
Federico Bergenti and
Agostino Poggi
University of Parma

Bernard Burg
Hewlett-Packard Laboratories

Giovanni Caire
Telecom Italia Lab

Deploying FIPA-
Compliant Systems
on Handheld Devices

LEAP is a runtime environment for deploying agents on a

network of Java-enabled devices. It complies with FIPA

international standards for multiagent systems.

The market for portable devices is
stimulating the migration of tech-
nologies originally developed for

PCs to the realm of handhelds and wire-
less networks. Agent technology is fol-
lowing this downsizing trend, and many
projects are under way to enable multia-
gent systems on handheld devices. The
possibility of enabling agent technology
in the telecommunications world, with its
base of several hundred million users,
calls for particular attention to an infra-
structure that can readily interoperate
with third-party software. At the
moment, only the Foundation for Intelli-
gent Physical Agents, or FIPA, is produc-
ing industrial-strength specifications for
developing such an infrastructure (see
the sidebar, “FIPA: Open Standards for
Agent Systems”). FIPA specifications
address not only communication issues,
but also general-purpose services like
naming and a standard way to manage
agent life cycles.

The Lightweight Extensive Agent
Platform project is the first attempt to
implement a FIPA agent platform that
runs seamlessly on both mobile and
fixed devices over both wireless and
wired networks. It is funded by the Euro-
pean Commission and involves research
centers in France (Motorola), Germany
(Siemens and Allgemeiner Deutscher
Automobil-Club), Ireland (Broadcom),
England (British Telecom), and Italy
(Telecom Italia LAB and University of
Parma).

A Phase 1 version of LEAP has been
released to the technical community and
is available to registered users for testing
purposes from the Web site at http://
leap.crm-paris. com/; a Phase 2 version is
planned for release in open source by the
end of this year.In this article, we begin
by clarifying the agent technology under-
lying the LEAP project, followed by a
description of the platform itself and
plans for future work.

20 JULY • AUGUST 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

W
ir

el
es

s
Pl

at
fo

rm
s

FIPA Platforms
and LEAP Locations
A LEAP application entails the creation of a
community of software agents that perform a
distributed computation. LEAP is agnostic about
the internal architecture of these agents. It relies
instead on what are called typed-message
agents,1 defined solely in terms of a communi-
cation model and a simple notion of autonomy.
Typed-message agents work together by sharing
messages expressed in an agent communication
language, or ACL. The ACL defines some seman-
tics for the community prior to runtime. Such
agents can send messages that are not in direct
response to a query. In other words, typed-
message agents can initiate a conversation
autonomously.

This definition of agent does not depend on a
measure of intelligence or on a more general
notion of autonomy. Nor does it rely on “working
on behalf of the user,” which entails a direct inter-
action between the agent and user. The typed-mes-
sage agent model is simple, but it does not limit
the use of LEAP to support richer agent models
(for example, we have used LEAP to implement
interoperable goal-oriented agents with planning
and reasoning capabilities2).

Agents need resources to operate and to com-
municate. In the FIPA abstract architecture (see the
FIPA sidebar), such resources are provided by an

agent platform that provides the basic services for
life-cycle management and communication:

� a means for sending and receiving messages,
and

� a means for discovering other agents—that is, a
yellow pages service and a naming convention.

Agents run only in the scope of a platform.
FIPA provides a standard ACL to support inter-

operable message exchange. Agents are addressed
using unique identifiers. Thus, messages can reach
agents within the same platform or on other plat-
forms. This enables open societies where agents
running on different platforms can join and leave
the system dynamically.

Deploying agents across platforms is one way
to distribute a system in the network. From the
beginning, FIPA specifications have promoted this
kind of distribution, using CORBA as the standard
interface between platforms. FIPA is in the process
of standardizing more protocols, but it still falls
short in two areas:

� handheld devices, which have limited resources
and where the choice of the communication
protocol affects performance and memory
usage; and

� new wireless networks available on the market,
such as Bluetooth.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 21

FIPA-Compliant Agents

The worldwide information-technology
infrastructure established by the Internet
and by international application-layer stan-
dards, such as those developed by the
World Wide Web Consortium (W3C) and
Object Management Group (OMG), lays a
foundation for deploying agent technolo-
gies in real-world applications.

The Foundation for Intelligent Physical
Agents (FIPA) was established in 1996 to
specify the interfaces to components in
this environment with which an agent can
interact.With a worldwide membership
and a tight schedule for producing, validat-
ing, and testing specifications, we believe
that FIPA has a good chance to set the
standards for open-agent systems, espe-
cially in the telecommunications industry.

FIPA does not specify an agent’s inter-
nal architecture, which is left to the devel-

oper. Specifications released in October
1997 and October 1998 cover the follow-
ing aspects of agent technology:

� Normative specifications that mandate
an agent’s external behavior and
ensure interoperability with other
FIPA-specified subsystems; they
include specifications for agent
management, agent communication
languages, agent and legacy software
integration, human-agent interaction,
agent security, agent mobility, and
ontology services.

� Informative specifications for use in real-
world industry applications; these
include personal travel assistance,
personal assistants, audiovisual enter-
tainment and broadcasting,and network
management and provisioning.

The FIPA 2000 specifications, which
supercede the 1997 and 1998 specifications,
include an abstract architecture to guide the
creation of open multiagent systems.

Aspects of FIPA 2000 relevant to the
LEAP project are

� Agent management and agent com-
munication: support for a variety of
encoding and naming schemes,
including schemes that allow agents to
operate in mobile contexts;

� Nomadic computing: agent management
and communication frameworks
geared toward support of mobile
communication networks.

The FIPA 2000 specifications can be down-
loaded from the FIPA Web site at
http://www.fipa.org/.

FIPA: Open Standards for Agent Systems

To overcome these problems while preserving FIPA
compliancy, LEAP distributes a single platform
across the network in terms of locations. LEAP can
allocate different locations of a single platform to
different network nodes; it includes internal mech-
anisms that hide the distribution from agents. The
platform is seen as a whole even if it is distributed
because of a front-end location, which acts as a
dispatcher for messages coming from and going to
other platforms. This technique for distributing
agents allows the use of proprietary protocols for
the communication between locations, thus solv-
ing the problems faced with FIPA protocols.

All active locations must be able to reach the front-
end location, which maintains platform-wide infor-
mation and provides platform-wide services, includ-
ing those that are mandatory for FIPA compliance:

� the agent management service (AMS), which
acts as a white-pages service and represents the
authority of the platform;

� the directory facilitator (DF), which acts as a
yellow-pages service for the platform.

LEAP is thus composed of a single front-end loca-
tion and a set of peripheral locations, allowing high
modularity by allocating lightweight locations to
network nodes with restricted resources.

Because our agents run on mobile devices, they
face disconnections from the network. We delegate
responsibility for handling such events to the
agent platform. In particular, the platform hides
any connectivity loss by buffering incoming and
outgoing messages.

The LEAP Project
The LEAP project’s primary goal is to develop a
FIPA-compliant agent platform that is

� sufficiently lightweight to execute on a mobile
device with limited resources, such as a cellular
phone, and

22 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Wireless Platforms

For surveys of multiagent platforms, includ-
ing comparisons of their characteristics,
see Nowostawski et al.1 or Ricordel and
Demazeau.2

Besides the JADE platform (http://
jade.cselt.it) used in LEAP,other FIPA-com-
pliant platforms for multiagent system
development include

� Bee-gent. Bee-gent (http://www2.
toshiba.co.jp/beegent/) is a software
framework developed by Toshiba.3 It
provides two types of agents: wrapper
agents used to “agentify” existing
applications, and mediator agents to
support the coordination of wrappers.
Mediator agents are mobile, and agents
communicate through XML/ACL
messages.Bee-gent also offers a tool to
describe agents through state-transition
diagrams; naming/directory facilities;
ontology-matching facilities to translate
synonyms; and security facilities based
on digital fingerprint authentication and
key encryption.

� FIPA-OS. FIPA-OS (http://fipa-os.
sourceforge.net) is a software frame-

work developed by Nortel Networks.4

The framework provides the mandatory
components of a FIPA agent platform –
that is,AMS,DF,and an internal platform
message transport system.FIPA-OS also
includes an agent shell and an agent
template.

� Zeus. Zeus (http://193.113.209.147/
projects/agents.htm) supports the rapid
development of Java agent systems
through a library of agent components
and a visual environment for capturing
user specifications.5The agent-building
environment includes an automatic
code generator and a collection of
classes that form the building blocks of
individual agents.

Agents are composed in five layers:
an API layer permits interaction with
the non-agentized world; a definition
layer manages agent tasks; an
organizational layer manages know-
ledge concerning other agents; a coor-
dination layer manages negotiation with
other agents; and a communication layer
enables the communication with
other agents.

References
1. M. Nowostawski et al.,“Platforms for Agent-Ori-

ented Software Engineering,” Proc. Seventh Asian-

Pacific Software Engineering Conf., IEEE CS Press, Los

Alamitos, Calif., 2000, pp. 480-488.

2. P.M. Ricordel and Y. Demazeau,“From Analysis to

Deployment:A Multi-Agent Platform Survey,” in

Engineering Societies in the Agents World,A.Omicini,

R.Tolksdorf, and F. Zambonelli, eds., Springer-Ver-

lag, Berlin, 2000, pp. 93-105.

3. T.Kawamura et al.,“Bee-gent: Bonding and Encap-

sulation Enhancement Agent Framework for

Development of Distributed Systems,” Proc. Sev-

enth Asian-Pacific Software Engineering Conf., IEEE CS

Press, Los Alamitos, Calif., 2000, 260-267.

4. S. Poslad, P. Buckle, and R. Hadingham.“The FIPA-

OS Agent Platform: Open Source for Open Stan-

dards,” Proc. 5th Int’l Conf. and Exhibition on the Prac-

tical Application of Intelligent Agents and Multiagents

(PAAM 2000),Practical Application Co.,Blackpool,

UK, 2000, pp. 355-368; also available at http://fipa-

os. sourceforge.net/.

5. H.S. Nwana, D.T. Ndumu, and L.C. Lee,“ZEUS:An

Advanced Toolkit for Engineering Distributed

Multi-Agent Systems,” Proc.Third Int’l Conf. and Exhi-

bition on PAAM (PAAM 98), Practical Application

Co., Blackpool, UK, 1998, pp. 377-391.

Related Work in Multiagent Platforms

� sufficiently open and flexible to be a first-class
choice for devices with no severe limitations
on resources, such as an enterprise server.

LEAP is deployed according to a set of profiles iden-
tifying the functionality available on a particular
device. The basic profile supports only the func-
tionality required by FIPA compliancy and suits the
smallest device that the platform supports, namely,
a mobile phone. The full-featured profile provides
the functionality available on a platform designed
to run on PCs and suits any device with sufficient
memory and processing power. All profiles are
instantiations of the FIPA abstract architecture, and
agents running on platforms configured with dif-
ferent profiles can interoperate.

We based the LEAP implementation on an
existing open-source FIPA platform, the Java
Agent Development Framework,3 called Jade for
short. Jade is a modular software framework that
provides an agent platform organized in terms of
interacting containers; a main container provides
FIPA’s mandatory AMS and DF services. Jade sup-
ports the concept of profiles, and it offers runtime
and agent programming libraries, as well as tools
to manage platform execution and to monitor and
debug agent communities. Such tools are imple-
mented as FIPA agents and they require no special
support from the platform. LEAP essentially pro-
vides a new kernel for Jade.

While there are several FIPA platforms available
(see the sidebar, “Related Work in Multiagent Plat-
forms”), Jade is popular among agent builders and
familiar to us. Because LEAP shares the basic design
principles of Jade, it preserves the APIs and permits
agents developed for Jade to run on LEAP without
any modification. Thus any agent developed with
Jade can also run on a wireless device that has suf-
ficient resources and power to support it.

Nevertheless, the implementation of LEAP is
basically different from the Jade implementation.
Specifically, it involved redesigning the Jade com-
munication modules and addressing several
deployment issues related to the constraints of the
LEAP scenarios. We address these issues in more
detail below.

Communication Mechanisms
LEAP is naturally distributed across locations that
offer agents the runtime resources they need. Fol-
lowing Jade nomenclature, we call the locations
agent containers, or simply containers. LEAP impos-
es no restrictions on the way containers are
deployed across network nodes. Even though the

best way of deploying LEAP is to have one contain-
er running in one Java virtual machine for every
node, it is not mandatory. You could concentrate the
whole platform into a single container.

For example, if an application consists simply
of a personal assistant supporting the user in man-
aging information on a PDA, the best deployment
is probably a single-container platform running
on the PDA. However, the resources required by
FIPA’s AMS and DF in their current implementa-
tions suggest that the main container — that is, the
front-end location of the platform — should run
on a device with no particular restrictions on pro-
cessing power and memory.

FIPA specifies both a communication protocol set
for sending messages to agents and a gateway for
matching the individual protocols to allow platforms
using different protocols to interoperate. The 1997
and 1998 FIPA specifications required all FIPA
agents to be addressed through a CORBA interface,
so the first FIPA platforms relied on CORBA only.
Where applicable, this choice is still adopted.

In LEAP, the main container is supposed to run
on a full-featured computer, and we can reason-
ably expect to find a CORBA implementation in
that environment. This assumption is not valid,
however, for peripheral containers running on
mobile devices, and it may not be the best solution
for peripheral containers running on PCs. LEAP
therefore implements the communication between
the main container and the rest of the platform
through a set of protocols that we call internal
transport protocols.

The current implementation of LEAP provides
three ITPs: IIOP, Java RMI, and a proprietary protocol
that we developed over TCP/IP for wired and wire-
less connections. However, for a resource-limited
device with a wireless connection, only the propri-
etary protocol is a reasonable solution. It provides
simple remote method invocations with object-by-
values, and it fits the restriction of Java 2 Micro
Edition (J2ME).

We have implemented the protocol with TCP/IP
over GMS (the Groupe Spécial Mobile pan-Euro-
pean public land mobile system) and IEEE 802.11
wireless LAN. FIPA’s AMS acts as the authority
governing the agent platform, and agents must
refer to it to undertake life-cycle transitions — that
is, to change their state from active to suspended
or to move from one platform to another. FIPA
does not specify how agents should interact with
the AMS for life-cycle transitions. These activities
are private to the platform, and each platform can
use its own optimized techniques.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 23

FIPA-Compliant Agents

LEAP exploits the availability of the three ITPs
to support internal communication with the
AMS.

Agents send and receive messages exploiting
the containers that host them. As far as these
activities are concerned, a container can perform
the following functions:

� send and accept ACL messages through at least
one ITP,

� buffer incoming messages directed to one of its
agents,

� forward to the main container all ACL mes-
sages directed to an agent running in another
container, and

� send management messages to and accept
them from the main container.

For profiles with no severe constraints on
resources, containers can also

� forward ACL messages directed to an agent
running in another container through direct
connection with the peer container, and

� cache the addresses of an agent and the asso-
ciated containers where it runs.

Figure 1 shows a possible LEAP
deployment, emphasizing the
communication mechanisms. It
shows three containers:

� the main container runs on
an enterprise server connect-
ed to the Internet,

� container 1 runs on a PC, and
� container 2 runs on a Java-

enabled mobile phone.

Containers are connected be-
tween each other through a fea-
sible ITP. If there is no feasible
ITP, then the main container acts
as a dispatcher for messages.
Only the containers supporting
IIOP, that is, the main container
and container 1, can connect
directly to other FIPA platforms.
Messages to and from container
2 are routed through the main
container.

Deployment Issues
The target devices for LEAP can
vary widely in terms of memory,

computational power, display, pointing devices,
and connectivity capabilities, as shown in Table 1.
The resources available to Java applications may
differ significantly from those in Table 1, mainly
in the implementation of the available virtual
machine. For example, the KVM available for Pal-
mOS reserves at most 200 kilobytes of memory for
Java applications even if the device has 8
megabytes.

To adapt to target devices while maintaining a
minimal footprint, the LEAP architecture is split
into modules that are categorized as follows:

� mandatory and device independent, like the
AMS module responsible for managing agent
life cycles;

� mandatory and dependent on device capabili-
ties, like the communication module;

� optional and device independent, like the secu-
rity plug-in for the communication module; and

� optional and device dependent, like all GUIs.

High-level platform functionality can be spread
across different modules. For example, the agent
communication channel that FIPA mandates to sup-
port interoperable messaging between third-party

24 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Wireless Platforms

A2 A3A4

Container 2 Container 1

Network

Other FIPA platforms

LEAP

Main container

AI

AMS DF

IIOP transporting FIPA
messages
ITP transporting platform
management commands

Figure 1. LEAP transport mechanisms. Only the main container and container 1 can
support the IIOP, which lets them connect directly to other third-party FIPA platforms.
Container 2 must use an internal transport protocol (ITP) suitable for a handheld
device and connect to other FIPA platforms through a container that supports IIOP.

platforms is split over the communication modules
of different containers of the same platform.

LEAP development is based on the Java 2 plat-
form, which provides a common layer of plat-
form-independent functionality available on
mobile phones, PDAs, and PCs running all sorts of
operating systems. Although Java provides a solid
foundation, small devices do not provide a full-
featured Java 2 platform. To meet the platform
goals of being sufficiently lightweight for a mobile
device while remaining a first-class choice for an
enterprise server, LEAP implements an adaptation
layer that matches the classes available on the
most restrictive Java 2 platform — namely the con-
nected, limited device configuration (CLDC) of the
J2ME — to the classes available in standard Java.
We used the Abstract Factory4 pattern to match the
classes available on different Java 2 profiles and
configurations, and we employed the Half-Object
Plus Protocol5 pattern to make LEAP independent
from communication protocols.

Conclusion
LEAP is being applied to agent services that sup-
port dynamic enterprises and mobile teams. In
Phase 1 of the project, a first implementation of
LEAP software has been realized. In Phase 2, field
trials are being conducted for three services that
anticipate a user’s knowledge needs on the basis
of skill and location, then provide access to col-
lective knowledge assets and support for coordi-
nated collective activities. The trials target mobile
engineers working the telecommunications and
roadside assistance industries. The results are
intended to clarify practical issues related to
industrial deployment and management of agent
services on mobile devices.

For more information, see the project Web site
at http://leap.crm-paris.com.

Acknowledgments
We would like to thank the other partners of the LEAP project:

Allgemeiner Deutscher Automobil-Club, Broadcom, British

Telecom, Motorola, and Siemens. The European Commission

funds this work through the grant IST-1999-10211.

References

1. C. Petrie, “Agent-Based Engineering, the Web, and Intel-

ligence,” IEEE Expert, vol. 11, no. 6, Nov./Dec. 1996, pp.

24-29.

2. F. Bergenti and A. Poggi, “A Development Toolkit to Real-

ize Autonomous and Interoperable Agents,” Proc.

Autonomous Agents 2001, ACM Press, New York, 2001, pp.

632-639.

3. F. Bellifemine, A. Poggi, and G. Rimassa, “Developing Multi-

agent Systems with a FIPA-Compliant Agent Framework,”

Software–Practice and Experience, vol. 31, 2001, pp. 103-128.

4. E. Gamma et al., Design Patterns, Addison-Wesley, Read-

ing, Mass., 1994.

5. G. Meszaros, “Pattern: Half-Object + Protocol,” Pattern

Languages of Program Design, J.O. Coplien and D.C.

Schmidt, eds., Addison-Wesley, Reading, Mass., 1995.

Federico Bergenti is a PhD candidate in computer engineering

at the Information Engineering Dept., University of Parma.

His research interests include intelligent agents, ontolo-

gies, and software engineering. His current work focuses

on methodologies for agent-oriented software engineering

and the application of agents to CSCW.

Bernard Burg is a department manager for Hewlett-Packard

Laboratories, Palo Alto, California. He coordinated the

LEAP project up to the end of 2000. His research interests

include agents, machine learning, and ontologies. Burg

received a PhD in computer science from Paris XI Univer-

sity. He is director of the FIPA board and chair of its tech-

nical committee on service-level agreements.

Giovanni Caire is a researcher at the Telecom Italia Lab. His cur-

rent interest is in intelligent agent technology, including

the LEAP project and the implementation of Jade. He

received a degree in engineering from Politecnico di Tori-

no in 1992.

Agostino Poggi is associate professor of computer engineer-

ing at the University of Parma, where he coordinates the

Agent and Object Technology group. He received a Lau-

rea degree cum laude in electronics engineering in 1987

and a PhD in computers and electronics engineering in

1992, both from the University of Genoa. He is member

of AAAI, AI*IA, the IEEE, and the editorial board of IEEE

Internet Computing.

Readers may contact the authors via e-mail at

{Bergenti,Poggi}@ce.unipr.it, Bernard_Burg@hp.com, and

Giovanni.Caire@tilab.com.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 25

FIPA-Compliant Agents

Table 1.Target devices for LEAP.

Category Memory Connectivity
Cellular phone < 16 Mbytes 1. TCP/IP over GSM

2. SMS
PDA 16–32 Mbytes 1. TCP/IP over GSM

2. SMS
3. IEEE 802.11

PC 64–256 Mbytes 1. TCP/IP

