
Distributed Agent Architecture for Port Automation

Tom Thurston

Department of Computer Science
University of Essex, Colchester CO4 3SQ, U.K.

Email: tthurs@essex.ac.uk

Huosheng Hu

Department of Computer Science
University of Essex, Colchester CO4 3SQ, U.K.

Email: hhu@essex.ac.uk

Abstract

 In the near future, container ports will no longer be
able to expand into the surrounding land and will thus be
unable to meet the storage requirements due to the boom
in world trade. A solution to this problem is to increase the
container throughput of the port by reducing the amount
of time necessary to load and unload a ship. This paper
presents distributed agent architecture to achieve this task.
Under such architecture, an intelligent planning algorithm
is continuously optimised by the dynamic and co-operative
rescheduling of yard resources such as quay cranes and
container vehicles.

1. Introduction

 Since the container was introduced to the world trade
thirty years ago, an ever increasing number of goods are
being put into these containers, and loaded onto vast ships
to be carried to their respective destinations throughout the
world. When a ship arrives at a port, containers destined
for this port must be unloaded and then new containers,
bound for other ports must be loaded before the ship can
resume its course. The demands on such ports to perform
the loading and unloading process with maximum
efficiency will become greater as the transport companies
continue to increase both the size of their fleets and the
capacity of the new ships added to them.
 The problem with this increase is that port authorities
around the world are predicting that they will run out of
space to expand their operational areas and the option of
developing on surrounding land is, unsurprisingly, often
hampered by opposition from local residents. Therefore,
the only remaining solution will be the reduction of the
amount of time that a ship needs to remain in dock. The
way to do this, is to ensure that the container unload / load
process is done as rapidly as possible, and this can be
achieved by ensuring that the resources necessary for this
procedure are operating at an optimum level.
 The Load/Unload Cycle: Ship-to-shore transferral of
containers is performed by Quay Cranes (QCs) such as the
ones shown in Figure 1. There are typically between one
and four QCs assigned to a particular ship, depending on
its size. Each crane will be in charge of several columns of
container storage slots along the ship. Each column has

several levels (depth) and thus sophisticated computer
software has been developed to ensure that the containers
are positioned such that they can be removed in a pre-
calculated order so that space can be made for oncoming
cargo with relative ease.1 For each column, the QC must
first unload all the containers destined for this port, and
then load all the containers scheduled for leaving this port.
Clearly there is a strict loading schedule which must be
observed.2

 This paper is concerned specifically with the loading
process, however the standard unloading process is
similar, just in reverse. In most ports around the world, the
loading of each container requires 3 separate processes.
i) Retrieval of Container from Stacking Lane -- An

efficient use of yard storage space is to stack the
containers in a lane. These stacks may be four or five
containers high and are typically 7 containers across.
Each lane has a Rubber Tyred Gantry Crane (RTG),
which can retrieve or handle these containers.

ii) Transport of Container from Stack to Quay -- Two
main categories of vehicle will perform this operation.

1 Due to accidental errors this process will not always run as smoothly as
is hoped.
2 Since failure to do so will create havoc at the ships next port, which is
in all probability owned by the same Company as the current one.

Fig. 1. Quay Cranes at the Cosco HIT Terminal
(Thanks to Hutchinson Port Holdings for this)

One is a lorry or motorized platform, which will have
to be loaded by the RTG in process 1. Another is a
Straddle Carrier or other vehicle capable of self-
loading, which is able to collect the container from the
ground. The containers loaded onto these vehicles can
then be transfer to the Quayside.

iii) Transfer of Container from Quay Side to Sea Vessel --
When the vehicle arrives at the target QC, depending
on its type, it will either unload itself and clear out the
way, or wait to be unloaded by the QC. Once the QC
has picked up this container, it is loaded onto the ship
into its designated storage slot.

 These processes will t hen be repeated until every
container in the current storage column has been loaded.
At this point the QC will maneuver to the next column and
the unload/load process will recommence.
 Measuring Efficiency: A means of measuring how
well a container port system is running is to monitor the
usage of the QCs. The system will be running in an
optimum state if all the QCs assigned to any ships in port
are continuously performing a load or unload operation. In
order for this to happen, each QC must be presented with
either a constant supply of containers ready for loading, or
vehicles capable of removing unloaded containers from
the quay area.
 This research is to devise a distributed system for the
container handling process, which maximizes QC
utili zation and overall container to hectare ratio, whilst
using a minimal amount of yard vehicles. In the rest of the
paper, related work is briefly reviewed in section 2. The
system design is presented in section 3, including a new
yard layout and a hybrid hierarchical architecture. Section
4 describes the initial system implementation. Finally,
conclusions and future work are given in section 5.

2. Related Work

 The port automation is essentially the problem of
formulating a plan Pi that involves transporting the
resource R from location A to location B such that it
arrives at time T and does not interfere with the plans Pi-n

through to plan Pi-1. The methods for scheduling these
resources generally fall i nto one of two distinct system
architectures, namely centralized and distributed.
 Centralized Systems -- A great deal of centralized
systems have been proposed and implemented for use in
Flexible Manufacturing Systems (FMS) for scheduling
AGVs to transport materials around the factory floor. The
task of the central agent is often to find the optimal
schedule for its subordinates by creating search trees.
 Pu and Huges have tested the effects of several
heuristics on a STRIP – like planner in [1] and highlighted
the potential use of heuristics in FMS style scheduling.
Huang et al have designed a rule-based inference system
using AND / OR graphs in conjunction with an iterative
deepening A* search algorithm for rule selection in [2],
which allows for dynamic changes in the schedule. Moro

et al present Petri net based heuristics on top of an A*
based search in [3], which produces optimum results with
less effort compared to traditional A* implementations.
 Machine learning techniques have been successfully
deployed to optimize the scheduling procedure. Erkmen et
al. uses genetic algorithms to tune a fuzzy logic based
scheduler in [4]. Aydin and Oztemel have recently begun
to explore the benefits of reinforcement learning in their
scheduling agents [5]. ECT’s Sea Land Terminal in
Rotterdam uses a centralized system to control a fleet of
some 50 Mannesmann Dematic AG vehicles that transport
containers between the Stacking Cranes in the storage
yards and cranes by the quayside. Ever at al. has created a
simulation model for AGVs namely TRACES [6], which
was adopted at Sea Land [7][8].
 Distributed Systems -- Distributed systems have the
problem that numerous agents may want to use the same
resource at the same time. Ramos presents an architecture
and a negotiation protocol to ensure successful scheduling
in a dynamic FMS [9]. The architecture includes the use of
resource agents representing the resources and task agents
representing the tasks, thus adding a level of hierarchy to
the agent society and ensuring that resources are not
double booked.
 Chen et al has devised a similar system and includes a
protocol for resource allocation that is presented in [10].
Ouelhadj et al also uses resource agents [11][12] and bases
their negotiation protocol on Reid Smith’s Contract Net, a
protocol which is explained in [13][14][15]. The Contract
Net allows agents bidding for a job to act as managers and
subcontract various components of the job to other agents
in the system. Gu et al make use of the Contract Net for
this very purpose in their bidding based scheduling system
for FMS [16].
 Lim and Zhang have built on the above approaches and
in a prime example of classic Distributed Problem Solving
[17] a framework that includes extra agents such as
Optimization Agents and Bottlenecks Criteria Agents. It is
also worth mentioning the work of Van Dyke Parunak
[18], who was probably the first to start distributing
manufacturing processes (again using the Contract Net) in
YAMS (Yet Another FMS). Chia et al in [19] study agent
behaviors in the Dis – ARM (Distributed Airport Resource
Management) test bed. They identified the existence of
several important behaviors regarding resource reservation
including ‘poaching’ , whereby the local reservation of a
resource by agent ‘a’ prevents agent ‘b’ from reserving it,
despite the fact that agent ‘b’ requires it more critically in
the global scale of the system.
 The closest architecture to the one described in this
paper is by Alami et al, who in their papers [20][21][22]
[23], describe the Plan Merging Paradigm (PMP), which
has been proven to enable multi -robot co-operation in the
MARTHA project. The PMP allows AGVs using shared
resources, such as crossings, to successfully integrate their
local plans with the global one. However, one drawback of
this system, as they point out themselves in [23], is that the
reservations are made on first come first served basis. A

further drawback is that reservations
are only made one cell in advance.

 3. System Design
3.1. Strategy

 Since land expansion can not be
accomplished horizontally, the next
best alternative is to build upwards so
just as cities have their skyscrapers,
container ports have their stacking
lanes. However, as the level of the
stack is increased, so too will the
chances of two separate QCs
simultaneously requiring containers
from the same stacking lane. This
would inevitably cause the container
transfer points of the stacking lanes to
become major sites of bottlenecks
while vehicles wait to collect their
containers. Furthermore, the larger the
number of containers stacked on top of
each other, the larger the likelihood
that the container which the RTG
needs to access is underneath another
container. This will thus increase the
container retrieval time, hence making
a bad situation worse.
 If the loading schedules of ships are
known well in advance of the ships arrival, (which they
are), containers which are to be loaded in, say, the next 24
hours, can be moved from the high capacity storage areas
away from the quay, and stored in a lower capacity area
closer to the quayside. The advantage of lower capacity
stacking lanes is that container retrieval can be faster.
Indeed if the stack height and width can be reduced to 1
container, then a straddle carrier could enter such a lane
and collect the container and drop it off at the target quay
crane; without having to depend on the RTGs.
 Figure 2 outlines how such a yard might look if storage
space is divided into medium term storage, (secondary),
and short-term storage, (primary). Depending on how far
the loading schedule is known in advance, the system
could even be expanded to include ultra high stacking
lanes for long-term storage.
 If such a system were to be implemented, remaining
likely areas for bottleneck formation would be the
commonly used shared resources, such as crossroads in the
port highway infrastructure. Thus the proposed multiagent
architecture seeks to enable the agents in the yard to
maximize QC utilization by means of intelligent and
informed planning made possible by the dynamic and co-
operative rescheduling of resources.

3.2. Proposed Multiagent Architecture

 As shown in Figure 3, the system will be controlled by
four different types of agents, including the Quay Crane

Agents (QCAs), Straddle Carrier Agents (SCAs) and the
Traffic Agents (TAs), which will represent physical
resources of the system. Each Quay Crane is controlled by
a QCA, each Straddle Carrier is controlled by an SCA and
each cell of the yard highway that contains more than one
entry point, such as a crossing, is governed by a TA. The
fourth type of agent is the Area Manager Agent (MA), it
will oversee the initial assignment of jobs for any SCAs in
the area it is in charge of.

3.3. Job Assignment

 For each section of the ship, all containers destined for
this port will be unloaded before any new containers are to
be loaded. The loading schedule is predetermined and thus
each QCA will have an ordered list of the ID numbers of
the containers that it must load. The QCA sends a message
to all the MAs in the system, requesting bids for the job of
fetching a particular container and includes with it a
Desired Time of Arrival (DTA). The DTA for container i
is the Estimated Time of Arrival for container i-1 + the
Estimated time required for loading container i-1. Each MA
will then perform calculations for every SCA in his area in
order to determine their suitability for the requested job.
This involves 3 stages.
 Stage 1. Path plotting -- The MA will know the cell
where an SCA will be when he has finished the job he is
currently working on. It will plot the shortest path from
this cell to the cell location of the target container in the

Secondary
Storage

Pr imary
Storage

Quay and
QC’s

Fig. 2. A Section of a future Container Port layout which allows Straddle Carriers to
perform Short Term Storage Stack to Quay Crane transport

yard. Then it will plot the shortest path between this cell
and the cell l ocation of the target crane on the quayside.
 Stage 2. ETA Prediction -- For each one of these paths,
the MA will t ry to predict the arrival time at the target
QCA. This will i nvolve calculating how long it will t ake to
cross each cell of the path, which in turn will depend on
how fast the SCA is travelli ng when it leaves the previous
cell , the level of congestion in this cell area and whether
this cell i s governed by a TA. If so, a tentative reservation
for this resource must be made with that TA, specifying
the estimated time it is required.
 Stage 3. Tentative Reservations -- The TA will have a
reservation list for all SCAs travelli ng through it. It will
find a suitable window for the requested reservation and
send a reply to the MA indicating how soon after the
desired time, the tentative reservation is for.
 Stages 2 and 3 will be repeated until the MA has a
completed ETA value for each cell within the job path,
and will t hus know which SCA should arrive at the QCA
closest to the time specified by the QCA. It then notifies
the QCA of this time in its bid. Once a QCA has received
bids from all it s MAs it will notify them which plan
contained the best bid. The contract winning MA will t hen
pass this information onto the TAs who will delete all
tentative reservations apart from those involving the
winning SCA; these are necessary and will be turned into
confirmed reservations.
 Once this process is complete, the contract winning
MA will send details of the job to the appropriate SCA
who will append it to its job list. This process will t hen be
repeated until the ship is ready to leave.

3.4. Why distribute the system like this?

 The distribution is to achieve Just-In-Time production
systems, whereby containers arrive at the quayside ready
for loading at exactly the time they are needed.
 Quay Crane Agents (QCAs) -- Each crane therefore
has its own agenda, and thus it makes sense for each crane
to be controlled by its own agent. In this way, malfunction
of one crane should not impede the performance of a crane
elsewhere in the system.
 Straddle Carrier Agents (SCAs) -- They have been
given with a degree of decision making. Each SCA
attempts to register with a MA when it enters a new area.
However, if it does not hear a reply from the new MA it
can stay under the control of its old MA. If it has lost
contact with its old MA, it can become its own manager!
Thus in a worst case scenario, if there was a total failure in
all MAs, the system would become entirely distributed and
although this would mean an immense increase in wireless
communications, it would nevertheless, remain fully
operational.
 Also, SCAs can make dynamic decisions regarding
reservations. E.g. if SCA ‘a’ is ahead of schedule and SCA
‘b’ is behind schedule then SCA ‘a’ can give its
reservation to SCA ‘b’ , since this will be mutually

beneficial. A further reason for providing the SCAs with
planning abiliti es is to rapidly solve unforeseen
circumstances. If an SCA comes across a broken down
Straddle Carrier in the cell i n its front, it just has to ask
surrounding Straddle Carriers if they will be using the
resources necessary to circumnavigate this obstacle, and if
there is no objection, it can make an alteration to the
journey path by perhaps travelli ng in the wrong lane for a
short distance.
 Traffic Agents (TAs) -- Clearly, dynamic re-planning
by SCAs to avoid obstacles should be encouraged, but
travelli ng in the wrong direction along the highway is not
a step that should be taken lightly. In order to ensure that
an altered plan will be risk free, an SCA can contact the
TAs at either ends of the segment of the altered route
involved to establish that no other vehicles are expected
there. Since TAs know how many SCAs should be in each
road segment at any particular time frame, they supply the
MAs with statistics relating to congestion levels. This is
important since the more agents using a resource, the more
likely it will be that changes to ETAs will occur. If a route
becomes really congested then a TA can suggest that the
MA plot a path using a neighboring route.
 Figure 4A shows a representation of how TA ‘B’
perceives the world. Figure 4B shows the crossing this
agent governs and also that of a neighboring TA, identified
as TA ‘A’ . It can apprise Manager Agents of the
Congestion Factors for cells that form paths leading
through its crossing for certain time periods. In this
example, there are 2 Straddle Carriers which will be using
the crossing in the time period between 10:05:00 and
10:05:30 and approaching from TA ‘A’ . The TA initially
divides the number of vehicles using a route by the
number of cells along that route. Thus, since 2/5=0.4 it can
inform the MAs that the time taken to traverse any cell i n
the path between these two agents should be effected by a
congestion factor of 0.4.
 Should MAs find that these values are causing ETA’s
to be incorrect, they can inform that specific TA, who can
then adjust the gain of the this Congestion Factor for the
specific recorded congestion level, until satisfactory
results are reported. However, the primary purpose of a

TAMA

TAQCA

TASCA TATA

LAN
W-LAN

Fig. 3. Agent Infrastructure showing communications
flow

TA remains to ensure that 2 SCAs do not attempt to use a
crossing at the same time. The SCAs will have low-level
behaviours to prevent them from colli sions but considering
the fact that the purpose of advanced resource reservation
is to enable the SCAs to travel through crossings at a
maximum speed, some redundancy here is very useful.

 Time AGV ID Previous Crossing

10:05:00 04 A
10:05:15 08 C
10:05:30 07 A

 Manager Agents (MAs) -- The purpose of the MA is to
reduce the load on inter-agent wireless communications. A
hundred SCAs all trying to communicate with TA’s during
the job bid process would really restrict the bandwidth
available to SCAs communicating with each other and
TAs regarding resources. By including MAs for each area
of the port, initial job assignment can be entirely
completed between agents using communications along a
cable network with a high bandwidth. Clearly the
processing load on an MA will depend on the number of
SCAs in its area, which will i n turn be dictated by the
number of SCAs in the system. But as new vehicles are
purchased, more managers can be added in order to ease
the workload of the existing managers in the system. This
makes the system both modular and readily expandable.

4. Implementation and Initial Results

 The system has been prototyped in Java. First a yard
map is created using the map editor, and then simulation
runs can be created and viewed, using custom or randomly
generated loading schedules. Statistics from the simulation
run are then exported to Microsoft Access. All agents in

the system inherit from a simple Agent Base Class we
have created.
 Agent Base Class -- The Agent Base Class gives each
agent a unique identifier, an ‘ inbox’ and the abilit y to read
messages. These identifiers are used for inter-agent
communication, and typically appear in the ‘TO’ and
‘FROM’ parts of messages. The IDN is assigned in order
of creation, thus the 1st Straddle Carrier Agent created will
have the ID (SCA, 1). The IDN 0 is reserved such that if
the ‘TO’ f ield of a message contains the ID (SCA, 0), then
it will be sent to all SCAs in the system.
 The Agent Turn Machine -- Each agent in the system
is stored in a vector. There is one vector for each agent
type. The Agent Turn Machine aims to ensure that every
agent has had a ‘ turn’ every cycle, as shown in Figure 5.
There is a timer that allows the user to decide the interval
between each turn, and enables slow motion viewing of
the real-time graphical output. The turn machine simply
executes the ‘ takeTurn’ method that each agent has
inherited from the Agent Base Class, in order, from Agent
1, to Agent ‘n’ , for each Agent Type Vector.

 Taking a Turn -- Every time an agent takes a turn it
will read the contents of its inbox and will react to each
message it has received. Each agent is thus equipped with
a special set of handlers that will enable it to react in an
appropriate manner. The agents all have working memory
to record their current mode of operation and any data
relevant to their current planning status. In addition to this,
SCAs and QCAs have Motion Operations to contend with.
 The basic task of a MA is to keep up to date records of
its agents, such as where and when they will finish their
current jobs, and to process all the messages in its inbox
each time he takes a turn. When a MA’s mode is
‘Calculating Plans’ , it will have to send and receive a lot
of messages to and from the TAs. It will t herefore take
several cycles to gather all the data necessary for
calculating all the ETAs for all it s agents. Thus there are
various sub-modes that a MA can be in whilst in this
mode. Data associated with this task, primarily pointers to
where abouts it was in each plan at the last cycle, are
stored in working memory.

Fig. 4A. Reservation List for Traffic
Agent ‘B’ from 10:05:00 to 10:05:30

TA: ‘A’

TA: ‘B’

Fig. 4B. Traffic Agents Set the Congestion Factors
for cells along the paths connected to them

Cells between ‘A’
and ‘B’ each have
a C.F.Value of 0.4

public void agentTurnMachine() {
 .
 .
 .

for(int i = 1; i < simData.managerVector.size(); i++) {
 (Agent) simData.managerVector.elementAt(i).takeTurn();
 }

for(int i = 1; i < simData.carrierVector.size(); i++) {
 (Agent) simData.carrierVector.elementAt(i).takeTurn();
 }
 .
 .
 .
}

Fig. 5. Snippet of simple Agent Turn Machine Code

 The features of a
TA will cycle
through various
modes in relation
to the job
assignement
process. Apart
from performing
duties relevant to
these modes it will
also process all
messages received
since its last cycle.
Its general duty is
to maintain both its
Confirmed and
Tentative
Reservation Lists but assides from overseeing future
reservations it must also ensure that Syncronisation Events
are dealt with. Thus every cycle it checks that the owner of
the top reservation in its list has clearance to travel through
the resource it governs. When a SC has finished with a
resource it sends notification to the governing TA so the
TA can authorise other vehicles to use it. it was doing last
cycle. Two typical examples of motion modes are
PickingUpContainer and WaitingForNextCellToClear.

 A QCA has a motion mode to contend with as well as a
normal mode that deals with the job assignment process.
The motion modes for a QCA are Idle, PickingUp
Container, PuttingDownContainer, TransferToShip, and
TransferToQuay. Initial testing with this implementation
shows that advanced reservation of resources in
conjunction with synchronisation events enables multiple
SCAs and QCAs to utili se shared resources.
 In addition to processing messages, SCAs have to
control their own motion. This involves heading in the

right direction according to their path plan and also
performing functions such as picking up containers. Low-
level behavious inside this agent prevent it from entering
the next cell unless it is clear. Thus Motion Modes are
required to help it remember what it was doing last cycle.
Examples of motion modes are PickingUpContainer and
WaitingForNextCellToClear.

 Figure 6 shows two SCAs heading towards the same
cell . However, they do not crash because their MAs have
arranged reservations for them with the TA governing this
cell , well i n advance of this moment. In Figure 6(b), the
SCA ‘A’ travelli ng from North to South held the higher
priority reservation and thus SCA ‘B’ travelli ng from West
to East has had to stop. This is because it knows that
before it enters this cell it must first receive clearance from
the T. In Figure 6(e) SCA ‘A’ will have just sent a
message to the TA governing the cell it has just left and
cleared so that the TA can send a message to SCA ‘B’ who
is now able to use the crossing. Alami et al has coined the
term ‘Synchronisation Events’ f or this activity [22].

Fig. 6. Screen shots of Synchronization Events

(a) (b) (c) (e) (f) (g)

SCA ‘A’

SCA ‘B’

Fig. 8. A modular layout for a small yard with 4 small QCs

Fig. 7. The Loading Schedule Lists, Modes and QC Job Data

 Figure 7 presents a screen shot of the window showing
the Loading Schedule Lists, Modes and QC Job Request
Synchroniser Data. In contrast, a modular layout for a
small yard with 4 small QCs (4 circles at the bottom) is
shown in Figure 8.

 5. Conclusions and future work

 A distributed multiagent architecture for dockyard
operation has been presented in the paper, which builds
upon elements from both centralised and decentralised
strategies. The system provides a feasible optimisation
solution to the problem due to its inherent complexity.
 The next stage of this research is to convert the
prototype simulator into a multithreaded program in order
to include representation of AGV speed control. Thus the
purpose of advanced reservations will be realised in that
the SCAs can slow down before entering a crossing, such
that they arrive at it exactly on schedule, hence remaining
continuously in motion, instead of having to stop and wait
for their reservation. Once this has been achieved, data
from simulation runs using a constraint satisfaction
approach [24] will be compared with results from runs
using a greedy reservation algorithm, intended to mimic
the first come first served strategies used today.

Acknowledgements: This research is funded by EPSRC
and GCS limited through a CASE studentship. Thanks to
Dr Malcolm Roberts at GCS for his valuable support.

References:

[1]. P. Pu and J. Hughes, Integrating AGV Schedules in a
Scheduling System for a Flexible Manufacturing
Environment, Proc. of IEEE International Conference on
Robotics and Automation, 1994, pp. 3149 - 3154.

[2]. T-S Huang, L-C Fu, and Y-Y Chen, Design and Analysis
of a Dynamic Scheduler for a Flexible Assembly System,
Proc. of IEEE International Conference on Robotics and
Automation, New Mexico, April 1997, pp. 3334 - 3339.

[3]. A. R. Moro, H. Yu, G. Kelleher, Advanced Scheduling
Methodologies for Flexible Manufacturing Systems using
Petri Nets and Heuristic Search, Proc. of IEEE Int. Conf.
on Robotics and Automation, 2000, pp. 2398 - 2403

[4] A. M. Erkmen, M. Erbudak, O. Anlugan, O. Unver,
Genetically Tuned Fuzzy Scheduling for Flexible
Manufacturing System, Proceedings of IEEE International
Conference on Robotics and Automation, 1997.

[5] M. E. Aydin and E. Oztemel, Dynamic job-shop scheduling
using reinforcement learning agents, International Journal
of Robotics and Autonomous Systems, Vol. 33, 2000, pp.
169 – 178.

[6] J.J.M. Evers, D.G. Lindeijer, L. Loeve, J.A. Ottjes, "Agile
Logistic Systems: the case of a container terminal", TRAIL
Research School, Delft, 1998.

[7]. M.B. Duinkerken, J.J.M. Evers, J.A. Ottjes, TRACES:
Traff ic Control Engineering System. A case study on
container terminal automation. Proc. of the Summer
Computer Simulation Conf., July 1999. Chicago [SCS].

[8]. M.B. Duinkerken and J.A. Ottjes, A simulation model for
automated container terminals, Proc. of the Business and
Industry Simulation Symp., Washington D.C., April 2000.

[9]. C. Ramos, An Architecture and a Negotiation Protocol for
the Dynamic Scheduling of Manufacturing Systems, Proc.
of the IEEE International Conference on Robotics &
Automation 1994, pp. 3161 - 3166

[10]. Y-Y. Chen, L-C Fu and Y-C Chen, Multi -agent Based
Dynamic Scheduling for a Flexible Assembly System,
Proceedings of IEEE Int. Conf. on Robotics and
Automation, Leuven, Belgium, 1998, pp. 2122 - 2127

[11]. D. Ouelhadj, C. Hanachi, B. Bouzouia, A. Moualek and A
Farhi, A Multi - Contract Net Protocol for Dynamic
Scheduling in Flexible Manufacturing Systems, Proc. of
IEEE Int. Conf. on Rob. & Auto., 1999, pp. 1114 - 1119

[12]. D. Ouelhadj, C. Hanachi and B. Bouzouia, Multi -Agent
System for Dynamic Scheduling and Control in
Manufacturing Cells, Proceedings of the 1998 IEEE Int.
Conference on Robotics & Automation, Leuven, Belgium -
May 1998, pp. 2128 - 2133

[13]. R. Davis and R. G. Smith, Negotiation as a Metaphor for
Distributed Problem Solving, Artificial Intelli gence, Vol.
20 No. 1, January 1983, pp. 63 - 109.

[14]. R.G. Smith, A Framework for Distributed Problem
Solving’ . In Proceedings of IJCAI’79, 1979

[15]. R.G. Smith, The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver’ . IEEE Transactions on Computers 29(12), 1980,
pp. 1104 - 1113

[16]. P. Gu, S. Balasubramanian and D. H. Norrie, Bidding-
Based Process Planning and Scheduling in a multi-agent
System, Computers and Engineering, No 2, Elsevier
Science, 1997, pp. 477-496

[17]. M. K. Lim and Z. Zhang, A Framework for the application
of autonomous agents in integrated dynamic process
planning and scheduling system, Proceedings of the
IASTED Conference on Robotics and Applications, Santa
Barbara CA, 1999, pp. 47 - 51

[18]. H. Van Dyke Parunak, Manufacturing experiences with the
contract net. In Michael N. Huns, editor, Distributed AI,
Research Notes in AI, Pitman 1987, pp. 285 - 310.

[19]. M.H. Chia, D.E. Neiman and V.R. Lesser, Coordinating
Asynchronous Agent Activities in a Distributed Scheduling
System, Proceedings of the 3rd International Conference on
Multi -Agent Systems, 1998

[20]. L. Aguilar, R. Alami, S. Fleury, M. Herrb F. Ingrand, F.
Robert, Ten Autonomous Mobile Robots (and even more)
in a Route Network Like Environment, Proc. IROS,
Pittsburgh, USA, 1995, pp. 260 - 267

[21]. R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An
Architecture for Autonomy, Int. Journal of Robotics
Research 1998, Vol. 17, No. 4, pp. 315-337

[22]. R. Alami, S. Fleury, M. Herrb, F.Ingrand, S. Qutub,
Operating a Large Fleet of Mobile Robots using the Plan-
Merging Paradigm, Proceedings of the IEEE Int.
Conference on Robotics and Automation, Alburquerque,
New Mexico, 1997, pp. 2312 - 2317

[23]. R. Alami, S. Fleury, M. Herrb, F. Ingrand, F. Robert,
Multi -robot Cooperation in the MARTHA Project, IEEE
Robotics and Automation Magazine, 1996, pp. 36 – 47

[24]. E.P.K. Tsang, Foundations of constraint satisfaction,
Academic Press, London, 1993

