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ABSTRACT
We present a distributed approach to self-organization in a
distributed sensor network. The agents in the system use
a series of negotiations incrementally to form appropriate
coalitions of sensor and processing resources.

Since the system is cooperative, we have developed a range
of protocols that allow the agents to share meta-level in-
formation before they allocate resources. On one extreme
the protocols are based on local utility computations, where
each agent negotiates based on its local perspective. From
there, a continuum of additional protocols exists in which
agents base decisions on marginal social utility, the combi-
nation of an agent’s marginal utility and that of others. We
present a formal framework that allows us to quantify how
social an agent can be in terms of the set of agents that are
considered and how the choice of a certain level affects the
decisions made by the agents and the global utility of the
organization.

Our results show that by implementing social agents, we
obtain an organization with a high global utility both when
agents negotiate over complex contracts and when they ne-
gotiate over simple ones. The main difference between the
two cases is mainly the rate of convergence. Our algorithm
is incremental, and therefore the organization that evolves
can adapt and stabilize as agents enter and leave the system.
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1. INTRODUCTION
The process of self-organization in a large-scale, open sys-

tem is of key importance to the performance of the system
as a whole. An appropriate organization can limit control
and communication costs, significantly improving perfor-
mance. We have observed useful system performance with
an organization of as few as sixteen agents [3]. A static
organization, however, may not be able to handle a dy-
namic environment. Re-organization, therefore, is neces-
sary during operation as agents and resources are removed
or added, or when their characteristics change. In this pa-
per we present a distributed, incremental approach to self-
organization through bottom-up coalition formation that we
have applied to the distributed sensor network (DSN) of the
EW Challenge Problem [3]. The process uses negotiation
iteratively to enable managers of coalitions to refine the set
of coalitions in the system to achieve efficient allocations of
sensors and adapt dynamically to environmental changes.

Horling et al. [3] describe the EW Challenge Problem do-
main in detail. It consists of homogeneous sensor agents
distributed throughout a region. The agents are fixed and
communicate using an eight-channel RF system in which
each can use only one channel at a time. An organization
in such a domain helps facilitate the efficient assignment of
tracking tasks to particular agents and limit contention on
communication channels. We employ a one-level hierarchy
in which agents are distributively divided into sectors, each
of which has a manager. The manager monitors what is cur-
rently being tracked by its sector and, as new data arises,
determines whether it needs to assign a new tracking task to
an agent in its sector. To do this the manager must model
what is currently being tracked and the internal states of the
agents in its sector. Furthermore, when it assigns tracking
tasks, the manager attempts to minimize contention on any
one channel. Therefore, the division of the agents into sec-
tors helps to minimize not only the computational load on
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Figure 1: EWChallenge Domain

the managers but also the number of messages sent on any
one channel. For our self-organization techniques, we as-
sume all sector managers communicate with each other over
channel zero and that the sector managers assign channels
other than zero to agents as they enter the sector.

Figure 1 illustrates the domain. The empty circles are
sector managers; the filled circles are sensor agents that are
not managers. Although in actuality each agent has three
separate sensor heads, for the purposes of this paper we as-
sume agents have viewable areas of 360◦. The sector areas
represented by the “clouds” in the picture are defined by
the intersection of the viewable areas of the sensors in the
sectors. The areas of overlap show where the region covered
by one sector intersects the region covered by another. Al-
though sector boundaries overlap, each agent belongs to a
single sector. To track a vehicle best, at least three sensor
agents are required to triangulate the position of a vehicle
moving through the region. If there are not three such sen-
sors within the sector responsible for tracking, agents within
that sector may request sensor data from other sectors.

We also assume that there is an overhead associated with
passing a tracking task from one sector to another and that
accessing sensor data of agents in different sectors may incur
communication delays due to multiple hops or channel con-
tention. It is desirable, therefore, for a sector to track well
for as long as possible to minimize how often a tracking task
is passed off to another sector, how often a tracking agent
must access sensor data from different sectors, and how often
tracking agents must negotiate over sensor allocation.

Given the need for an organization such as that described
above, the motivation for applying self-organization tech-
niques is the need to move from predefined, hand-generated
configurations of sensors and organizational relationships
as in [3] to arbitrary configurations and dynamic construc-
tion of organizational structure. To achieve this, we use
a bottom-up coalition formation technique to enable the
agents in the system to construct the organization dynami-
cally in a decentralized manner.

Through coalition formation, agents in a large system
faced with a set of tasks partition themselves to maximize
system performance. By this process, the system moves
from being a set of single agents to a set of either disjoint

or overlapping coalitions of agents. Our algorithm enables
self-organization through coalition formation by having the
agents discover their organizational relationships while par-
titioning themselves around the subtasks of a high-level task.

Our approach is similar to that of Shehory and Kraus [9,
10] in that it applies to a cooperative system of agents in
a non-super-additive environment. We assume an overhead
associated with each new member of a coalition and that
a coalition reaches a point beyond which adding a mem-
ber is no longer beneficial. Beyond these similarities our
approach varies considerably from that of [9, 10]. In their
work agents have a more global view of others in the sys-
tem. The agents may not be aware of every other agent, but
the assumption is that they know of a large number. Each
agent then calculates a subset of the coalitions it may belong
to, and the system engages in a greedy process of choosing
coalitions based on their computed coalitional values. If the
population changes, the coalition formation process must
restart. In contrast, our approach is an incremental, local
one in which agents need not know of that many other agents
around them and the process of coalition formation can con-
tinue and adapt if the population changes. Another differ-
ence is that Shehory and Kraus [10] allow for overlapping
coalitions. In our current work, we restrict our attention to
disjoint coalitions although in future work, we plan to ex-
tend our techniques to overlapping coalitions where sensor
agents may have membership in more than one sector.

Two other sets of related work are [2] and [4]. While the
work of Horling et al. [2] does involve a local adaptation
process, it uses evaluations of system performance to adapt
an organization. Organizational adaptation in the work of
Ishida et al. [4] is based on the tasks that enter the system
and the system’s current load. It is not an iterative search
process designed to converge on a good organization. In
both sets of work the adaptations may be revised as the
situation changes, but the process of adapting is a single
shot. The Contract Net Protocol [11] is also related to our
work; we discuss it in Sections 3 and 4.

Finally, a common coalition formation problem related to
the distribution of tasks asks: Given a fixed set of tasks and
a set of cooperative agents, how can we pick groups of agents
best suited to those tasks? Our problem is slightly differ-
ent and resembles the work in Goldman and Rosenschein [1]
aimed at partitioning information domains to facilitate fu-
ture information retrieval requests. In our DSN, the system
is given the high-level task of providing coverage for a re-
gion. This task encompasses the future tracking tasks that
the system will perform but does not know a priori. The
goal is to subdivide the region and assign portions of it to
sectors (coalitions) of agents so that each sector is best able
to perform the tracking tasks that it encounters.

Sections 2 and 3 present our model. Section 4 describes
empirical results from testing different negotiation protocols
that lead to different stable organizations. Section 4, also
analyzes the performance of the organizations evolved in
terms of their rate of convergence, fault tolerance, and mes-
sage traffic while tracking. We conclude in Section 6 after
presenting a formal framework in Section 5 that allows us to
analyze the decisions that the agents make as a function of
the value of the information they hold. We distinguish be-
tween local information agents and k-social agents who may
be able to obtain information about k other transactions
happening at the same time.
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2. PROBLEM DESCRIPTION
In order to formalize our problem, we present the following

assumptions and definitions.

2.1 Assumptions
In addition to the assumptions stated in the Introduction,

we make the following assumptions:

• Although agents are arbitrarily distributed, there are a
sufficient number of them and they are arranged such
that every point in the region assigned to the system
has at least one sensor that can see it.

• Although agents may enter or leave the system at any
time, the agent population does not vary dramatically
from one instance to the next. If the population were
to fluctuate wildly, attempting to build organizational
structure would be futile.

• An ideal sector has between eight and ten agents in
it and at least three agents can see every point in the
region it is responsible for. As the first assumption
suggests, this is not always possible.

2.2 Definitions
At any time t we have a set of agents in the system,

A = {A1, A2, ...An}, and each agent Ai has a vector of ca-
pabilities B = {bi

1, b
i
2, ..., b

i
n}. For example, in the sensor

domain presented, each agent controls the sensor associated
with it and the capabilities are the regions each is able to
cover.

Different organizations can result from a given set A of
agents with their corresponding capabilities. These orga-
nizations are instantiations of different organizational tem-
plates. An organizational template is given by the organiza-
tion’s high-level goals, the roles that exist within the orga-
nization, the organization’s control and communication hi-
erarchies, and its evaluation function. Our implementation
instantiates a simple template in which agent organizations
are built using a single level hierarchy.

A sector Si is a coalition of agents drawn from A that
work together to accomplish a task. A sector manager SM
is a representative of its sector that is responsible for han-
dling negotiations with other sectors (as well as task and
channel allocation within the sector). The manager may
not remain constant throughout the life of the sector. Since
the agents in A are homogeneous, any agent can serve as a
sector manager.

Each sector Si has an area defined by the viewable areas
of the sensor agents that it is responsible for as shown by the
“clouds” in Figure 1. We denote this as AreaSi . Each sec-
tor has a utility value USi that is a function of the number
of agents in the sector and how well the sector can provide
coverage of the sub-region it is responsible for. More specif-
ically, let ANi be the average number of sensors in Si that
can see each point in the region covered by Si. Let NUi be a
function ranging between 0 and 1 dependent on the number
of agents in Si. Space limitations preclude a complete de-
scription of NUi, but it is an empirically defined factor that
equals 1 if Si has eight sensors, falls off slowly at first so
that between 6 and 10 agents still gets a fairly high rating,
and then falls off quickly for sectors of other sizes. A sector
with only one agent, for instance, has NUi = 0.001. Finally,
USi = ANi × NUi.

The coalition formation process results in a set of sectors
called a coalition structure [6] CS = {S1, S2, ..., Sm} where
Si is the ith sector in CS. A coalition structure’s global
utility is the sum of the utilities of the individual sectors in
it:

UCS =
�

iεCS

USi

The coalition formation process decomposes a high-level
task T assigned to the system into subtasks {t1, t2, ..., tm}
which may overlap and are assigned to the different sec-
tors. In the sensor network, two coverage subtasks overlap
if AreaSi∩AreaSj �= ∅. Figure 1 shows that all three sectors
illustrated have areas of overlap.

Each agent is able to perform a portion of the subtask
assigned to its sector based on its capabilities. In the sensor
network example, an agent is able to provide partial coverage
of the region its sector is responsible for.

With the assumptions and definitions above, we can for-
mulate the self-organization problem as follows: Given a
high-level task T 1 and a set of agents A, subdivide T into
m subtasks {t1, t2, ..., tm} and A into a coalition structure
CS = {S1, S2, ..., Sm} of m sectors such that each of the
subtasks is assigned to one sector, where

�
Si = A, ∀i �= j

Si ∩ Sj = ∅, and UCS is maximal.

2.3 Market Analogy Definitions
Because our approach involves an iterative negotiation

process, comparing the system to a marketplace is useful.
A buyer is a sector manager whose sector does not have
the necessary sensors to perform its subtask adequately. In
other words, the sensor agents that comprise the sector do
not provide sufficient coverage of the area for which the sec-
tor is responsible. A seller is a sector manager whose sector
has sensor agents able to provide coverage of a region the
buyer would like to cover. Sector managers can be buyers
and sellers simultaneously. The only agents involved in the
negotiations of this marketplace are sector managers.

The product in the sensor network is the ability to pro-
vide coverage for a certain region and is transfered from one
sector manager to another through the exchange of sensor
agents between sectors. The product is the resource the
buyer needs to improve its performance of its subtask. Fi-
nally, the value of a product to a buyer or seller is a function
of the buyer’s and the seller’s marginal utility gains from the
transaction and depends on the negotiation strategy they
are using. When determining with whom to transact, buyers
and sellers may consider either their own local marginal util-
ity gains or the social marginal utility. The local marginal
utility is the difference between a sector’s utility before a
transaction and the utility after the transaction. The social
marginal utility is the sum of the local marginal utilities
of both the buyer and the seller. In the local case, the buyer
and seller value products differently. In the social case, they
value products the same.2

With this analogy, the problem of bottom-up coalition
formation translates into deciding which sellers the buyers

1In our case the high-level task is to provide coverage for
the entire region.
2Although the analogy to a marketplace is useful, it is worth
noting that our system is indeed cooperative and, therefore,
agents may be willing to negotiate at the social level. This
is not reasonable in a competitive market.
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should attempt to buy from and which buyers the sellers
should sell their products to such that UCS is maximized.

3. NEGOTIATION STRATEGIES
A well-known strategy for assigning resources that has

also been used to organize a DSN is the Contract Net Pro-
tocol (CNET) [11]. CNET provides a general framework to
describe negotiation processes between agents. In its orig-
inal version it involved agents’ making decisions based on
each agent’s own perspective. For the DSN domain, an ex-
ample of how CNET enables agents to build an organization
is as follows: A task manager with a task to be fulfilled (such
as finding a sensor agent to provide signal data) broadcasts a
task announcement with a deadline for receiving bids. Just
before the deadline, agents capable of performing the task
send their bids to the manager who then evaluates the bids
and awards contracts appropriately. Once an agent receives
a contract, that agent is committed to it.

In our example, many agents may be able to provide cov-
erage for the same area, but assigning the task to different
agents may lead to different global utilities. In CNET each
task that is assigned by a task manager (at its highest ab-
straction level)3 was assumed to be independent of other
tasks, so that the order of processing tasks by different task
managers did not affect the global utility of the system.

We are interested in evaluating the performance of the
whole organization in terms of the agents’ decisions and the
structure that results from these decisions. We assume that
all agents are interested in maximizing the global utility of
the system and, therefore, require a negotiation protocol to
enable this. CNET in its original formulation is not suffi-
cient for this purpose. For example, assume agents A1 and
A2 are both able to cover a region that sector manager SM1

needs covered, but only A2 is able to cover a region SM2

needs covered. If SM1 awards a contract to A2, A2 may no
longer be available to SM2.

In order to correct for the above problem, we have de-
veloped two general classes of negotiation protocol for self-
organizing through coalition formation in the marketplace of
Section 2.3: local marginal utility based and social marginal
utility based.4 In our case, because agents negotiate, even if
A2 initially joins SM1, SM1 and SM2 may be able to adjust
the allocation of sensors to coalitions such that A2 moves to
SM2 and A1 joins SM1.

For an illustration of the dynamics of the protocols we
have developed, refer to Figure 2. In the local marginal
utility based protocols, a round of negotiation proceeds as
follows: A buyer broadcasts a message (1) requesting cov-
erage of a region. Each manager within range, who has an
agent that can cover that region and whose local marginal
utility of giving up the agent is positive, responds with a
message (2) stating that it could provide coverage to the
buyer. Unlike CNET, the seller is not bound to honor this
offer. The seller is free to make offers to as many buyers
that send requests as it likes.

The buyer waits for a period of time, collecting responses
from sellers. When the period is over, the buyer selects

3This task may be sub-contracted and its sub-parts are in-
deed dependent.
4The idea of negotiating over marginal utility is similar to
the TRACONET [8] extension of CNET in which bidding
and awarding decisions are based on marginal cost calcula-
tions.
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Figure 2: Negotiation Message Types

1. Buyers request. 2. Seller’s potential utility change. 3.
Buyer chooses seller. 4. Seller chooses buyer.

the seller whose product would provide the buyer with the
greatest local marginal utility gain and sends a message (3)
to that seller requesting the coverage offered.

Finally, given the multiple responses from buyers that the
seller receives, the seller chooses to give its product to the
buyer that maximizes the seller’s local utility (4).

Negotiation in the social case is slightly different. As in
the local case, the buyer sends its product request (1). This
time, however, the seller responds with an offer even if its
change in local utility would be negative and reports to the
buyer what its local utility change would be (2). The buyer
collects responses from sellers and chooses to request the
product it needs from the seller that maximizes the sum
of the buyer’s local marginal utility and the seller’s local
marginal utility assuming the sum is positive. The buyer
reports the sum (3) to the seller (i.e., the buyer requests the
coverage offered).

Given the product requests the seller receives, it chooses
to give the product to the buyer that reported the highest so-
cial marginal utility to it (4). Although the social marginal
utility gain will be positive, the seller’s or even the buyer’s
(but not both) local change in utility may be negative. In
Figure 2 both Buyer 1 and Buyer 2 accept the offers Seller
2 made to them. Seller 2 then chooses (as seen by message
(4) in the Figure) to give the product to Buyer 1 because
the social marginal utility reported by Buyer 1 was higher
than that reported by Buyer 2.

In addition to negotiation, we assume that a discovery
process occurs when an agent enters the system; it must
learn of the other agents near it and they must learn of
it. To make this happen quickly, an entering agent joins
the nearest sector to it, by listening for beacons on channel
zero. If there is no sector within range, the agent elects
itself manager of a new sector and begins attracting entering
agents to it by broadcasting a periodic beacon on channel
zero. It also starts negotiating with other managers over the
resources it needs to perform its subtask.

We also assume that a maintenance process takes place
throughout the life of the system. Sector managers must
make sure that the members of their sectors still exist, and
members must make sure that their managers still exist. In
our approach each member of a sector periodically sends a
brief message to its manager on the manager’s channel. If
the manager does not receive a message from a member, the
manager assumes the agent is no longer a member of the
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coalition and adjusts its evaluation of the coalition accord-
ingly. Likewise, the manager periodically sends a message
to each of its members on the channel the member uses. If
the member does not receive a message from its manager,
that member assumes the manager is no longer active as a
manager and joins the nearest coalition to it (as if it were
entering the system for the first time).

4. RESULTS
To examine the above classes of protocols on large num-

bers of agents, we built an asynchronous simulation testbed
for the EW Challenge [3] DSN. One limitation of the simu-
lation is that it does not model delays due to computation
time. In order to deal with this, it has the ability to add
random delays to messages that are sent. In future work we
plan to explore how increased delays affect overall system
performance.

Note that while we would like to compare our results to
optimal, the sizes of the configurations tested in this work
are too large to generate optimal values.

4.1 Organization Results
To compare the performance of local and social utility

based negotiation mechanisms, we varied factors such as
when agents can initiate and respond to requests, whether
sellers can initiate negotiations by advertising coverage, and
how many agents a seller can transfer to a buyer during a
negotiation. For each variation, we compared our results to
those generated by CNET. In the CNET adapted for our
domain, a buyer broadcasts a request. The seller collects
requests and responds with an offer that the seller is obliged
to fulfill if the buyer accepts it. This differs from our pro-
tocols. Since we are dealing with cooperative agents whose
priority is the welfare of the system, a seller need not honor
an offer. In other words, a CNET agent will respond only
to a single request, while an agent that uses our protocols
may respond to several requests simultaneously.

In total we tested fourteen protocols. We ran 100 exper-
iments each on 40, 70, and 90 node configurations in 100 x
100 foot regions populated by agents with viewable sensor
regions with 20 feet radii. For a given number of nodes,
we generated an arbitrary configuration and then ran each
of the 14 protocols on that configuration. By far the best
performing protocols were those that were socially based.

Because of space limitations, we include results from six
protocols with the following characteristics:

• Single-Node Social Protocol (SNSoc): Only sin-
gle nodes are transferred per negotiation cycle. Sector
managers are simultaneously buyers and sellers. Sell-
ers advertise regions of coverage they are willing to
give up. Value is based on social marginal utility.

• Multiple-Node Social Protocol (MNSoc): Same
as above, but either one or two nodes may be trans-
ferred per negotiation cycles.

• CNET Single Social Protocol (CNETSoc): So-
cially based CNET with single node transfer.

• Single-Node Local Protocol (SNLoc): Same as
SNSoc except that value is based on local marginal
utility.

Single Multiple CNet
local social local social local social

40 nodes
%∆UCS 6.5 61.2 6.3 60.6 2.1 15.6
Cycles 3 18 2 13 1 3

70 nodes
%∆UCS 24.6 50.0 23.6 47.8 14.7 14.7
Cycles 7 22 5 18 2 2

90 nodes
%∆UCS 44.2 70.9 42.7 67.6 36.7 39.7
Cycles 7 24 5 15 3 4.3

Table 1: 40, 70 and 90 Node Configurations

• Multiple-Node Local Protocol (MNLoc): Same
as MNSoc except that value is based on local marginal
utility.

• CNET Single-Node Local Protocol (CNETLo-
cal): Same as CNETSoc, but locally based.

Table 1 summarizes the results for the protocols above for
40, 70, and 90 node configurations. They show the average
percent change in global utility %∆UCS from the initial state
to a stable state and the approximate number of negotiation
cycles required to reach the stable state. In this context the
initial state is the set of rough sectors immediately after the
discovery phase. The stable state occurs when agents are no
longer able to engage in successful negotiations.

Of all the protocols SNSoc and MNSoc performed best.
It makes sense that these would perform better than the lo-
cally based protocols because of their increased social con-
text. We were surprised to find, however, that MNSoc
achieved slightly lower global utility than SNSoc did since
Sandholm [5] suggests that a contract over multiple objects
can help avoid local maxima that result from single ob-
ject contracts. One possible explanation is that transferring
more than one agent in a single transfer causes the system
to become stable more quickly. As a result, the system falls
into local maxima more often than it does when only trans-
fers of single agents are allowed. For example, if a sector
manager gives up two nodes to another at time t, then the
set of possible actions that the same sector manager can take
at time t + 1 is reduced, and it may not be able to make a
socially beneficial transfer that was unknown at time t. This
conclusion is supported by the fact that the average num-
ber of negotiation cycles required to reach a stable state
when MNSoc is used is less than the number when SNSoc
is used. The conclusions in [5] consider a non-cooperative
multi-agent system. In our cooperative organizations, the
need for larger contracts is lessened by a more informative,
social utility function.

While SNSoc does ultimately achieve higher global utility,
it is interesting to note that early on in the self-organization
process, MNSoc actually achieves higher utility. Figure 3
compares the average utility profiles of MNSoc and SNSoc
for 90 node configurations. It gives the percentage of the
final maximum utility achieved by SNSoc versus the average
number of negotiation cycles. It shows that before the first
14 negotiation cycles, MNSoc does better. Only after this
point does SNSoc pull ahead. The profile suggests a way of
choosing a negotiation protocol and limiting how long the
negotiation phase lasts. For instance, if the organization
must form quickly due to high communication costs or other
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Figure 3: Utility profiles for SNSoc and MNSoc 90 node

configurations.

constraints and achieving only 95% of the maximum utility
is acceptable, then it is better to use MNSoc since it will
reach this level of utility more quickly.

Also, evident in the graph is that in both cases, most of
the utility increase occurs early on in the self-organization
phase. This is corroborated by other results not shown here
that show that the number of transfers of agents from one
sector to another is high early on and then falls off rapidly.

Also of interest is that the fewer nodes in a configuration
there are, the greater the difference is between the socially
based protocols and the locally based ones (see Table 1).
One explanation is that when there are many nodes in a
fixed space, it is easier for these nodes to partition them-
selves to cover a given region. Thus, individual negotiation
decisions in a dense region do not have as great of an ef-
fect on the ultimate social utility of the configuration as
they do in less dense regions. While the more informed de-
cisions possible through the socially-based utility functions
certainly produce large improvements in utility in dense re-
gions, their greatest impact is seen in less dense regions.

4.2 Fault Tolerance and Message Traffic
A DSN must be able to reorganize itself after several of its

nodes go down. An additional concern of ours was that the
maintenance process as described in Section 3 would hinder
reorganization since if a sector manager fails, the nodes in its
sector simply join other sectors near them rather than try to
maintain the degraded sector. Therefore, we implemented
a second maintenance scheme whereby if a manager fails,
another node in its sector takes over its role.

To examine how well both mechanisms respond to node-
failure, we performed the following experiment for SNSoc
and MNSoc. For 100 different configurations we let 90 nodes
organize until they reached a stable organization. Then
starting from that stable state, we removed 10 nodes at ran-
dom and let the system reorganize once using the original
maintenance mechanism, once using the new one. Finally,
using the remaining 80 nodes as a starting configuration,
we let those nodes organize from scratch. We repeated this
process three more times, each time starting from the stable
90-node organization, removing the same set of nodes as in
the previous experiment plus an additional 10.

In all cases MNSoc organized more quickly than SNSoc
with only minor differences in final utility. Figure 4 shows
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Figure 4: MNSoc utility profiles for 80 nodes reorganiz-
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the utility profiles for MNSoc when 10 nodes fail. The graph
for SNSoc is similar. When only 10 nodes go down, main-
taining degraded sectors enables the system to reorganize
most efficiently. In other words, since losing only a small
number of nodes does not perturb the structure of the stable
organization much, it is best to work within that structure
and make only minor adjustments after node failure.

The above does not hold as more nodes go down. When 20
nodes fail, the two mechanisms have almost identical pro-
files. When 30 and 40 nodes go down, SNSoc reorganizes
most quickly with the original maintenance mechanism, fol-
lowed closely by organizing from scratch. With MNSoc or-
ganizing from scratch actually does better than reorganizing
with either maintenance mechanism; in fact it achieves bet-
ter utility than the other two options (see Figure 5). When
large numbers fail, trying to maintain a previous structure
hinders reorganizing and prevents the system from finding
a globally beneficial solution.

The final check of our self-organization procedure was to
verify that it keeps inter-sector communication low. We
built a simple message traffic model of the domain and tested
it on the stable 70-node organizations. The model showed
that on average approximately 85% of messages occur within
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sectors, indicating that our algorithm successfully divides
the agents such that most messages indeed occur within sec-
tors.

5. THEORETICAL MODEL
In addition to experimentation, we developed a theoretical

model of the negotiation process that builds on the idea that
increased social context can improve system performance.

Because our system is cooperative, we assume that agents
can share information, although the process of obtaining this
information may be costly. In a DSN, decisions about which
agent covers which area are affected by the interdependen-
cies that exist between the agents.

Definition 1 (Interdependency). Given that sector
managers SMi and SMj are responsible for tracking tasks
in sectors Si and Sj , we define an interdependency between
these two sector managers if AreaSi

�
AreaSj �= ∅

A chain of interdependencies is given by an ordered list of
sector managers SMi1 , SMi2 , . . . , SMin−1 , SMin such that
AreaSi1

�
AreaSi2

�= ∅ . . . AreaSin−1

�
AreaSin

�= ∅. We

denote by n the maximal length of a possible chain of inter-
dependencies in a given system.5

We distinguish agents based on their information horizon,
the amount of information they can gather given by the
length of an interdependencies’ chain. We define an agent
that knows the information in a chain of k interdependencies
as follows:

Definition 2 (k-social, k ≤ n). Agent A is k-social
if its decision about the action it will perform is based on
information known by each agent in a chain of interdepen-
dencies of length k whose first element is A.6

To explain the process in which an agent (a buyer or a
seller) must decide which offer to accept or to whom it should
sell a resource, we refer the reader to Figure 6.

A1

A2 A3

A4 A5

Figure 6: A Decision Tree example for n = 3.

We first build a tree describing the chain of interdepen-
dencies7. Each node represents a sector manager, and each
edge represents an interdependency. In the figure, the num-
bers of each node represent the sector managers’ names.
The depth of the tree is the length of the interdependencies
chain. Assume that n = 3. The root is at level k = 0, and
the agent at the root is the one making a decision.

In Figure 6, agent A1 needs either to decide to whom
to sell a resource that A1 currently owns, or it must decide

5In general, an interdependency exists if the set of resources
needed by two agents making a decision intersect.
6In the setting analyzed so far, the agent referred to in this
definition corresponds to the sector manager.
7The interdependencies may actually be represented by a
graph, because there may be cycles of interdependencies
among the resources. So this tree is a mapping from this
graph to a tree, i.e., whenever a node that has already ap-
peared in the tree needs to appear again it is set to a leaf.

from whom to buy a resource it needs. We denote by ∆ij the
change in i’s utility caused by agent j’s selling to or buying
from agent i. If A1 is local (k = 0) it does not consider
the other agents, and by comparing ∆12 to ∆13 chooses to
interact with either A2 or A3 based which would produce
the greater change in its own utility. This is analogous to
the locally based protocols described in Sections 3 and 4.

If A1 is k = 1social, it compares ∆12 +∆21 to ∆13 +∆31.
In this case, A2 and A3 may be interacting simultaneously
with other agents, but since A1 sees only up to horizon 1,
it is unaware of any pending decisions further down the in-
terdependency chain. So A1’s decision may be wrong. For
example, if A1 accepts the transaction with A2 based on
the above comparison, it may lose, if A2 chooses A4 in-
stead of A1. We have not implemented a protocol in which
the agents are k = 1social. If we had, it would proceed
as follows: 1) A buyer broadcasts a request for coverage.
2) A seller responds with an offer. 3) The buyer does not
wait to collect responses from sellers; it simply responds to
the seller, telling it what the buyer’s local change in utility
would be if it were to receive the seller’s offer. 4) The seller
ranks all responses it receives based on the sum of its lo-
cal marginal utility and the reported buyers’ utilities. The
seller chooses the buyer that gives the highest sum.

If A1 is k = 2social, it knows whether A2 is negoti-
ating with A4 and A5 while A2 is negotiating with A1.
Here A1 decides by computing max{∆21 +∆12, max{∆24 +
∆42, ∆25 + ∆52}}.

If the “winner” of this maximum is ∆21 + ∆12, sector
manager A2 will not transact with A4 or A5. Therefore,
sector manager A1 to make his decision compares ∆21+∆12

to ∆13 + ∆31 and chooses A2 or A3 accordingly. If the
“winner” of the above maximum is ∆24 +∆42 or ∆25 +∆52,
then the value for max{∆21 + ∆12, max{∆24 + ∆42, ∆25 +
∆52}} is set to −∞, so that A1 does not take A2 as an
option in its decision because from its perspective A2 will
accept the transaction with either A4 or A5 and not with
A1; in this case A1 chooses A3.

The k = 2social case is analogous to the social marginal
utility protocols we have developed. In those protocols, the
seller at the root does not actually do all of the calcula-
tions described above. Rather, parts of the calculation are
done further down the tree and propagated up. For exam-
ple, if A1 in Figure 6 is a seller, A2 is a buyer and cal-
culates max{∆21 + ∆12, max{∆24 + ∆42, ∆25 + ∆52}}. If
the “winner” is ∆21 + ∆12, A2 propagates this value up to
A1. Otherwise, it does not, and A1 knows only to consider
negotiating with A3.

Notice that Sandholm and Lesser [7] assume self-interested
agents, which are necessarily k = 0social8. In their case,
agents must transact on complex deals in order to approxi-
mate the maximal utility. We take advantage of the cooper-
ativeness of the system by allowing the agents to be social
and, thus, obtain better deals in terms of the complete sys-
tem without the need to transact over more complex deals.

Results obtained from our simulations show that social
agents attain higher utilities than local agents and that in
configurations with few agents, the difference between the
organizational utility obtained by social agents and that ob-

8In this paper, we are assuming that communication be-
tween the cooperative agents is free. It is not reasonable to
assume that self-interested agents will exchange this infor-
mation for free, although they may benefit from it.
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tained by local agents is greater than it is in configurations
with many agents. We can understand these results from
the theoretical model. We denote by P (si) the probability
of sector i’s manager’s making the “correct” decision. If sec-
tor i’s manager chooses to transact with agent j and j also
chooses to transact with agent i, then we say that agent i
has made the right choice. Therefore, P (si) is a conditional
probability that the root of the interdependency tree has
made the right decision. This probability is conditioned on
the decisions of the other nodes in the tree. The more social
the sector manager is, the more accurate P (si) is. If the sec-
tor manager knew all the information in the complete tree
then P (si) would be 1 (in the decentralized version of the
problem9). Hence, the result we obtained that being social
is better than being local is supported by the theoretical
model. The utility of the organization is higher as long as
the value of P (si) increases, and this value increases as long
as the sector manager considers larger values of k (i.e, the
agents are more social).

The result that being social in sparsely populated config-
urations has a greater effect than being social in a dense
configuration is also supported by the model. In such a set-
ting, because there are fewer interdependencies, P (si) will
be greater than in a dense configuration with many inter-
dependencies. Therefore, the difference in utility will be
greater as well.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an incremental approach to self-organ-

ization based on bottom-up coalition formation. Agents ne-
gotiate to maximize the system’s global utility by using a
variety of protocols based on local or social marginal utility.

Our approach is novel in the sense that it allows for dif-
ferent levels of social agents to be tested. Our protocols
can represent a continuum of agents from locally-oriented
to fully-informed. Empirical results show that social agents
do attain higher utilities than locally-based or CNET-based
agents do. In other words, although the system achieves a
stable organization in all the cases tested, negotiating with
social awareness in an incremental fashion avoids many of
the local maxima of non-social utility based negotiations.
We also show that the organizations obtained are robust to
agent failure; the agents do indeed reorganize after some
number of them are deactivated, and as long as the number
of nodes that fail is not so great as to obliterate the structure
already in place, reorganizing to a stable state happens more
quickly than simply organizing from scratch and achieves
similar utility values.

Future work will look at other types of organization tem-
plates. We will study more complex topologies, such as or-
ganizations based on hierarchies with multiple levels which
may require various communication models for the exchange
of information at the different levels. Another cost model
worth studying involves the computation of the global util-
ity resulting from agents’ negotiating based on combinations
of local and social marginal utilities. Adding explicitly the
cost of sending a message (e.g., given by delays) and ana-
lyzing the trade-off faced by agents between obtaining more
accurate information and the time it may take to gather it
deserves more research as well. In this work, we have as-

9The optimal centralized organization may still be different
from the optimal decentralized version.

sumed that all the agents are homogeneous. Further work
will look at systems where the sector managers require cer-
tain computational capabilities that only some of the agents
have.
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