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Supply chains involve complex webs of interactions among suppliers, manufac-

turers, distributors, third-party logistics providers, retailers, and customers.

Although fairly simple business processes govern these individual entities, real-time

capabilities and global Internet connectivity make today’s supply chains complex. 

Fluctuating demand patterns, increasing customer
expectations, and competitive markets also add to
their complexity.

Supply networks are usually modeled as multi-
agent systems (MASs).1 Because supply chain man-
agement must effectively coordinate among many
different entities, a multiagent modeling framework
based on explicit communication between these enti-
ties is a natural choice.1 Furthermore, we can repre-
sent these multiagent systems as a complex network
with entities as nodes and the interactions between
them as edges. Here we explore the survivability (and
hence dependability) of these MASs from the view
of these complex supply networks.

Today’s supply networks aren’t dependable—or
survivable—in chaotic environments. For example,
Figure 1 shows how mediocre a typical supply net-
work’s reaction to a node or edge failure is compared
to a network with built-in redundancy.

Survivability is a critical factor in supply network
design. Specifically, supply networks in dynamic
environments, such as military supply chains during
wartime, must be designed more for survivability
than for cost effectiveness. The more survivable a
network is, the more dependable it will be.

We present a methodology for building survivable

large-scale supply network topologies that can
extend to other large-scale MASs. Building surviv-
able topologies alone doesn’t, however, make an
MAS dependable. To create survivable—and hence
dependable—multiagent systems, we must also con-
sider the interplay between network topology and
node functionalities.

A topological perspective
To date, the survivability literature has emphasized

network functionalities rather than topology. To be
survivable, a supply network must adapt to a dy-
namic environment, withstand failures, and be flex-
ible and highly responsive. These characteristics
depend on not only node functionality but also the
topology in which nodes operate.

The components of survivability
From a topological perspective, the following

properties encompass survivability, and we denote
them as survivability components. 

The first is robustness. A robust network can sustain
the loss of some of its structure or functionalities and
maintain connectedness under node failures, whether
the failure is random or is a targeted attack. We mea-
sure robustness as the size of the network’s largest
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connected component, in which a path exists
between any pair of nodes in that component.

The second is responsiveness. A respon-
sive network provides timely services and
effective navigation. Low characteristic path
length (the average of the shortest path
lengths from each node to every other node)
leads to better responsiveness, which deter-
mines how quickly commodities or infor-
mation proliferate throughout the network.

The third is flexibility. This property de-
pends on the presence of alternate paths.
Good clustering properties ensure alternate
paths to facilitate dynamic rerouting. The
clustering coefficient, defined as the ratio
between the number of edges among a node’s
first neighbors and the total possible number
of edges between them, characterizes the
local order in a node’s neighborhood.

The fourth is adaptivity. An adaptive net-
work can rewire itself efficiently—that is,
restructure or reorganize its topology on the
basis of environmental shifts—to continue
providing efficient performance. For exam-
ple, if a supplier can’t reliably meet a cus-
tomer’s demands, the customer should be
able to choose another supplier.

A typical supply chain with a tree-like or
hierarchical structure lacks these four prop-
erties—the clustering coefficient is nearly
zero, and the characteristic path length scales
linearly with the number of nodes (or agents)
N. In designing complex agent networks
with built-in survivability, conventional opti-
mization tools won’t work because of the
problem’s extremely large scale. When net-
works were smaller, we could understand
their overall behavior by concentrating on
the individual components’ properties. But
as networks expand, this becomes impossi-
ble, so we shift focus to the statistical prop-
erties of the collective behavior.

Using topologies
Studying complex networks such as pro-

tein interaction networks, regulatory net-
works, social networks of acquaintances,
and information networks such as the Web
is illuminating the principles that make these
networks extremely resilient to their respec-
tive chaotic environments. The core princi-
ples extracted from this exploration will
prove valuable in building robust models for
survivable complex agent networks.

Complex-network theory currently offers
random-graph, small-world, and scale-free net-
work topologies as likely candidates for sur-
vivable networks (see the sidebar “Complex

Networks” for more on this topic). Evaluating
these for survivability (see Figure 2), we find
that no one topology consistently outperforms
the others. For example, while small-world net-
works have better clustering properties, scale-
free networks are significantly more robust to
random attacks. So, we can’t directly use these

topologies to build supply networks. We can,
however, use their evolution principles to build
supply chain networks that perform well in all
respects of the survivability components.

Researchers have studied complex net-
works in part to find ways to design evolu-
tionary algorithms for modeling networks
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Figure 1. How redundancy affects survivability. (a) A part of the multiagent system 
for military logistics modeled using the UltraLog (www.ultralog.net) program. This 
example models each entity, such as main support battalion, forward support battalion,
and battalion, as a software agent. (We’ve changed the agents’ names for security 
reasons.) In the current scenario, MSBs send the supplies to the FSBs, who in turn
forward these to battalions. (b) A modified military supply chain with some redundancy
built into it. This network performs much better in the event of node failures and hence
is more dependable than the first network.
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Social scientists, among the first to study complex networks
extensively, focused on acquaintance networks, where nodes
represent people and edges represent the acquaintances be-
tween them. Social psychologist Stanley Milgram posited the
“six degrees of separation” theory that in the US, a person’s
social network has an average acquaintance path length of six.1

This turns out to be a particular instance of the small-world
property found in many real-world networks, which, despite
their large size, have a relatively short path between any two
nodes.

An early effort to model complex networks introduced ran-
dom graphs for modeling networks with no obvious pattern or
structure.2 A random graph consists of N nodes, and two nodes
are connected with a connection probability p. Random graphs
are statistically homogeneous because most nodes have a de-
gree (that is, the number of edges incident on the node) close
to the graph’s average degree, and significantly small and large
node degrees are exponentially rare. 

However, studying the topologies of diverse large-scale net-
works found in nature reveals a more complex and unpredict-
able dynamic structure. Two measures quantifying network
topology found to differ significantly in real networks are the
degree distribution (the fraction of nodes with degree k) and
the clustering coefficient. Later modeling efforts focused on
trying to reproduce these properties.3,4 Duncan Watts and
Steven Strogatz introduced the concept of small-world net-
works to explain the high degree of transitivity (order) in com-
plex networks.5 The Watts-Strogatz model starts from a regu-
lar 1D ring lattice on L nodes, where each node is joined to its
first K neighbors. Then, with probability p, each edge is re-
wired with one end remaining the same and the other end
chosen uniformly at random, without allowing multiple edges
(more than one edge joining a pair of vertices) or loops (edges
joining a node to itself). The resulting network is a regular lat-
tice when p = 0 and a random graph when p = 1, because all
edges are rewired. This network class displays a high clustering
coefficient for most values of p, but as p → 1, it behaves like a
random graph.

Albert-László Barabási and Réka Albert later proposed an
evolutionary model based on growth and preferential attach-
ment leading to a network class, scale-free networks, with
power law distribution.6 Many real-world networks’ degree
distribution follows a power law, fundamentally different
from the peaked distribution observed in random graphs and
small-world networks. Barabási and Albert argued that a
static random graph of the Watts-Strogatz model fails to cap-
ture two important features of large-scale networks: their
constant growth and the inherent selectivity in edge creation.
Complex networks such as the Web, collaboration networks,
or even biological networks are growing continuously with
the creation of new Web pages, the birth of new individuals,
and gene duplication and evolution. Moreover, unlike ran-
dom networks where each node has the same chance of
acquiring a new edge, new nodes entering the scale-free net-
work don’t connect uniformly to existing nodes but attach
preferentially to higher-degree nodes. This reasoning led
Barabási and Albert to define two mechanisms:

• Growth: Start with a small number of nodes—say, m0—and
assume that every time a node enters the system, m edges
are pointing from it, where m < m0.

• Preferential attachment: Every time a new node enters the
system, each edge of the newly connected node preferentially

attaches to a node i with degree ki with the probability

Research has shown that the second mechanism leads to a
network with power-law degree distribution P(k) = k–γ with
exponent γ = 3. Barabási and Albert dubbed these networks
“scale free” because they lack a characteristic degree and have
a broad tail of degree distribution. Following the proposal of
the first scale-free model, researchers have introduced many
more refined models, leading to a well-developed theory of
evolving networks.7

Protein-to-protein interactions in metabolic and regulatory
networks and other biological networks also show a striking
ability to survive under extreme conditions. Most of these
networks’ underlying properties resemble the three most
familiar networks found in the literature (see Figure 1 in the
article).

Complex networks are also vulnerable to node or edge
losses, which disrupt the paths between nodes or increase
their length and make communication between them harder.
In severe cases, an initially connected network breaks down
into isolated components that can no longer communicate.
Numerical and analytical studies of complex networks indicate
that a network’s structure plays a major role in its response to
node removal. For example, scale-free networks are more
robust than random or small-world networks with respect to
random node loss.8 Large scale-free networks will tolerate the
loss of many nodes yet maintain communication between
those remaining. However, they’re sensitive to removal of the
most-connected nodes (by a targeted attack on critical nodes,
for example), breaking down into isolated pieces after losing
just a small percentage of these nodes.
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with distinct properties found in nature. A
network’s evolutionary mechanism is de-
signed such that the network’s inherent prop-
erties emerge owing to the mechanism. For
example, small-world networks were de-
signed to explain the high clustering coeffi-
cient found in many real-world networks,
while the “rich get richer” phenomenon used
in the Barabási-Albert model explains the
scale-free distribution.2

Similarly, we seek to design supply net-
works with inherent survivability components
(see Figure 3), obtaining these components by
coining appropriate growth mechanisms. Of
course, having all the aforementioned proper-
ties in a network might not be practically fea-
sible—we’d likely have to negotiate trade-offs
depending on the domain. Also, domain speci-
ficities might make it inefficient to incorpo-
rate all properties. For instance, in a supply
network, we might not be able to rewire the
edges as easily as we can in an information
network, so we would concentrate more on
obtaining other properties such as low char-
acteristic path length, robustness to failures
and attacks, and high clustering coefficients.
So, the construction of these networks is
domain specific.

Establishing edges between network nodes
is also domain specific. For instance, in a sup-
ply network, a retailer would likely prefer to
have contact with other geographically con-
venient nodes (distributors, warehouses, and
other retailers). At the same time, nodes in a
file-sharing network would prefer to attach to
other nodes known to locate or hold many
shared files (that is, nodes of high degree).

Obtaining the survivability 
components

While evolving the network on the basis
of domain constraints, we need to incorpo-
rate four traits into the growth model for
obtaining good survivability components.

The first is low characteristic path length.
During network construction, establish a few
long-range connections between nodes that
require many steps to reach one from
another.

The second is good clustering. When two
nodes A and B are connected, new edges
from A should prefer to attach to neighbors
of B, and vice versa.

The third is robustness to random and tar-
geted failure. Preferential attachment—where
new nodes entering the network don’t connect
uniformly to existing nodes but attach prefer-
entially to higher-degree nodes (see the side-
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Figure 2. Comparing the survivability components of random, small-world, and 
scale-free networks.
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bar for more details)—leads to scale-free net-
works with very few critical and many not-so-
critical nodes. Here we measure a node’s criti-
cality in terms of the number of edges incident
on it. So, these networks are robust to random
failures (the probability that a critical node fails
is very small) but not to targeted attacks (attack-
ing the very few critical nodes would devastate
the network). Also, it’s not practically feasible
to have all nodes play an equal role in the sys-
tem—that is, be equally critical. Thus, the net-
work should have a good balance of critical,
not-so-critical, and noncritical nodes.

The fourth is efficient rewiring. Rewiring
edges in a network might or might not be fea-
sible, depending on the domain. But where
it is feasible, it should preserve the other
three traits.

Although complete graphs come equipped
with good survivability components, they
clearly aren’t cost effective. Allowing every

agent in an agent system to communicate
with every other agent uses system band-
width inefficiently and could completely bog
down the system. So the amount of redun-
dancy results from a trade-off between cost
and survivability.

An illustration
Suppose we want to build a topology for a

military supply chain that must be survivable
in wartime. First, we broadly classify the net-
work nodes into three types:

• Battalions prefer to attach to a highly con-
nected node so that the supplies from dif-
ferent parts of the network will be trans-
ported to them in fewer steps. Battalions
also require quick responses, so they prefer
the subsequent links to attach to nodes at
convenient shorter distances (in our model
we considered a fixed distance of two).

• A forward support battalion prefers to
attach to highly connected nodes so that
its supplies proliferate faster in the net-
work. The supply range from an FSB goes
up to a particular distance (at most three
in our model).

• A main support battalion also prefers to
attach to a highly connected node to
enable its supplies to proliferate faster in
the network. We assume an unrestricted
supply reach from an MSB, thus facilitat-
ing some long-range connections.

In a conventional logistics network, the
MSBs supply commodities (such as ammu-
nitions, food, and fuel) to the FSBs, who in
turn forward them to the battalions. Our
approach doesn’t restrict node functionali-
ties as such—for example, we assume that
even a battalion can supply commodities to
other battalions if necessary.

D e p e n d a b l e  A g e n t  S y s t e m s

28 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

8

7

6

5

4

3

2

1

0
0 1 2

In (degree k)
3 4 5

In
 (n

um
be

r o
f n

od
es

 o
f d

eg
re

e 
> 

k)

Model 1
Model 2
Model 3

5.6

5.5

5.4

5.3

5.2

5.1

5.0

4.9

4.8

4.7
6.5 7.0 7.5

Ln (number of nodes)
8.0 8.5 9.0

Ch
ar

ac
te

ris
tic

 p
at

h 
le

ng
th

(b)(a)

Figure 5. How our proposed network  performed: (a) the log-log of the degree distribution for all the three networks; 
(b) the characteristic path length of the proposed network against the log of the number of nodes.
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Growth mechanisms
Start with a small number of nodes—say,

m0—and assume that every time a node
enters the system, m edges are pointing from
it, where m < m0. Battalions, FSBs, and
MSBs enter the system in a certain ratio
l:m:n where l > m > n:

• A battalion has one edge pointing from it
and a second edge added with a probabil-
ity p.

• An FSB has three edges pointing from it.
• An MSB has five edges pointing from it.

The attachment rules applied depend on
which node type enters the system:

• For a battalion, the first edge attaches to a
node i of degree ki with the probability 

The second edge, which exists with a
probability p, attaches to a randomly cho-
sen node at a distance of two.

• For an FSB, the first edge attaches to a
node i of degree ki with the probability

The subsequent edges attach to a randomly
chosen node at a distance of at most three.

• For an MSB, each edge attaches preferen-
tially to a node i with degree ki with the
probability 

Simulation and analysis
Using this method, we built a network of

1,000 nodes with l, m, and n being 25, 4, and
1 (we obtained these values from the current
configuration of the military logistics net-
work used in the UltraLog program) and 
p = 1/2. We compared this network’s surviv-
ability with that of two other networks built
using similar mechanisms except that one
used purely preferential attachment rules
(similar to scale-free networks) and the other
used purely random attachment rules (simi-
lar to random networks) (see Figure 4). All
three networks had an equal number of edges
and nodes to ensure fair comparison.

We refer to the networks built from ran-
dom, preferential, and proposed attachment
rules as Models 1, 2, and 3, respectively. As
we noted earlier, a typical military supply
chain (see Figure 1a) with a tree-like or hier-
archical structure has deficient survivability
components, making it vulnerable to both
random and targeted attacks. Models 1, 2,
and 3 outperform the typical supply network
in all survivability components.

Figure 5a shows the three models’ degree
distribution. As expected, the preferential-

attachment network has a heavier tail than
the other two networks. We measured sur-
vivability components for all three networks.

The clustering coefficient for Model 3 was
the highest (see Table 1). The Model 3 attach-
ment rules, especially those for battalions and
FSBs, contribute implicitly to the clustering
coefficient, unlike the attachment rules in the
other models.

The proposed network model’s characteris-
tic path length measured between 4.69 and 4.79
despite the network’s large size (1,000 nodes).
This value puts it between the preferential and
random attachment models. Also, as Figure 5b
shows, the characteristic path length increases
in the order of log(N) as N increases. Model 3
clearly displays small-world behavior.

To measure network robustness, we re-
moved a set of nodes from the network and
evaluated its resilience to disruptions. We
considered two attacks types: random and tar-
geted. To simulate random attacks, we re-
moved a set of randomly chosen nodes; for
targeted attacks, we removed a set of nodes
selected strictly in order of decreasing node
degree. To determine robustness, we mea-
sured how the size of each network’s largest
connected component, characteristic path
length, and maximum distance within the
largest connected component changed as a
function of the number of nodes removed. We
expect that in a robust network the size of the
largest connected component is a consider-
able fraction of N (usually O(N)), and the dis-
tances between nodes in the largest connected
component don’t increase considerably.

For random failures, Figure 6 shows that
Model 3’s robustness nearly matches that of
the preferential-attachment network (note that
scale-free networks are highly resilient to ran-
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Table 1. Simulation results.

Model 1 (random) Model 2 (preferential) Model 3 (proposed)

Clustering coefficient 0.0038–0.0039 0.013–0.019 0.35–0.39
Characteristic path length 5.26–5.36 4.09–4.25 4.69–4.79

10
9
8
7
6
5
4
3
2
1
0

1,000
900
800
700
600
500
400
300
200
100

0

Percentage of nodes removed

Si
ze

 o
f t

he
 la

rg
es

t c
on

ne
ct

ed
 c

om
po

ne
nt

Model 1
Model 2
Model 3

0 20 40 60 80
Percentage of nodes removed

Av
er

ag
e 

le
ng

th
 in

 th
e 

la
rg

es
t

co
nn

ec
te

d 
co

m
po

ne
nt

0 20 40 60 80

25

20

15

10

5

0

Percentage of nodes removed

M
ax

im
um

 d
is

ta
nc

e 
in

 th
e 

la
rg

es
t

co
nn

ec
te

d 
co

m
po

ne
nt

0 20 40 60 80
(b) (c)(a)

Figure 6. Responses of the three networks to random attacks, plotted as (a) the size of the largest connected component, 
(b) characteristic path length, and (c) maximum distance in the largest connected component against the percentage of nodes
removed from each network.



dom failures). Also, the decrease in the largest
connected component’s size is linear with
respect to the number of nodes removed, which
corresponds to the slowest possible decrease.
So, we can safely conclude that these networks

are robust to random failures—most of the
nodes in the network have a degree less than
four, and removing smaller-degree nodes
impacts the networks much less than removing
high-degree nodes (called hubs).

These networks’ responses to targeted
attacks are inferior compared to their re-
silience to random attacks (see Figure 7). The
size of the largest component decreases much
faster for the proposed network than for the
other two networks, but the proposed network
performs better on the other two robustness
measures. That is, the distances in the con-
nected component are considerably smaller
when more than 10 percent of nodes are
removed.

We can improve robustness to targeted
attacks by introducing constraints in the
attachment rules. Here we assume that node
type constrains its degree—that is, network
MSBs, FSBs, and battalions can’t have more
than m1, m2, and m3 edges, respectively, inci-
dent on them. This is a reasonable assump-
tion because in military logistics (or any orga-
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nization’s logistics management, for that mat-
ter), the suppliers might not be able to cater to
more than a certain number of battalions or
other suppliers. Initial experiments (see Fig-
ure 8) show that a network with these con-
straints displayed improved robustness to tar-
geted attacks while not deviating much from
the clustering coefficient. However, as we
restrict how many links a node can receive,
the network’s characteristic path length
increases (see Table 2). Clearly a trade-off
exists between robustness to targeted attacks
and the average characteristic path length.

The fourth measure of survivability, net-

work adaptivity, relates more to
node functionality than to
topology. Node functionality
should facilitate the ability to
rewire. For example, if a sup-
plier can’t fulfill a customer’s
demands, the customer seeks
an alternate supplier—that is,
the edge connected to the sup-

plier is rewired to be incident on another sup-
plier. Our model rewires according to its
attachment rules. We conjecture that in such
a case, other survivability components (clus-
tering coefficient, characteristic path length,
and robustness) will be intact. But to make a
stronger argument we need more analysis in
this direction.

The growth mechanism we describe is
more like an illustration because

real-world data aren’t available, but we can
always modify it to incorporate domain

constraints. For example, we’ve assumed
that a new node can attach preferentially to
any node in the network, which might not
be a realistic assumption. If specific geo-
graphical constraints are known, we can
modify our mechanism to make the new
node entering the system attach preferen-
tially only within a set of nodes that satisfy
the constraints.
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Table 2. The proposed network’s characteristic path
length for different m1, m2, and m3 values.

Values of m1, m2, and m3 Characteristic path length

m1 = ∞, m2 = ∞, m3 = ∞ 4.4
m1 = 4, m2 = 10, m3 = 25 6.2
m1 = 4, m2 = 8, m3 = 12 7.1
m1 = 3, m2 = 6, m3 = 10 8.0
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