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fl ights is increasing rapidly.1 Current ATM systems rely 
on a centralized, hierarchical process, where decisions are 
based on fl ow projections ranging from one to six hours. 
Consequently, the system responds slowly to developing 
weather or airport conditions, potentially causing minor 
local delays to cascade into large regional congestion. The 
US Federal Aviation Administration (FAA) estimates that 
weather, routing decisions, and airport conditions caused 
437,667 delays in 2007, accounting for 1,682,700 hours of 
delays.2 According to a US Joint Economic Committee 
study, these delays cost more than US$41 billion.3

In addition, unlike other fl ow problems for which im-
proved hardware has somewhat absorbed the increasing 
traffi c (for example, more servers with larger memories 
and faster CPUs for Internet routing), the air traffi c do-
main must fi nd mainly algorithmic solutions because the 
infrastructure (for example, the number of airports) won’t 
change enough to signifi cantly alleviate the fl ow problem. 
So, there’s a strong need to explore new, distributed, and 
adaptive solutions to ATM.

A learning multiagent approach in which intelligent 
agents either make decisions or make recommendations to 
human air traffi c controllers is an ideal fi t to this naturally 
distributed problem. In this article, we address three criti-
cal design decisions:

What constitutes an agent in this system?
What actions can those agents take to impact air traffi c?

•
•

How do those agents’ actions get shaped—that is, what 
is their reward?

Results from a system of coordinated agents show that 
this approach can signifi cantly improve ATM within cur-
rent fl ow management procedures, without major policy 
shifts.

ATM
The continental US airspace comprises 20 regional cen-
ters (handling 200 to 300 fl ights in a busy hour) and 830 
sectors (handling 10 to 40 fl ights). Flow control must ad-
dress the integration of policies across these sectors and 
centers, account for the system’s complexity (for example, 
more than 5,200 public-use airports and 16,000 air traf-
fi c controllers), and handle policy changes due to weather 
patterns. In addition, it must consider high-level criteria 
such as effi ciency (for example, reducing delays), fairness 
(for example, dealing with different airlines), adaptability 
(for example, responding to developing weather patterns), 
reliability (for example, providing accurate predictions), 
and safety (for example, managing airports).

To address these issues, ATM occurs on four levels:

 1. separation assurance (a 2- to 30-minute time horizon 
for decisions),

 2. regional fl ow (20 minutes to 2 hours),
 3. national fl ow (1 to 8 hours), and
 4. dynamic airspace confi guration (6 hours to 1 year).

Our multiagent approach focuses on regional and national 
fl ow, where agents look at time horizons between 20 min  -
utes and 8 hours. The solution therefore isn’t directly af-
fected by separation-assurance guidelines and political 
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and business concerns for airspace con-
figuration (long-term management).

We implemented our approach on Facet 
(Future ATM Concepts Evaluation Tool), 
a physics-based model of US airspace.4 
Facet is a reliable tool for simulating air 
traffic and is extensively used by the FAA, 
NASA, and industry (more than 40 organi-
zations and 5,000 users).

A Multiagent ATM System
The agent approach to ATM is predicated 
on adaptive agents taking independent ac
tions that provide good system-level behav-
ior. To that end, the selection of agents, their 
actions, their learning algorithms, and their 
reward structure is critical.

Agent Selection
Perhaps the most obvious choice for an 
agent is the aircraft. With this approach, 
agent actions can be intuitive (for example, 
for changing a flight plan or increasing or 
decreasing speed or altitude) and offer a 
high level of granularity, in that each agent 
can have its own policy. However, this ap-
proach has two main drawbacks. First, on 
any given day, more than 40,000 aircraft 
are in US airspace, which would lead to a 
massively large multiagent system. Sec-
ond, because the agents wouldn’t be able 
to sample their state space sufficiently, 
learning would be prohibitively slow.

Instead, we assign agents to fixes—indi-
vidual ground locations throughout the air-

space. Each agent is then responsible for any 
aircraft going through its fix (see Figure 1).

Fixes offer four main advantages. First, 
their number can vary depending on need. 
The system can have as many agents as 
required for a given situation (for example, 
agents coming “live” around an area with 
developing weather conditions). Second, 
because fixes are stationary, agents can 
collect data and readily match behavior 
to reward. Third, because aircraft flight 
plans consist of fixes, agents can affect 
traffic flow patterns. Finally, fixes can be 
deployed within current air traffic routing 
procedures and can serve as tools to help 
air traffic controllers rather than compete 
with or replace them.
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Figure 1. A multiagent system for air traffic management (ATM): (a) a screenshot of Facet (Future ATM Concepts Evaluation 
Tool) with agents superimposed, (b) agent activation around a congested area, and (c) the impact of agent actions (for example, 
setting miles-in-trail values), with the possible local-congestion implications of the agents’ actions. The agent rewards aim to 
encourage agents to not only reduce local congestion but also take globally beneficial actions.
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Agent Actions
To control the flow, an agent assigned to a 
fix can take three kinds of actions. First, 
it can set the miles in trail (MIT)—the 
distance aircraft must keep from each 
other while approaching the fix. With a 
higher MIT, fewer aircraft will be able to 
go through that fix during congested pe-
riods because they’ll be slowing down to 
maintain their spacing. So, the agent can 
set high MIT values to reduce congestion 
downstream of its fix.

Second, an agent can order ground de-
lays, causing aircraft headed toward its 
fix to wait on the ground. Consequently, 
aircraft will arrive later at the fix. If some 
agents choose this action and others don’t, 
congestion will decrease because it will 
be spread out. However, if all the agents 
choose the same ground delay, the conges-
tion will simply occur later.

Third, an agent can reroute aircraft go-
ing through its fix. By diverting certain 
aircraft away from particular regions, this 
action can prevent specific instances of 
congestion and thus reduce congestion 
overall.

Learning Algorithms
In an adaptive multiagent approach, each 
agent aims to learn the actions that provide 
the best returns. Here, we focus on agents 

using reinforcement learning to maximize 
their rewards5 (although alternatives such 
as evolving neurocontrollers are also ef-
fective6). At each time step, an agent takes 
an action and receives a reward evaluating 
that action. It uses this reward to update its 
action policy such that it will try to take ac-
tions leading to higher reward.7 The simple 
reinforcement learners are equivalent to 
e-greedy learners with a discount rate of 
zero,5 where the value associated with each 
action Q(s, a) after taking action a from 
state s and receiving reward R is updated by

Q′(s, a) = (1 − )Q(s, a)+ R,� (1)

where  is the learning rate. To promote ex-
ploration of new actions, at each time step 
the agent chooses the action with the high-
est table value with probability 1 − e and 
chooses a random action with probability e.

Reward Structure
The most direct approach is to let each 
agent receive the system performance as 
its reward. Although this form of reward 
has been successful for small multiagent 
reinforcement learning problems, it doesn’t 
scale well because an agent’s actions have 
a relatively small impact on the system 
reward.

To alleviate this problem, we developed 
an additional reward that aims to be both 

sensitive to an agent’s actions and aligned 
with the overall system reward.8,9 Given 
a system state z and system-level reward 
function G(z)—for example, the system ob-
jective of reducing total delays and ensur-
ing all sectors remain below their critical 
congestion limits—we derive each agent’s 
difference reward:

Di ≡ G(z) − G(z-i),� (2)

where z-i is the system’s state without agent 
i. In practice, we set all the state compo-
nents of i to a constant, arbitrary value.

D has two beneficial properties. First, it 
has the same derivative as G with respect 
to the states of i because the second term 
on the right doesn’t depend on i’s actions. 
So, any changes to i’s state that benefit i 
also benefit the entire system. Second, the 
second term on the right acts as a “noise” 
remover, providing a cleaner “signal” to 
i. This approach has proven effective in 
many domains, including ATM,7 conges-
tion games,10 robot coordination,6 and data 
routing.11

Although the difference reward effec-
tively lets an agent see its actions’ impact, 
it could be plagued by computational cost. 
Because D relies on the computation of 
the counterfactual term G(z-i)—that is, 
system performance without agent i—it 
might be difficult or impossible to compute, 
particularly when we don’t know G’s exact 
mathematical form. So, we developed a 
third reward: an estimate of D that’s com-
putationally tractable and requires far fewer 
calls to Facet (one per time step, rather than 
one per agent).

Representative Results
We’ve applied our approach to artificial 
data with a single point or dual points of 
congestion as well as to limited real-world 
data related to historical congestion. In all 
cases, we compared the results to those 
from a basic Monte Carlo estimate, which 
is the state of the art for ATM.

Figure 2 shows the results for 40 agents 
controlling the MIT. The agents set the 
MIT at 0, 25, or 50 miles. Setting the MIT 
at 0 produces no effect, whereas setting it at 
high values forces aircraft to slow down to 
maintain their separation distance. So, set-
ting high MIT values upstream of conges-
tion can alleviate congestion but increase 
delay.

The results are based on a simulation 
with two independent instances of conges-
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Figure 2. The performance of 40 agents controlling miles in trail (MIT) for a system 
with 300 aircraft. D stands for the difference reward, and G stands for the system 
performance as a reward. All agent-based algorithms outperformed the state 
of the art, and agents using D significantly outperformed “traditional” agents 
using G. The estimate for D provides a good balance between performance and 
computational cost.
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tion with a total of 300 aircraft over fi ve 
hours of fl ight time. The fi rst instance in-
volves relatively light congestion with 75 
aircraft; the second involves heavy conges-
tion with 225 aircraft. The system reward 
consists of a function of both delay and 
congestion (a detailed mathematical formu-
lation appears elsewhere7). All results are 
based on 30 runs. Although we plotted the 
error bars, they’re smaller than the sym-
bols for the rewards in most cases. These 
results are representative of the relative 
performance of the agent-based approaches, 
where the full difference reward performs 
best but the estimated difference reward 
still performs better than directly using the 
system reward. In addition, all the learning-
based agents outperformed the Monte Carlo 
approach.

Assigning an agent to a fi x and provid-
ing those agents with local reward func-
tions is a fi rst step in bridging the tech-
nological gap between the current ATM 
process and the process needed to accom-
modate future air traffi c.

We’re extending this approach in fi ve 
directions. First, to further speed up the 
simulations, we’re exploring new meth-
ods of estimating agent rewards. Second, 
we’re exploring how agent coupling affects 
system performance. In this situation, one 
agent’s actions restrict another agent’s ac-
tions; for example, setting ground delays 
might impact a reroute, or a reroute might 
impact the MIT. Third, we’re investigating 
the performance of agents that provide only 
recommendations to air traffi c controllers. 
This approach presents interesting prob-
lems in that the reward an agent receives 
might not be based on the action it recom-
mended (for example, the air traffi c con-
troller might have ignored the recommen-
dation). Fourth, we’re integrating real data 
(from Chicago and New York) to extend 
the simulation results to real historical con-
gestion. Finally, we’re investigating broad 
defi nitions of system performance ranging 
from delays to more complex criteria in-
cluding fairness, timeliness, and economic 
concerns.
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