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Decision Processes
in Agent-Based
Automated
Contracting
The Magnet system meets many of the challenges of

modeling decision making for customer agents in

automated contract negotiation.

Business-to-business e-commerce is
expanding rapidly, letting manu-
facturers both broaden their cus-

tomer base and increase their pool of
potential suppliers. However, negotiating
supplier contracts for the multiple compo-
nents that often make up a single product
is a complicated process. Because compo-
nent parts must be assembled and time
dependencies often exist among opera-
tions, scheduling is a major challenge.

Currently, there are no existing mecha-
nisms or frameworks for automated nego-
tiation and contracting among manufac-
turers, part suppliers, and specialized
subcontractors. As the sidebar, “Related
Work on Market-Based Architectures,”
describes, current e-commerce systems typ-
ically rely instead on either fixed-price cat-
alogs or auctions. However, such systems
focus only on cost, which is just one factor
in the complicated buyer-supplier relation-
ship. For meaningful contract negotiations,

systems must take into account other key
factors, including schedule, quality, deliv-
ery performance, and flexibility.1

The University of Minnesota has devel-
oped the Multi-Agent Negotiation Testbed
(Magnet) system,2 which is designed to
support multiple agents in negotiating con-
tracts for tasks with temporal and prece-
dence constraints. Magnet has been under
development since early 1998. Currently,
its distributed market infrastructure is in
place, as are the principal elements of its
customer agents, which we focus on here. 

Magnet’s customer agents have two
key tasks. First, they must determine the
specific contents of a Request for Quote
(RFQ), which they send out at the start of
negotiations to solicit supplier bids. The
content of the RFQ determines how
much time suppliers have to submit bids,
and constrains the start and end times
for the tasks. Next, once bids have been
received, the customer agents review and
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select bids. They do this using an algorithm we
developed that operates on combinatorial prob-
lems with multiple tasks and attributes including
cost, supplier reputation and reliability, time con-
straints, and other risk factors.

To model decision making in the uncertain envi-
ronment of contract negotiation, we use the
Expected Utility Theory. We describe that theory
here, followed by more detailed descriptions of the
customer agents’ key decision-making processes
and our search algorithm. First, we offer an
overview of the Magnet environment.

The Magnet System
Figure 1 shows an overview of the Magnet system.
The system’s market infrastructure supplies cus-

tomer agents with statistics to help with decision
making, connects customer and supplier agents,
and helps the agents communicate.

Market Infrastructure
Magnet mediates agent interactions through the
market infrastructure,2 which provides a domain
ontology, a contracting protocol, and authentica-
tion services. It also tracks the requests, commit-
ments, and progress toward task completion.

The market’s ontology describes the types of
tasks or goods available in the market. Along with
item descriptions, the ontology contains statistics,
including details such as how many suppliers typ-
ically bid on an item and how long a task typical-
ly takes. The market also keeps a registry of sup-

Related Work on Market-Based Architectures

Markets play an essential role in the economy, and market-based
architectures are a popular choice for multiple agents.1-3However,
most existing market architectures limit agent interactions to
manual negotiations,direct agent-to-agent negotiation,4,5 or various
types of auctions.6

Auctions are becoming the predominant mechanism for agent-
mediated electronic commerce.7 AuctionBot6 and eMEDIATOR8

are among the most well-known examples of multiagent auction
systems. Determining the winners of combinatorial auctions is
difficult. Dynamic programming9 works for small sets of bids, but
does not scale, and it imposes significant restrictions on the bids.
Algorithms such as Bidtree8 and CASS10 have been proposed to
reduce the search complexity, but price is their only criterion for
bid selection.Our bids include a time window for each task,which
ties bid selection to scheduling.

Also, existing architectures for multiagent virtual markets
typically rely on the agents themselves to manage their interaction
details rather than providing explicit facilities and infrastructure
for managing multiple negotiation protocols. In our work, agents
interact with each other through a market. The market
infrastructure provides a common vocabulary; collects statistical
information that helps agents estimate costs, schedules, and risks;
and acts as a trusted intermediary during the negotiation process.

Most work in supply-chain management is limited to strict
hierarchical modeling of the decision-making process. This is
inadequate for distributed supply-chains, since each organization is
self-interested, not cooperative.A notable exception is the Mascot
system.11 Mascot agents coordinate scheduling with the user, but
there is no explicit notion of payments or contracts, and the criteria
for accepting or rejecting a bid are not explicitly stated.The system’s
major objective is to show the advantage of using lateral coordination
policies that focus on optimizing schedules locally through temporal-
constraint exchange.12 Our objective is to negotiate contracts with
suppliers that optimize the customer’s utility.
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pliers who typically participate in market activities,
and it maintains performance statistics to help cus-
tomer agents (or the agent’s human user) make
decisions. Market services are dynamically deliv-
ered to participating agents through a market ses-
sion. The session encapsulates a market transaction
and also serves as a persistent repository for the
current state of the transaction throughout the life
of the contract.

Agent Interactions 
In Magnet, agents function in three basic phas-
es: planning, negotiation, and execution moni-
toring. Here, we focus on decisions made in the
bidding cycle, which occurs in the negotiation
phase. We distinguish between two agent roles:
the customer and the supplier. A customer is an
agent who has a goal and needs resources out-
side its direct control to achieve it. The goal’s
value can vary over time. A supplier is an agent
who has resources or services and, in response to
a customer agent’s RFQ, might offer to provide
them to the customer for a specified price over a
specified time period.

The bidding cycle consists of several steps:

■ The customer agent issues an RFQ, which
includes a specification of each task and a set of
precedence relations among tasks. For each task,
the agent specifies a time window that gives the
task’s earliest start time and latest end time.

■ Suppliers send bids, which include the total
cost, estimates on how long each task will take,
and a time window for startup on each task.

■ When the customer agent awards a bid, it pays
the supplier a deposit (refundable only if the
supplier fails) and specifies a start time within
the supplier’s time window. 

■ When the supplier completes a task, the cus-
tomer agent pays the outstanding balance,
minus the deposit.

■ If the supplier fails to complete a task, it for-
feits the price and returns the deposit to the
customer agent (the customer might also levy
a penalty for nonperformance, though we
ignore this possible complication here).

Once the customer agent awards bids, a secondary
protocol lets agents negotiate schedule changes. This
helps prevent outright failure and reduces risk for
both parties, at the cost of complicating the agents’
behavioral requirements during plan execution.

An Example
Assume Acme Widgets asks its agent to find the
resources to prepare a trade-show display within
two weeks. Acme’s sales department has estimated
that if the display is ready on time, it can book
sales during the show that will earn the company
US$10,000 in profit (minus the cost of the display).

The agent has three tasks to accomplish, and
there is uncertainty as to whether the suppliers
can deliver on time (we ignore the uncertainty in
the profit number). Figure 2 (next page) shows the
customer agent’s financial situation as the plan
progresses. The customer agent pays deposits on
all tasks (d1,d2, and d3) when it awards bids at the
end of the bidding cycle. Once suppliers complete
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Figure 1. Overview of the Magnet system. Magnet mediates interactions among customer and
supplier agents and provides customer agents with market statistics.



the tasks, the customer agent makes payment on
each task, minus the deposit (c1 − d1, for example).
If a task, n, is not completed by the supplier, the
supplier agent returns the deposit dn to the cus-
tomer agent. When the plan is complete, the value
V of the goal accrues.

Assuming that the customer agent receives mul-
tiple bids that specify different costs, deposits, and
time parameters, the goal of the decision process
is to award a combination of bids that maximizes
the expected utility—that is, the subjective value to
the user—at the project’s end. Because that utility
involves some probability of both loss and gain,
we must assess the risk posture of the person or
organization on whose behalf the agent is acting.
To do this, we model the agent’s decision making
based on marginal expected utility: the expected
change in the decision maker’s overall utility due
to some decision.

Expected Utility Theory
To produce plans that are acceptable to users, an
automated agent must be able to handle decision
making in an uncertain environment. To model
this, we use the Expected Utility Theory (EUT),3

which models decision making under uncertainty
using probabilities and a utility curve, U(W), that
maps a level of “wealth” to a level of utility. 

According to EUT, decision makers faced with
an opportunity consisting of a set of n wealth-
based outcomes will calculate the expected utili-
ty over the set of outcomes:

(1)

where pi is the probability of outcome i, and Wi

is the decision maker’s resulting wealth if out-
come i is realized. Basically, decision makers
weigh the utility of each outcome within the
opportunity. To make a decision, decision makers
compare the expected utility, E(U), to their cur-
rent utility, U(W0), where W0 represents their cur-
rent wealth. If the opportunity’s expected utility
exceeds the current utility, the decision maker
will pursue the opportunity. Similarly, when faced
with multiple opportunities, decision makers can
decide which (if any) they will pursue by com-
paring the expected utilities of each opportunity
with their current utility.

Computing Utility
EUT guides our customer agents in situations
where there is a trade-off between a plan’s over-
all cost and its likelihood of success. For exam-
ple, the agent might need to choose between sup-
pliers who are very reliable but charge a high
price, and others who charge less but are less like-
ly to complete the task. By computing the expect-
ed utility of different scenarios, the agent can
choose from among them.

To compute the expected utility for a plan being
executed by several supplier agents, we treat the
plan as a set of ordered task-completion events.
Each event has a probability of succeeding, and, at
the time of each event, the customer agent must
pay some supplier agent. When the last task is
complete, the customer agent gains the benefit of
plan completion. If any task fails to complete, we
assume the customer agent will abandon the plan
and forfeit the deposits paid to downstream sup-
pliers (suppliers who have yet to begin processing
their respective tasks). For n tasks, this gives

(2)

where M(x) is the change in utility due to a finan-
cial gain of x, the pi are the success probabilities
of the successive tasks, the zi are the cumulative
“debits” resulting from each task completion (the
di and ci in Figure 2), and V is the net “credit” that
accrues on plan completion.

We call the function M(x) the marginal
expected utility of a gain of x. This notion lets us
simplify thinking about situations in which we
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Figure 2.The financial position of the Acme Widget
customer agent.The agent's financial position changes
as it awards bids, makes deposits and payments, and
accrues value for completed tasks.



are concerned only about changes in wealth due
to some decision. Denoting with ∆ Wi the
change in wealth relative to W0, for outcome i,
Equation 1 becomes

(3)

For our purposes, M(∆ W) is really a qualitative
concept; we do not expect to compute it exactly.
Although many functions have been proposed,4

little is known about how to elicit preferences from
users or an organization that will yield an accu-
rate utility function. Instead, we recognize its exis-
tence and its general shape. To compute values, we
will bound M(∆ W) with a linear function as an
upper bound (risk neutral), which is fairly close to
reality for small gambles.

We define successful plan execution as “com-
pleted by the deadline” and successful task com-
pletion as “completed without violating the plan’s
temporal constraints.” A task can be completed
successfully even if it is not finished within the
bidder’s proposed time frame, as long as the sched-
ule has sufficient slack to absorb the overrun. A
plan fails if it is completed after its deadline, and
we ignore any of the completed work’s residual
value to the customer. These definitions form our
starting point; we now extend our analysis to more
complicated cases.

Application Example
Given the example of Figure 2, the expected utili-
ty E(U) for Acme Widgets is:

(4)

where V is the US$10,000 profit, dn is the deposit
paid when bid n is awarded, cn is the price paid
when task n is completed, and pn is the probabil-
ity that task n will be completed by the agreed-
upon deadline.

To compute the expression in Equation 4, the
customer agent estimates, for each task and sup-
plier, the probabilities that the tasks will be com-
pleted on time. The agent then computes its mar-
ginal utility M(x) for each possible outcome.
Although statistical information about tasks and

suppliers is available from the market, the utility
function depends on the user. Users who trust their
agents to make autonomous decisions can specify
an analytical form for their own utility function.
Other users might let the agent do some computa-
tions and present alternatives, and then make the
final decision themselves.

When a set of tasks includes potentially paral-
lel activities, the analysis is more complex. Differ-
ent possible schedules might have different mar-
ginal utility values, depending on the relative costs
and success probabilities of the individual tasks.
Once a task starts, the user is liable for its full cost
at completion, regardless of whether the plan is
abandoned due to a failure on some other branch
of the plan.

Consider the plan in Figure 3, for example.
Depending on expected task durations, it might be
possible to complete task s2 before starting s5, or
to delay s2’s start until either or both of s3 and s4

are complete. It might even be possible to serialize
s3 and s4 in either order if the plan has sufficient
slack. Each of these orderings will yield a different
E(U) value. For example, if s2 is expensive relative
to tasks s3 and s4, it should be delayed until after
both s3 and s4 have completed, if possible. This
reduces the number of times the cost of s2 appears
in Equation 2.

How sensitive is a risk estimate to uncertainty
about supplier reliability? One way to answer this
is to look at the partial derivatives of E(U) with
respect to pk in Equation 2:

(5)
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Figure 3. A branching task network.
Tasks can be scheduled in qualitatively
different ways, yielding different margin-
al utility values.



we are better off abandoning the plan because a
higher success probability for that element will
lead to a worse overall outcome. If any of the
derivatives are especially large and the confidence
in the corresponding probability estimates are low,
the customer agent should warn the user about the
uncertainty and its potential impact, and consider
adding slack to the schedule to allow for recovery.

Because of the temporal constraints among
tasks, one supplier’s failure to accomplish a task
does not necessarily mean the overall goal will fail;
recovery is possible if another supplier assumes the
task without invalidating the schedule. However,
permitting such flexibility complicates bid selec-
tion. Selecting the cheapest bids and the tightest
possible schedule is likely to create a brittle com-
bination, and is thus not always the best choice.

We can reduce risk by consolidating tasks with
single suppliers who can bid on “packages” com-
posed of task subsets from the RFQ. In general,
we’re better off accepting such packages from a
risk standpoint, assuming that the supplier will let
us pay for the whole package when it’s complete.
In some cases, we might be willing to pay a pre-
mium over the individual task prices to reduce risk.
This is most advantageous toward the end of the
plan. To see why, we restructure Equation 4 to con-
solidate tasks 2 and 3, without changing the costs
and deposit amounts:

(6)

The fourth term from Equation 4 is now miss-
ing, and the third term represents a smaller outlay.
Also, the last term’s probability factor might be
larger if the supplier’s probability of delivering on
the consolidated task (p23) is nearly the same as
delivering on a single task (p2 or p3).

Risk and Utility
For agents to make appropriate autonomous deci-
sions, we must estimate how risks affect the mar-
ginal expected utility. First, however, we must
determine which elements contribute to risk, and
how to estimate and decrease risk.

To support risk evaluation, Magnet’s market
maintains several types of data on each supplier
and task type.

■ Performance to commitment (Pc): the ratio of
successes to attempts, where the task was com-

pleted within the promised duration. It does
not include bid awards that the customer agent
abandoned before starting the task.

■ Performance with overruns (Pl): the percentage
of attempts completed successfully but late.

■ Overrun duration (tl): the lateness of comple-
tions with respect to bid durations.

For each factor, the market maintains the sample
mean, sample size, and variance. This lets agents
compute a confidence interval and issue risk
reports to the user in a standard form: “There is
an n percent probability that your risk is less
than x.”

To estimate risk, we compute a lower bound of
the risk R. This is the absolute value of the nega-
tive part of the expected value computation, not
including the payoff for plan completion:

(7)

A risk estimate must be made in the context of
a particular schedule for two reasons. First, spe-
cific start times determine the schedule slack
available for recovery if a supplier misses a dead-
line. Second, scheduling decisions affect the
ordering of parallel tasks.

Clearly, minimizing risk by adjusting task
start times is a nonlinear combinatorial opti-
mization problem, since the amount of slack
available for failure recovery influences indi-
vidual completion probabilities. We have sever-
al options, such as:

■ Estimate marginal completion probabilities
given additional time. We can estimate perfor-
mance with overrun and overrun duration
data, and assume that the improvement in
completion probability is linear in time.

■ Initialize each task’s start time to be as early
as possible, consistent with precedence con-
straints and bid specifications. This is a heuris-
tic based on our observation that later tasks
tend to be riskier because of the larger outlays
later in the plan.

Another option is to present users with the choic-
es, risk data, and sensitivities from Equation 5, and
let them decide. 

Decision Process in Customer Agents
The customer agent takes utility and risk into
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account at two points during the bidding cycle:
during RFQ composition, when it specifies the
tasks and time windows; and during bid evalua-
tion, when it makes decisions about which bids to
accept based on such things as price, timing, and
supplier and data reliability. 

Composing the RFQ
The customer agent’s goal in composing the RFQ
is to maximize the plan’s expected marginal utili-
ty at completion time. The agent can’t schedule
tasks directly; instead, it issues an RFQ to garner
a set of bids from potential suppliers. It then com-
poses a schedule based on these bids.

The agent generates the RFQ from a task net-
work that consists of a set of tasks, the temporal
constraints among them, and possibly nonzero
delays between tasks to cover communication and
transportation delays. Operations in task networks
need not be linearized with respect to time, since
multiple agents can execute operations in parallel.
Figure 3 shows an example task network. 

Time allocation. When composing an RFQ, the
agent must decide how to allocate time in three
ways:

■ between bidding and execution of the plan;
■ within the bidding cycle, between suppliers and

the customer agent; and
■ among the tasks in the plan.

Supplier agents need time to evaluate their
resource availability and compose bids, and the
customer agent needs time to evaluate bids. When
we allocate additional time to the bidding process,
we reduce the available execution time and
increase the risk of plan failure. If we decrease time
for the bidding process, supplier and customer
agents have less time to consider their options.

Our principal strategy in time allocation
between the customer agent and supplier agents is
to allocate just enough time for the customer agent
to make a decision. The reason is that suppliers
will likely either not bid or will raise prices if they
have to reserve resources while speculating on
outstanding bids. Also, any extra time the cus-
tomer agent spends on decision making reduces
the available execution time. For further guidance
on this time-allocation problem, see our detailed
characterization of the bid-evaluation process.5

Scheduling. The RFQ includes early start and late
finish times for each task. The customer agent

must set these “time windows” prior to soliciting
bids. Once the bidding cycle concludes, the agent
composes the bids into a feasible schedule. But
first, suppliers must return bids that satisfy the
plan’s precedence constraints. The customer agent
attempts to influence the availability of attractive
bids by setting the relative time allocation among
the tasks and the extent to which the time win-
dows of adjacent tasks—those connected by prece-
dence relations—can overlap.

To make these decisions, the customer agent
uses three kinds of task data from the Magnet
market’s ontology:

■ the number of bidders likely to submit bids,
■ the expected duration, and 
■ the amount of variability in the duration data.

The customer agent builds an initial schedule using
the expected duration data. It then sets the initial
time windows using the Critical Path algorithm.6

This algorithm first walks the directed graph of tasks
and precedence constraints forward to compute the
earliest start times for each task, and then backward
from the goal time to compute the latest possible
finish and start times for each task. The entire plan’s
minimum duration is called the makespan; the dif-
ference between the goal time and the latest early
finish time is called the plan’s total slack.

In Figure 4 (next page), the green bars show the
expected duration of the tasks in Figure 3’s task net-
work. The customer agent selected a total slack of 5
units for a 35-unit makespan, or about 14 percent.
The yellow bars’ durations are one standard devia-
tion below the expected values, while the blue bars
show an alternative formulation in which the total
slack is apportioned among the tasks on the critical
path to produce an RFQ with no overlap among
adjacent tasks. The yellow-bar option is likely to
produce more bids and potentially lower-cost bids
because it offers suppliers additional scheduling
flexibility. The blue option will make it easier for the
customer to compose a feasible plan, assuming bids
are received to cover all the tasks. In this case, the
bid evaluation problem is reduced to a version of the
combinatorial auction-winner-determination prob-
lem, for which there are reasonably efficient opti-
mal solution methods.7-9

Discussion. We can make an additional adjustment
using bidder population and variability data. We’re
still investigating the detailed relationships
between the bidder count and variability data, and
the optimal adjustments that must be made to the
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RFQ schedule. Our current approach is to increase
the relative time allocation when duration data is
more variable, and increase the overlap when there
are many bidders.

There is a tension between issuing an RFQ that
guarantees the feasibility of any plan constructed
with the resulting bids and issuing one that will
solicit the maximum number of bids. We assume
that supplier bids are based on an evaluation of their
current resource commitments, and therefore  that
larger time windows will result in more bids. Sup-
pliers will know that more time flexibility in their
bids will give them a competitive advantage.

Evaluating and Awarding Bids
Once suppliers send their bids, the customer

agent’s goal is to find and schedule a bid combi-
nation that maximizes E(U), then award the bids.
The challenge is to find a good mapping of bids to
tasks, then schedule the bids so that there is a low
risk of unrecoverable failure.5 A “good” mapping
covers all tasks (each task is mapped to exactly one
bid), satisfies temporal constraints, and is relative-
ly low-cost. Also, in our system, bids are exclusive:
When a single supplier agent submits multiple
bids, only one can be accepted (though other bid
semantics are possible).8

Search algorithm. To decide on bids, our customer
agents use our adaptive, anytime search algorithm
shown in Figure 5. We based the algorithm on a sim-
ulated annealing10 framework with modular selec-
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tors and evaluators. Simulated-annealing is charac-
terized by two elements: the annealing temperature
T, which is periodically reduced by a factor ε; and
the stochastic node-selection procedure. Nodes rep-
resent sets of bids mapped to their respective tasks;
we keep them in an ordered queue of fixed maxi-
mum length, sorted by their value. Step 2.4 in the
algorithm shows how we compute the node value,
which is a combination of factors and includes a
risk component. Intuitively, risk increases whenev-
er an agent accepts a bid that increases either (a) the
probability of missing the goal deadline or (b) the
probability of missing the latest possible start time
for some subsequent task.

As Figure 5 shows, we maintain a tabu list and

a tried list on each node. The tabu list is a list of
bids recently used in the history of node expan-
sions leading to the target node. By prohibiting
expansion by bids on the tabu list, we prevent
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1. Initialize search: 
1.1 Pre-process bids: For each task, generate a list of the bids that include the task and its average bid price.
1.2Coverage test: If any task lacks a bid, exit (coverage cannot be achieved).
1.3Single bid test: If any task has a single bid, the bid must be part of any solution. The bid might contain 

one or more tasks. Create node(s) that map the bid, compute their value V, and add them to the queue.
1.4 Initialize queue: If there are no singletons, create a node mapping all tasks to no bids and add it to the queue.
1.5Set initial annealing temperature.

2. While not time out and improving do: 
2.1 Select a node N for expansion: Select a random number R = Vmin − T ln(1−r)(Vmax − Vmin), where

■ r is a random number uniformly distributed between 0 and 1,
■ T is the current annealing temperature, and
■ nodes in the queue are sorted by increasing values; Vmin is the value of the first node, Vmax the value of 

the last node.
Choose node N as the last node in the queue for which VN ≤ R.

2.2 Select a bid B: 
Discard all bids that appear on the tabu list of N. 
Discard all bids that appear on the tried list of N. 
Choose a bid according to the current bid selection policy.

2.3 Expand node N with bid B, producing node N′: For each task mapped by bid B that is already mapped 
in N to some other bid B′, remove bid B′. 
If B′ is a singleton bid (see 1.3 above), abandon the expansion. 
Add B to the expansions-tried list of node N. 
Copy the tabu list of node N into node N′ and add bid B in front. 
Truncate the tabu list in node N′ to the tabu size limit.

2.4 Evaluate node N′: 
VN = CostN + RiskN + FeasN + CovN where

■ CostN is the sum of bid prices (uncovered tasks are assigned an average price),
■ RiskN is the expected cost of recovering from plan failure times a weighting factor,
■ FeasN is the weighted sum of schedule overlaps, and
■ CovN is the number of tasks that are not mapped to a bid, times a weighting factor.

2.5 Update best-node statistics.
2.6 Adjust the annealing temperature T.

3. Return the best node found.

Figure 5.The search algorithm for bid selection. We based the adaptive, anytime search algorithm
on a simulated annealing framework.

Table 1. Solutions found.

Selector Small-bid problem Large-bid problem

Random 2 2
Cov 3 0
FeasCov 2 0
Combined 6 1 



short cycles in the search space and thereby
encourage exploratory behavior. The tried list is
simply the list of bids that have already been used
to expand the node in question; we don’t try the
same expansion twice.

We have implemented and tested several bid-
selection methods (see Step 2.2 in Figure 5):

■ Random Bid: Choose a bid at random, and
attempt to add it to the node.

■ Coverage Improvement: Choose a bid that cov-
ers a task that is not mapped in the node.

■ Feasibility Improvement: Scan mapping to find
tasks with negative slack. Of those, move tasks
constrained by their bids (rather than by prede-
cessors or successors) to relieve negative slack.
Sort tasks by their potential to reduce infeasi-
bility and save them. Choose the untried bid
with the highest potential to reduce infeasibili-
ty. Note that with this selector, it’s possible to
choose a bid that introduces other infeasibilities.

■ Cost Improvement: Choose the (untried) bid that
is responsible for the maximum positive devia-
tion from the average (or expected) price, and
replace it with a lower bid that covers at least
the task with the highest positive cost deviation.
This selector is useful only if you have average
or expected cost data on each task. 

Clearly, significant complexity costs are associat-
ed with both the Feasibility Improvement and Cost
Improvement methods. 

To generate focused improvements for a given
node, you can compose these selectors into differ-
ent configurations. In our experiments, we used
the following selectors:

■ Random (described above).
■ FeasCov: If the node is infeasible, use the Fea-

sibility Improvement selector; otherwise, if it is
not fully covered, use the Coverage Improve-
ment selector; otherwise, use the Random selec-
tor.

■ CostFeasCov: If the cost of the node’s covered
portion is above average, attempt to reduce its
cost; otherwise, use the FeasCov selector.

■ Combined: Run the Random selector until it
stops producing improvement, then switch to
Feasibility Improvement until it stops produc-
ing improvement, then switch back to Ran-
dom, then to Coverage Improvement, then back
to Random, then to CostFeasCov, and finally
back to Random.

We performed numerous studies of the algorithm’s
performance.5 In particular, we compared the
Random bid selector with the more focused bid
selectors. Our interests are in both the ability to
find solutions and the rate of improvement. The
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Figure 6. Improvement curves for the small-bid problem.
Averages are shown for 20 runs.

Figure 7. Improvement curves for the large-bid problem.
Averages are shown for 20 runs.
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latter is important for setting time limits in an
anytime search.

To probe a range of problem complexity fac-
tors, we ran the Random, Coverage, FeasCov, and
Combined selectors against two problem types of
the same size, but with different complexity lev-
els. Both sets had 50 tasks and 100 bidders, all of
which are generated with the same random num-
ber sequences. Total slack was 10 percent, and we
set task durations to 60 percent of their expected
values to relax the RFQ time windows. The aver-
age bid size (the number of tasks included in a bid)
was 5 in the small-bid problem and 15 in the
large-bid problem. Table 1 shows the number of
solutions that the different selectors found for
each problem. The actual number of such solu-
tions is not known.

Figures 6 and 7 show the improvement curves
for the four bid selectors on the small- and large-
bid problems, respectively. Error bars show σ/√ n
where σ is the standard deviation across runs, and
n is the number of runs. The Combined selector
clearly gives the best overall performance, both in
terms of consistency and solution quality.

Conclusions and Future Work
Many business-to-business interactions are mov-
ing to the Internet and to auction-based pricing
mechanisms. Although some businesses have
achieved success trading individual goods, many
problems remain in trading bundles of goods or
coordinated tasks. If an agent is to act on behalf
of a human decision-maker in such a market, it
must be able to evaluate risk factors in ways that
the person will find reasonable. We believe
Expected Utility Theory offers a good framework
for doing this.

A major problem in markets with coordinated
tasks is determining the winning bids. It is not
sufficient to pick the lowest prices. Our stochas-
tic approach, based on simulated annealing,
offers good, anytime performance. Our experi-
mental results show that excessive focus on
improvement leads to faster improvement early
on, at the price of a lowered likelihood of even-
tually finding a solution that satisfies all con-
straints. We’ve reported on additional experi-
ments elsewhere.5 Among our other studies, we
compared our simulated annealing search
method to a purely systematic search. As expect-
ed, the systematic approach reliably finds the
optimum bid assignment, at the cost of expo-
nential scalability and anytime controllability.
We are currently studying the possibility of using

integer programming for bid evaluation.
Many challenging problems remain before a

fully automated agent can function effectively in
this environment. A vocabulary must be devel-
oped to allow unambiguous specification of tasks
and bids. Many domains require more complex
relationships among tasks than we currently sup-
port, such as staged delivery over time, or task
splitting across multiple suppliers. On the suppli-
er side, we must develop an understanding of how
to use the bidding process to maximize the value
of supplier resources.

Our bid-evaluation test framework will be
released to the research community in 2001. Other
parts of the Magnet system will be released over
the following two years. Further information is
available at http://www.cs.umn.edu/Research/
airvl/magnet.
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