

1
3
.2

7
1
2
.7

5
{1

.8
2
4
}

[1
.7

0
]

[0
.2

6
5
]

[3
.9

2
]

[7
.8

6
]

[3
.3

8
]

[1
.0

5
]

[1
.5

8
]

[0
.5

0
2
]

[1
.3

4
]

[0
.0

9
6
]

n
¼

2
0
g

P
C

in
A
=
C

1
2
.8

2
1
2

1
2
.6

1
1
.0

6
��

1
6
��
�

1
3
.8

5
1
3
.1

9
1
2
.0

5
1
2
.5

1
3
.2

7
1
2
.7

5
{2

.2
3
3
}

[1
.6

0
]

[0
.4

2
9
]

[3
.4

3
]

[6
.2

1
]

[2
.0

1
]

[0
.7

2
3
]

[1
.5

0
]

[0
.6

2
4
]

[0
.8

7
9
]

[0
.1

3
7
]

P
D

in
D
=
E

1
2
.6

9
1
8
��
�

1
3
.3
�

1
4
��
�

1
6
��
�

1
5
.3

6
��
�

1
3
.3

5
�

1
2
.1

0
�

1
2
.9

9
1
4
.7

4
��
�

1
3
.5
��

{1
.0

9
9
}

[2
1
.0

6
]

[2
.4

2
]

[5
.2

0
]

[1
3
.1

3
]

[1
2
.6

6
]

[2
.6

2
]

[2
.3

4
]

[1
.1

9
]

[8
.1

3
]

[3
.2

1
]

190

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
7
:
1
2
 
1
8
 
M
a
r
c
h
 
2
0
0
9



a
.
E

ig
h

t
se

ss
io

n
s

w
er

e
ru

n
ea

ch
co

n
si

st
in

g
of

fo
u

r
p

er
io

d
s

co
n

ta
in

in
g

fo
u

r
ro

u
n

d
s.

A
t

th
e

en
d

of
ea

ch
p

er
io

d
,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
b
.

E
le

v
en

se
ss

io
n

s
w

er
e

ru
n

ea
ch

co
n

si
st

in
g

of
fo

u
r

p
er

io
d

s
co

n
ta

in
in

g
fo

u
r

ro
u

n
d

s.
A

t
th

e
en

d
of

ea
ch

p
er

io
d

,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
c.

S
ev

en
se

ss
io

n
s

w
er

e
ru

n
ea

ch
co

n
si

st
in

g
of

fo
u

r
p

er
io

d
s

co
n

ta
in

in
g

fo
u

r
ro

u
n

d
s.

A
t

th
e

en
d

of
ea

ch
p

er
io

d
,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
In

tw
o

p
er

io
d

s
of

on
e

of
th

e
se

ss
io

n
s,

n
o

a
g
re

em
en

t
w

a
s

re
a
ch

ed
.

d
.
S

ev
en

se
ss

io
n

s
w

er
e

ru
n

ea
ch

co
n

ta
in

in
g

si
x

p
er

io
d

s
co

n
si

st
in

g
of

fo
u

r
ro

u
n

d
s

ea
ch

.
A

t
th

e
en

d
of

ea
ch

p
er

io
d

,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
In

tw
o

p
er

io
d

s
a
g
re

em
en

ts
w

er
e

n
ot

re
a
ch

ed
.

e.
S

ev
en

se
ss

io
n

s
w

er
e

ru
n

ea
ch

co
n

ta
in

in
g

si
x

p
er

io
d

s
co

n
si

st
in

g
of

fo
u

r
ro

u
n

d
s.

A
t

th
e

en
d

of
ea

ch
p

er
io

d
,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
f.

E
ig

h
t

se
ss

io
n

s
w

er
e

ru
n

ea
ch

co
n

ta
in

in
g

si
x

p
er

io
d

s
co

n
si

st
in

g
of

fo
u

r
ro

u
n

d
s.

A
t

th
e

en
d

of
ea

ch
p

er
io

d
,
su

b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

th
re

e
ro

u
n

d
s.

R
ou

n
d

on
e

w
a
s

n
ev

er
u

se
d

.
In

on
e

p
er

io
d

a
g
re

em
en

t
w

a
s

n
ot

re
a
ch

ed
in

tw
o

of
th

e
la

st
fo

u
r

ro
u

n
d

s
a
n

d
th

e
d

a
tu

m
p

oi
n

t
w

a
s

n
ot

u
se

d
.

g
.
F

iv
e

se
ss

io
n

s
w

er
e

ru
n

ea
ch

co
n

ta
in

in
g

fo
u

r
p

er
io

d
s

co
n

si
st

in
g

of
te

n
ro

u
n

d
s

ea
ch

.
A

t
th

e
en

d
of

ea
ch

p
er

io
d

su
b
je

ct
s

w
er

e
ro

ta
te

d
to

a
n

ew
p

os
it

io
n

.
D

a
ta

p
oi

n
ts

w
er

e
ca

lc
u

la
te

d
fo

r
ea

ch
p

er
io

d
b
y

ta
k

in
g

th
e

a
v
er

a
g
e

v
a
lu

e
ob

ta
in

ed
in

th
e

la
st

si
x

ro
u

n
d

s.
R

ou
n

d
s

on
e

th
ro

u
g
h

fo
u

r
w

er
e

n
ev

er
u

se
d

.
N

ot
e:

A
ll

p
re

d
ic

ti
on

s
w

it
h

ou
t

a
st

a
r

a
re

n
ot

si
g
n

if
ic

a
n

tl
y

d
if

fe
re

n
t

fr
om

th
e

ob
se

rv
ed

m
ea

n
s.

� S
ig

n
if

ic
a
n

t
a
t
<

.1
.

��
S

ig
n

if
ic

a
n

t
a
t
<

.0
1
.

��
� S

ig
n

if
ic

a
n

t
a
t
<

.0
0
1
.

191

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
7
:
1
2
 
1
8
 
M
a
r
c
h
 
2
0
0
9



Network Nash

Ranking eighth in precision by a Deviation Score of 1.69 is Network
Nash and, as just mentioned, it is tied with Power-Dependence with
a ranking of 7.5 by numbers of supported predictions. Still, Network
Nash’s basic formulations are parsimonious, free from internal contra-
diction and, being simple, should be easily applied in the field. Since it
considers only a position’s local network, its application to the Figure 2
network is straightforward. It finds E to be the highest power position
followed by B and then H, an ordering that is undoubtedly correct.
(See below.) Furthermore, Network Nash finds breaks. It asserts that

TABLE 2 Experimental Support by Theory

Theory Deviation Scorea
Rank by number

of supported predictions

Elementary .275 1
Expected Value-Resistance .423 2
Identityb .498 3
Rational Exchange .642 4.5
X-Net 1.12 4.5
Substitutable Exchange 1.18 6
Expected Value 1.46 9
Network Nash 1.69 7.5
Power-Dependence 2.66 7.5
Quantitative Core 3.49 10

aThe Deviation Score is the average deviation between predictions and observed
means weighted by the number of expected exchanges as calculated using Expected
Value (1993) likelihoods.

bDeviation Score and rank by number of Supported Predictions not at equilibrium.
See text.

FIGURE 2 A thirteen position network.
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a relation is a break if either of the two positions connected by the
relation gains higher payoffs 1) in its other relations and 2) when
the relation is removed. With no relation removed, E’s payoff is pre-
dicted to be 18.00, with only B–E removed it increases to 18.39, with
only E–H removed it increases to 18.98, and with both removed E’s
predicted payoff is 19.81.

While Network Nash is simple in basic formulation, in application
there can be a serious loss of parsimony. Accurate predictions require
that breaks be found, but breaks are found by applying the theory over
and over again, first with relations removed one at a time, then with
all combinations of two relations removed, then with all combinations
of three removed, and similarly. For example, determining whether
there are breaks in any five node tree network–that has only four rela-
tions–requires 14 applications of the theory. To find just two breaks in
the Figure 2 network, required four applications: once to the original
network, twice more with one relation removed and a fourth time with
both relations removed. Having stopped at two breaks, we cannot say
whether Network Nash finds more breaks. Later we will show that
only B–E and E–H are breaks, but that there is a simpler way to find
them.

Expected Value Theory

Expected Value ranks seventh in precision by Deviation Score, 1.46,
but ninth by number of supported predictions. Nevertheless, the
1995 formulations of Expected Value Theory importantly advance its
precision. By comparison, the Deviation Score using likelihoods from
1993 is 2.82, almost twice as large. We are informed that the program
for Expected Value Theory developed by van Assen applies to the
Figure 2 network. As will be seen below, theory and previous experi-
mental evidence agree that there will be no B–E or E–H exchanges
in that network. Thus no power can be exercised in those relations.
Yet Expected Value predicts that there will be exchanges and thus
power exercise in those relations.

Substitutable Exchange

Substitutable Exchange ranks sixth in precision both by Deviation
Score and numbers of supported predictions. Substitutable Exchange
is neither precise nor parsimonious. It is incomplete. Though pre-
dictions for resource divisions vary with s, it offers no procedure for
determining s. Substitutability is necessary but not sufficient to
produce the resource pool differences observed in the experiments.
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For example, if all positions of all networks of both figures were allo-
cated, not maximally one exchange as tested, but as many exchanges
as they have partners, substitutability would be unaffected; but
exclusion would be eliminated. With no exclusion, all resource divi-
sions would be equal.31 Since it mistakes the condition that produces
differences in resource divisions, it is either immediately falsified or
it does not apply to exchange networks within the contended scope
and should be appropriately scope limited.

X-Net

X-Net ranks fifth in precision by Deviation Score and is tied at rank
4.5 by number of supported predictions. Since X-Net is a simulation
program in which actors make better offers to others after being
excluded and better offers to self after being included, it arrives at
its predictions by iteration. Has iteration reached equilibrium for
the listed predictions? As explained earlier, X-Net was run 99 rounds,
the maximum now possible, and data are given for the last 10 rounds.
For seven of the predictions there was no variation of predicted value
over the last ten rounds. For example, for L4, all values were 14; thus
the standard deviation was zero suggesting that these seven
predictions are at equilibrium. Four of the predictions had standard
deviations larger than zero, 1.05, .966, .802, and .561. Since the
largest of the aforementioned values is smaller than the smallest stan-
dard deviation for data reported in Table 1, and since data are at
equilibrium, these values suggest that X-Net predictions are at
equilibrium.32

X-Net readily applies to the Figure 2 network and finds the B–E
and E–H relations to be breaks. No exchanges occur in those rela-
tions. Removing those relations, we find three subnetworks, the
Stem to the left, the F–E–G strong power branch and the Box-Stem
to the right. It will be remembered that these are the same breaks
found by Network Nash. X-Net’s prediction for the strong power
subnetwork, that E gains 22 of 24, is consistent with findings
reported elsewhere for networks of that type (Willer and Skvoretz
1997). Its predictions for the Stem and Box-Stem subnetworks are
very close to its predictions for those networks in Table 1, as they
should be.

31See results for null connected networks in Willer and Skvoretz (1997).
32By contrast, at X-Net’s default of 25 rounds, standard deviations are all nonzero

and many are substantially larger indicating that equilibrium is not attained.
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Rational Exchange

By Deviation Score Coleman’s Rational Exchange, is substantially
more precise than the theories just discussed. Its score is just over half
that of X-Net. Still, in number of supported predictions it is tied in
rank with X-Net at 4.5. Though its precision is meritorious, Rational
Exchange is applied through a program that is limited to maximally
ten positions. Having no procedure for finding breaks prior to that
application, this theory cannot be applied to the Figure 2 network.
In spite of its precision, currently Rational Exchange is hardly more
than a theory fragment that can only be applied narrowly. Neverthe-
less, its precision suggests that further work on this theory might well
have high payoff.

Identity Theory

Ranking third in precision is Identity. Its Deviation Score is smaller
than all but two other theories and it also ranks third by number of
supported predictions. Nevertheless, that ranking occurs, not at equi-
librium, but at what Identity Theory considers an ‘‘arbitrary limit’’ of
40 rounds. Equilibrium values are attained after 100 rounds; those
values are given in Table 2 (Burke 1997, p. 146). Five networks and
six relations reported there are common to his study. For them the
Deviation Score is 2.74 moving Identity’s rank to ninth. We looked
closer at predicted values for L4 and Stem and found that the higher
power Bs are predicted to gain 11, which is to say less than half the
resource pool. By that prediction, the Bs are lower in power than their
As. More generally, all equilibrium predictions but one (given as equi-
power) reverse predictions made at 40 rounds. These predictions are
sharply at odds with the observed means and predictions of all other
theories.

Earlier the disjuncture between Identity’s agent and goals set for
experimental subjects was noted. From that disjuncture, it was
explained that the experiments are not formally within the scope of
the Identity simulation. It follows that these data are not a test of
Identity Theory. Instead, they indicate whether that theory can accu-
rately predict outside its scope. It cannot. This result is not a failure,
but an opportunity.

The distinct scope of the Identity simulation suggests that new
experiments should be run in which subjects’ goal is not to optimize
points gained in exchange, but, as in the Identity simulation, to avoid
exclusion and avoid scoring zero. For the new experiments, no new
software or hardware would be needed: only a straightforward change
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of instructions. Unlike all previous network exchange experiments
where experimental subjects were instructed to earn as much as they
can, now they would be instructed to avoid exclusion and be paid by
the numbers of exchanges completed. Will subjects so instructed pro-
duce resource divisions like those found by Burke at equilibrium?
No one can now say, but experiments run to answer that question will
importantly broaden the scope of network exchange research.

Expected Value-Resistance and Elementary Theory

The two most precise procedures, Expected Value-Resistance model
and Elementary Theory’s resistance model have Deviation Scores of
.423 and .275, respectively. The Expected Value-Resistance model
ranks second in numbers of supported predictions while Elementary
Theory’s model ranks first. Examination of the two models’ predictions
shows them to be very similar. The two are similar because both cal-
culate power differences from likelihoods of being included and both
plug those likelihoods into the same resistance equation in the same
way (see above). Still there are small differences and Table 3 explains
why. The two procedures identify exactly the same positions as
‘‘always included’’ assigning values of 1.0 to them. For positions that
are ‘‘sometimes excluded,’’ the two give similar but not identical like-
lihoods. For example, in L4, Elementary Theory’s model predicts mar-
ginally less power than does the Expected Value-Resistance model
because it sees the As included .75 not .67 of the time–and similarly
for other likelihoods and predicted divisions.

TABLE 3 Seek-Likelihoods and Expected Values (1993) of Being Included for
Positions in Tested Relations

Network Connected positions Seek likelihood Expected value

L4 A=B .75=1.0 .67=1.0
Stem A=B .60=1.0 .50=1.0
DBox B=A .85=1.0 .80=1.0
K-Stem A=B .59=1.0 .63=1.0
Borg6 A=B .76=1.0 .71=1.0

E=D .60=1.0 .57=1.0
L5-Stem A=B .81=1.0 .80=1.0

D=C .61=1.0 .60=1.0
Box-Stem A=B .90=1.0 .88=1.0

A=C .90=1.0 .88=1.0
E=D .79=1.0 .75=1.0
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To predict exchange ratios for the Figure 2 network, Elementary
Theory first finds breaks using a parsimonious network-level pro-
cedure developed by Girard and Borch (2003). That procedure is a
simplification of one proposed earlier by Simpson and Willer
(1999). Both are based on tests run in the latter paper that indicate
that all breaks occur between high power positions in strong power
subnetworks and positions that are never excluded. Step one of the
Girard and Borch procedure labels positions ‘‘E’’ if they are ever
excluded and ‘‘I’’ if always included. Inspecting the Figure 2 network,
five nodes, B, E, H, J, and M are always included I nodes: the rest
are E nodes. Furthermore, F–E–G, by the definition offered earlier,
is a strong power substructure with E high power. Testing for
breaks, B–E and E–H are removed and it is found that B and H
are still never excluded. Thus, B–E and E–H are breaks and the
Figure 2 network has three parts, the Stem to the left, the strong
power F–E–G and the Box-Stem to the right. Stem and Box-Stem
predictions for both models are already displayed in Table 1. For
the F–E–G strong power structure Elementary Theory predicts that
E gains 23 of 24 resources at equilibrium.

Summing Up Precision and Breadth of Application

The purpose of this analysis was to find the most precise theory and
determine which theories cover a broad range within the contended
scope. The most precise predictor is Elementary Theory’s resistance
model followed by Expected Value-Resistance. Expected Value-Resist-
ance is the most parsimonious in application of all ten theories. It is
more parsimonious than Elementary Theory’s model because it uses
Expected Value Theory’s 1993 likelihoods, not seek-likelihoods that
are substantially more complex to calculate. As a consequence, it is
the most accessible. Since both can predict for the Figure 2 network,
the range of application of the two is identical and is as good as the
best of the other theories.33

Because there is no common measure for precision and parsimony,
no one can say how much parsimony balances how much precision.

33It has been suggested that a ‘‘theory’’ that predicts equal 12 - 12 divisions will score
better than any of the theories evaluated here. That suggestion is easily checked. The 12 -
12 ‘‘theory,’’ if it be such, has a deviation score of 1.28 and two supported predictions. Thus
it qualifies just under mid-pack of the theories. By contrast, the best theory has a devi-
ation score less than 1/4 as large and has more than four times the number of supported
predictions. Nor does the 12 - 12 ‘‘theory’’ stack up well against even the least precise
theories. Unlike the 12 - 12 ‘‘theory,’’ both Power-Dependence and Expected Value cor-
rectly rank many power differences across networks. For example, Stem > L4 > DBox.
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Therefore, there is no objective base to judge which is the better
theory. Nevertheless, the following can be said. When predictive
precision is most important, Elementary Theory’s model should be
used, but when simplicity and ease of accessibility are paramount,
Expected Value-Resistance should be used.

CONCLUSIONS AND NEW DIRECTIONS

Unlike orienting perspectives such as functionalism and conflict, the
ten theories investigated here all have scientific merit because all have
predictive and thus explanatory power.34 That they do is a remarkable
achievement and should be recognized as such. Nevertheless, that
merit is not equal across the ten. If a theory is internally consistent,
its precision in prediction and the range over which it predicts are cru-
cial. This investigation began by explaining how each theory calculates
from initial conditions of structure to payoffs by position. First, logical
consistency was checked and problems were found in the predictions of
some theories. Parsimony was also evaluated. Then experiments com-
pared the relative precision of the theories. Finally, as a test of the
range over which the theories could be applied within the contended
scope, the ten were checked against the larger Figure 2 network.

Of the ten theories, Elementary Theory’s resistance model was
found to be most precise. Like application of Expected Value to
weak power structures, that model uses the likelihood that a pos-
ition is included=excluded as the indicator of structural power.
But Elementary Theory’s method of calculating likelihoods is not
parsimonious. The Expected Value-Resistance model borrows the
simpler method of calculating likelihoods from a competing theory,
Expected Value of 1993. Though somewhat less precise, it is sub-
stantially more parsimonious. Lacking a common measure by
means of which to compare parsimony and precision, no selection
between the two was suggested. Turning to range of application,
since the experimental networks were relatively small, it was
asked whether any of the theories could be applied to a network
as large as Figure 2. Whereas Expected Value, Network Nash,
the X-Net simulation, Elementary Theory and Expected Value-
Resistance offer predictions for that network, their precision and
parsimony in that application vary.

Two caveats qualify all conclusions. First, this investigation com-
pares the precision of all ten theories. Therefore, of necessity, this

34Here we follow Hempel (1952, 1965) and Toulmin (1963). Prediction and expla-
nation differ only by whether the derivation came before or after the fact, respectively.
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investigation is limited to the scope over which they all apply–the con-
tended scope. As discussed earlier, the contended scope is by no means
trivial. Yet many–not all–of the ten theories have predictive and
explanatory capability beyond that scope. As important as that scope
may be, it must remain beyond the limits of this investigation. Second,
the norms of science demand this: We are authors of substantial parts
of Elementary Theory. We, together with our colleagues, ran the
experiments that compared the precision of the theories. With those
caveats, this investigation concludes that Elementary Theory com-
bines the most useful qualities. It is free of contradictions; it is the
most precise of the ten theories and is as broadly applicable within
the contended scope as any.

Nevertheless, scientific objectivity calls for others to replicate this
research. Fortunately, and almost uniquely for the methods of socio-
logical research, theory-driven experiments like those reported here
are eminently replicable. (cf. Willer and Walker, 2007, p. 58ff.) Fur-
thermore, in this case, that replication will be straightforward because
software for experiments is already on the Web (weblab.ship.edu).

Beyond replication, two directions for future research can be sug-
gested. First, but for the issue of size, larger questions of scope of
application of these theories were not taken up here. Of the ten, only
two theories, X-Net and the Core, do not apply to exchange networks
outside the contended scope. (But the Core has many applications in
game theory.) The remaining theories apply to some conditions beyond
the contended scope, but it is by no means clear that any two overlap.
Nor have we investigated here whether applications outside the lab
demand scope broader than the contended scope, though we suspect
that they do. Certainly, much would be learned from investigating lar-
ger issues of theoretic scope.

The second direction is implied by the first. Though exchange the-
ories have been intensively investigated in the lab, what is largely
lacking are applications of these theories outside the laboratory. Can
any of the ten theories be applied to historical and contemporary struc-
tures? If so, can any explain why exchange structures in the field work
as they do? It is time that those questions are taken up.
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