
Combinatorial Auctions: A Survey

Sven de Vries∗ & Rakesh Vohra†

January 12, 2001

Abstract

Many auctions involve the sale of a variety of distinct assets. Ex-

amples are airport time slots, delivery routes and furniture. Because

of complementarities (or substitution effects) between the different as-

sets, bidders have preferences not just for particular items but for sets

or bundles of items. For this reason, economic efficiency is enhanced

if bidders are allowed to bid on bundles or combinations of different

assets. This paper surveys the state of knowledge about the design

of combinatorial auctions. Second, it uses this subject as a vehicle to

convey the aspects of integer programming that are relevant for the

design of such auctions and combinatorial markets in general.

(Auctions; Combinatorial Optimization)

∗Zentrum Mathematik, TU München, D-80290 München, Germany.

e-mail: devries@ma.tum.de
†Department of Managerial Economics and Decision Sciences, Kellogg School of Man-

agement, Northwestern University, Evanston IL 60208. e-mail: r-vohra@nwu.edu

1

Contents

1 Introduction 4

2 The CAP 5

2.1 The Set Packing Problem . 8

2.2 Complexity of the SPP . 10

2.3 Solvable Instances of the SPP 12

2.3.1 Total Unimodularity 13

2.3.2 Balanced Matrices . 15

2.3.3 Perfect Matrices . 16

2.3.4 Graph Theoretic Methods 16

2.3.5 Using Preferences . 18

2.4 Exact Methods . 19

2.5 Approximate Methods . 23

2.5.1 Worst-Case Analysis 25

2.5.2 Probabilistic Analysis 26

2.5.3 Empirical Testing . 26

3 Decentralized Methods 27

3.1 Duality in Integer Programming 28

3.2 Lagrangean Relaxation . 30

3.3 Variations . 35

3.4 Column Generation . 36

3.5 Cuts, Extended Formulations and Non-linear Prices 38

4 Incentive Issues 45

2

5 Computational Experiments and Test Problems 53

5.1 Test Problems . 58

5.2 FCC Data . 61

3

1. Introduction

Many auctions involve the sale of a variety of distinct assets. Examples

are the FCC spectrum auction and auctions for airport time slots, railroad

segments (Brewer (1999)) and delivery routes (Caplice (1996)). Because of

complementarities (or substitution effects) between different assets, bidders

have preferences not just for particular items but for sets or bundles of items.

For this reason, economic efficiency is enhanced if bidders are allowed to bid

on combinations of different assets.

Auctions where bidders submit bids on combinations have recently re-

ceived much attention. See for example Caplice (1996), Rothkopf et. al.

(1998), Fujishima et. al. (1999), and Sandholm (1999). However such auc-

tions were proposed as early as 1976 (Jackson (1976) for radio spectrum

rights.1 Increases in computing power have made them more attractive to

implement. In fact a number of logistics consulting firms tout software to

implement combinatorial auctions. SAITECH-INC, for example, offers a

software product called SBIDS that allows trucking companies to bid on

”bundles” of lanes. Logistics.com’s system is called OptiBidTM. Logis-

tics.com claims that more than $5 billion in transportation contracts have

been bid to date (January 2000) using OptiBidTM by Ford Motor Company,

Wal-Mart and K-Mart.2

1In earlier versions of this paper we had listed Rassenti et. al. (1982) as the earliest. In

that paper the focus is to allocate airport time slots. We thank Dr. Jackson for bringing

the reference to our attention.
2Yet another firm called InterTrans Logistics Solutions, offers a software product called

Carrier Bid Optimizer that allows trucking companies to bid on ”bundles” of lanes over

several bidding rounds. They appear to have been acquired by i2 and we have not been

able to find anything more about them.

4

The most obvious problem that bids on combinations of items impose

is in selecting the winning set of bids. Call this the Combinatorial Auc-

tion Problem (CAP).3 CAP can be formulated as an Integer Program. This

paper will survey what is known about the CAP. It assumes a knowledge

of linear programming and familiarity with basic graph theoretic terminol-

ogy. The penultimate section is devoted to incentive issues in the design of

combinatorial auctions.

2. The CAP

The first and most obvious difficulty an auction which allows bidders to bid

on combinations faces is that each bidder must submit a bid for every subset

of objects he is interested in. The second problem is how to transmit this

bidding function in a succinct way to the auctioneer. The only resolution

of these two problems is to restrict the kinds of combinations that bidders

may bid on.

A discussion of various ways in which bids can be restricted and their

consequences can be found in Nisan (1999). In that paper Nisan asks, given

a language for expressing bids, what preferences over subsets of objects can

be correctly represented by the language. An alternative approach, not

much explored, is to rely on an ‘oracle’. An oracle is a program (black box)

that, for example, given a bidder and a subset computes the bid for it. Thus

bidders submit oracles rather than bids. The auctioneer can simply invoke

the relevant oracle at any stage to determine the bid for a particular subset.4

3We assume that the auctioneer is a seller and bidders are buyers.
4Sandholm (1999) points out that another advantage of oracles is that bidders need

not be present. Their application does rely on the probity of the auctioneer.

5

Even if this problem is resolved (in a non-trivial way) to the satisfaction

of the parties involved, it still leaves open the problem of deciding which

collection of bids to accept. This is the problem we consider.

Let N be the set of bidders and M the set of m distinct objects. For

every subset S of M let bj(S) be the bid that agent j ∈ N has announced

he is willing to pay for S. Let b(S) = maxj∈N bj(S). Then problem CAP

can be formulated as:

max
∑

S⊂M
b(S)xS

s.t.
∑

S3i
xS ≤ 1 ∀i ∈M

xS = 0, 1 ∀S ⊂M

Here xS = 1 is interpreted to mean that the highest bid on the set S is to

be accepted, whereas, xS = 0 means that no bid on the set S are accepted.

The constraint
∑

S3i
xS ≤ 1 ∀i ∈M

ensures that no object in M is assigned to more than one bidder. Call this

formulation CAP1.

The formulation above correctly models the CAP when the bid functions

bi are all superadditive, i.e. bj(A) + bj(B) ≤ bj(A ∪ B) for all j ∈ N

and A,B ⊂ M such that A ∩ B = ∅. This corresponds to the idea that

the goods complement each other. When goods are substitutes, bj(A) +

bj(B) > bj(A ∪ B) for some j ∈ N and A,B ⊂ M , formulation CAP1 is

incorrect. An optimal solution to CAP1 may assign sets A and B to bidder

j and incorrectly record a revenue of bj(A) + bj(B) rather than bj(A∪B) to

that allocation. This difficulty can be obviated through the introduction of

dummy goods, g, say. The bidder is then instructed to replace the bids bj(A),

6

bj(B) and bj(A∪B) with bj(A∪ g), bj(B ∪ g) and bj(A∪B) and to replace

M by M ∪ g. Notice that by the constraints of the integer programming

formulation, if the set A is assigned to j then so is g and thus B cannot be

assigned to j.

Problem CAP as formulated here is an instance of what is known as

the Set Packing Problem (SPP) which is described below. Another way to

write the problem for (not necessarily superadditive) bids without explic-

itly involving dummy items is the following integer program (which we call

CAP2). Let y(S, j) = 1 if the bundle S ⊆M is allocated to j ∈ N and zero

otherwise.

max
∑

j∈N

∑

S⊆M
bj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N
y(S, j) ≤ 1 ∀i ∈M

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

The first constraint ensures that overlapping sets of goods are never assigned.

The second ensures that no bidder receives more than one subset. This

formulation is also an instance of the SPP.5

5 As an aside, an important lesson of integer programming is that parsimony in formu-

lation is not always to be desired; important information is sometimes lost. Two distinct

formulations of the same problem as an integer program will share the same set of feasible

integer solutions but not necessarily the same set of non-integer solutions. For solution

purposes the integer program with the smaller set of feasible non-integer solutions may

be preferred. Strictly speaking, smallness is not what matters. Rather one would like the

set of feasible non-integer solutions to have sufficient structure that they can be identified

and eliminated.

7

There is another interpretation of the CAP possible. If we interpret the

bids submitted as the true values that bidders have for various combinations,

then the solution to the CAP is the efficient allocation of indivisible objects

in an exchange economy.

We have formulated CAP1 under the assumption that there is at most

one copy of each object. It is an easy matter to extend the formulation to

the case when there are multiple copies of the same object and each bidder

wants at most one copy of each object. All that happens is that the right

hand side of the constraints in CAP1 take on values larger than 1.

In the case when there are multiple units and bidders may want more

than one copy of the same unit, bids are column vectors of the form {ajk}k≥1

where ajk is the number of items of object k requested by bidder j. Again

it is easy to see that the problem of determining the winning set of bids can

be formulated as an integer program. Multi-unit combinatorial auctions are

investigated in Leyton-Brown et. al. (2000).6

2.1 The Set Packing Problem

The SPP is a well studied integer program. Given a ground set M of el-

ements and a collection V of subsets with non-negative weights, find the

largest weight collection of subsets that are pairwise disjoint. To formulate

this problem as an integer program, let xj = 1 if the jth set in V with weight

cj is selected and xj = 0, otherwise. Define aij to be 1 if the jth set in V
6If the number of units of each type is large, then one could approximate the problem

of selecting the winning set of bids using a linear program. The relevant decision variables

would be the percentage of each type allocated to a bidder.

8

contains element i ∈M . Given this, the SPP can be formulated as:

max
∑

j∈V
cjxj

s.t.
∑

j∈V
aijxj ≤ 1 ∀i ∈M

xj = 0, 1 ∀j ∈ V

It is easy to see that the CAP is an instance of the SPP. Just take M to be

the set of objects and V the set of all subsets of M .

Before continuing with a discussion of the SPP it is worth mentioning two

of its close relatives. The first is the set partitioning problem (SPA) and

the second is the set covering problem (SCP). Both would be relevant had

we cast the auction problem in procurement rather than selling terms. The

auctions used in the transport industry are of this type. In that setting,

objects are origin-destination pairs, called lanes. Bidders submit bids on

bundles of lanes that represent how much they must be offered to undertake

the deliveries on the specified lanes. The auctioneer wishes to choose a

collection of bids of lowest cost such that all lanes are served.7

The SPA is:

min
∑

j∈V
cjxj

s.t.
∑

j∈V
aijxj = 1 ∀i ∈M

xj = 0, 1 ∀j ∈ V

It can arise in an auction setting where the bidders are sellers rather than

buyers. For example, trucking companies bidding for the opportunity to
7In fact, one must specify not only lanes but volume as well, so this problem constitutes

an instance of a multi-unit combinatorial auction.

9

ship goods from a particular warehouse to retail outlet. Any instance of

SPP can be rewritten as an instance of SPA by using slack variables and

negating the objective function coefficients.

The SCP is:

min
∑

j∈V
cjxj

s.t.
∑

j∈V
aijxj ≥ 1 ∀i ∈M

xj = 0, 1 ∀j ∈ V

A prominent application of the SCP is the scheduling of crews for railways.

Both the SPA and SCP have been extensively investigated.

Other applications of the SPP include switching theory, the testing of

VLSI circuits, line balancing and scheduling problems where one wishes to

satisfy as much demand as possible, without creating conflicts. The survey

by Balas and Padberg [1976] contains a bibliography on applications of the

SPP, SCP and SPA. The instances of SPP that have received the most

attention are those that that stem from relaxations of SPAs.

2.2 Complexity of the SPP

How hard is the SPP to solve? By enumerating all possible 0-1 solutions

we can find an optimal solution in a finite number of steps. If |V | is the

number of variables, then the number of solutions to check would be 2|V |,

clearly impractical for all but small values of |V |. For the instances of SPP

that arise in the CAP, the cardinality of V is the number of subsets of M ;

a large number.

Is there an efficient algorithm for solving SPP? The answer depends on

the definition of efficiency. In complexity theory, efficiency is measured by

10

the number of elementary operations (addition, subtraction, multiplication

and rounding) needed to determine the solution. An algorithm for a prob-

lem is said to be efficient or polynomial if for all instances of the input

problem the number of elementary operations needed grows as a polyno-

mial function of the size of the instance. Of course the definition allows the

number of operations executed to grow with the size of the problem. To

ensure that the number of instructions grows only modestly in the size of

the problem, usually polynomiality is required. By focusing on the number

of operations rather than time, the definition is machine independent. Effi-

ciency should not hinge on the particular technology being used. The size

of a problem instance is measured by the number of binary bits needed to

encode the instance. In the case of the SPP the proxy for size of an instance

is max{|M |, |V |, ln cmax} where cmax = maxj∈V cj .

Returning to the efficiency question, no polynomial time algorithm for

the SPP is known and there are strong reasons for believing none exists.

The SPP belongs to an equivalence class of problems called NP-hard.8 No

problem in this class is currently known to admit a polynomial time solution

method. It is conjectured that no member in this class admits a polynomial

time solution algorithm. The conjecture is sometimes called the P6=NP

conjecture and its resolution is the holy grail of theoretical computer science.

Two points about this notion of efficiency are in order. First, polyno-

mial time algorithms while theoretically efficient may still be impractical.

For example, an algorithm whose complexity is a 23rd order polynomial of

problem size would still take a long time to run on even the fastest known

machines. Generally, a third order polynomial seems to be the upper limit
8More precisely, the recognition version of SPP is NP-complete.

11

of what is viewed as practical to implement. Second, the fact that a problem

is NP-hard in general does not mean there is no hope for solving it rapidly.

NP-hard does not mean ‘hard all the time’, just ‘hard some times’. An al-

gorithm that is polynomial on some rather than all instances may be good

enough for the purpose at hand.

For the CAP, this discussion of complexity may have little relevance.

Any algorithm for the CAP, that uses directly the bids for the sets, must

scan, in the worst case, the bids and the number of such bids could be

exponential in |M |. Thus effective solution procedures for the CAP must

rely on two things. The first is that the number of distinct bids is not large

or is structured in computationally useful ways. The second is that the

underlying SPP can be solved reasonably quickly.

2.3 Solvable Instances of the SPP

The usual way in which instances of the SPP can be solved by a polyno-

mial algorithm is when the extreme points of the polyhedron P (A) = {x :
∑

j∈V aijxj ≤ 1 ∀i ∈ M ; xj ≥ 0 ∀j ∈ V } are all integral, i.e. 0-1. In these

cases we can simply drop the integrality requirement from the SPP and solve

it as a linear program. Linear programs can be solved in polynomial time.

It turns out that in most of these cases, because of the special structure

of these problems, algorithms more efficient than linear programming ones

exist. Nevertheless, the connection to linear programming is important be-

cause it allows one to interpret dual variables as prices for the objects being

auctioned. We will say more about this later in the paper.

A polyhedron with all integral extreme points is called integral. Iden-

tifying sufficient conditions for when a polyhedron is integral has been a

12

cottage industry in integer programming. These sufficient conditions in-

volve restrictions on the constraint matrix, which in this case amount to

restrictions on the kinds of subsets for which bids are submitted. We list

the most important ones here.

Rothkopf et. al. (1998) covers the same ground but organizes the solvable

instances differently as well as suggesting auction contexts in which they may

be salient. An example of one such context is given below.

2.3.1 Total Unimodularity

The most well known of these sufficient conditions is total unimodularity,

sometimes abbreviated to ‘TU’. A matrix is said to be TU if the determinant

of every square submatrix is 0, 1 or -1. Notice also that if a matrix is TU

so is its transpose.

If the matrix A = {aij}i∈M,j∈V is TU then all extreme points of the

polyhedron P (A) are integral. It is easy to see why. Every extreme point of

P (A) corresponds to a basis or square submatrix of A. Now apply Cramer’s

rule to the system of equations associated with the basis.

The problem of characterizing the class of TU matrices was solved in 1981

by Paul Seymour who gave a polynomial (in the number of rows and columns

of the matrix) time algorithm to decide whether a matrix was TU. A nice

description of the algorithm can be found in Chapter 20 of Schrijver (1986).

However, for most applications, in particular for the CAP, the following

characterization of TU for restricted classes of matrices due to Ghouila-

Houri seems to be the tool of choice:

Theorem 2.1 Let B be a matrix each of whose entries is 0, 1 or -1. Suppose

each subset S of columns of B can be divided into two sets L and R such

13

that ∣

∣

∣

∣

∣

∣

∑

j∈S∩L
bij −

∑

j∈S∩R
bij

∣

∣

∣

∣

∣

∣

= 0, 1 ∀i

then B is TU. The converse is also true.

Other characterizations for matrices each of whose entries are 0, 1 or -1 can

be found in Chapter 19 of Schrijver (1986).

The most important class of TU matrices are called network matrices.

A matrix is a network matrix if each column contains at most two non-

zero entries of opposite sign and absolute value 1. One of the usual tricks

for establishing that a matrix is TU is to use a restricted set of row and

column operations to convert it into a network matrix. These operations

are negating a row (or column) or adding one row (column) to another.

Notice that if a matrix is TU before the operation it must be TU after the

operation.

A 0-1 matrix has the consecutive ones property if the non-zero entries in

each column occur consecutively.

Theorem 2.2 All 0-1 matrices with the consecutive ones property are TU.

Whether any of the results identified above apply to the CAP depends

upon the context. Rothkopf et. al. (1998) offer the following to motivate

the consecutive ones property. Suppose the objects to be auctioned are

parcels of land along a shore line. The shore line is important as it imposes

a linear order on the parcels. In this case it is easy to imagine that the most

interesting combinations (in the bidders eyes) would be contiguous. If this

were true it would have two computational consequences. The first is that

the number of distinct bids would be limited (to intervals of various length)

14

by a polynomial in the number of objects. Second, the constraint matrix A

of the CAP would have the consecutive ones property in the columns.9

2.3.2 Balanced Matrices

A 0-1 matrix B is balanced if it has no square submatrix of odd order with

exactly two 1’s in each row and column. The usefulness of the balanced

condition comes from:

Theorem 2.3 Let B be a balanced 0-1 matrix. Then the following linear

program:

max

∑

j

cjxj :
∑

j

bijxj ≤ 1 ∀i, xj ≥ 0 ∀j

has an integral optimal solution whenever the the cj’s are integral.

Notice that balancedness does not guarantee integrality of the polyhedron,

but only that there will be an integral optimal solution to the linear pro-

gram. However, it is true that when B is balanced then the polyhedron

{x :
∑

j bijxj = 1 ∀i, xj ≥ 0 ∀j} is integral.

We now describe one instance of balancedness that may be relevant to

the CAP. Consider a tree T with a distance function d. For each vertex v

in T let N(v, r) denote the set of all vertices in T that are within distance

r of v. If you like, the vertices represent parcels of land connected by a

road network with no cycles. Bidders can bid for subsets of parcels but the

subsets are constrained to be of the form N(v, r) for some vertex v and some

number r. Now the constraint matrix of the corresponding SPP will have
9If the intervals are substitutes for each other, then the introduction of dummy goods

into the formulation destroys the consecutive ones property. Müller pointed out that it

is a consequence of Keil (1992) that this problem becomes NP-hard in general. For some

efficiently solvable subcases see van Hoesel and Müller (2000).

15

one column for each set of the form N(v, r) and one row for each vertex of

T . This constraint matrix is balanced. See Nemhauser and Wolsey (1988)

for a proof as well as efficient algorithms. In the case when the underlying

tree T is a path the constraint matrix reduces to having the consecutive ones

property. If the underlying network were not a tree then the corresponding

version of SPP becomes NP-hard.

Characterizing the class of balanced matrices is an outstanding open

problem.

2.3.3 Perfect Matrices

More generally, if the constraint matrix A can be identified with the vertex-

clique adjacency matrix of what is known as a perfect graph, then SPP

can be solved in polynomial time. The interested reader should consult

Chapter 9 of Grötschel et. al. (1988) for more details. The algorithm, while

polynomial, is impractical.

We now describe one instance of perfection that may be relevant to the

CAP. It is related to the example on balancedness. Consider a tree T .

As before imagine the vertices represent parcels of land connected by a road

network with no cycles. Bidders can bid for any connected subset of parcels.

Now the constraint matrix of the corresponding SPP will have one column

for each connected subset of T and one row for each vertex of T . This

constraint matrix is perfect.

2.3.4 Graph Theoretic Methods

There are situations where P (A) is not integral yet the SPP can be solved in

polynomial time because the constraint matrix of A admits a graph theoretic

16

interpretation in terms of an easy problem. The most well known instance

of this is when each column of the matrix A contains at most two 1’s. In

this case the SPP becomes an instance of the maximum weight matching

problem in a graph which can be solved in polynomial time.

Each row (object) corresponds to a vertex in a graph. Each column

(bid) corresponds to an edge. The identification of columns of A with edges

comes from the fact that each column contains two non-zero entries. It is well

known that P (A) contains fractional extreme points. Consider for example

a graph which is a cycle on three vertices. A comprehensive discussion of

the matching problem can be found in the book by Lovász and Plummer

(1986). Instances of SPP where each column has at most K ≥ 3 non-zero

entries are NP-hard.

It is natural to ask what happens if one restricts the number of 1’s in

each row rather than column. Instances of SPP with at most two non-zero

entries per row of A are NP-hard. These instances correspond to what is

called the stable set problem in graphs, a notoriously difficult problem.10

Another case is when the matrix A has the circular ones property. A

0-1 matrix has the circular ones property if the non-zero entries in each

column (row) are consecutive; first and last entries in each column (row)

are treated consecutively. Notice the resemblance to the consecutive ones

property. In this case the constraint matrix can be identified with what

is known as the vertex-clique adjacency matrix of a circular arc graph.11

10The intstance of CAP produced by the radio spectrum auction in Jackson (1976)

reduces to just such a problem.
11Take a circle and a collection of arcs of the circle. To each arc associate a vertex. Two

vertices will be adjacent if the corresponding arcs overlap. The consecutive ones property

also bears a graph theoretic interpretation. Take intervals of the real line and associate

them with vertices. Two vertices are adjacent if the corresponding intervals overlap. Such

17

The SPP then becomes the maximum weight independent set problem for

a circular arc graph. This problem can also be solved in polynomial time,

see Golumbic et. al. (1988). Following the parcels of land on the seashore

example, the circular ones structure makes sense when the land parcels lie

on the shores of an island or lake.

2.3.5 Using Preferences

The solvable instances above work by restricting the sets of objects over

which preferences can expressed. Another approach would be to study the

implications of restrictions in the preference orderings of the bidders them-

selves. This can be accomplished using formulation CAP1 but is more trans-

parent with formulation CAP2. Recall CAP2:

max
∑

j∈N

∑

S⊆M
bj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N
y(S, j) ≤ 1 ∀i ∈M

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

One common restriction that is placed on bj(·) is that it be non-decreasing

and supermodular. Suppose now that bidders come in two types. The type

one bidders have bj(·) = g1(·) and those of type two have bj(·) = g2(·) where

gr(·) are non-decreasing, integer valued supermodular functions. Let N r be

the set of type r bidders. Now the dual to the linear programming relaxation

of CAP2 is:

min
∑

i∈M
pi +

∑

j∈N
qj

graphs are called interval graphs.

18

s.t.
∑

i∈S
pi + qj ≥ g1(S) ∀S ⊆M, j ∈ N1

∑

i∈S
pi + qj ≥ g2(S) ∀S ⊆M, j ∈ N2

pi, qj ≥ 0 ∀i ∈M, j ∈ N

This problem is an instance of the polymatroid intersection problem and

is polynomially solvable; see Theorem 10.1.13 in Grötschel et. al. (1988).

More importantly it has the property of being totally dual integral, which

means that its linear programming dual, the linear relaxation of the original

primal problem, has an integer optimal solution. This last observation is

used in Bikhchandani and Mamer (1997) to establish the existence of com-

petitive equilibria in exchange economies with indivisibilities. Utilizing the

method to solve problems with three or more types of bidders is not possi-

ble because it is known in those cases that the dual problem above admits

fractional extreme points. In fact the problem of finding an integer optimal

solution for the intersection of three or more polymatroids is NP-hard.

In the case when each of the bj(·) have the gross substitutes property

(Kelso and Crawford (1982)), CAP2 reduces to a sequence of matroid par-

tition problems (see Nemhauser and Wolsey (1988)), each of which can be

solved in polynomial time. Gul and Stachetti (1997) describe the reduction

as well as provide a ‘Walrasian’ auctioneer interpretation of it.

2.4 Exact Methods

Exact approaches to solving the SPP require algorithms that generate both

good lower and upper bounds on the maximum objective function value of

the instance. In general, the upper bound on the optimal solution value is

obtained by solving a relaxation of the optimization problem. That is, one

19

solves a related optimization problem whose set of feasible solutions properly

contains all feasible solutions of the original problem and whose objective

function value is at least as large as the true objective function value for

points feasible to the original problem. Thus, we replace the “true” problem

by one with a larger feasible region that is more easily solved. There are

two standard relaxations for SPP: Lagrangean relaxation (where the feasible

set is usually required to maintain 0-1 feasibility, but many if not all of the

constraints are moved to the objective function with a penalty term) and

the linear programming relaxation (where only the integrality constraints are

relaxed—the objective function remains the original function). Lagrangean

relaxation will be discussed in greater detail in Section 3 on decentralization.

Exact methods come in three varieties: branch and bound, cutting planes

and a hybrid called branch and cut. The basic idea of branch and bound

can be described as intelligent enumeration. At each stage, after solving

the LP, a fractional variable, xj , is selected and two subproblems are set up

(this is the branching phase) one where xj is set to 1 and the other where xj

is set to 0. The linear programming relaxation of the two subproblems are

solved to identify an upper bound on the objective function value for each

subproblem. From each subproblem with a nonintegral solution we branch

again to generate two subproblems and so on. In the worst case we generate

a binary tree that includes all feasible solutions. However by comparing the

linear programming bound across nodes in different branches of the tree,

one can prune some branches in advance without the need to explore them

further. That is solutions with some variable xk, say, set to 1 (or zero) can

never be optimal. This is the ‘bound’ in the name of the method.

Cutting plane methods find linear inequalities that are violated by a so-

lution of a given relaxation but are satisfied by all feasible zero-one solutions.

20

These inequalities are called cuts. If one adds enough cuts, one is left with

integral extreme points. Later in this paper (see Subsection 3.5) we show

how cuts can be used to develop prices for various subsets of objects. The

most successful cutting plane approaches are based on polyhedral theory,

that is they replace the constraint set of an integer programming problem

by a convexification of the feasible zero-one points and extreme rays of the

problem. For details on polyhedral structure of the SPP and its relatives see

Padberg (1973, 1975 and 1979), Cornuejols and Sassano (1989) and Sassano

(1989). Given that the problems are NP-hard a full polyhedral description

of these problems is unlikely.

Branch and cut works likes branch and bound but tightens the bounds

in every node of the tree by adding cuts. For a complete description of how

such cuts are embedded into a tree search structure along with other tricks

of the trade, see Hoffman and Padberg (1993).

Because even small instances of the CAP1 may involve a huge number of

columns (bids) the techniques described above need to be augmented with

another method known as column generation. Introduced by Gilmore and

Gomory (1961) it works by generating a column when needed rather than

all at once. An overview of such methods can be found in Barnhart et. al.

(1994). Later in this paper we illustrate how this idea could be implemented

in an auction.

One sign of how successful exact approaches are can be found in Hoffman

and Padberg (1993). They report being able to find an optimal solution to

an instance of SPA with 1,053,137 variables and 145 constraints in under 25

minutes. In auction terms this corresponds to a problem with 145 items and

1,053,137 bids. A major impetus behind the desire to solve large instances

of SPA (and SPC) quickly has been the airline industry. The problem of

21

assigning crews to routes can be formulated as an SPA. The rows of the SPA

correspond to flight legs and the columns to a sequence of flight legs that

would be assigned to a crew. Like the CAP, in this problem the number of

columns grows exponentially with the number of rows.12 For the SPP, the

large instances that have been studied have usually arisen from relaxations

of SPA’s. Given the above we believe that established integer programming

methods will prove quite successful when applied to the solution of CAP.

Logistics.com’s OptiBidTM software has been used in situations where

the number of bidders is between 12 to 350 with the average being around

120. The number of lanes (objects) has ranged between 500 and 10,000.

Additionally, each lane bid can contain a capacity constraint as well as a

budget capacity constraint covering multiple lanes. The typical number of

lanes is 3000. OptiBidTM does not limit the number of distinct subsets that

bidders bid on or the number of items allowed within a package. OptiBidTM

is based on a integer program with a series of proprietary formulations and

starting heuristic algorithms.13

SAITECH-INC’s bidding software, SBID, is also based on integer pro-

gramming. They report being able to handle problems of similar size as

OptiBidTM.14

Exact methods for CAP1 have been proposed by Fujishima et. al. (1999)

as well as Sandholm (1999) and Andersson et. al. (2000). The first two use

variations of dynamic programming and the third uses integer programming.

In the first, the method is tested on randomly generated instances the largest
12However, these crew scheduling problems give rise to instances of SPA that have a

large number of duplicate columns in the constraint matrix. In some cases as many as

60% of them. We thank Dr. Márta Eső for alerting us to this.
13We thank Dr. Christopher Caplice of Logistics.com for providing this information.
14We thank Dr. Yoshiro Ikura of SAITECH-INC for providing us with this information.

22

of which involved 500 objects (rows) and 20,000 bids (variables). The second

also tests the method on randomly generated instances, the largest of which

involved 400 objects (rows) and 2000 bids (variables). In these tests the

number of bids examined is far less than the number of subsets of objects.

The third uses integer programming methods on the test problems generated

by the first two.

By comparison, a straightforward implementation on a commercially

available code for solving linear integer programs (called CPLEX) runs into

difficulties for instances of CAP involving more than 19 objects if one lists

all the bids for the various subsets. There will be 219 variables. This al-

ready requires one giga-byte of memory to store. CPLEX can handle in this

straight forward approach on the order of 219 variables and 19 constraints

before running out of resident memory. Notice that this is large enough

to handle the test problems considered in Sandholm (1999) and Fujishima

et. al. (1999). We report on this in a later section where we also discuss

schemes for generating test problems.15

The reader should note that size of an instance is not by itself an indicator

of problem difficulty. Structure of the problem plays an important role. In a

later section we will discuss some of the structure inherent in the generation

schemes used by Sandholm and others.

2.5 Approximate Methods

One way of dealing with hard integer programs is to give up on finding the

optimal solution. Rather one seeks a feasible solution fast and hopes that it

is near optimal. This raises the obvious question of how close to optimal the
15Since our findings duplicate those of Andersson et. al. (2000) we will comment on this

paper in a later section.

23

solution is. There have traditionally been three ways to assess the accuracy

of an approximate solution. The first is by worst-case analysis, the second

by probabilistic analysis and the third empirically.

Before describing these approaches it is important to say that proba-

bly every heuristic approach for solving general integer programming prob-

lems has been applied to the SPP. The first one that almost everyone

thinks off, called Greedy, is to iteratively select the column j that maxi-

mizes cj/
∑

i aij , the weight to column sum ratio (see Fisher and Wolsey

(1982) for example). Interchange/steepest ascent approaches have also been

used; a swap of one or more columns is executed whenever such a swap

improves the objective function value (see Hurkens and Schrijver (1989) for

the case of maximum cardinality packing and Arkin and Hassin (1998) for

weighted packing problems). More fashionable approaches such as genetic

algorithms Huang et. al. (1994), probabilistic search (Feo et. al., 1989),

simulated annealing (Johnson, et. al., 1989), and neural networks (Aourid

and Kaminska, 1994) have also been tried. Unfortunately, there has not

been a comparative testing across such methods to determine under what

circumstances a specific method might perform best. Beasley (1990) main-

tains (at http://mscmga.ms.ic.ac.uk/info.html) an extensive test set of

covering and partitioning problem instances for those who would like to try

their hand. We think it safe to say that anything one can think of for ap-

proximating the SPP has probably been thought of. In addition, one can

embed approximation algorithms within exact algorithms so that one is at-

tempting to get a sharp approximation to the lower bound for the problem

at the same time that one iteratively tightens the upper bound.

24

http://mscmga.ms.ic.ac.uk/info.html

2.5.1 Worst-Case Analysis

Let I denote an instance of the integer program one wishes to solve and Z(I)

its optimal objective function value. Assume the goal is to maximize the

objective function as in the SPP. Let ZH(I) denote the value of the solution

returned on the instance I by the polynomial time approximation algorithm

(also called heuristic) H. The worst-case ratio for the performance of H

is inf ZH(I)/Z(I). Here the infimum is over all instances in the problem

class. For a problem with a maximization objective, ZH(I) ≤ Z(I) and so

the worst-case ratio will always be less than 1. The objective is to bound it

from below.

The SPP is difficult to approximate. It is proved by H̊astad (1999) that

unless P = NP, there is no polynomial time algorithm for the SPP that can

deliver a worst case ratio larger than nε−1 for any ε > 0. On the positive

side polynomial algorithms that have a worst case ratio of O(n/(log n)2)

are known. Bounds that are a function of the data of the underlying input

problem are also known. A recent example of this motivated by CAP1 can

be found in Akcoglu et. al. (2000). In general restricting the instances of

SPP does not help things very much. The reader interested in a full account

of what is known about approximating the SPP should consult Crescenzi

et. al. (1998) where an updated list of what is known about the worst-case

approximation ratio of a whole range of optimization problems is given.

When interpreting these worst case results, two things should be kept in

mind. The first is that they are worst-case results and so shed little light

on the ‘typical’ accuracy of an approximation algorithm. The second is that

these results are lower bounds on ZH(I) as a linear function of Z(I). It is

very possible that bounds on ZH(I) that are non-linear functions of Z(I)

25

might not be so pessimistic.

2.5.2 Probabilistic Analysis

Probabilistic analysis is an attempt to characterize the typical behavior of an

approximation algorithm. A probability distribution over problem instances

is specified in which case Z(I) and ZH(I) become random variables. The

goal is to understand the behavior of the difference or ratio of the two

variables as the size of the instances increase. For example, what is the

mean difference, the variance etc. Since the results are asymptotic in nature,

attention must be paid to the convergence results when interpreting the

results. A problematic feature is that the distributions over instances that

are chosen (because of ease of analysis) do not necessarily coincide with the

distributions that actual instances will be drawn from. This issue arises also

in the empirical testing of approximation algorithms.

2.5.3 Empirical Testing

Many approximation algorithms will be elaborate enough to defy theoretical

analysis. For this reason it is common to resort to empirical testing. Further

empirical testing allows one to consider issues not easily treated analytically.

A good guide to the consumption of an empirical study of approximation

algorithms is given by Ball and Magazine (1981). They list the following

evaluation criteria:

1. Proximity to the optimal solution.

2. Ease of implementation (coding and data requirements).

3. Flexibility; ability to handle changes in the model.

26

4. Robustness; ability to provide sensitivity analysis and bounds.

This is not the forum for an extensive discussion of the issues associated

with the empirical testing of heuristics. However, some points are worth

highlighting.

The most obvious is the choice of test problems. Are they realistic? Do

they exhibit the features that one thinks one will find in the environment?

Interestingly, probabilistic analysis has a role to play here in eliminating

some schemes for randomly generating test problems. For example it is

known that certain generation schemes give rise to problems that are easy

to solve; for example, a randomly generated solution is with high probability

close to optimal. Success on a collection of problems generated in this way

conveys no information. Is the accuracy due to the approximation algorithm

or the structure of the test problems?

Some approximation algorithms involve a number of parameters that

need to be fine tuned. Comparing their performance with heuristics whose

parameters are not fine tuned becomes difficult because it is not clear wheth-

er one should include the overhead in the tuning stage in the comparison.

3. Decentralized Methods

One way of reducing some of the computational burden in solving the CAP is

to set up a ‘fictitious’ market that will determine an allocation and prices in

a decentralized way. The traditional auctioneer is replaced with a Walrasian

one who sets prices for the objects. Agents announce which sets of objects

they will purchase at the posted prices. If two or more agents compete for the

same object, the Walrasian auctioneer adjusts the price vector. This saves

bidders from specifying their bids for every possible combination and the

27

auctioneer from having to process each bid function. Such methods also have

the advantage that they can be adapted to dynamic environments where

bidders and objects arrive and depart at different times. While such methods

reduce the computational burden they cannot eliminate them altogether. A

more compelling argument for decentralized methods is that the relevant

information for choosing an allocation is itself decentralized.

Examples of decentralized approaches for solving the CAP can be found

in Fujishima et. al. (1999) and Rassenti et. al. (1982). In the same spirit,

Brewer (1999) and Wellman et. al. (1998) propose decentralized scheduling

procedures in different contexts. In their set up the auctioneer chooses a

feasible solution and ‘bidders’ are asked to submit improvements to the so-

lution. In return for these improvements, the auctioneer agrees to share a

portion of the revenue gain with the bidder. These methods can be viewed

as instances of dual based procedures for solving an integer program. Auc-

tion or market interpretations of dual based procedures for optimization

problems are not new. They appear, for example in Dantzig (1963). The

updates on the dual variables that are executed in these algorithms can be

interpreted as a form of myopic best response on the part of bidders. More

recently, Bertsekas (1991) has proposed a collection of dual based algorithms

for the class of linear network optimization problems. These algorithms he

dubs auctions algorithms. The incentive issues associated with such methods

are discussed later.

3.1 Duality in Integer Programming

To describe the dual to SPP let 1 denote the m-vector of all 1’s and aj the jth

column of the constraint matrix A. The (superadditive) dual to SPP is the

28

problem of finding a superadditive, non-decreasing function F : Rm → R1

that

minF (1)

s.t. F (aj) ≥ cj ∀j ∈ V

F (0) = 0

We can think of F as being a non-linear price function that assigns a price

to each bundle of goods (see Wolsey (1981)).

If the primal integer program has the integrality property, there is an

optimal integer solution to its linear programming relaxation, the dual func-

tion F will be linear i.e. F (u) =
∑

i yiui for some y and all u ∈ Rm. The

dual becomes:

min
∑

i

yi

s.t.
∑

i

aijyi ≥ cj ∀j ∈ V

yi ≥ 0 ∀i ∈M

That is, the superadditive dual reduces to the dual of the linear programming

relaxation of SPP. In this case we can interpret each yi to be the price of

object i. Thus an optimal allocation given by a solution to the CAP can be

supported by prices on individual objects.

Optimal objective function values of SPP and its dual coincide (when

both are well defined). There is also a complementary slackness condition:

Theorem 3.1 If x is an optimal solution to SPP and F an optimal solution

to the superadditive dual then

(F (aj)− cj)xj = 0 ∀j.

29

Solving the superadditive dual problem is as hard as solving the original

primal problem. It is possible to reformulate the superadditive dual problem

as a linear program (the number of variables in the formulation is exponen-

tial in the size of the original problem). For small or specially structured

problems this can provide some insight. The interested reader is referred

to Nemhauser and Wolsey (1988) for more details. In general one relies on

the solution to the linear programming dual and uses its optimal value to

guide the search for an optimal solution to the original primal integer pro-

gram. The way this is done is through a technique known as Lagrangean

Relaxation.

3.2 Lagrangean Relaxation

The basic idea is to ‘relax’ some of the constraints of the original problem

by moving them into the objective function with a penalty term. That is in-

feasible solutions to the original problem are allowed, but they are penalized

in the objective function in proportion to the amount of infeasibility. The

constraints that are chosen to be relaxed, are selected so that the optimiza-

tion problem over the remaining set of constraints is in some sense easy.

We describe the bare bones of the method first and then give a ‘market’

interpretation of it.

Recall the SPP:

Z = max
∑

j∈V
cjxj

s.t.
∑

j∈V
aijxj ≤ 1 ∀i ∈M

xj = 0, 1 ∀j ∈ V

30

Let ZLP denote the optimal objective function value to the linear program-

ming relaxation of SPP. Note that Z ≤ ZLP . Consider now the following

relaxed problem:

Z(λ) = max
∑

j∈V
cjxj +

∑

i∈M
λi(1−

∑

j∈V
aijxj)

s.t. 1 ≥ xj ≥ 0 ∀j ∈ V

For a given λ, computing Z(λ) is easy. To see why note that

∑

j∈V
cjxj +

∑

i∈M
λi(1−

∑

j∈V
aijxj) =

∑

j∈V
(cj −

∑

i∈M
λiaij)xj +

∑

i∈M
λi.

Thus, to find Z(λ), simply set xj = 1 if (cj −
∑

i∈M λiaij) > 0 and zero

otherwise. It is also easy to see that Z(λ) is piecewise linear and convex. A

basic result that is easy to prove is:

Theorem 3.2

ZLP = min
λ≥0

Z(λ).

Why might this be useful? Since evaluating Z(λ) for each λ is a snap, if we

can find a fast way to determine the λ that solves minλ≥0 Z(λ) we would

have fast procedure to find ZLP . The resulting solution (values of the x

variables) while integral need not be feasible. However it may not be ‘too

infeasible’ and so could be fudged into a feasible solution without a great

reduction in objective function value.

Finding the λ that solves minλ≥0 Z(λ) can be accomplished using the

subgradient algorithm. Suppose the value of the lagrange multiplier λ at

iteration t is λt. Choose any subgradient of Z(λt) and call it st. Choose the

lagrange multiplier for iteration t+ 1 to be λt + θtst, where θt is a positive

31

number called the step size. In fact if xt is the optimal solution associated

with Z(λt),

λt+1 = λt + θt(Axt − 1).

Notice that λt+1
i > λti for any i such that

∑

j aijx
t
j > 1. The penalty term

is increased on any constraint currently being violated.

The algorithm is a natural adaptation of the steepest descent algorithm

to non-differentiable functions. At each stage it adjusts the multiplier so as

to produce a decrease in the function value. Since the function Z(λ) is not

differentiable, we must choose a subgradient rather than gradient. For an

appropriate choice of step size at each iteration, this procedure can be shown

to converge to the optimal solution. Specifically, θt → 0 as t→∞ but
∑

t θt

diverges. The first condition ensures that as we get closer to the optimal

solution, our step sizes go down, i.e. we won’t leave the optimum once it

is found. The second ensures that we don’t stop prematurely, i.e., before

finding the optimal solution. The subgradient algorithm is not guaranteed

to converge to the optimal solution in a finite number of steps. Hence, when

implemented, the user will incorporate a stopping rule, e.g., stop once an

improvement in objective function value that does not exceed some threshold

is observed and experiment with step sizes to ensure rapid convergence.

It should be emphasized that Lagrangean relaxation is not guaranteed

to find the optimal solution to the underlying problem. Rather, it finds an

optimal solution to a relaxation of it.

Here is the market interpretation. The Walrasian auctioneer chooses a

price vector λ for the individual objects and bidders submit bids. If the high-

est bid, cj , for the jth bundle exceeds
∑

i∈M aijλi, this bundle is tentatively

assigned to that bidder. Notice that the auctioneer need not know what

32

cj is ahead of time. This is supplied by the bidders after λ is announced.

In fact, the bidders need not announce bids, they could simply state which

individual objects are acceptable to them at the announced prices. The

auctioneer can randomly assign objects to bidders in case of ties. If there is

a conflict in the assignments, the auctioneer uses the subgradient algorithm

to adjust prices and repeats the process.

Now let us compare this market interpretation of Lagrangean relaxation

with the simultaneous ascending auction (SAA) proposed by P. Milgrom,

R. Wilson and P. McAfee (see Milgrom (1995)). In the SAA, bidders bid

on individual items simultaneously in rounds. To stay in the auction for an

item, bids must be increased by a specified minimum from one round to the

next just like the step size. Winning bidders pay their bids. The only dif-

ference between this and Lagrangean relaxation, is that the bidders through

their bids adjust their prices rather than the auctioneer. The adjustment is

along a subgradient. Bids increase on those items for which there are two

or more bidders competing.

One byproduct of the SAA is called the exposure problem. Bidders pay

too much for individual items or bidders with preferences for certain bun-

dles drop out early to limit losses. As an illustration consider an extreme

example of a bidder who values the bundle of goods i and j at $100 but

each separately at $0. In the SAA, this bidder may have to submit high

bids on i and j to be able to secure them. Suppose that it loses the bidding

on i. Then it is left standing with a high bid j which it values at zero. The

presence of such a problem is easily seen within the Lagrangean relaxation

framework. While Lagrangean relaxation will yield the optimal objective

function value for the linear relaxation of the underlying integer program,

it is not guaranteed to produce a feasible solution. Thus the solution gener-

33

ated may not satisfy the complementary slackness conditions. The violation

of complementary slackness is the exposure problem associated with this

auction scheme. Notice that any auction scheme that relies on prices for

individual items will face this problem.

In contrast to the SAA outlined above is the Adaptive User Selection

Mechanism (AUSM) proposed by Banks et. al. (1989). AUSM is asyn-

chronous in that bids on subsets can be submitted at any time and so is

difficult to connect to the Lagrangean ideas just described. An important

feature of AUSM is an arena which allows bidders to aggregate bids to ex-

ploit synergies. DeMartini et. al. (1999) propose an iterative auction scheme

that is a hybrid of the SAA and AUSM that is easier to connect to the La-

grangean framework. In this scheme, bidders submit bids on packages rather

than on individual items. Like the SAA, bids on packages must be increased

by a specified amount from one round to the next. This minimum incre-

ment is a function of the bids submitted in the previous round. In addition,

the number of items that a bidder may bid on in each round is limited by

the number of items s/he bid on in previous rounds. The particular im-

plementation of this scheme advanced by DeMartini et. al. (1999) can also

be given a Lagrangean interpretation. They choose the multipliers (which

can be interpreted as prices on individual items) so as to try and satisfy the

complementary slackness conditions of linear programming. Given the bids

in each round, they allocate the objects so as to maximize revenue. Then

they solve a linear program (that is essentially the dual to CAP2) that finds

a set of prices/multipliers that approximately satisfy the complementary

slackness conditions associated with the allocation.

Kelly and Steinberg (2000) also propose an iterative scheme for combi-

34

natorial auctions.16 The auction has two phases. The first phase is an SAA

where bidders bid on individual items. In the second phase an AUSM like

mechanism is used. The important difference is that each bidder submits

a temporary assignment of all the items in the auction. Here a temporary

assignment is comprised of previous bids of other players plus new bids of

his own.17

In Parkes (1999) an ascending auction, called iBundle, that allows bid-

ders to bid on combinations of items and uses non-linear prices is proposed.

Bidders submit bids for subsets of items. At each iteration the auctioneer

announces prices for those subsets of items that receive unsuccessful bids

from agents. For a bid on a subset to be ‘legal’ it must exceed the price

posted by the auctioneer. Given the bids, the auctioneer solves an instance

of CAP2 and tentatively assigns the objects. For the next iteration, the

prices on each subset are either kept the same or adjusted upwards. The

upward adjustment is determined by the highest losing bid for the subset in

question plus a user specified increment. The auction terminates when the

bids from one round to the next do not show sufficient change. The scheme

can be given a Lagrangian interpretation as well, however the underlying

formulation is different from CAP1 or CAP2. We discuss it in Section 3.5.

3.3 Variations

By relaxing on a subset of the constraints as opposed to all of them we get

different relaxations, some of which give upper bounds on Z that are smaller
16The description is tailored to the auction for assigning carrier of last resort rights in

telecommunications.
17We thank Professor Steinberg for alerting us to an earlier inaccuracy in the description

of the procedure.

35

than ZLP . Details can be found in Nemhauser and Wolsey (1988). Needless

to say there have been many applications of Lagrangean relaxation to SPP,

SPA and SPC and hybrids with exact methods have also been investigated.

See Balas and Carrera (1996) and Beasley (1990) for recent examples.

3.4 Column Generation

Column generation is a technique for solving linear programs with an ex-

ceedingly large number of variables. Each variable gives rise to a column in

the constraint matrix, hence the name column generation. A naive imple-

mentation of a simplex type algorithm for linear programming would require

recording and storing every column of the constraint matrix. However, only

a small fraction of those columns would ever make it into an optimal basic

feasible solution to the linear program. Further, of those columns not in

the current basis, one only cares about the ones whose reduced cost will

be of the appropriate sign. Column generation exploits this observation

in the following way. First an optimal solution is found using a subset of

the columns/variables. Next, given the dual variable implied by this pre-

liminary solution, an optimization problem is solved to find a non-basic

column/variable that has a reduced cost of appropriate sign. The trick is

to design an optimization problem to find this non-basic column without

listing all non-basic columns.

The column generation idea can be implemented in an auction setting

as follows. In the first step the auctioneer chooses an extreme point solution

to the CAP. It does not matter which one, any one will do. Note that this

initial solution could involve fractional allocations of objects.

This extreme point solution is reported to all bidders. Each bidder, look-

36

ing only at how they value the allocation proposes a column/variable/subset

to enter the basis (along with its value to the bidder). The proposed col-

umn and its valuation must satisfy the appropriate reduced cost criterion

for inclusion in the basis. In effect each bidder is being used as a subroutine

to execute the column generation step.

The auctioneer now gathers up the proposed columns (along with their

valuations) and using these columns and the columns from the initial basis

only (and possibly previously generated nonbasic columns), solves a linear

program to find a revenue maximizing (possibly fractional) allocation. The

new extreme point solution generated is handed out to the bidders who are

asked to each identify a new column (if any) to be added to the new basis

that meets the reduced cost criterion for inclusion. The process is then

repeated until an extreme point solution is identified that no bidder wishes

to modify. To avoid cycling, the auctioneer can always implement one of

the standard anti-cycling rules for linear programming.

This auction procedure eliminates the need to transmit and process long

lists of subsets and their bids. Bids and subsets are generated only as needed.

Second, the bidders are provided an opportunity to challenge an allocation

provided they propose an alternative that increases the revenue to the seller.

If the bids might lead to a nonintegral allocation, then this column genera-

tion has to be imbedded into a branch and cut/price scheme to produce an

integer solution.18

Notice that the ellipsoid method provides a way to solve the fractional

CAP to optimality while generating only a polynomially bounded number

of columns.
18We thank Dr. Márta Eső for suggesting this last refinement. See Eső (1999) for an

example of such a branch and cut scheme.

37

3.5 Cuts, Extended Formulations and Non-linear Prices

The decentralized methods described above work by conveying ‘price’ in-

formation to the bidders. Given a set of bids and an allocation, prices for

individual items that ‘support’ or are ‘consistent’ with the bids and alloca-

tions are derived and communicated to the bidders. Such prices, because

they are linear cannot hope to fully capture the interactions between the

parties. Here we show, with an example, how cutting plane methods can

be used to generate prices that more closely reflect the interactions between

bids on different sets of objects.

In the example we have 6 objects with highest bids on various subsets

of objects shown below; subsets with bids of zero are not shown:

b({1, 2}) = b({2, 3}) = b({3, 4}) = b({4, 5}) = b({1, 5, 6}) = 2, b({6}) = 1.

Formulation CAP1 for this example (ignoring the integrality constraints) is:

max 2x12+ 2x23+ 2x34+ 2x45+ 2x156+ x6

s.t. x12+ x156 ≤ 1

x12+ x23 ≤ 1

x23+ x34 ≤ 1

x34+ x45 ≤ 1

x45+ x156 ≤ 1

x156+ x6 ≤ 1

x12, x23, x34, x45, x156, x6 ≥ 0

The optimal fractional solution is to set all variables equal to a half. The

optimal dual variables are yi = 1/2 for i = 1, . . . , 5 and y6 = 1. So, for

example, the imputed price of the set {1, 2} is y1 + y2 = 1.

38

Consider now the following inequality:

x12 + x23 + x34 + x45 + x156 ≤ 2.

Every feasible integer solution to the formulation above satisfies this inequal-

ity but not all fractional solutions do. In particular the optimal fractional

solution above does not satisfy this inequality. This inequality is an example

of a cut. Classes of cuts for the SPP are known, the one above belongs to

the class of odd-cycle cuts.

Now append this cut to our original formulation:

max 2x12+ 2x23+ 2x34+ 2x45+ 2x156+ x6

s.t. x12+ x156 ≤ 1

x12+ x23 ≤ 1

x23+ x34 ≤ 1

x34+ x45 ≤ 1

x45+ x156 ≤ 1

x156+ x6 ≤ 1

x12+ x23+ x34+ x45+ x156 ≤ 2

x12, x23, x34, x45, x156, x6 ≥ 0

The optimal solution to this linear program is integral. It is x12 = 1, x34 = 1

and x6 = 1. There are now 7 dual variables. One for each of the six

objects (yi) and one more for the cut (µ). One optimal dual solution is

y1 = y5 = y6 = 0, y2 = y3 = y4 = 1 and µ = 1. The imputed price for the

set {1, 2} is now y1 + y2 + µ = 2. In general the price of a set S will be

the sum of the item prices,
∑

i∈S yi plus µ if the ‘x’ variable associated with

the set S appears with coefficient 1 in the cut. Notice that pricing sets of

objects in this way means that the price function will be superadditive.

39

It is instructive to compare the imputed price of the set {1, 2} in the

two formulations. The first formulation assigns a price of one to the set.

The second a higher price. The first formulation ignores the fact that if

the set {1, 2} is assigned to a bidder, the sets {1, 5, 6} and {2, 3} cannot be

assigned to anyone else. This fact is captured by the cut. The dual variable

associated with the cut can be interpreted as the associated opportunity

cost of assigning the set {1, 2} to a bidder. Thus the actual price of the set

{1, 2} is the sum of the prices of the objects in it plus the opportunity cost

associated with its sale.

Cuts can be derived in one of two ways. The first is by purely combina-

torial reasoning and the other through an algebraic technique first proposed

by Ralph Gomory (see Nemhauser and Wolsey (1988) for the details). For

CAP1, given a fractional extreme point, one can use the Gomory method

to generate a cut involving only the variables that are basic in the current

extreme point. This is useful for computational purposes as one does not

have to lug all variables around to identify a cut. Second, the new inequality

will be a non-negative linear combination of the current basic rows less equal

than a non-negative number. Thus the dual variable associated with this

new constraint will have an additive effect on the prices of various subsets

as in the example.

The reader will notice that by picking an extreme point dual solution,

the imputed prices for some sets are zero. Since there is some flexibility

in the choice of dual variables, one can choose an interior (to the feasible

region) dual solution.

Yet another way to get non-linear prices is by starting with a stronger

formulation of the underlying optimization problem. One formulation is

stronger than another if its set of feasible (fractional) solutions is strictly

40

contained in the other. In the example above, the second formulation is

stronger than the first. Both formulations share the same set of integer

solutions, but not fractional solutions. The set of fractional solutions to the

second formulation is a strict subset of the fractional solutions to the first

one.

Stronger formulations can be obtained, as shown above, by the addition

of inequalities. Yet another, standard way, of obtaining stronger formu-

lations is through the use of additional or auxiliary variables, typically a

large number of them. Geometrically, one is treating the problem formu-

lated in the original set of variables as the projection of a higher dimensional

but structurally simpler polyhedron. Formulations involving such additional

variables are called extended formulations and developing these extended

formulations is called lifting. Using lifting one can develop a hierarchy of

successively stronger formulations of the underlying integer program.

There is a close connection between lifting and cutting plane approaches.

When one projects out the auxiliary variables one obtains a formulation

involving the original variables but with additional constraints which are

cuts.

Extended formulations can be generated by the study of the problem at

hand or algorithmically. Perhaps the most accessible introduction to these

matters is Balas et. al. (1993) which also discusses the connection to cutting

planes.

In the auction context, Bikchandani and Ostroy (1998), propose an ex-

tended formulation for the problem of selecting the winning set of bids. To

describe this formulation let Π be the set of all possible partitions of the

objects in the set M . If π is an element of Π, we write S ∈ π to mean that

the set S ⊂ M is a part of the partition π. Let zπ = 1 if the partition π is

41

selected and zero otherwise. These are the auxiliary variables. Using them

we can reformulate CAP2 as follows:

max
∑

j∈N

∑

S⊆M
bj(S)y(S, j)

s.t.
∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

∑

j∈N
y(S, j) ≤

∑

π3S
zπ ∀S ⊂M

∑

π∈Π

zπ ≤ 1

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

Call this formulation CAP3. In words, CAP3 chooses a partition of M and

then assigns the sets of the partition to bidders in such a way as to maximize

revenue. It is easy to see that this formulation is stronger than CAP1 or

CAP2. Fix an i ∈M and add over all S 3 i the inequalities

∑

j∈N
y(S, j) ≤

∑

π3S
zπ ∀S ⊂M

to obtain:
∑

S3i

∑

j∈N
y(S, j) ≤ 1 ∀i ∈M

which are the inequalities that appear in CAP2. While stronger than CAP2,

formulation CAP3 still admits fractional extreme points.

The dual of the linear relaxation of CAP3 involves one variable for every

constraint of the form:

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N,

42

call it sj , which can be interpreted as the surplus that bidder j obtains. The

dual involves one variable for every constraint of the form:

∑

j∈N
y(S, j) ≤

∑

π3S
zπ ∀S ⊂M

which we will denote pS . It can be interpreted as the price of the subset S.

In fact the dual will be:

min
∑

j∈N
sj + µ

s.t. sj ≥ bj(S)− pS ∀j S ⊂M

µ ≥
∑

S∈π
pS ∀π ∈ Π

sj , pS , µ ≥ 0

and has the obvious interpretation: minimizing the surplus that bidders ob-

tain. Thus one can obtain non-linear prices from the extended formulation.

These prices are not exact since CAP3 is not integral. Further they do not

depend on the bidders, that is all bidders pay the same price for a given sub-

set. The catch of course is this formulation involves many more variables

than CAP1 or CAP2.

In Parkes and Ungar (2000) a condition on bidders preferences is identi-

fied that ensures that the linear relaxation of CAP3 has an integral solution.

The condition, called bid safety, is difficult to interpret easily but has the

effect of forcing complementary slackness to hold for an integer solution of

CAP3. Under this condition any algorithm for solving CAP3’s dual (or

its lagrangean relaxation) will generate an optimal solution of CAP3 itself.

Since many dual algorithms can be given an auction interpretation with the

iterations being identified as adjustments in bids that a myopic best reply

agent might execute, one can generate auction schemes that are arguably

43

optimal. This is precisely the tack taken in Parkes and Ungar (2000) to

support the adoption of the iBundle auction scheme of Parkes (1999).

Bikchandani and Ostroy (1998) introduce yet another formulation stronger

than CAP3 which is integral. The idea is to use a variable that represents

both a partition of the objects and an allocation. The dual to this for-

mulation gives rise to non-linear prices with the twist that they are bidder

specific. Different bidders pay different prices for the same subset.

A warning about extended formulations is in order. One must be careful

in invoking an extended formulation that simply formulates the problem

away. As an example, consider the auxiliary variables introduced in CAP3,

the zπ’s. For each zr, let yr be an optimal extreme point solution to the

following :

max
∑

j∈N

∑

S⊆M
bj(S)y(S, j)

s.t.
∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

∑

j∈N
y(S, j) ≤

∑

π3S
zrπ ∀S ⊂M

y(S, j) ≥ 0 ∀S ⊆M, j ∈ N

Notice that yr is integral because the constraint matrix is totally unimodu-

lar. Given this we can formulate the problem of finding the winning set of

bids as:

max
∑

r≥1

[
∑

j∈N

∑

S⊆M
bj(S)yr(S, j)]νr

∑

r≥1

νr = 1

νr ≥ 0

44

It is trivial to see that this linear program has the integrality property.

It should also be clear that the formulation sheds no light on the original

problem.

4. Incentive Issues

Thus far we have focused on the problem of choosing an allocation of the ob-

jects so as to maximize the sellers revenue. The revenue depends on the bids

submitted but there is no guarantee that the submitted bids approximate

the actual values that bidders assign to the various subsets. To illustrate

how this can happen consider three bidders, 1, 2 and 3 and two objects

{x, y}. Suppose:

v1(x, y) = 100, v1(x) = v1(y) = 0, v2(x) = v2(y) = 75, v2(x, y) = 0,

v3(x) = v3(y) = 40, v3(x, y) = 0.

Here vi(·) represents the value to bidder i of a particular subset. Notice that

the bid that i submits on the set S, bi(S) need not equal vi(S).

If the bidders bid truthfully, the auctioneer should award x to 2 and y

to 3, say, to maximize his revenue. Notice however that bidder 2 say, under

the assumption that bidder 3 continues to bid truthfully, has an incentive

to shade his bid down on x and y to, say, 65. Notice that bidders 2 and 3

still win but bidder 2 pays less. This argument applies to bidder 3 as well.

However, if they both shade their bids downwards they can end up losing

the auction. This feature of combinatorial auctions is called the ‘threshold

problem’ (see Bykowsky et. al. (1995)): a collection of bidders whose com-

bined valuation for distinct portions of a subset of items exceeds the bid

45

submitted on that subset by some other bidder. It may be difficult for them

to coordinate their bids to outbid the large bidder on that subset.

In this section we describe what is known about auction mechanisms

that give bidders the incentive to truthfully reveal their valuations.

To discuss incentive issues we need a model of bidders preferences. The

simplest conceptual model endows bidder j ∈ N with a list {vj(S)}S⊆M ,

abbreviated to vj , that specifies how she values (monetarily) each subset of

objects. Thus vj(S) represents how much bidder j values the subset S of

objects.19

The auction scheme chosen and the bids submitted will be a function

of the beliefs that seller and bidders have about each other. The simplest

model of beliefs is the independent private values model. Each bidder’s

vj is assumed by seller and all bidders to be an independent draw from a

commonly known distribution over a compact, convex set.20 Bidder j knows

her vj but not the valuations of the other bidders. Last, bidders and seller

are assumed to be risk neutral.

The seller is interested in choosing an auction design that will do three

things:

1. Induce bidders to reveal their actual valuations (incentive compati-

bility).footnoteOne might argue that a seller cares only about revenue

and not whether the bidders truthfully reveal their valuations. The

requirement here is a consequence of using the revelation principle.

2. No bidder is made worse off (in expectation) by participating in the

auction.
19In the language of mechanism design, this list of valuations becomes the bidders type.

In this case, since the type is not a single number it is called multi-dimensional.
20Williams (1999) obtains similar results under slightly different assumptions.

46

3. Subject to the two conditions above the seller maximizes expected

revenue.

Call the auction design that satisfies these conditions optimal. Finding

the optimal auction appears daunting given the cornucopia of elaborate

schemes with multiple rounds that one can imagine. However the revelation

principle (see Myerson (1981) for an explanation) allows one to concentrate

on auctions with a single round where bidders submit bids and the seller

decides, as a function of the reported bids, who gets what and for how much.

The optimal auction in this general setting is still not known. In Jehiel

et. al. (1999) and Jehiel and Moldovanu (2000) it is shown that the optimal

auction must satisfy conditions involving elaborate partial differential equa-

tions. Levin (1997) identifies the optimal auction under a more restrictive

setting. Specifically, all objects, for all bidders, complement each other and

bidders are perfectly symmetric. In this case, the revenue maximizing auc-

tion is to simply bundle all the objects together and auction the bundle off

using an optimal single item auction.

Krishna and Rosenthal (1996), again with a simplified model of pref-

erences, attempt to make revenue comparisions between different auction

schemes. They consider auctions involving two items where bidders are of

two kinds. One kind, they call local, are interested in receiving a single item.

The other, global, have valuations for the entire set that are superadditive.

In this paper they identify equilibria for two item sequential second-price

auctions, (a particular) simultaneous second-price auctions, and a combi-

natorial second-price auction. The revenues obtained from each auction

(under the identified equilibria) are compared numerically. They observe

that if the synergy is small then the sequential second-price auction gener-

47

ates the largest revenue. For larger synergies the simultaneous second-price

auction generates the largest revenue. In their simulations the combinato-

rial second-price auction always generates the smallest revenue. It is not

not known whether the comparision is a function of the equilibrium found

or the specification of the simultaneous auction.

Cybernomics, Inc. (2000) went a step farther by comparing a simultane-

ous multi-round auction with an multi-round combinatorial auction. They

performed experiments for additive values, and for valuations with syner-

gies of small, medium or high intensity. Their experiments indicate, that

the combinatorial multi-round auction was always superior with respect to

efficency but the revenue was smaller and it took more rounds of longer

duration to finish the auction.

If one is willing to accept an additional restriction, efficiency, then the

optimal auction is known. An auction is efficient if the allocation of objects

to bidders chosen by the seller solves the following:

max
∑

j∈N

∑

S⊆M
vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N
y(S, j) ≤ 1 ∀i ∈M

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

Notice that this is just CAP2 with bi replaced by vi. The optimal objective

function value of this integer program is an upper bound on the revenue

that the seller can achieve. The fact the seller uses an auction that selects

an allocation that solves this integer program does not imply that the seller

48

achieves this revenue.21

It is proved in Krishna and Perry (1997) (see also Williams (1999) for

the same result under slightly different assumptions) that (in the model

described) the optimal auction that is also efficient is what is sometimes

known as as Vickrey-Clarke-Groves (VCG) scheme. It works as follows:

1. Agent j reports vj . There is nothing to prevent agent j from misrep-

resenting themselves. Since the VCG scheme is incentive compatible

this does not happen.

2. The seller chooses the allocation that solves:

V = max
∑

j∈N

∑

S⊆M
vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N
y(S, j) ≤ 1 ∀i ∈M

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

Call this optimal allocation y∗

3. To compute the payment that each bidder must make let, for each

k ∈ N ,

V −k = max
∑

j∈N\k

∑

S⊆M
vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N\k

y(S, j) ≤ 1 ∀i ∈M

21In Myerson (1981) it is shown that optimal auction for a single good is not guaranteed

to be efficient. See Jehiel and Moldovanu (1999) for a more pronounced version of the

same.

49

∑

S⊆M
y(S, j) ≤ 1 ∀j ∈ N \ k

y(S, j) = 0, 1 ∀S ⊆M, j ∈ N \ k

Denote by yk the optimal solution to this integer program. Thus yk is

the efficient allocation when bidder k is excluded.

4. The payment that bidder k makes is equal to

V −k − [V −
∑

S⊆M
vk(S)y∗(S, k)].

Thus bidder k’s payment is the difference in ‘welfare’ of the other bid-

ders without him and the welfare of others when he is included in the

allocation. Notice that the payment made by each bidder to the auc-

tioneer is non-negative. This is not true in all economic environments.

If a seller were to adopt the VCG scheme her total revenue would be

∑

k∈N
V −k −

∑

k∈N
[V −

∑

S⊆M
vk(S)y∗(S, k)]

=
∑

k∈N

∑

S⊆N
vk(S)y∗(S, k) +

∑

k∈N
(V −k − V)

= V +
∑

k∈N
(V −k − V).

If there were a large number of agents then no single agent can have a

significant effect, i.e., one would expect that, on average, V is very close in

value to V −k. Thus the revenue to the seller would be close to V , the largest

possible revenue that any auction could extract. To solidify this intuition

we need that for all agents k that their valuation vk is superadditive, i.e.

vk(A) + vk(B) ≤ vk(A∪B) for all k ∈ N and A,B ⊂M such that A∩B =

50

∅. With this assumption we can find the efficient allocation using CAP1

without the need to introduce dummy goods. Thus:

V = max
∑

S⊂M
{max
j∈N

vj(S)}xS

s.t.
∑

S3i
xS ≤ 1 ∀i ∈M

xS = 0, 1 ∀S ⊂M

and

V −k = max
∑

S⊂M
{ max
j∈N\k

vj(S)}xS

s.t.
∑

S3i
xS ≤ 1 ∀i ∈M

xS = 0, 1 ∀S ⊂M

Notice now that if the number |N | of bidders is large and given that the vj ’s

live in a compact set, the random variable maxj∈N vj(S) is very close on

average to maxj∈N\k vj(S).22 Hence the objective function of the program

that defines V is essentially the same as the objective function of the integer

program that defines V −k. This argument is made precise in Monderer and

Tennenholtz (1999), where it is shown in the model used here that the VCG

scheme generates a revenue for the seller that is asymptotically close to the

revenue from the optimal auction.

The VCG scheme is clearly impractical to implement, if the number of

bidders is very large. To overcome the computational difficulties one might

replace y∗ and yk for all k ∈ N with approximately optimal solutions. Such

a modification in the scheme need not preserve incentive compatibility. In
22In fact the difference of the two is essentially the difference between the first and second

order statistic of a large collection of independent random numbers from a compact set.

51

Lehmann et. al. (1999) such a direction is taken. They solve the embedded

optimization problems using a greedy type algorithm and show that the

resulting scheme is not incentive compatible. However if one is willing to

restrict bidders valuations (drastically) it is possible to generate schemes

based on the greedy algorithm that are incentive compatible. In Lehmann

et. al. (1999) this restriction is called single mindedness. Each bidder values

only one subset and no other.23

Even if one is willing to relax incentive compatibility, an approximate

solution to the underlying optimization problems in the VCG can lead to

other problems. There can be many different solutions to an optimization

problem whose objective function values are within a specified tolerance of

the optimal objective function value. The payments specified by the VCG

scheme are very sensitive to the choice of solution. Thus the choice of ap-

proximate solution can have a significant impact on the payments made by

bidders. This issue is discussed in Johnson et. al. (1997) in the context of

an electricity auction used to decide the scheduling of short term electric-

ity needs. Through simulations they show that variations in near-optimal

schedules that have negligible effect on total system cost can have significant

consequences on the total payments by bidders.

Yet another way in which the computational difficulties can be side

stepped is to ask for auction schemes that give computationally bounded

bidders the incentive to truthfully reveal their valuations. Parkes and Ungar

(2000b), for example attempts to do just this. They propose a method to
23 Another restriction that might be fruitful to explore is introduced in Eső and Maskin

(1999) which they call partition preferences. The collection of subsets that a bidder assigns

positive value to form a partition of the set of objects. Note that problem CAP is still

NP-hard under this restriction.

52

adjust the final prices in iBundle towards VCG prices. Under appropriate

conditions on bidder behavior, the method allows iBundle to inherit the

strategy-proofness of the VCG scheme.

Experience with the VCG scheme in field settings is limited. Isaac and

James (1998) report on an experiment using the VCG scheme for a combi-

natorial auction involving three bidders and two objects. On the basis of

their results they argue that the VCG scheme can be operationalized and, in

their words, ‘achieve high allocative efficiency’. In Hobbs et. al. (2000) the

possibility that the VCG scheme is vulnerable to collusion is explored. It

is pointed out by these authors in environments with repeated interactions

that not only are there many opportunities for collusion amongst bidders

but incentive compatibility of the VCG scheme cannot be guaranteed.

5. Computational Experiments and Test Problems

To evaluate the strength of standard methods of combinatorial optimization

we implemented a solver using the branch and bound solver 24 of the CPLEX

6.5 callable library (see ILOG (1997)). We wrote the (straight forward)

program in C++. The running-times we report were obtained on an SGI O2

computer with one MIPS R10000 processor at 175MHz with 192MB of main

memory running IRIX 6.5.5m. This machine is is slightly inferior to the one

used in Sandholm (1999). As test cases25 we considered the same problems

as studied in Sandholm (1999). They belong to four different classes of

distributions:
24In fact at all nodes, clique-cuts might be added.
25Our problem data are available from http://www-m9.ma.tum.de/~devries/comb_

auction_supplement/.

53

http://www-m9.ma.tum.de/~devries/comb_auction_supplement/
http://www-m9.ma.tum.de/~devries/comb_auction_supplement/

Random: For each bid, pick the number of items randomly from 1, . . . ,m.

Randomly choose that many items without replacement. Pick the

prices randomly from [0, 1].

Weighted Random: As above, but pick the price as a real number be-

tween 0 and the number of items in the bid.

Uniform: Draw the same number of randomly chosen items for each bid.

Pick the prices from [0, 1].

Decay: Give the bid one random item. Then repeatedly add a new random

item with probability α until an item is not added or the bid includes

all m items. Pick the price as a real number between 0 and the number

of items in the bid.

For these experiments we did not throw out duplicate sets. However

for the given parameters duplicate sets occur with very small probability.

No fine tuning of the parameters of libcplex.a was attempted. We used

standard settings only. Our Figures 1, 2, and 3 show the runtimes for CAP1

instances from the same distribution as Sandholm (1999). In fact we use

the same convention as Sandholm (1999) to summarize the data so that

comparisons will be easier.

In Figure 1 we show the logarithm of the runtimes our program needed

to solve instances from the random (left) and weighted random (right) dis-

tribution for different numbers of items and bids. In Figure 2 we show the

logarithm of the runtimes our program needed to solve instances from the

uniform distribution and Figure 3 shows the logarithms of runtimes for the

decay distribution. A comparison with Sandholm’s (1999) result graphs re-

veals that the runtimes with the CPLEX solver (on these instances) are

54

5

10

20

50

100

500 750 1000

(a) Random distribution

2

5

10

20

50

100

200

500 1000 1500 2000

(b) Weighted random distribu-

tion

Figure 1: The abscissa depicts the number of bids and the ordinate depicts

the running time (on a logarithmic scale). The lines show the cases for 100

items (), 200 items (), 300 items (), and 400 items ().

at least 60 times faster for the random distribution (Figure 25), 10 times

faster on the weighted random distribution (Figure 25). For the date in Fig-

ures 25 and 25 the CPLEX solver produces a speedup of at least two orders

of magnitude. In Figure 3 we see at least an order of magnitude speedup.

While performing our experiments we became aware that Andersson

et. al. (2000) had also used CPLEX on the Sandholm instances. They

perform more extensive tests with similar results. Furthermore, they use

CPLEX on some of Fujishima et. al.’s (1999) test problems. For the Bino-

mial class of problems (described below) they report that for small problems

Fujishma’s et. al. times are better while CPLEX was able to solve substan-

tially larger problems than Fujishima et. al.

55

0.05

0.1

0.2

0.5

50 100 150

(a) Uniform distribution, 3

items per bid

0.05
0.1
0.2

0.5
1
2

5
10

3 8 13

(b) Uniform distribution, 75

items

Figure 2: Left picture shows running times (on logarithmic scale) for 25

items (), 50 items (), 75 items (), and 100 items (); the abscissa

gives the number of bids. Right picture shows running times (on logarithmic

scale) for 50 bids (), 100 bids (), and 150 bids (); the abscissa gives

the number of items per bid.

56

0.04
0.05

0.07

0.1

0.15

50 100 150 200

(a) Decay distribution, α =

0.55

0.05
0.1
0.2

0.5
1
2

5

0.05 0.25 0.45 0.65 0.85

(b) Decay distribution, 100

items

Figure 3: Left picture shows running times (on logarithmic scale) for 50

items (), 100 items (), 150 items (), and 200 items (); the abscissa

gives the number of bids. Right picture shows running times (on logarithmic

scale) for 50 bids (), 100 bids (), 150 bids (), and 200 bids (); the

abscissa gives the parameter α of the distribution.

57

5.1 Test Problems

Performance of an algorithm for CAP1 will depend on the class of test

problems chosen. Thus it is important to know whether good performance

is a function of algorithm design or ‘easy’ problems.

As is pointed out in Andersson et. al. (2000), the random model in

Sandholm (1999) is ‘easy’ when the problems become large. This is because

the bid values assigned to each set are independent draws from the same

distribution. Thus many small sets, in fact singletons, when combined are

likely to generate a higher total revenue than a large set that contains the

same elements.

The weighted random model suffers from the fact that on average the

bid to column sum ratio is constant across columns. This implies that the

model does not capture synergies among the items in a bidset. Further,

for large enough problems, the optimal linear programming solution to the

problem may be integral. In the uniform model bids have no relation to the

size of subsets.

The binomial model of Fujishima et. al. (1999) can be described by

saying that each entry of the constraint matrix of CAP1 is set to one with

a given probability p independently of the others. The bid value of a sub-

set/column is a uniform draw from a distribution whose mean depends on

the size of the corresponding subset. Given the report of Andersson et. al.

this class of problems may be of interest.

None of these schemes is based on a model of how bidders might value

different subsets of objects. For example, each assumes that b(S), the highest

bid on the subset S, is a random draw from a uniform distribution. But,

b(S) = maxj∈N bj(S), i.e. it is the maximum of a collection of numbers.

58

If we assume that each bidder’s bid on S is an independent draw from

some distribution then it is hard to imagine that b(S) will be uniformly

distributed.

Out of curiosity we generated some test problems involving 3 bidders.

Each bidder’s value for a single item was an independent uniform draw from

[0, 1]. Let vjk be the value that bidder j assigns to object k. To capture

complementarities, we assumed the value that bidder j assigns to a subset

S is
∑

k∈S v
j
k +

∑

k 6=q and k,q∈S v
j
kv
j
q . Hence, assuming truthful bidding, the

highest bid on subset S is

max
1≤j≤3

∑

k∈S
vjk +

1
2

∑

k 6=q and k,q∈S
vjkv

j
q .

In this experiment we allowed only subsets of size 3 to be bid upon. Fig-

ure 4 reports on the solution times for various numbers of bids on instances

involving 100 objects and uniform sets of size 3. There, the times for prices

according to Sandholms uniform model and our just outlined model (for

three bidders) are compared.

It is not clear from the data that the quadratic prices model is easier or

harder to solve than the uniform model. To see how large a problem one

could solve in the quadratic price model we solved an instance involving 100

items, 3000 bids (each on subsets of size 10) and 3 bidders. On an SGI

Origin 200 computer26 it took 410 minutes.

Motivated by the FCC spectrum auctions (see Ausubel et. al. (1997))

we outline a model, called the Quadratic Model (QM), of how bidders value

different combinations of objects. In the spectrum auctions it was gener-

ally believed that the stand-alone value of a spectrum licence/object was
26That has four MIPS R10000 processor at 225MHz, 1GB of main memory running

parallel CPLEX6.5.2.

59

50

100

200

500

1000

500 700 900 1100

Figure 4: The abscissa depicts the number of bids and the ordinate depicts

the mean running time (for 20 examples) (on a logarithmic scale) for 100

objects and uniform bidsets of three items. The lines show the cases for

Sandholm’s prices in the uniform case () and for our quadratic prices for

three bidders and prices drawn uniformly from [0, 1] ().

proportional to the population covered by that spectrum licence. To model

this we assign to each object k a value vk which will be an iid draw from a

distribution. This is the stand alone value of object k, which is common to

all bidders.27

Second, as suggested in Ausubel et. al. (1997) if a bidder was interested

in owning two spectrum licenses, the value of owning the two spectrum

licences was proportional to the sum of the populations plus the products

of the populations covered. The product term captures the synergies to be

had from owning a pair of licences. However, these synergies were bidder

specific. We model this feature in two steps.

First for each bidder j we choose a subset M j of objects at random.
27In a more elaborate version we could allow each bidders value of object k to be drawn

from a distribution centered at vk.

60

The set M j represents the set of objects that in bidder j’s eyes complement

each other. There are many ways to specify how the M j can be selected.

In some schemes the resulting sets may not overlap very much. In others

they may be small, or mostly large or run the gamut from large to small.

Second, the value to bidder j of the subset S of objects will be
∑

k∈S vk +

µj
∑

k,q∈S∩Mj vkvq. Here µj is a bidder specific parameter that allows one

to vary the strength of the complementarities.28 In this model, the largest

bid (assuming truthful bidding) on subset S would be

max
j∈N

∑

k∈S
vk + µj

∑

k,q∈S∩Mj

vkvq.

The QM model is by no means universally appropriate. In the trans-

portation setting for example, it would make no sense whatsoever. The

value of a set of lanes would depend on the transportation costs incurred to

service those lanes. Complementarities come from combining different lanes

together to reduce travel costs. These complementarities will be bidder spe-

cific in that they may already be servicing some collection of lanes. It is not

hard to propose an alternative model for this set up as well. We do not do

so here. Our goal is only to suggest that the specific application should be

used to guide the model for generating test problems.

5.2 FCC Data

Perhaps the most well known combinatorial auction to be run to date is the

FCC spectrum auction. Data from this auction is available from ftp://ftp.

fcc.gov/pub/Auctions/PCS/Broadband/MTA/Programs/. Since the auc-

tion was run in rounds we have information on the bids submitted by each
28The parameters µk should not be set too large since this will bias a solution in favor

of bids on large sets.

61

ftp://ftp.fcc.gov/pub/Auctions/PCS/Broadband/MTA/Programs/
ftp://ftp.fcc.gov/pub/Auctions/PCS/Broadband/MTA/Programs/

bidder on each licence. From this we can infer something about the subsets

that each bidder had an interest in. However one can deduce very little

about what bids they might have submitted on a package. In fact in some

preliminary stabs we assigned bids to subsets in various ways (using the

recorded bids as a a starting point) to generate instances of CAP1. All

of these instances solved immediately using CPLEX but this is probably a

function of how we assigned bid values.

Acknowledgements

We thank David Parkes, Sunil Chopra, Michael Rothkopf and John Ledyard

for useful comments.

REFERENCES

A. Andersson, M. Tenhunen and F. Ygge, “Integer Programming for Com-

binatorial Auction Winner Determination”, Proceedings of the Fourth

International Conference on Multi-Agent Systems (ICMAS00), 39–46,

2000.

M. Aourid and B. Kaminska, “Neural Networks for the Set Covering Prob-

lem: An Application to the Test Vector Compaction”, IEEE Interna-

tional Conference on Neural Networks Conference Proceedings, 7, 4645–

4649, 1994.

E. M. Arkin and R. Hassin, “On Local Search for Weighted k-Set Packing”,

Mathematics of Operations Research, 23, 640–648, 1998.

K. Akcoglu, J. Aspnes, B. DasGupta and M. Kao, “An Opportunity-Cost

Algorithm for Combinatorial Auctions”, 2000.

62

L. M. Ausubel, P. Cramton, R. Preston McAfee and J. McMillan, “Synergies

in Wireless Telephony: Evidence from the Broadband PCS Auction”,

Journal of Economics and Management Strategy, 6, 3, 497–527, 1997.

E. Balas, S. Ceria and G. Cornuejols, “A Lift-and-Project Cutting Plane

Algorithm for mixed 0-1 Programs”, Mathematical Programming, 58,

295–324, 1993.

E. Balas and M. C. Carrera, “A Dynamic Subgradient-based Branch-and-

Bound Procedure for Set Covering”, Operations Research, 44, 875–890,

1996.

E. Balas and A. Ho, “Set Covering Algorithms Using Cutting Planes, Heuris-

tics, and Subgradient Optimization: A Computational Study”, Mathe-

matical Programming, 12, 37–60, 1980.

E. Balas and M. W. Padberg, ”Set Partitioning: A Survey”, SIAM Review,

18, 710–760, 1976.

M. O. Ball and M. Magazine, 1981, “The Design and Analysis of Heuristics”,

Networks, 11, 215–219, 1981.

J. S. Banks, J. O. Ledyard and D. P. Porter “Allocating Uncertain and

Unresponsive Resources: An experimental approach”, Rand Journal of

Economics, vol. 20, 1, 1–25, 1989.

C. Barnhart, E. D. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh and

P. H. Vance “Branch and Price: Column Generation for Solving Huge

Integer Programs”, Operations Research, 46, 316–329, 1998.

J. E. Beasley, “A Lagrangian Heuristic for Set-Covering Problems”, Naval

Research Logistics, 37, 151–164, 1990.

D. P. Bertsekas, Linear Network Optimization: Algorithms and Codes, MIT

63

press, Cambridge, MA, 1991.

S. Bikchandani and J. M. Ostroy, “The Package Assignment Model”, manuscript,

1998.

S. Bikchandani and J. Mamer, “Competitive Equilibrium in an Exchange

Economy with Indivisibilities”, Journal of Economic Theory, vol. 74,

no. 2, 385–413, 1997.

P. J. Brewer, “Decentralized Computation Procurement and Computational

Robustness in a Smart Market”, Economic Theory, 13, 41–92, 1999.

M. M. Bykowsky, R. J. Cull and J. O. Ledyard, “Mutually Destructive

Bidding: The FCC Auction Design Problem”, Journal of Regulatory

Economics, 17, 205–228, 2000.

C. G. Caplice, “An Optimization Based Bidding Process: A New Framework

for Shipper-Carrier Relationships”, Thesis in the field of Transportation

and Logistics Systems submitted to the Department of Civil and Envi-

ronmental Engineering, School of Engineering, MIT, June 1996.

Cybernomics, Inc., “An Experimental Comparison of the Simultaneous Mlti-

Round Auction and the CRA Combinatorial Auction”, http://combin.

fcc.gov/98540193.pdf, 2000

G. Cornuejols and A. Sassano, “On the 0-1 Facets of the Set Covering Poly-

tope”, Mathematical Programming, 43, 45–56, 1989.

P. Crescenzi and V. Kann, “A compendium of NP optimization problems”,

http://www.nada.kth.se/theory/compendium/, manuscript, 1998.

G. B. Dantzig, Linear Programming and Extensions, Princeton University

Press, New Jersey, 1963.

C. DeMartini, A. Kwasnica, J. Ledyard and D. Porter, “A New and Im-

64

http://combin.fcc.gov/98540193.pdf
http://combin.fcc.gov/98540193.pdf
http://www.nada.kth.se/theory/compendium/

proved design for Multi-Object Iterative Auctions”, manuscript, 1999.

M. Eső, “Parallel Branch and Cut for Set Partitioning”, Ph.D. thesis, School

of Operations Research and Industrial Engineering, Cornell University,

1999.

P. Eső and E. Maskin, “Multi-Good Efficient Auctions with Multi-Dimensional

Information”, manuscript, 1999.

A. Feo, G. C. Mauricio and A. Resende, “A Probabilistic Heuristic for a

Computationally Difficult Set Covering Problem”, Operations Research

Letters, 8, 67–71, 1989.

M. Fisher and L. Wolsey “On the Greedy Heuristic for Continuous Cover-

ing and Packing Problems”, SIAM Journal on Algebraic and Discrete

Methods, 3, 584–591, 1982.

Y. Fujishima, K. Leyton-Brown and Y. Shoham, “Taming the Computa-

tional Complexity of Combinatorial Auctions: Optimal and Approxi-

mate Approaches”, Proceedings of IJCAI-99, Stockholm, 1999.

M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Com-

binatorial Optimization, Springer-Verlag, 1988.

P. C. Gilmore and R. E. Gomory, “A Linear Programming Approach to the

Cutting Stock Problem”, Operations Research, 9, 849–859, 1961.

M. C. Golumbic and P. L. Hammer, “Stability in circular arc graphs”, J.

Algorithms, 9, 314–320, 1988.

F. Gul and E. Stachetti, “English and Double Auctions with Differentiated

Commodities”, Journal of Economic theory, 92, 66–95, 2000.

J. H̊astad, “Clique is hard to approximate within n1−ε”, Acta Mathematica,

to appear.

65

B. F. Hobbs, M. Rothkopf, L. Hyde and R. P. O’Neill, “Evaluation of a

Truthful Revelation Auction in the Context of Energy markets with Non-

concave Benefits”, Journal of Regulatory Economics, 18, 5–32, 2000.

S. van Hoesel and R. Müller, “Optimization in Electronic Markets: Exam-

ples in Combinatorial Auctions”, Netnomics, forthcoming, 2000.

K. Hoffman and M. W. Padberg, “Solving Airline Crew Scheduling Problems

by Branch and Cut”, Management Science, 39, 657–682, 1993.

W. C. Huang, C. Y. Kao, and J. T. Hong, “A genetic algorithm for set cov-

ering problems”, IEEE International Conference on Genetic Algorithms:

Proceedings, 569–574, 1994.

C. A. J. Hurkens and A. Schrijver, “On the size of systems of sets every t

of which have an SDR, with an application to the worst–case ratio of

heuristic problems”, SIAM Journal on Discrete Math., 2, 68–72, 1989.

ILOG Inc. CPLEX Division, 930 Tahoe Blvd. # 802-279, Incline Village,

NV 89451-9436, USA, “Using the CPLEX Callable Library” (informa-

tion available at URL http://www.cplex.com) 1997.

R. Mark Isaac and D. James, “Robustness of the Incentive Compatible Com-

binatorial Auction”, manuscript, 1998.

C. Jackson, “Technology for Spectrum Markets”, Ph. D. Thesis submit-

ted to the Department of Electrical Engineering, School of Engineering,

MIT, June 1976.

P. Jehiel, B. Moldovanu and E. Stacchetti, “Multidimensional Mechanism

Design for Auctions with Externalities”, Journal of Economic Theory

85(2), 258–294, 1999.

P. Jehiel, B. Moldovanu, “Efficient Design with Inderdependent Valuations”,

66

http://www.cplex.com

discussion paper, University of Mannheim, 2000.

P, Jehiel and B. Moldovanu, “A Note on Revenue Maximization and Effi-

ciency in Multi-Object Auctions”, discussion paper, University College

London, 1999.

R. B. Johnson, S. S. Oren, and A. J. Svoboda, “Equity and Efficiency of

Unit Commitment in Competitive Electricity Markets”, Utilities Policy,

6(1), 9–20, 1997.

J. M. Keil, “On the complexity of scheduling tasks with discrete starting

times”, Operations Research Letters, 12, 293–295, 1992.

A. S. Kelso and V. P. Crawford, “Job matching, Coalition Formation and

Gross Substitutes”, Econometrica, 50, 1483–1504, 1982.

F. Kelly and R. Steinberg, “A Combinatorial Auction with Multiple Winners

for Universal Service”, Management Science, 46(4), 586–596, 2000.

V. Krishna and M. Perry, “Efficient Mechanism Design”, manuscript, 1998.

V. Krishna and R. W. Rosenthal, “Simultaneous Auctions with Synergies”,

Games and Economic Behavior, 17, 1–31, 1996.

D. Lehmann, L. O’Callaghan and Y. Shoham, “Truth Revelation in Rapid,

Approximately Efficient Combinatorial Auctions”, manuscript, 1999.

J. Levin, “An Optimal Auction for Complements”, Games and Economic

Behavior, 18, 176–192, 1997.

K. Leyton-Brown, Y. Shoham and M. Tennenholtz, “An Algorithm for

Multi-Unit Combinatorial Auctions”, Proceedings of the Seventeenth Na-

tional Conference on Artificial Intelligence and Twelfth Conference on

Innovative Applications of Artificial Intelligence, 2000.

67

P. Milgrom, “Auctioning the Radio Spectrum” in Auction Theory for Pri-

vatization, Cambridge University Press, 1995.

D. Monderer and M. Tennenholtz, “Asymptotically Optimal Multi-Object

Auctions for Risk-Averse Agents”, manuscript, 2000.

R. Myerson, “Optimal Auction Design”, Mathematics of Operations Re-

search, 6, 58–73, 1981.

G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimiza-

tion, John Wiley, New York, 1998.

N. Nisan, “Bidding and Allocation in Combinatorial Auctions”, to appear

in EC2000, 2000.

M. W. Padberg, “On the facial structure of set packing polyhedra”, Math-

ematical Programming, 5, 199–215, 1973.

M. W. Padberg, “Perfect zero-one matrices”, Mathematical Programming,

6, 180–196, 1974.

M. W. Padberg “On the complexity of the set packing polyhedra”, Annals

of Discrete Mathematics 1, 421–434, 1975.

M. W. Padberg, “Covering, Packing and Knapsack Problems”, Annals of

Discrete Mathematics, 4, 265–287, 1979.

M. Parker and J. Ryan “A column generation algorithm for bandwidth pack-

ing”, Telecommunications Systems, 2, 185–196, 1994.

D. C. Parkes, “iBundle: An Efficient Ascending Price Bundle Auction”,

Proceedings ACM Conference on Electronic Commerce (EC-99), Denver,

148–157, November 1999.

D. C. Parkes and L. Ungar, “Iterative Combinatorial Auctions: Theory and

68

Practice”, Proceedings 17th Nat. Conf. on Artificial Intelligence, 74–81,

2000(a).

D. C. Parkes and L. Ungar, “Preventing Strategic Manipulation in Iterative

Auctions: proxy Agents and Price Adjustment”, Proceedings 17th Nat.

Conf. on Artificial Intelligence, 82–89, 2000 (b).

A. Sassano, “On the Facial Structure of the Set Covering Polytope”, Math-

ematical Programming, 44, 181–202, 1973.

S. J. Rassenti, V. L. Smith and R. L. Bulfin, “A Combinatorial Auction

Mechanism for Airport Time Slot Allocation”, Bell Journal of Eco-

nomics, vol. 13, No. 2, 402–417, 1982.

M. H. Rothkopf, A. Pekec and R. M. Harstad, “Computationally Manage-

able Combinatorial Auctions”, Management Science, vol. 44, No. 8,

1131–1147, 1998.

T. Sandholm, “An Algorithm for Optimal Winner Determination in Com-

binatorial Auctions”, Proceedings of IJCAI-99, Stockholm, 1999.

A. Schrijver, Theory of Linear and Integer Programming, John Wiley, New

York, 1986.

M. P. Wellman, W. E. Walsh, P. R. Wurman and J. K. MacKie-Mason,

“Auction Protocols for Decentralized Scheduling”, manuscript, 1998.

S. R. Williams, “A Characterization of Efficient, Bayesian Incentive Com-

patible Mechanisms”, Economic Theory, vol. 14, 155–180, 1999.

L. Wolsey, “Integer Programming Duality: Price Functions and Sensitivity

Analysis”, Mathematical Programming, vol. 20, 173–195, 1981.

69

	Introduction
	The CAP
	The Set Packing Problem
	Complexity of the SPP
	Solvable Instances of the SPP
	Total Unimodularity
	Balanced Matrices
	Perfect Matrices
	Graph Theoretic Methods
	Using Preferences

	Exact Methods
	Approximate Methods
	Worst-Case Analysis
	Probabilistic Analysis
	Empirical Testing

	Decentralized Methods
	Duality in Integer Programming
	Lagrangean Relaxation
	Variations
	Column Generation
	Cuts, Extended Formulations and Non-linear Prices

	Incentive Issues
	Computational Experiments and Test Problems
	Test Problems
	FCC Data

