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Abstract

Cooperating and sharing resources by creating coalitions of agents are an important
way for autonomous agents to execute tasks and to maximize payoff. Such coalitions
will form only if each member of a coalition gains more if it joins the coalition than it
could gain otherwise. There are several ways of creating such coalitions and dividing
the joint payoff among the members. In this paper we present algorithms for coali-
tion formation and payofl distribution in non-super-additive environments. We focus
on a low-complexity kernel-oriented coalition formation algorithm. The properties of
this algorithm were examined via simulations. These have shown that the model in-
creases the benefits of the agents within a reasonable time period, and more coalition

formations provide more benefits to the agents.
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1 Introduction

Cooperation among autonomous agents may be mutually beneficial even if the agents are self-
interested and try to maximize their own expected payoffs [21, 29]. An important method
for cooperation in multi-agent systems is coalition formation. Membership in a coalition
may increase the agent’s ability to satisfy its goals and maximize its own personal payoff.
Moreover, there may be occasions where the formation of coalitions is the only or most
beneficial method for satisfying the goals. There are situations where agents can cooperate
by forming one coalition in which all of the agents are members (grand coalition), however
in environments where the cost of cooperation is an ascending function in the number of
the cooperating agents, the partition of the agents into subgroups will reduce their costs
(since coordination and communication come about only within the subgroups). This paper
addresses its solutions to this type of environments, to which game theory refers as non-
super-additive environments (e.g., in [22]).

Work in game theory such as [28, 38, 42, 44] describes which coalitions will form in
N-person games and how the players will distribute the benefits of the cooperation among
themselves, but does not provide algorithms for coalition formation nor does it consider the
specific constraints of a multi-agent environment, such as distribution, communication costs
and limited computation time. Qur paper presents a multi-agent approach to the coalition
formation problem and, in particular, we devise distributed coalition-formation procedures
of two types. The first is computation-oriented (i.e., includes extensive computation and
minor negotiation) and the second is negotiation-oriented (computation is vastly reduced,
and negotiation activity is increased).

The need for two different mechanisms stems from the trade-off between the quality of
solutions and the speed in which they can be reached. One aspect of the quality is the sum
of the payoffs the agents receive. In this respect, when forming coalitions, it is necessary to
search an exponential number of possible solutions in order to guarantee a solution within a
bound from the best solution, in terms of payoff maximization (as shown in [30]). Another
aspect of quality is the stability of the solution. Stability refers to a state where, once a stable
solution is found, the agents have no incentive to search for other solutions (or little incentive
in weaker types of stability). To guarantee stability of the types commonly discussed in the
context of coalitions in the game theory literature, it is necessary (in most of the cases) to
search an exponential number of solutions. Our first mechanism, the computation-oriented
one, leads to the formation of stable! coalitions and to maximization of the individual payoffs

of the agents. It searches an exponential solution space and can guarantee a bound from

!There are several different stability concepts, each depends on assumptions and regulations which vary
from one concept to the other. We concentrate on a kernel-oriented stability, as defined later in this paper
(section 3). This choice is for practical reasons, nevertheless proves to be efficient as we later show.



optimum (in addition to other advantages). When attempting to reduce computation time
the search must be limited to a polynomial number of possible solutions. In such a case
a bound from optimum on the sum of payoffs is not guaranteed. Our second mechanism,
the negotiation-oriented one, leads to stability of the coalitions, efficiency of the coalition
formation process, and is also an anytime algorithm. While satisfying the requirement for
a polynomial search (to reduce computation time), in its worst case the payoffs the agents
receive are not within a bound from the optimal payoffs. Nevertheless, as we show via
simulations, the average case payoffs are close to optimal.

The mechanisms provided in this paper facilitate coalition formation among autonomous
agents, each of which has tasks it must fulfill, and access to resources that it can use to fulfill
these tasks. Coalition formation is utilized to enhance the ability of the agents to satisfy
tasks cooperatively. Such an environment is the taxi-driver domain, where autonomous com-
putational agents are taxi-driver representatives. The taxi drivers may own different cabs,
thus having different costs, transportation capabilities and resulting payoffs. Cooperation
and coalition formation may increase their ability to achieve greater and more complex trans-
portation capabilities. Examples where cooperation and coalition formation are employed to
solve Al problems are the transportation domain [31], the electricity plants domain [7, 16],
and the information agents domain [19]. In particular, coalition formation methods devel-
oped in this paper serve as the basis for coalition formation among information agents, as
presented in [20].

The main contribution of this paper is the two algorithms it provides, to be used by
self-interested agents in a non-super-additive environment (presented in sections 4 and 5
of this paper). No such algorithms where previously devised for such environments, that
consider inseparably issues of optimal payoffs, stable solutions and distribution, given the
limitations on communication and computation in multi-agent systems. To the algorithms
we add prerequisites, testing and discussions. The outline of the paper is as follows. We
first introduce basic concepts such as protocols, strategies and equilibrium (sections 2.1
and 2.2) and define a specific type of equilibrium, a time-bounded equilibrium. Protocols,
strategies and equilibrium are later used throughout the paper. We follow in section 2.3
with assumptions regarding the coalition formation environment and definitions of coalition
concepts which we borrow from game theory and modify to fit the specific properties of our
problem. Next, we introduce the kernel stability concept (section 3), upon which our coalition
formation mechanisms in the subsequent sections are based. In section 4 we introduce a
computation-extensive coalition formation mechanism which supports Pareto-optimality?.
We devise a distributed algorithm and provide details (section 4.2), methods of computation

(in section 4.3) which are used for both this algorithm and the next one, and complexity

2Broadly speaking, Pareto-optimal solutions maximize the payoffs given a specific coalition configuration.



analysis (in section 4.4). In section 5 we introduce the second algorithm, for which we develop
the concept of polynomial kernel (section 5.1). We provide the details of the algorithm (in
section 5.2) as well as protocols and strategies to complement this algorithm (section 5.4)
and a complexity analysis of it (section 5.5). The latter algorithm was simulated, and the
results of this simulation are presented in section 6. Related work, both in DAI and in game
theory, is discussed in section 7, and in section 8 we close the paper with discussion and

conclusions.

2 Environment description

2.1 Protocols and Strategies

Research in distributed Al (DAI) is divided into two basic classes: Cooperative Distributed
Problem Solving (CDPS) and Multi-Agent Systems (MAS) [4]. Research in CDPS considers
how the efforts required for solving a particular problem can be distributed among a number
of modules or “nodes.” Research in MAS is concerned with coordinating intelligent behavior
among a collection of autonomous heterogeneous intelligent (possibly pre-existing) agents.
In MAS global control, globally consistent knowledge, and globally shared goals or success
criteria may not exist. These classes are actually the two extreme poles in DAI research
spectrum. Qur research falls closer to the MAS pole since it deals with interactions among
self-interested, rational and autonomous agents. However, any interaction among agents
requires some protocols. As more protocols are enforced upon the agents, the amount of
communication required to reach a beneficial agreement usually decreases. Yet the protocols
may be contradictory to the rationality of an individual agent.

In environments of heterogeneous agents, protocols must be agreed upon and enforced by
the designers. For this, deviation from the protocols must be revealable and penalizable, or
protocols must be self-enforced. The designers of agents will agree upon protocols, provided
that they are not advantageous to any particular type of agent, and leave enough opportunity
for the individual agents to utilize their resources and strengths. In coalition-formation,
the need for protocols increases further. As was noted by Shapley and Shubik [34], in
situations where not every cooperative demand by every coalition can be satisfied, some
constraints must be placed on coalitional activity lest it be trapped in an endless loop of
rejected suggestions for coalition formation.

Protocols are necessary to regulate the interaction between the agents, however they
allow the agents to choose specific strategies that will enable use of their strengths to improve
their individual outcomes. For example, by defining the concepts of coalition and coalitional
value (section 2.3), we limit the possible results of the coalition formation algorithms. The

proposed strategies allow the individual agents to fulfill their tasks and to increase their



own benefits. For example, the method that agents employ to handle proposals (see section
5.4.2) is a strategy (and not a protocol) since agents can use the provided strategies however
are not forced to use them. Nevertheless, these strategies can increase the payoff of the

individual agent and satisfy a time-bounded equilibrium requirement (as defined below).

2.2 Equilibrium

There is a variety of definitions of equilibrium. Most commonly used is the Nash equilibrium
[23], according to which a strategy profile p is in equilibrium if each entity, either a single
agent or a coalition, maximizes its own expected utility with respect to its own strategy in p,
given that the other entities follow their strategies in p. Searching the whole strategy space
of the coalition formation process and computing the expected utilities from the outcomes
of following these strategies may be intractable. Therefore, when computations are limited
to polynomial time (as is usually the case in multi-agent systems), the computation of Nash
equilibria may be infeasible. Furthermore, avoiding the excess time required for search and
information evaluation will leave the entities with resources needed for task execution. Rec-
ognizing this, game-theory researchers have two approaches to proceed with [12]. One is to
insist that the cost of obtaining and processing information (e.g., computing the expected
utility of a given action) be incorporated into the model. The main drawback of this ap-
proach is the vast increase in the complexity of the model, which is likely to be analytically
intractable. The second approach, that of bounded rationality, employs different notions of
equilibria (e.g., epsilon-equilibria [27]), as approximations and/or rules of thumb for decision
making by the entities. Such models can preserve greater analytical manipulability, but
always seem somewhat unsatisfactory, because one can find ways that allow entities to use
the information they have in order to make better decisions.

We propose to combine these two approaches by defining the concept of time-bounded
equilibrium, as follows: a strategy profile p is in time-bounded equilibrium if each entity
believes, given the information it obtained using a pre-defined time, or equivalently, a depth
of search, that it maximizes its expected utility with respect to its strategy in p given its
bounded computation time and that the other entities follow their strategies in p.

In particular, computing the expected utility of a possible outcome of a given action will
be done w.r.t the time the entity believes® is beneficial to allocate to it. Given an entity’s
beliefs of its possible actions and its expected utility when taking these actions, which are
computed given the bounded time available, the entity acts rationally, i.e., it uses strategies

which are in equilibrium.

3Note that we implicitly assume that agents have a preference for acquiring some benefits (not necessarily
maximal) over acquiring no benefits at all. Engaging in coalitions will provide the participants with benefits,
whereas additional efforts to compute better strategies might leave them with no agreement and no benefits.



The rationale of the time-bounded equilibrium in coalition formation environments is as
follows: since computations are costly and the value of a coalition is finite, the benefits
of an entity when forming a coalition may decrease as a result of the computation time
spent on the negotiation and formation processes. These benefits may be nullified at some
point in time if the process is not accomplished within a reasonable amount of computation.
Although the devaluation details are not necessarily known to the agents, their designers
should have either information or assumptions with regards to this devaluation. By setting
the computation time or the depth of search in the strategy space, the designers reduce the
risk of the avoidance of beneficial coalition formation. The latter occurs when the benefits

from forming the coalitions are lesser than the cost of excessive strategy-search.

2.3 Assumptions and definitions

The following definitions and assumptions are necessary for our coalition formation approach.

We assume:

e Information about each agent’s resources, tasks and payoff functions is accessible to the
other agents at the beginning of the cooperation phase. The access to this information
may be costly?. Information about the dynamics of the coalition formation is not

necessarily accessible.

e Agents can communicate to negotiate and make agreements. However, communications

are costly.

e There is a monetary system (e.g, money or utility points) that can be used for side-

payments. The agents use this monetary system to evaluate resources and productions.

e Resources and money are transferable among the agents (although agents may reach

agreements and form coalitions even if money is non-transferable [21]).

Below we modify definitions from classical game-theory coalition formation (e.g., [17])
and adjust them to the MAS requirements. Consider N = {A;, Ay,..., A, }, a group of n
autonomous agents. The agents are provided with, or have access to, resources. VA; € N
exists a resource vector p; = (p}, p?,...,pl), where pf is the quantity of resource j of A;’s.
Agents use resources to execute tasks. A;’s outcome from task-execution is expressed by a
payoff function U® : ® — R that exchanges resources into monetary units (© — resource

domain, R — reals). Each agent attempts to maximize its personal payoff.

4This assumption is reasonable for cases in which the agent-system consists of dozens of agents, and we
address the algorithms that we present later to such cases. Algorithms for coordination among hundreds of
agents can be found in [37].



Example 2.1 A specific tazi-drivers domain consists of four tazi-drivers: Ann (A), Barbara
(B), Christie (C) and Debbie (D), each owns a black-tazi (a resource) and located in Victoria
station (VS), London (see map in section 4.3.1, figure 1). A black-tazi can carry up to 4
passengers. The tazi-drivers’ costs are 30 pence per mile (only whole miles are considered),
and an insurance fee of 1 pound per day per taxzi or 1.5 pounds per day per two taxis, plus

>, The drivers’ gross income is composed of a

1 penny processing fee for more than 2 tazis
60-pence base rate per trip and 80 pence per mile® (denoted by m). At the end of every trip
the drivers return to VS. The profit p from one trip is p = 0.6 + (0.8 — 0.3)m = 0.6 + 0.5m.
The daily profit is the sum of the profits of single trips minus the insurance costs (which
depends on cooperation among the drivers). Coalition formation may increase each driver’s
transportation capabilities and their benefits, however not all coalitions are equally beneficial,
and once some coalitions have formed it may be non-beneficial to enlarge them. Thus, the
taxi-driver domain is not super-additive because of the insurance fees and it satisfies the

assumptions above.

A coalition is a group of agents that have decided to cooperate and how the total benefit

should be distributed among them. Formally:

Definition 2.1 Coalition Given a group of agents N and a resource domain ©, a coalition
is a quadruple C = (N¢,pc,©,Uc), where No € N; po = (p',p?, ..., p') is the coalition’s
resource vector, where p! = doAENG pf is the quantity of resource j that the coalition has.
O is the set of resource vectors after the redistribution of pc among the members of N (©
satisfies p' = Y 4.en. @Z} Uc = (ut,u?,...,ulNel) is the coalitional payoff vector, where

u' € R is the payoff of agent A; after the redistribution of the payoffs”.

In our work we assume no differential tendency for certain coalitions based on friend-
ship, animosity etc. Such tendencies may significantly affect the resulting coalitions. Each
coalition is attached a value (as in game theory [22]), and a function for calculating this

value.

Definition 2.2 Coalition Value Let C = (N¢, pc,0,Uq). V(C) is the value of C if the
members of No can together reach a joint payoff V. That is, V(C) = Y 4.en. UY(O;), where

Ut is the payoff function of agent A; and ©; is its resource-vector after redistribution in C.

This coalition value enables the agents to evaluate coalitions. Note that the specific

distribution of the resources among the members of the coalition strongly affects the results

5This fee, which is reasonable since larger groups require more processing, results in non-super-additivity.

SFor pricing a trip, the driving back to VS is considered. For instance, if a taxi has to take passengers
for a 4 miles trip, the number of miles for pricing the trip will be 2 x 4 = 8.

“The notation U¢ is used for the payoff distribution within a coalition C'. Later, we use another notation
U without the subscript ¢ for payoff distributions to all agents, and not within a specific coalition.



of the payoff functions, thus affecting the total coalitional payoff. In the case of a singleton
coalition of an agent A;, the coalition value V(A4;) is the agent self-value (since the resources
are uniquely defined). For a specific coalition C, V(C') is unique because © is unique. A
proper resource redistribution © will result in the maximization of V(C'). The complexity
of computing © and V(C) depends on the type of payoff functions of the coalition members.
Linear payoff functions allow polynomial computation, whereas non-linear functions may
require approximation® methods to allow for a polynomial computation time. Thus, the so-
called hidden complexity of value-calculation should not hinder coalition formation®. Within
this framework we assume that the value of a given coalition does not depend on the other
coalitions that are formed. The calculation of coalitional values is essential for coalition
formation, however we view it as a separate research topic, and will present results of its
investigation in future research.

In game theory V(C) depends only on N whereas here, it depends on © as well'C.
Negotiation in a distributed environment requires agreement upon a unique coalitional value
for each N¢. Proper protocols can force the agents to calculate © such that there is a unique
V(C) for each No. This may hold both for the case in which V(C') is maximized (this
maximization is beneficial for all agents) and for the case of value calculation under time

constraints [32].

Assumption 1 Coalition joining (individual rationality)

An agent joins a coalition only if it can benefit at least as much within the coalition as it could
benefit by itself. An agent benefits if it fulfills tasks, or receives a payoff that compensates it
for the loss of resources or non-fulfillment of some of its tasks. This assumption is usually

called “individual rationality” in game theory [28, 1].

Coalition-formation usually requires disbursement of payoffs among the agents. We define
U= (ut,u?, ... ,u"), a payoff vector to all of the agents, u’ is the payoff to A;. U is different
from the above defined Ug, which is a payoff vector of a specific coalition. In each stage
of the coalition formation process, the agents are in a coalitional configuration which is a
set of coalitions C= {C;}, that satisfies: U;C; = N; VC,,Cy; C; # C;; C; N C; = 0. A
pair of a payoff vector and a coalitional configuration are denoted by PC(U,C), or just PC

(Payment Configuration). Since we assume individual rationality of the agents, we consider

8Methods for approximated value calculations, using methods from finance, are part of an on-going,
unpublished research.

®Note that when the number of agents is small, small deviations from the exact coalitional values may
modify the results of the coalition formation mechanisms, since each value has a more significant effect on
the stability of the whole configuration. In such cases, however, the exact values can be calculated to avoid
these modifications, even when computations are complex.

10 Although this dependency is important, for ease of deliberation we do not explicitly present the resources
in the rest of this article. Nevertheless, they are used both in the examples and in the calculation of values
in the simulation.



only individually rational payment configurations (which are denoted as IRPCs in game
theory, e.g.,[25]).

We define a coalitional configuration space (CCS) and a payment configuration space
(PCS). A (rational) CCS is the set of all coalitional configurations C such that VC; €
C,V(Ci) > Ya,ec; V(A;). A PCS is a set of possible individually-rational PCs. That
is, a PCS consists of pairs (U,C) where U is an individually-rational payoff vector and C €
CCS. For each C € CCS there is a set {U} of payoff vectors. The magnitude of {U} may
sometimes be infinite, thus the PCS may be an infinite space as well. However, representing

payoffs in payoff vectors by ranges (e.g., x; = [z}, 7]), allows for a finite set of such vectors.

Lemma 1 CCS size
The magnitude of the CCS is of order O(n™).

The proof is straightforward using standard combinatorial methods.

A payoff vector is Pareto-optimal if no other payoff vector dominates it, i.e., no other
payoff vector is better for some of the agents and not worse for the others. A specific
Pareto-optimal payoff vector is not necessarily the best for all of the agents. There can be a
group of Pareto-optimal payoff vectors where different agents prefer different payoff vectors.
Therefore, Pareto-optimality is insufficient for the evaluation of possible coalitions. Hence,
we present the concept of stability.

The issue of stability was studied in game theory in the context of n-person games (e.g.,
in [28]). While we emphasize the development of protocols for coalition formation, the game
theorists concentrate mainly on which stable coalitions can form. However, the notions of
stability they developed are useful for our purposes, when coalitions are formed during the
coalition formation procedure. The members of such coalitions can apply these techniques
to the distribution of the coalitional value. Game theorists have given several solutions
for n-person games, with several related stability notions. Each of the stability notions is
motivated by a different method of measuring the relative strengths of the participating

agents. In this paper we concentrate on the Kernel solution concept.

3 The Kernel K

The kernel [8] is a stability concept for coalitional configurations. For each coalitional con-
figuration in the CCS, it provides a stable payoff distribution. The kernel does not provide
the coalitional configuration itself, nor does it provide a method for the agents to move from
one coalitional configuration to another. In fact, the kernel does not even provide a method
to compute what are the payments to the agents which are stable. It only provides a method

to test the stability given specific coalitional configuration and payoff vector. Clearly, it is

10



not a coalition formation algorithm, nor does it include the dynamism necessary for such an
algorithm. However, the stability provided by the kernel is this important property which
we seek when forming coalitions, and therefore it is incorporated into our solution.

The kernel is a PCS in which each coalitional configuration PC is stable in the sense that
any pair of agents A;, A; which are members of the same coalition C' in PC are in equilibrium
with one another. A;, A; are in equilibrium if they cannot outweigh one another from C,
their common coalition. Agent A; can outweigh A; if A; is stronger than A;, where strength
refers to the potential of agent A; to successfully claim a part of the payoff of agent A; in
PC. The details and the formal definition of the kernel are provided below.

During the coalition formation, agents can use the kernel solution concept to object to
the payoff distribution that is attached to their coalitional configuration. This objection will
be done by agents threatening to outweigh one another from their common coalition. The
objections that agents can make given a PC(U,C') are based on the excess concept. We

recall the relevant definitions.

Definition 3.1 Excess The excess [8] of a coalition C with respect to the coalitional config-
uration PC is defined by ¢(C) = V(C) — Y 4.cc u', where u' is the payoff of agent A; in PC.
C' is not necessartly a coalition in PC, and it can be in any other coalitional configuration.
V(C) is the coalitional value of coalition C' as in definition 2.2.

The number of excesses is an important property of the kernel solution concept. Given a
specific PC, the number of the excesses with respect to the specific coalitional configuration
is 2" (since there is one excess for each coalition, and there are 2" coalitions). Changes in
the payoff vector U may result in changes in the set of excesses, thus require recalculation
of all of the excesses.

Agents use the excesses as a measure of their relative strengths. Since a higher excess
correlates with more strength, rational agents must each search for its highest excess (with
respect to a specific PC). This maximum is defined by the surplus (see details in, e.g., [28],
p. 126).

Definition 3.2 Surplus and Outweigh The mazimum surplus S;; of agent A; over agent
Aj with respect to a PC is defined by Si; = M AXc|a,e0,4,¢c€(C), where e(C) are the excesses
of all of the coalitions that include A; and exclude A;, and the coalitions C are not in PC, the
current coalitional configuration. Agent A; outweighs agent A; if S;; > S;; and w/ > V(A;),

where V(A;) is the coalitional value of agent A; in a single agent coalition.

In other words, given a coalitional configuration and a payoff vector, the agents compare
their maximum surpluses, and the one with the larger maximum surplus is stronger. The
stronger agent can claim a part of the weaker agent’s payoff in the same coalitional config-

uration, but this claim is limited by individual rationality which requires u/ > V(A;). This

11



means that in any suggested coalition, agent A; must receive more payoff than it gets by
itself in a single-member coalition. Two agents A;, A; that cannot outweigh one another are
in equilibrium, which holds if one of the following conditions is satisfied:

1. SZ']‘ = Sji;

2. S;; > S and w! = V(A;);

3. S < Sy and ut = V(A,).

Using the concept of equilibrium, the kernel and its stability are:

Definition 3.3 Kernel and K-Stability
A PC is K-stable if VA;, A; agents in the same coalition C' € PC, the agents A;, A are in
equilibrium. A PC s in the kernel tff it 1s K-stable.

The kernel stability concept provides a stable payoff distribution for any coalitional con-
figuration in the CCS. It does not provide coalitional configurations — it merely determines
how the payoffs will be distributed given a coalitional configuration (thus, it is not a coalition
formation algorithm). Using this distribution, the agents can compare different coalitional
configurations. However, checking the stability does not direct the agents to a specific
coalitional configuration. The coalition formation model that we develop will perform this
direction. The kernel, as well as the bargaining set [2], are solutions that always exist for
all of the coalitional configurations in the CCS [8]. Other solution concepts may sometimes
be empty (e.g., the core). The kernel has advantages over the bargaining set. One property
of the kernel is that symmetric agents receive equal payoffs. That is, agents with the same
bargaining strength (which is expressed by identical sets of excesses) will gain equal payoffs.
Designers of agents should prefer such symmetry since, in a case where their agent’s strength
is equal to that of another agent, they would like it to receive at least the same payoff as
the other agent does. Such symmetry is not guaranteed in other solution concepts (e.g., the
bargaining set). Another more important property of the kernel is its magnitude. The kernel
and the bargaining set are subsets of the PCS of all rational PCs, but the kernel, which is a
subset of the bargaining set, is significantly smaller!!,

In addition, the mathematical formalism of the kernel allows one to divide its calculation
into small polynomial non-related processes, thus simplifying it even in the general exponen-
tial case. Some exponentially-complex computing schemes for the kernel solution have been
provided, e.g., by Stearns [40], which presented a transfer scheme that, given a coalitional
configuration and an arbitrary payoff vector, converges to an element of the kernel. This

12

transfer scheme is based on a possibly infinite number of iterations'*. In each iteration,

1Tn many cases one can explicitly show that the size of the kernel is smaller than that of the bargaining
set by at least one order of magnitude. However this relation is not always true, since there are some specific
cases in which these two sets coincide.

12Later in this paper we present a modification of Stearns transfer scheme. This modification enables fast
convergence in finite time, given a specified error.

12



agents with smaller maximum surpluses pass part of their payoff to agents with bigger max-
imum surpluses in the same coalition and thus, by reducing the differences between their
surpluses, approach equilibria. The method is presented in detail in [40] and convergence is
proven.

Due to its advantages, we selected the kernel as a basis for our coalition formation model.
However, since the kernel is a subset of the bargaining set, an agent that does not use the
kernel as the protocol for proposal preparation and evaluation, but uses, for instance, the
bargaining set instead, will still fit into the kernel world of the other agents. That is, its
bargaining-set-oriented proposals can successfully be evaluated by the other agents, using
the kernel as a protocol.

There are more solution concepts for n-person games (for details we refer the reader
to game theory literature such as [1]). We find other concepts less adequate for allowing
distributed coalition formation among self-motivated agents in non-super-additive multi-

agent environments. Therefore, we concentrate on the kernel.

4 The Pareto-optimal coalition formation model

In this section we present a Distributed, Exponential, Kernel-oriented Coalition Formation
Model (DEK-CFM) that leads to a PC which is Pareto-optimal and k-stable. The DEK-
CFM is strongly based on the kernel solution concept. The calculation of the kernel has
an exponential complexity, and therefore the complexity of the model that we present in
this section will be exponential. In cases where time, communications and computation are

cheap or costless, or in cases where there is a small number of agents, an exponential coalition

formation model (DEK-CFM) is adequate.

4.1 The Pareto-optimal approach

For computing the Pareto-optimal PCs we introduce the concept of local Pareto-optimality:

Definition 4.1 Local Pareto - Optimality
A payoff vector U, = (u;, u]%, ..., un) is locally-Pareto-optimal in a set of payoff vectors S,
S ={Uy,Us,...,U}, if there is no other payoff vector U, = (ul,u?,... u?) in S, such that

V1l < <n, ulo > u; and Ji, ulo > u;

The local-Pareto-optimality may be verbally modified to express special cases. for exam-
ple, personal-Pareto-optimality means that S is the set of vectors that was calculated by a
single agent; pairwise-Pareto-optimality means that S was calculated by a pair of agents. An
important property of the PCs in the kernel is that for each specific coalitional configuration
C, any PC = (C,U) which is in the kernel is locally-Pareto-optimal in the set of the PCs

with the same C, as proved in the following lemma:
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Lemma 2

Given a specific coalitional configuration C and let PCe = {PC;(C,U,)}, PC; € K be the
set of all PC's that consist of a payoff vector U; and the specific coalitional configuration C.
Vi, if PC; € PC¢ then PC; s locally-Pareto-optimal within PCe.

Proof: Vi, PC; € K implies that the sum of payoffs that the agents receive within each
coalition in C is equal to the value of the coalition. Therefore, the sum of all of the elements
of each U; € {U}, where {U} is the set of all payoff vectors that correspond to the coalitional
configuration C is equal to the sum of the coalitional values of all of the coalitions in C. Hence,
there cannot be a payoff vector Uy € {U} such that all of the payoffs to all of the agents are
all bigger than all of the corresponding payoffs in another payoff vector U; € {U}. This is
because if there was such a vector Uy, then the sum of its elements would be greater than
the sum of the elements of U;, which is in contradiction to the equality that the membership
in the kernel implies. Therefore, the PCs are locally-Pareto-optimal. O

While an element in the kernel is locally-Pareto-optimal with respect to other PCs with
the same coalitional configuration, it is not necessarily locally-Pareto-optimal with respect
to other coalitional configurations. There may be two elements in the kernel (with different
coalitional configurations) where one is better for all of the agents. We demonstrate this

property in the following example:

Example 4.1 Consider a J-agent non-super-additive environment, where N = {X,Y, Z, W}.
Coalitional values are as follows: any single agent: 5, V(XY) =20, V(XZ) =50, V(Y Z) =
10, V(XW) =10, V(YW) = 50, V(ZW) = 20, V(XYZ) = V(XYW) = V(XZW) =
V(YZW) =100, V(XY ZW) = 60. Let us consider the coalitional configuration { XY, ZW'}.
A possible corresponding K-stable payoff vector is (10, 10,10, 10). [t is locally-Pareto-optimal
with respect to all of the payoff vectors that correspond to the coalitional configuration
{XY, ZW}. Refer to C= {{XY, ZW} {XZ, YW} {XW,YZ}}, in which coalitions are of
size 2. Possible corresponding K-stable payoff vectors are (10,10,10,10), (25,25,25,25),
and (5,5,5,5), respectively. Among these PCs, the second is better for all agents. Therefore,
(10,10, 10,10) is not locally-Pareto-optimal in C.

4.2 The DEK-CFM protocol

In MAS, distributed cooperation models are sought. Therefore, we present a distributed,
kernel-based coalition formation framework, attempting to minimize computations and com-
munications overheads. The distribution of the DEK-CFM must be strictly regulated. There-
fore, several elements of the model are part of the protocol and only a few methods of

computation are strategies. The steps of the protocol are as follows:

Protocol 4.1 Distributed protocol for coalition formation
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. Each agent should compute all of the coalitions in which it is a member, calculate the

corresponding coalitional values and transmit them to all of the other agents's.

. Fach agent A; is assigned a unique random integer z; € [1,n] via a distributed random

method, e.q., [3].

. Fach agent A; should compute coalitional configurations that consist of z; coalitions**.

. For each of the computed coalitional configurations, A; should find a K-stable PC.

. From among its computed PCs, A; should construct a list of personally-Pareto-optimal

PCs to be supplied to other agents in the next step.

. The agents should merge their personal PCs lists into one list. Among the PCs in
this joint list, the Pareto-optimal PCs will be found. The merging process will be done
according to the following:

o The merging process will be performed through a sequence of iterations. In each
iteration 7, each agent A; such that z; mod 2/ = 1 will merge its locally-Pareto-
optimal PCs list with the agent Ay where z, = z; + 27! (and z; + 227 < n).

o After each merge, the locally-Pareto-optimal PCs with respect to the merged list
will be found and held by the agent A; with z; mod 27 = 1.

o A merge iteration will terminate after all of the agents have been approached. This

will happen after [lg,n]| iterations.

. The agents should choose, via a decision making method (see section 5.4.1), one of the
PCs from the list that was constructed in the previous steps. According to this chosen

PC, the agents will form coalitions.

. The agent who designed the chosen PC and the agents who were involved in the choice
of this PC must transmit to all of the other agents the details of the calculations that
led to this specific PC.

. A deceitful PC can be revealed and canceled upon the received calculations. In case of

a cancellation, the whole process will be repeated.

13Given the coalitional utility function and the resources of the coalition, the computed value of the
coalition is unique as discussed in section 2.3, page 9. Therefore, agents that calculate values of the same

coalitions will yield the same results. This property allows for checking values calculated by other agents
thus preventing deceitful values.

14 Agents can calculate other configurations as well without being monitored. However, the protocol allows
the agents to transmit only the z;-component configurations, and this can be monitored.
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Above, we put some effort into reducing the complexity of the merging process from linear
to ligarithmic. This may seem of little benefit since the overall complexity of the mechanism
is exponential. However the merit of this reduction is not in reducing computation but
in reducing communication, which is the main overhead of the distributed approach. In
MAS which operate on networks, communication tends to be extremely slow as compared
to computation. Hence, a reduced communication overhead is a desirable property.

Protocols are laws that should be incorporated into the agents by their designers. How-
ever, their enforcement consists of penalties for cases in which designers fail to perform, or
avoid, this incorporation, thus allowing their agents to deviate from the protocols. Therefore,
deviation of agents from the protocols must be revealable by others. The above protocol
agrees with this requirement. For example, according to step 1 of protocol 4.1, all of the
values except those of single agents will actually be calculated by more than one agent.
Therefore, deceitful values will be revealed. Assuming a penalty for deceit, agents should
avoid deceitful value calculations. In addition, the PC calculations of a winning PC are
revealed to all and can be checked. Thus, deceitful PCs are canceled and therefore should
be avoided.

K-stable PCs can be calculated using algorithm 1 in section 4.3. This algorithm, however,
may be replaced by any other algorithm that will result in K-stable PCs with reasonable
computational efforts. K-stability is complicated to calculate and much easier to check.
Therefore, agents should not deviate from the calculation of K-stable PCs. This requirement
can be achieved if, as part of the protocol, there will be a positive probability that the K-
stability of a PC is checked by other agents.

The employment of a stochastic method to decide which agent will receive what random
number z, leads to equal expected values for the calculational efforts (although calculations
are not equally partitioned). Prior to the calculation of all of the configurations of size
z;, agent ¢ cannot predict which configuration will provide itself with the largest payoff.
Therefore, an agent is motivated to calculate all possible configurations of size z;. In addition,
the z;-component configuration can easily be checked, thus deviation is revealable.

Completion of the DEK-CFM provides the agents with a resulting K-stable and Pareto-
optimal PC. The distribution of the calculations speeds-up computation (since each agent
performs only part of it) but does not change the computational complexity. Also, additional
communication operations stem from this distribution. The requirement that agents transmit
calculated configurations to others during the coalition formation process, as well as the
termination of the process within lg, n iterations, result in an upper limit of the number of

required transmissions of configurations which is O(lg, n) per agent.
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4.3 Methods of computation

To study the DEK-CFM complexity, we present the computational methods in more detail.

4.3.1 Coalitional values and coalitional configurations

The calculation of each coalitional value requires the evaluation and maximization of the
coalitional payoff function, which is a payoff function of several resource variables. Some
effort should be put into maximizing the functions by substituting the appropriate quantities
of resources — those that will produce the maximum payoff. An example of value calculations

can be found in the following taxi-driver case:

Example 4.2 Recall of the j taxi drivers in example 2.1. Suppose that the drivers have
recetved the following tasks: A has to take 7 people from VS to Sussex gardens (SG); B
has to take 1 passenger from VS to FEdgeware road (ER); C has to take 6 passengers from
Kensington gate (KG) to VS; D has to take 1 passenger from Ozford street (OS) to VS. The
locations are tllustrated in figure 1.

A typical payoff function of a coalition of taxi-drivers is of the form:

U="> (0.6 +0.5m4rans) x T(CM) + > 0.3mper — Ins(CS)
CcM

where CM are the members of the coalition, my,qns ts the number of miles per transportation

(including the way back to base in VS), my ts the number of miles that can be avoided
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due to parallel routes of the coalition members*®, and T(CM) = [psg/4], is the number of
transportations that a single taxi-driver has to perform due to psg, the number of passengers
in her task. Ins is the coalition insurance costs, which is a function of its size CS: Ins(CS) =
0.75 x C'S +0.25 x CSmod2+0.01 x GT2 (GT2 is 1 if CS > 2, 0 otherwise). Note that the
payoff functions of taxi-driver coalitions are linear. As such, their maximization is simple —
it requires only the substitution of the resources into the functions. For instance, the value
V(AD) of coalition AD is computed as follows. Cooperation within AD enables avoiding six

miles of driving. Therefore myq.1 = 6.
V(AD) = (2(0.6 + 0.5 x 8) + (0.6 + 0.5 x 6)) + (0.3 x 6) — 1.5 = 13.1

The design of coalitional configurations is much simpler than the calculation of coalitional
values. The only necessary computation is the creation of a set of permutations of agents
while avoiding repetitions. Nevertheless, the number of coalitional configurations is much

greater than the number of the coalitional values.

4.3.2 K-stable and Pareto-optimal PCs

The complexity of computing K-stable payoff vectors is of high exponential order. To present
an algorithm that performs these computations, we first introduce new concepts. Via these
concepts we intend to slightly extend the scope of the kernel. This small modification will
vastly reduce the computational efforts that are necessary for reaching a PC in the kernel, as
discussed in section 4.4. Our computational method relies on the transfer scheme of Stearns
[40], and in order to present this scheme we present the definition of the demand function

(as can be found in Stearns’ work):

Definition 4.2 Demand function
Given a PC, the demand function d;; of agent A; over agent A; is defined as follows:

10 otherwise

d — { man[(Sij — 53i)/2, X;]if Sij > S }
ij
where X; is the payoff to agent A; and agents A;, A; are in the same coalition in the PC.

This demand function will later be used to modify the payoffs of the agents in order to reach
K-stable PCs.

While the above definition is similar to the one by Stearns, the following definitions are
new concepts defined regarding our own model. The measure of the difference between a

payoff vector and an element of the kernel is defined below:

15Note that the routing problem itself is NP-complete, however there are polynomial approximation algo-
rithms for its solution. Nevertheless, the routing problem is beyond the scope of this paper.
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Definition 4.3 PC-Error

Given a coalitional configuration C and a payoff vector U, let S;; be the surplus of agent A;
with respect to agent A; in the PC. The error of the payoff vector U with respect to the kernel
is the largest difference between mutual surpluses. Formally, e = max; ;(S;; — Sji), where e

is the PC-error, and agenls A;,A; are in the same coalition in the PC.

In practice, we are not interested in the size of the error, since this size strongly relies on
the sizes of payoffs in a particular payoff vector. We are interested in a measure that will
enable comparison between errors with respect to different payoff vectors and with different

payoffs. Such a measure is provided by the relative error:

Definition 4.4 PC Relative error

Given a PC and the PC-error with respect to the kernel, we define the PC relative error e,
to be the ratio between the PC-error e and the sum of all of the payoffs to all of the agents
within the given PC.

With the PC relative error, we can examine the proximity of payoff vectors to the kernel.
However, when we use an algorithm that leads to PCs in the kernel, we attempt to determine
a small constant which will confine the process of PC calculation. For this purpose, we define
the PC boundary error € as a small positive constant which the designers of the agents should
agree upon in advance. A K-stable PC which is computed subject to the ¢ precision will
be denoted K-e-stable. Given the definitions above, we can proceed to the presentation of
the algorithm which we use for computing PCs in the kernel. In this algorithm we modify
the transfer scheme of Stearns [40] and employ the modified scheme to reach a K-e-stable
payoff vector. The transfer scheme of Stearns guarantees convergence to a K-stable payoff
vector but may require an infinite number of iterations in order to converge. We would
like our algorithm to stop within a finite time. The modification we suggest does guarantee
convergence to a K-e-stable PC, within a finite number of iterations. The implementation
of the modified transfer scheme allows the agents to compute a payoff vector for a given
coalitional configuration, instead of performing real negotiation to reach such a PC. The

algorithm is given below:

Algorithm 1 Truncated transfer scheme
The modified transfer scheme begins with a payoff vector Up'®. An iteration of the transfer

scheme consists of the following steps:

1. Start with a payoff vector Uj.

2. In case that U; is non-realizable or inefficient, t.e., the sum of the payoffs of the agents

is greater (or smaller, respectively) than the sum of the coalitional values, a correction

16The initial payoff vector Uy is determined either according to the strategy of the agent or by the protocol.
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of the payoff vector is performed. We use the n-correction of Wu [{3]'7, which entails
the subtraction (or addition) of an nth of the difference between the sum of the payoffs

and the sum of the coalitional values, from (or to) each payoff.
3. Calculate all® of the mutual surpluses and the demand functions with respect to Us.
4. Find among all of the demand functions the greatest one d;;.
5. Pass part a, 0 < a < d;; of the payoff of at least one agent to another agent™®.

6. As a result of these steps, the payoff vector U; is modified and a new payoff vector U;14

is formed.
7. If e, < ¢ then stop and return U;y1 as the result of the algorithm.

8. If the iterative process was not stopped in the previous step, the algorithm should proceed

to the neat iteration (in which the surpluses are re-calculated with respect to Uiyq).

A finite sequence of iterations of the truncated transfer scheme causes a reduction in
the magnitudes of the differences between the surpluses and thus leads to convergence into
the kernel as implies the proof in [40]. That is, the above iterative approach leads from
an initial payoff vector Uy via k iterations (k does not depend on N) to a payoff vector Uy
in which its elements do not differ from an element of the kernel by more than the small
pre-defined ¢ (boundary error)?. Details about the relationship between the complexity of
the algorithm and ¢ are in section 4.4 and particularly in lemma 3. We must emphasize that
this transfer scheme is performed for each coalitional configuration that is designed on step
2 of protocol 4.1. Now that the computational processes have been described, we present

the corresponding complexities.

4.4 Complexity of the DEK-CFM

The Pareto-optimal DEK-CFM is of exponential computational complexity as described

below:

1"While Wu uses this correction as a means for iterating in a transfer scheme for the core, we use it as a
single correction in the beginning of our iterative algorithm. This n-correction is not necessary in Stearns
scheme because it deals with efficient payoff vectors.

18 ater in this paper we may confine the set of surpluses and demand functions to be calculated.

19According to the transfer scheme of Stearns, o in the range 0 < o < d;; leads to convergence, and
a = d;; will cause the fastest convergence (details of this transfer can be found in [40]).

20In a case where the pre-defined PC boundary error is the precision of the most precise agent in the
environment, the resulting PC is in the best possible approximation of the kernel.

20



Computation of coalitional values and configurations
The DEK-CFM requires the computation of 2" coalitional values and the design of
O(n™) coalitional configurations (as was discussed in lemma 1) and in steps 1 and 3 of
protocol 4.1. Therefore, the computational complexity of this stage is O(n™). These

calculations are distributed among the agents, however the complexity remains O(n").

Computation of K-s-stable and Pareto-optimal PCs
The DEK-CFM will employ the transfer scheme algorithm for calculating K-e-stable
PCs. Here we discuss its complexity. Each iteration of the transfer scheme algorithm

is constructed from the following steps:

o All of the 2" excesses are calculated in each step. The calculation of each excess

is of order of n (see definition 3.1).

e Among the excesses, the surpluses are searched for. Therefore, the excess and

surplus calculations are together of order O(n2").
e Among the surpluses, the greatest is found by (O(2")) operations.

e Additional calculations of a lower complexity are required to complete one itera-

tion of the transfer scheme as well.

To summarize, the total complexity of one iteration of the transfer scheme is O(n2").
Many iterations should be performed to reach convergence of the transfer scheme. A
reasonable assumption is that at least n (equal to the number of the agents) iterations
should be performed, in order that each agent’s payoff will be partially transferred at
least once during the process. Obviously, the number of iterations until convergence
will be affected mainly by the boundary error . The exact relationship is given by the

following lemma:

Lemma 3
The resulting payoff vector of algorithm 1 will converge to an element of the kernel
(with a relative error not greater then ¢) within nlog,(e,,/c) iterations, where €., is

the nitial PC relative error.

Proof: At each iteration of the transfer scheme, half of the greatest difference between
surpluses is passed from the payoff of one agent to the payoff of another agent. As a
result, the largest difference between surpluses on the next iteration will be half of the
original one. Thus, a sequence of k iterations will lead to a magnitude of the greatest
difference between surpluses which is, by 2%, smaller than the initial one. Therefore,

the demand that e, /2% = ¢ implies that k = log,(e,,/c). Since all n agents may be
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approached before the agent that was approached first is approached once again, we

multiply the result by n. O
Since algorithm 1 will be performed for all of the elements of the CCS, it will be

calculated O(n") times. Therefore, we conclude that the complexity of the Pareto-
optimal DEK-CFM is O(n2"n") computations. Due to the distribution, this order of
complexity of computations is divided by n, but there is an additional communication

complexity, which is of order?! O(n?).

4.5 Discussion of the DEK-CFM

The DEK-CFM leads to the formation of coalitions such that the PCs are Pareto-optimal in
the kernel. Such results should be preferred by designers whose agents have unconstrained
time or very strong computational capabilities, since Pareto-optimal K-e-stable PCs are of
good quality for the agents. Although it may seem that we present a game theoretic approach,
it is not so. As opposed to game theoretic research (see section 7), our distributed model
provides the agents with a detailed step-by-step method for coalition formation. According
to our model, the agents begin as single agents and gradually form coalitions. This is different
from the common game theory approach, where the agents begin when they are already in
a given coalition configuration, and do not pass from one coalition configuration to another,
but just calculate the appropriate payoff vector. We provide a distributed approach that
enables autonomous self-interested agents to do the best for their own benefits.

The DEK-CFM is of high computational complexity, thus may prevent beneficial coali-
tion formation. Therefore we provide the agents with a CFM which radically cuts down
the number of PCs from an exponential number to a polynomial number??, and provides
polynomial-K-e-stable PCs. However Pareto-optimality, which must be considered with re-

spect to all of the coalitional configurations (an exponential number) cannot be guaranteed

by the CFM hereinafter.

5 The negotiation-oriented CFM

We present below a reduced cost CEM which is based on negotiation [6, 21] among the agents.
This is a Distributed, Negotiation-based, Polynomial, Kernel-oriented CFM (DNPK-CFM).
The DNPK-CFM consists of steps in which coalitions transmit, accept and reject proposals
for creating new coalitions, i.e., proposals for sharing resources and tasks and distributing
the common payoff. The DNPK-CFM starts with all agents in single-membered coalitions,
and proceeds through a sequence of DNPK-CFM steps as described in section 5.2. In each

Z1Compared to a case of centralized calculations, where the communication complexity is O(n).
22 At least in its first stage.
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step, at least one coalition will attempt to improve the payoffs of its members by making
a coalition formation proposal to another coalition. The acceptance of such a proposal will
improve the situation of the agents involved. The DNPK-CFM may continue until all of
the proposals of all of the agents are rejected, thus reaching a steady state, which is defined

below, or until the time-period that was allocated for negotiation ends.

Definition 5.1 Steady state
A steady state of the agents’ environment is a state where the agents are arranged in a PC

such that one of the following conditions applies:
1. The agents have reached a K-e-stable and Pareto-optimal*® PC, or;

2. The agents have not reached a PC as in 1, but have no more possible beneficial proposals

(allowed by the protocols) to be transmitted to others.

When the agents use the DNPK-CFM, the coalitional configurations that are formed
when the agents reach the steady state are stable according to a new stability concept, the
polynomial-K-e-stability (see definition 5.3 below). However, since the DNPK-CFM is an
anytime algorithm [9], even if it is terminated after a limited number of steps before reaching

a steady state, it still provides the agents with a polynomial-K-e-stable PC.

5.1 The polynomial approach

Reduction of the complexity of calculating K-e-stable PCs from exponential to polynomial
will be performed via polynomial excesses, polynomial surpluses and polynomial-K-stability.
These new concepts are introduced below. We define polynomial excesses as excesses that
are calculated using a polynomial set of coalitions. The designers of agents must agree upon
protocols that will direct their agents to a well defined polynomial set of coalitions. In order
to reach such a subset, we suggest that the designers agree upon two integral constants
Ky, K;, K; < K, and allow only coalitions of sizes in the ranges [K;, K3] to be considered
for excess calculations. Although other values are allowed, small K7, K, should be preferred,
since the sizes of K, K3 directly influence the order of the polynomial complexity (details
in section 5.5). We leave the designers of the agents freedom in choosing the predefined
constants K7, K3. Such freedom enables the designers, when developing a specific setting for
their agents to work in, to fit the algorithm to the specific environment. Agents should not
try to choose K's contradictory to agreed upon K7, K, because according to the protocols,
objections based on different K's are not acceptable. Since the agents will compute only

polynomial excesses in order to outweigh one another, we introduce the polynomial surpluses:

23The recognition of Pareto-optimality is possible only when all possible configurations have been
considered.
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Definition 5.2 Polynomial Surplus
A polynomial mazimum surplus SP is a mazimum surplus that is computed from a polynomual

set of excesses.

The agents may use the polynomial surpluses in order to outweigh one another or to

examine PCs in order to find polynomial-K-e-stability:

Definition 5.3 Kernel Polynomial-K-z-Stability
A coalition C € C is polynomially-K-c-stable if VA, A; € C,i # j, either u' =0 or v’ =
or |SP” — SP]Z| § e.

Given a specific coalitional configuration with an arbitrary payoff vector, it is possible to
compute a polynomial-K-e-stable PC by using a polynomial truncated modification of the
convergent transfer scheme. In algorithm 1, step 3 must be modified; this modification entails
calculation of mutual surpluses only with respect to the K; and K, bounding constants. We
use this method in the DNPK-CFM protocol described in the following sections.

5.2 The DNPK-CFM protocol

The following protocol advances the agents from one coalitional configuration to another,
thus increasing their payoffs. Given a specific coalitional configuration, the agents try to
find a correspondent stable payoff vector. A convergence algorithm is used for this purpose.
The protocol of the DNPK-CFM is provided below. Denote a proposal of coalition ), to
coalition C, by FPy,.

Protocol 5.1 Negotiation protocol

1. Preliminary stage: prior to negotiation, the agents must calculate the values of
coalitions in the range of sizes K| to K3, using the calculation methods of the DEK-

CFM.

2. First stage: a coalition member may receive proposals only as a member of the

coalition®*.

3. Fach coalition will coordinate its actions either via a representative or by voting (or
both). For details see section 5.4.1.

4. Fach coalition C, iteratively performs the following:

24Thus, coalitions can only expand; if sub-coalitions are not allowed to receive proposals, no offers for
destruction are possible.
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o Transmit a proposal to a target coalition; wait for a response. Details about
wailing-period g are in section 5.4.3. A proposal P, of C, to C,. is the details of
the joint coalition Cpy, and the coalitional configuration PC,.,: (i) it consists of
resource and task redistribution and payoff distribution and must be polynomially-
K-e-stable, calculated with respect to Ky, Ky; (it) the new payoff vectors U,y, of
Cptr, must increase the payoffs to Cpi.-members; (iii) PCyey must include Cpy,.

Other coalitions remain unchanged in PC,.,,.

o Accept P., (a proposal of C, to C,) only if P,. = P., (C, follows the same proto-
col). Send an acceptance message to C,.. When multiple pairs of coalitions have a
mutually equal pair of proposals, the pair of proposals (from among these) which

was proposed first is accepted.

o If P, was accepted and mutually confirmed by C, and C,, form C,4, according

to P,. details®®. If necessary, Cpy, should choose a coalitional representative.

o Notify coalitions C,,a # r of the acceptance of P.,. Send rejection messages to
all proposers of P, a # r*.

5. The above sequence should be repeated until a steady state is reached (see definition

5.1), or when the time-period, agreed upon by the designers in advance, ends.

6. To enable perception of a steady state, each coalition must announce its status (i.e.,
that it has no more proposals to transmit). This announcement is valid only for the
current iteration®”. If the agents run out of computation time before a steady state has
been reached, the algorithm terminates and the last PC holds.

7. Second stage (optional): the coalitions will follow the same sequence of steps as in
the first stage of the DNPK-CFM. However, proposals that involve destruction, i.e.,
proposals which are addressed to single agents, although they are coalition-members,

are allowed.

8. When a new PC changes the payoffs of the agents, it may lead some agents to leave

their previous coalitions. These coalitions will destruct.

25The payoff vector Uy e of PChey is valid from this point on and is used as the basis for future negotiation.

26Note that even if agents deviate from reporting a rejection, the limited waiting time for acceptance
will cause a waiting agent to assume a rejection. Nevertheless, since early notification of rejection may be
beneficial for the waiting agent, it may be willing to pay to ensure such a notification, thus motivate the
sending agent not deviate from its role.

27Given the current PC, a coalition may have no proposals to make and it should report this. However, a
new PC may cause this coalition to have possible proposals, thus it is no longer in a steady state.
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9. The second stage will end either when a steady state®® is reached or when the com-
putation time ends. If PCs for all of the possible coalitional configurations have been

calculated during the second stage, no additional iterations are allowed® .

10. To enable perception of a steady state, each coalition must announce its status when it
has no more proposals to transmit. This announcement in the second stage does not

depend on such an announcement from the first stage.

The protocol above is enforceable since deviation from it is revealable, as demonstrated
below: in the first stage, proposals addressed to coalition-members will be immediately de-
tected if the agents accept these proposals and deviate from their current coalition. Similarly,
a coalition member that does not follow coalitional decisions will be detected. Agents may
not wait for the response to their offers, however if they act according to another proposal
(join another coalition) their deviation is immediately detected. The latter also prohibits
sending several proposals simultaneously. Proposals that allow only increments in the payoff
of the agents are rational, but can also easily be checked by any agent as to their being in
the kernel, and therefore deviation is exposable.

The limitation that destruction of coalitions be avoided in the first stage will radically
shorten the coalition formation process by avoiding most of the intra-coalitional computation
and communication in this stage. The number of iterations until a steady state is reached in
the first stage of the DNPK-CFM is O(n?). The optional stage 2 may be used if, after stage
1 was completed, the agents have additional time and computational resources. They may
proceed until they reach a Pareto-optimal polynomial-K-e-stable PC or until the time ends.
To find a Pareto-optimal PC, all of the PCs in the PCS must be approached, therefore the
complexity will be O(n”) (if time constraints allow). Through stage 2, the average personal
payoff of the agents may sometimes decrease. However, a Pareto-optimal PC can be reached,
and the average of the expected final personal payoff increases. Nevertheless, we consider
the first stage of the DNPK-CFM sufficient for reasonable coalition formation, as shown by
results of simulations we have performed (see section 6).

A proposal will be designed with respect to the relevant information, i.e., the information
about resources, tasks and payoff functions of other agents. Our protocol requires that, at the
beginning of the coalition formation, the agents transmit this information. False transmission
of such information is revealable: when an agent reports more resources than it actually has,
it must later use them for task execution and its deceit is revealed; agents that report
fewer resources than they actually have will be considered less valuable for cooperation thus

decrease their benefits via this false report, and therefore avoid it. Dynamically changing

Z8Note that the steady state in the second stage is different from the steady state in the first stage since
there are different restrictions on the proposals in these two stages.
290therwise, an infinite loop may emerge.
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information with regards to coalitions that have formed should be transmitted only to the
agents involved. Since several agents are involved, deceitful transmissions by one agent is
revealable by the others. These properties makes the information transmission requirement
enforceable.

As was stated above, an acceptance of a proposal implies an acceptance of the corre-
sponding payoff vector by all of the agents. This may change the payoffs of agents who
are not directly involved in the negotiation. These may react in the proceeding iteration
with new proposals according to which they receive a greater payoff. Commonly, even in
non-super-additive environments, larger coalitions gain greater outcomes, and therefore the
a-priori expected payoff of the agents is larger. Hence, protocols that cause enlargement of
coalitions (as we present) should be preferred a-priori by the designers of the agents. Such
an increase in the average expected outcome can be observed from the simulation results

(section 6).

5.3 A DNPK-CFM example

In example 4.2, taxi-drivers have received transportation tasks. Cooperation among the taxi-
drivers on task execution can increase their common payoff. However, cooperation requires
that some drivers drive more than they would have had to drive according to their original
tasks. These will agree to drive more only if they are paid more than their additional costs.
The drivers may use the DNPK-CFM in order to create coalitions.

We illustrate the implementation of the DNPK-CFM, by a single step. The DNPK-CFM
scheme requires that each driver first decides with which other drivers it is interested in
forming a joint coalition. A driver should rank the other drivers (as we suggest in strategy
5.1) according to the expected payoffs from forming pairwise coalitions with each. Such an
estimate may result in the following ordered lists, where the first on each list is the most
preferable one:  A: D,B,C. B: C.D,A. C: D,B,A. D: A.B,C. Estimation is made with
respect to tasks that can be divided among the members of a future coalition or passed
between them, and the additional expected payoff from such redistribution. We concentrate
on the list of A. A can observe that D’s and B’s targets, which are ER and OS, are very close
to SG. They each have one passenger to pick up, so they can take three more, if necessary,
and A has more passengers than she can take in one trip. Therefore, cooperation with B or
D may be mutually beneficial, hence A prefers them over C. To choose between B and D, A
has to calculate the coalitional values.

Next, each driver has to design a proposal and transmit it to the target driver. Here,
A should design a proposal to be transmitted to D. A has to find a polynomially- K-e-
stable payoff vector for the proposed coalitional configuration (AD, B, C). Given the dis-
tances d(VS,SG)=4, d(VS,05)=3, d(VS,ER)=5, d(VS,KG)=4, d(SG,05)=1, d(SG,ER)=1,
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d(SG,KG)=1, d(KG,05)=2, d(KG,ER)=2, d(OS,ER)= 2, the coalitional values are V(A) =
8.2,V(B) = 46,V(C) = 82,V(D) = 2.6,V(AD) = 13.1. V(AD) = 13.1 because by
joining together A and D can drive 6 miles less (saving 1.8 pounds) and save 50 pence
on insurance. According to the coalitional values, the payoff vector that A designs should
be (8.2 + x,4.6,8.2,2.6 4+ y), where © + y = 2.3. To find such a polynomially-K-e-stable
payoff vector, a transfer scheme should be used. Setting Ky = K, = 2, only coalitions
of size 2 are considered during the transfer scheme (and their coalitional values should be
calculated). Under such conditions the polynomial kernel is not unique, and the transfer

scheme will lead within a few iterations to a polynomially-K-e-stable payoff vector, e.g.,
U =1(9.35,4.6,8.2,3.75). A will transmit this proposal to D as part of Psp.

5.4 Strategies and protocol details of the DNPK-CFM

Protocol 5.1 requires that a coalition C, decide which other coalitions to approach. We
suggest that C, will use the following strategies. Strategy 5.1 (below) allows a coalition
to compute (given their bounds on computation), in some cases, a pure Nash equilibrium
strategy, and in others a mixed strategy Nash equilibrium. For the latter, probabilities of
proposal transmission are necessary. To allow for compact representation of the strategy, we

define the following, referring to any two coalitions C;, C;:

1. E}jjz, is the expected outcome of coalition C; from a proposal F;; by C;, given the

bounded computation time.
2. g;; is the probability of C; sending a proposal to C}.
3. T,. is the time already spent for proposal computation.

4. Given a coalition configuration C and C;,C; € C, we define ij, the probability that

there would be k other pairs of coalitions Cy, Cy € C, v # y # ¢ # j such that for each

of these k pairs, C; and C, mutually send the same offer to one another.

Note that ij can be expressed by means of combinatorics (using sums of products of permu-
tations of ¢;;s), however, the details may be rather exhaustive and of minor interest. Denote

the number of coalitions in the configuration by ne, k may never exceed |ne/2|.

Strategy 5.1 Ranking and selecting proposals
Aim: rank and select proposals.
Input: all coalitional values within the K -bound; time threshold T'.

Outpul: a proposal P,; to some coalition C,.

Specification: coalition C, should perform the following:
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1. If T does not allow for multiple proposal calculations:

(a) Rank each coalition C, # C, according to the payoffs that C, expects that its mem-
bers will recetve from forming a joint coalition C,y,. Select one of the following

ranking methods according to the available computational resources:

i. explicitly calculate the value of the joint coalitions and the polynomially-K-
e-stable corresponding payoff vector (such calculations are almost as complex

as designing complete proposals for all other coalitions).

1. estimate the expected payoffs. Such an estimate can be done by checking
the quantities of resources that the other coalitions have and eramining the

previous payoffs that the members of a coalition have received.
b) Compute a proposal for the most highly ranked coalition and assign to P,, (use
p prop gniy g P
strategy 5.2).
FElse (T allows for multiple proposal calculations):
2. Py =0, where Py, is the set of proposals of C, to Cys, v # p.
3. While T,,, <T' perform:
(a) For each C., compute a proposal P, (use strategy 5.2) and E;ﬁpr w.r.t Ty If
Ep, >0 pul Py in Py,
(b) Select the best proposal (for C,) Py € Pyr. Compute proposals Pu.r € Py that
C,r should receive from other coalitions™ C, € C4,a # 1'. For each P,,1, compute
EL L wrt 1.
(¢) If P, is better than the proposals in Py, i.e., VP € Py, E}’D‘m, < E};Ipr,,
designate P, as “superior”, else designate P, as “inferior”.
(d) If there is a “superior” proposal in P,., assign it to P, and break; else continue:
(e) If there are proposals in P,
i. for each coalition C;, decide which are the coalitions C;, 7 # t, to which it may

send proposals®. Compute proposals P;; addressed to the selected coalitions

and assign to P;.

it. for each C;, for each P;; € P;, compule E}jjij'

30We denote the set of all other coalitions by C4. Note that if coalition C, € C follows this strategy, Cy
should receive Pgpr, unless network (or other) flaws have occurred.

31A coalition may decide not to send proposals to some other coalitions since these proposals are non-
beneficial.
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1. calculate probabilities: while T allows and no solution yet found pick, be-
ginning with the smallest®®, P! C P; and assign probability q;; to each pro-
posal P;; € P! by solving a set of equations® according to which, for ev-
ery pair of proposals Py, Py € Pl i £ j # k, q;(Ep, TE/THLQL) =
ir(Ep, SESHTLQL), and g0 = 1.

. associate a probability q,, to each proposal in P, .

v. randomly choose a proposal from P, w.r.t their attached probabilities and

assign to P,;.

4. If not empty, P, is the selected proposal of C,. Else, there are no beneficial proposals

for C, to offer — announce a steady state.

Note that the number of equations for probability computation (in item 3.e.iii of the strategy
above) may be greater than the number of probabilities. Strictly mathematically speaking,
this implies that there may be P;s where there in no solution. Nevertheless, as known from
game theory, any finite n-person game has at least one equilibrium in mixed strategy. Since
our game is such, there should be a solution (at least one) to the equations. The details of
the proposal calculations are in strategy 5.2 in section 5.4.2. The computation of Eps (in
3.e.1i) depends on T'. The simplest evaluation of an Ep is by relying on payoffs that stem
from the Kernel computation. Further computation, restricted by the time quota 7', may be
performed by additional search in the (kernel) solution space. To show that the suggested
strategy satisfies the time-bounded equilibrium requirement we first must show that an
agent will not deviate from it when computing Ep. This results from the introduction of the
time threshold 7T'. A coalition C, would believe, relying on the information provided by the
agents’ designers, that computational efforts beyond T" are non-beneficial. In addition, excess
computation by €, may result in missed deadlines, which will prohibit coalition formation
and its benefits. Therefore, a deviation from the strategy that entails additional computation
implies, according to this belief, a reduction in the expected utility, especially when other
coalitions follow the same strategy. Hence, C), will avoid such a deviation. Another possible
deviation of C), is the avoidance of some of the computations. This, however, is irrational,
since additional computation within the time threshold may increase the benefits (with no
risk of a reduction). Therefore, this type of deviation should be avoided as well.

Given its belief about its expected utility (calculated w.r.t the time bound), if other
agents do not deviate from the strategy above, an agent should follow it (that is, there

is an equilibrium). To show this, it is necessary to explain why should agents follow the

32A smaller P} imposes a smaller set of equations and therefore is simpler to solve.

33Note that the solution of the equations provides C), with more probabilities than it actually needs for
carrying out its strategy. Nevertheless in order to compute the necessary probabilities it must compute the
whole set of equations.
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proposal selection methods provided in the strategy. In the case of a superior proposal, this
is rather simple. Since the best superior proposal Ps is better for the proposee € than its
other proposals, and is the best proposal of C, that will be accepted by C'., according to the
equilibrium strategy of C,, it would accept it. The choice of a proposal other than P; by
C, will decrease its expected benefit (thus is an irrational behavior and be avoided). When
there are no superior proposals, an inferior one is selected. In case of inferior proposals, the
probability computation in the strategy above results in equal expected utilities VP, € P,,,
so C, is indifferent toward different proposals, given that the other agents follow the same
(mixed) strategy. Therefore, coalitions that follow the proposed strategy will have a mized

strategy Nash equilibrium given the time constraints.

5.4.1 Coalitional decision making

As was stated in protocol 5.1, there must either be an agent who is responsible for receiving,
designing and sending proposals and for any other coalitional actions, or the agents must
use a voting method in order to make coalitional decisions. Between these two, the designers
should select the one that better fits their agents’ computational capabilities. Voting is better
for computationally strong agents, where each agent has to compute its own preferences and
then vote according to the results. This requires extensive computations. When designers
attempt to minimize their agents’ computational and communication efforts, they should
prefer that their agents elect a representative who will perform the coalitional computations.
A reduction in the variance of the distribution of calculations among the members of a coali-
tion can be achieved by replacing the representative every iteration. Thus, the calculations
will be distributed more homogeneously. In addition, advantages that may arise from the
representative role will be distributed as well. We emphasize that the designers must agree
upon one of the methods in advance, to prevent a situation where the agents act according
to the two different approaches, thus reaching a conflict situation and avoiding cooperation.

When voting is selected for decision making, each decision (e.g., design a proposal) must
be computed by all coalition members, and they should select the preferred one from among
the results®. This will be done by a raffle or by voting. These decision-making methods
are also used for choosing the representative when the designers adopt the representative
approach.

Self-interested agents will not accept the representative job unless they are compensated
for their additional efforts, or forced by the protocol to accept this role. If the designers adopt
the representative method, their agents may choose the coalitional representative by a raffle

or via a voting method (for examples see [10, 26]). Note that voting is a suggested algorithm,

34These results may differ due to the tendency of rational agents to compute (and present) a proposal
according to which they are better-off.
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and not forced, though should save time and effort on the part of the agents (which may be
required, e.g., for negotiation about the representative) and reach a reasonable decision. An

agent who deviates from the voting algorithm is considered absent from the vote.

5.4.2 Proposal structure and design

According to part 3 of protocol 5.1, proposals for the generation of new coalitions should
be designed by the current coalitions. We denote a coalition that designs and transmits
a proposal by C), and a coalition that receives a proposal by C,.. All other coalitions are

denoted by C,. We suggest that C), use the following strategy to design a proposal for C:

Strategy 5.2 Proposal design

Aim: design a proposal for a joint coalition Cpy, with respect to the proposal protocols.
Input: current PC and coalitional resources, tasks and payoff functions.

Output: a proposal - a new PC (PChpey).

Specification: coalition C,, should perform the following.
o Clalculate the coalitional value Vi, of Cpyir.
o IfV,+V, >V, quit the design of this specific proposal for C,.

o Otherwise, YC, such that |C,| in [Ky, K], retrieve V, (if stored in memory in previous

calls to this strategy), else calculate V, and store for future use.

o Calculate U,.,, the payoff vector of PCley, tn which C, and C, form C,4,., and all
C, remain unmodified, using algorithm 1 (section 4.3) with the current U (the payoff

vector of the current PC) as its input with polynomial excesses, subject to Ky and K.

o Compare U,y to the current U. [fVA; € Cp_H,,ui

ne

2> utand 3A; € Coyryul > u',

n

then PCe, ts the proposal to C,.. Otherwise, stop designing this specific proposal.

Note that the calculation of the coalitional value may be complex, but if we restrict
the payoff functions to low degree polynomial functions, the complexity of these will be

polynomial. Linear functions will guarantee linear complexity.

Example 5.1 Recall the taxi-driver example (sections 4.2, 5.3), in which A designed a payoff
vector (8.2+1x,4.6,8.2,2.6+y), where x+y = 2.3 to be transmitted to D as part of a proposal.
A full proposal should include the coalitional configuration {AD,B,C}. Resource and task
redistribution are also necessary. This redistribution should be done after reducing the driving
of parallel routes. On her way from VS to OS to take a passenger, D can continue to SG
and pick up 3 of A’s passengers, then return to VS. Thus, D adds 2 units of distance to her
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tasks, as OS and SG are 1 unit apart, and D will drive there and back. However, this change
enables A to complete her original task with one trip only. At first A had 7 passengers to
take, and it required driving twice. Now, with D’s support, only 4 passengers are left and this
requires one trip. The avoidance of one trip to SG and back saves 8 units of distance. The
net reduction of distance is therefore 6 units. This reduction affects A and D’s total benefits,
as expressed in the coalitional value.

Strategy 5.2 requires that A first check if V(AD) > V(A) + V(D). Since this is true,
proceed and calculate the coalitional values of coalitions of size 2 (because K1 = Ky = 2). Fol-
lowing the method in which V(AD) was calculated, the values are: V(AB) = 15.7,V(AC) =
16.9,V(AD) = 13.1,V(BC) = 15.1,V(BD) = 9.5,V(CD) = 13.1. Using these coalitional
values, A should calculate the appropriate polynomially K-c-stable payoff vector using algo-
rithm 1, beginning with the current payoff vector, (8.2,4.6,8.2,2.6). The resultant payoff
vector of the transfer scheme with a PC boundary error ¢ = 0.05 is (9.35,4.6,8.2,3.75).
This result should be compared to the current PC. Since the calculated PC is better than the
current PC both for A and D, A should send it as a proposal to D.

5.4.3 Waiting time

Given a predefined time period®® ¢,,4:;, having sent a proposal P, to C,, C, must wait ¢,
for response. During the waiting time C), is committed to its proposal. If C}’s answer was not
received within 2,4, C,’s obligation to respect P, expires. The waiting time protocol can
simply be enforced in cases where deviation of €, from it harms (', since C, can report it
(and C, can be penalized). Nevertheless, if C, is not affected by C,’s deviation, enforcement
is not necessary. A coalition C, who waits more than t,,; may lose good opportunities to
cooperate with others and benefit from this cooperation. t,,;; should be agreed upon by the

designers of the agents.

5.5 Complexity of the DNPK-CFM

The analysis of the complexity refers to the first stage of the DNPK-CFM (unless designated
differently). The complexity of the DNPK-CFM is strongly affected by K; and K3 and the
difference between them. According to these constants, the agents compute the polynomial
set of coalitions, the coalitional values and the coalitional configurations. The complexity
of these calculations is of the same order of the number of the coalitions considered (this

relation holds for the exponential case as well). The number of coalitions considered for

35The decision upon t,4i; must be done with respect to the assumptions of the designers with regards to
network latencies. 144 should usually be greater than the expected average latency, however preferably not
greater than all possible latencies, lest agents might wait an unrealistic amount of time.
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polynomial-K-e-stability calculations in the DNPK-CFM is given by

Ko K |
n n-
Ncoalitions = Z ( : ) = Z m

=K, =K, U

This expression is polynomial since ( T; ) <n(n—1)(n—=2)...(n —14 1) which is a polynom

of order O(n'), and the sum over a constant number (K, — K;) of polynoms is a polynom of
the largest order of all polynoms in the sum.

The DNPK-CFM requires the computation of n.y41i1:0ns coalitional values. It also requires
the design of coalitional configurations. The number of coalitional configurations computed
depends on the time constraints. When time-limited part of strategy 5.1 (first item), O(n)
configurations will be computed at each iteration. This number increases to O(n?) when the
other part of the strategy is employed.

For each coalitional configuration, a polynomial-K-e-stable PC must be calculated. using

algorithm 1. Each iteration of algorithm 1 is constructed from the following steps:

e As stated previously, given a payoff vector U (for a specific coalitional configuration)
there are ngoqirions €xcesses. All of these excesses are calculated in each step, and the

calculation of each excess is of order of n (see definition 3.1).

o All neoaiitions €xcesses are searched for the surpluses. Therefore, the excess and surplus

calculations have together an order of O(n X neoatitions)-
e Among the surpluses, the greatest is found by O(ncoatitions) Operations.

e According to lemma 3, the resulting payoff vector of algorithm 1 will converge to
an element of the polynomial-kernel (with a relative error not greater then ¢) within

nlog,(e,, /) iterations, where e,, is the initial PC relative error.

Altogether, the complexity of one iteration of algorithm 1 is O(n® X ncoalitions)- Referring

to the case where time is less bounded, algorithm 1 will be performed for O(n?) coalitional
configurations per protocol iteration, for O(n?) iterations. The distribution of computations
among the agents allows a reduction in the complexity (per agent) by a factor of n. Therefore,
the complexity of the DNPK-CFM is O(n°ncoutitions) computations. Similarly, in the case
where time is strictly bounded, the complexity will be O(n*ncoutitions) computations. In
addition, there is a communication complexity of order O(n*n oasitions)-

If the DNPK-CFM proceeds through the optional second stage, the number of coalitional
configurations increases and depends on the time constraints. The upper limit is of order
O(n”), however the stability calculation of each configuration remains polynomial.

The first stage of the DNPK-CFM is relatively cheap in terms of computations, since

only the computations necessary for reaching polynomially-K-c-stable PCs are performed.
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Contradictory to the exponential DEK-CFM, the low costs of the DNPK-CFM (first stage™®)

will encourage cooperation and coalition formation.

6 Simulation results

We have developed a simulation tool to examine the performance of the DNPK-CFM. Note
that in the simulation we used the restricted form of strategy 5.1, that is, only the ranking
phase was performed to reduce the computational complexity. This tool has been run for a
variety of agent settings, and the results are summarized below. In particular, we simulated
the taxi-drivers’ example that was presented above. The first coalition that was formed?”
was AC and the payoff vector was U; = (11.4,4.6,9.7,2.6), which is polynomially-K-e-stable
but not K-stable and not Pareto-optimal. Therefore, the negotiation continued and the next
coalition was BD, and the payoff vector was U, = (11.4,4.6,9.7,4.6). U, is K-stable and
Pareto-optimal, and agrees with the exponential-calculation results. The Pareto-optimal
simulation result was achieved both with limited A; and Ky and without this limitation.
These results were obtained for all runs. However, the DNPK-CFM is not deterministic, and
its results may depend on the order of offering during the negotiation. For example, when
we increased the allowed error ¢ (this increment reduces the computational complexity) in
some of the runs, another PC was reached: (A, BC, D), which is polynomially-K-e-stable,
but not Pareto-optimal.

Next, we tested the performance of the DNPK-CFM with respect to different constants
(K’s,e) and different environmental settings. We have performed several hundreds of runs
of our simulation and the results we report are averages of these. For algorithmic and
computational-complexity reasons, the simulation can process only polynomial payoff func-
tions with the assumption of independent resources. We focused on linear payoff functions.
In our experiments, the computational complexity led us to choose the constants K; and
K5 to be small, usually in the range of 5 to 10. We have also allowed the simulation to run
with no K limitation, to reach an exponential solution when the number of agents is small®®
(up to 10 agents). To compute the coalitional values, we have drawn resource values w.r.t
three distributions: random, uniform and normal. We also checked cases in which some or
all of the values were artificially shifted to above or below average, or both. Since we used
linear payoff functions, the distributions of the coalitional values were similar to those of
the resources. The values of coalitions in the simulation were in the range 0 to 1000. We

found out that except for the very extremely uneven distributions (i.e., very large variance),

35We view this stage as sufficient for reaching reasonably beneficial and stable coalitions.

3"The order of the suggestions is based on the ranking heuristics, according to which A prefers C over the
others, and vice versa. Hence, AC is a preferred suggestion.

38These means that 2'0 coalitions were considered for excess computation. Although exponential, this is
not intractable.
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Figure 2: The number of agents participating in coalitions (Y-axis) increases as the average
coalitional value (X-axis) increases.

no significant differences were detected in the evolution and performance of the simulated
coalition formation.

Running the simulation has provided the following results, which are each an average
over dozens of runs. Initially, we have shown that the simulated DNPK-CFM reaches a
stable PC within a reasonable time (for the first stage of the DNPK-CFM). In addition, it
has been found (for the settings that we have examined) that the DNPK-CFM continuously
improves the agents’ payoffs, whether it is normally terminated or halted artificially. The
main results of the simulation for 5 through 16 agents, with K; = 1 and K3 < 10 and with

e =1 (which was less than 1% of the average coalitional value) are as follows:

1. The number of agents that participate in coalitions is an increasing monotonic function
of the average of potential coalitional values. That is, when we increase the average
coalitional values (X-axis, figure 2), keeping other parameters unchanged, more agents
would join coalitions (Y-axis). An appropriate analytical curve-fit to the results is a

? as in figure 2. The observation that the number of coalition

logarithmic function®
members does not linearly increase (but does increase logarithmically) with respect
to the increase in the average coalitional value may result from unresolvable conflicts
which are present in non-super-additive environments. Such conflicts can prohibit the

formation of possible coalitions.

39We examined linear, some polynomial, and exponential curve fittings as well. The error associated with
these curves was greater than the one obtained for the logarithmic curve. This, however, does not prohibit
the existence of a better fit.
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Figure 3: When the formation of coalitions increases agents’ benefits, the excess benefits
that result from cooperation grows as a function of the number of coalition formations.

2. In cases where cooperation is beneficial, i.e., when coalition formation can increase the
agents’ benefits®®, we observe (figure 3) that the additional utility (i.e., with respect
to the utility without cooperation) grows as a function of the number of coalition
formations. This means that not only it is beneficial to form coalitions, formation of
more coalitions increases the average benefits of the agents, as expected due to the

individual rationality of the agents.

3. The time necessary for coalition formation without bounding the K’s is an exponen-
tial function of the number of agents that comprise the agent-system (this result was
supported by simulation results presented in [37]). However, as can be observed from
the graph (see figure 4), this exponent does not hold for the case of bounded K’s. A
quadratic curve fits the results of the simulation with a very low error (R? = 0.9853). In
a system of 10 agents, where each agent is implemented on an Intel® 486 processor, the
computation time per agent is approximately 3 minutes (¢ = 1, Ky = 1, K3 = 5). This
is a reasonable time for real-time implementation as the transportation example pre-
sented previously. In a system of 16 agents, the computation time per agent increases
to 30 minutes. This time may be too long for real-time implementation. However,
implementing the model on a faster machine and optimizing for the simultaneity of

the agents-computations can reduce the computation time by an order of magnitude,

40Beneficial coalition formation was enabled by the choice of payoff functions and resource distributions,
which produced coalition values where at least some of the values of larger coalitions are greater then values
of smaller ones.
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Figure 4: The time necessary for coalition formation with bounded K’s appears to be a low
polynomial. The best curve fit to the experimental results is quadratic.

thus even the 16-agent case will become real-time implementable.

Via the simulations, we have shown that the simulated DNPK-CFM reaches a stable PC
within a reasonable time (for small K’s, and only for the first stage of the DNPK-CFM).
In addition, it has been found that for the settings that we have examined, the DNPK-
CFM continuously improves the agents’ payoffs, whether it is normally terminated or halted
artificially. According to these results, the DNPK-CFM is a good coalition formation model

for MAS in non-super-additive environments.

7 Related work in DAI and Game Theory

Our research applies modified game theory techniques to a DAI environment. We discuss

the relevant work here.

7.1 Distributed AI

DATI researchers have been working on the complex subject of cooperation, e.g., [14, 36, 45],
for constructing agents that are able to cooperate on task execution, thus increasing either
their individual benefits or the system’s benefits. In MAS agents are assumed to be self-
interested and try to achieve their own goals and maximize their own personal payoff. In
CDPS systems, agents are usually assumed to have a common goal and try to maximize a

system’s global payoff. Since we present a MAS model, we do not refer to CDPS.
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In MAS, designers have control only over their own agents. An example of an MAS
is the case of labor negotiation. Sycara [41] presented a model that combines case-based
reasoning and optimization of multi-attribute utility. While Sycara deals with pairs of agents
(possibly with a mediator) that have conflicting goals, we discuss multiple agents that are
not necessarily in conflict with one another.

Gasser [13] focuses on the social aspects of agent knowledge and action in multi-agent
systems. As in human societies, social mechanisms can dynamically emerge. Communities of
programs can generate, modify and codify their own local language of interaction. Gasser’s
approach may be most effective when agents are interacting in environments where there is
no agreed-upon, well-defined interaction mechanism, or in a continuously evolving domain.
In our research we pre-define the social interaction among agents by designing coalition
formation protocols.

Kraus et al [21] provide autonomous agents with negotiation mechanisms that enable
them to cooperate via negotiating and reaching agreements. Their work deals with time
constraints and with the efficiency of the resulting agreement. This agreement involves
all of the agents, i.e., a grand coalition forms. However, conflicts among the agents may
prevent an agreement and therefore can prevent cooperation, even in cases where cooperation
is beneficial for some of the agents. In our research, we suggest algorithms that allow
the formation of sub-groups in which the members cooperate within, thus increasing their
personal payoff. As opposed to Kraus and Wilkenfeld’s work, where time is included in the
payoff functions of the agents, our research does not explicitly introduce time dependence,
although time is considered a restricting factor.

Research by Zlotkin and Rosenschein [29] concentrates on definition and illustration
of various classes of multi-agent domains. Their initial work concentrates on cooperation
among pairs of agents. In their more recent work [45] coalition formation was explicitly
dealt with. Here they discuss the special case of Sub-additive Task-oriented Domain (TOD),
a domain which correlates with the super-additive environment. Coalition formation in such
environments was discussed by Ketchpel in [18] as well. Our work mainly discusses non-
super-additive multi-agent environments, and provides the designers of agents with explicit
coalition-formation mechanisms for multiple agents.

Sandholm and Lesser [32] developed a coalition formation model for bounded rational
agents and present a general classification of coalition games. In their model, the value of
a coalition depends on the computation time, however, all configurations and possible coali-
tions are considered when computing a stable solution. We consider problems where the
computational time of coalition values is polynomial. Therefore, we concentrate on poly-
nomializing the number of coalitional configuration and on utility distribution and provide
polynomial concepts of stability.

Ephrati and Rosenschein [11] have suggested the formation of a coalition of all of the
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agents (grand coalition). This formation is performed using a voting mechanism. In our
work we allow formation of several coalitions, where each coalition consists of a sub-group
of the agents, but not necessarily all of them. We also employ negotiation as a means for
coalition-formation.

An example of coalition formation closer to MAS is the work of Sonenberg et al [39]. In
their research, they deal with representation of joint actions, introduce a language for this
representation, and present a centralized approach for team formation. A team formation
procedure is described, where the formation process is dictated by team leaders. The team
leader sends the joint goal, the joint plan, and the roles to be played to all potential team
participants. This approach offers the team participants very little choice, although agents
may still be individually motivated. Here we present distributed coalition-formation algo-
rithms where no leadership is imposed on the agents. Thus, they are free to design and

transmit coalition formation proposals.

7.2 Game Theory

As stated in the introduction, game theory has widely dealt with coalition formation, al-
though mostly discussing stability and benefits distribution, and not algorithms of formation.
Nevertheless we find several publications relevant to our work. The solutions for n-person
games and stability will be only partially discussed here. Since we are interested in the
dynamic approach to the coalition formation problem, we mainly refer to dynamic coalition
formation methods and emphasize how they differ from our work and what the contribution
of the DAI approach that we present is.

The dynamic theory of bargaining sets was founded by Stearns [40]. In his work, Stearns
presented methods (“transfer schemes”) for players in an n-person game that will enable
them, starting with an arbitrary payoff allocation, but with a coalition configuration that will
not vary by the Stearns algorithm, to reach a stable payoff configuration within the kernel
[8] (presented in section 3) or the bargaining set [2]. In our work we do not concentrate on
providing a method that will lead, given a specific coalition configuration, to a stable payoff
allocation. Instead, we provide methods that will enable agents to begin from any initial
coalition configuration and proceed using our models to different coalition configurations,
that may be more beneficial for all of them. Nevertheless, we are interested in stable payoff
allocations, and for this purpose we adopt Stearns’ approach. We modify his algorithm to
adjust it to the MAS with its restrictions, in order to generate proposals for payoft allocation
within a given coalition configuration. This use of the modified transfer scheme enables the
construction of the whole coalition formation model, wherein the transfer scheme is only a
building block.

The main deficiency of the dynamic theory of bargaining sets is that its dynamics are
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very limited. They deal solely with situations where the coalition configuration is given and
the payoffs are transferred. However, the coalition configuration does not change. In real
dynamic environments, changes in the coalition configuration are an inseparable part of the
dynamics, and such is the situation in our research. The main focus of our work is the
evolution from one coalition configuration to another.

In the context of dynamic theory we find the work of Wu [43]. Wu presented a transfer
scheme that converges to the core, if the core is non-empty. An interesting property of Wu’s
model is that it implicitly allows passing from one coalition configuration to another and does
not necessarily concentrate on a specific coalition configuration. However, this property does
not seem to be the essential of the model. This transfer scheme leads to a point in the core
but does not provide an algorithm for passing from one coalition configuration to another,
and cannot be used to pass from one point in the core to another. Our model does not
necessarily lead to the core, and a coalition configuration that was reached by the model in
a specific step can be the starting-point for reaching another coalition configuration in the
next step of the model.

In [44], Zhou presents a new bargaining set such that both of the questions: “what
coalitions will be formed?”, and “what payoff vectors will be chosen?” are answered. As
do other game theorists, Zhou also tries to predict which coalitions will form in a given
situation. This bargaining set predicts that non-reasonable coalition configurations will not
form, while other bargaining sets allow any coalition configuration to form. Zhou does not
provide a dynamic algorithm for the formation of coalitions. Although Zhou’s new bargaining
set can be used to endogenously answer both questions of coalition formation and payoff
distribution, it does not provide an answer to the questions: how will the coalitions form
and what procedures will lead to this formation, which are answered in our work.

A new concept of coalitional stability was introduced by Chwe [5]. The farsighted coali-
tional stability introduced in this work does not determine what will happen in coalitional
interaction but what can possibly happen. It defines a generalized type of a stable set, and
similar to the von Neumann-Morgenstern [24] stable set, it is defined by conditions on sets’
outcomes and not on individual outcomes. Such an approach does not fit the requirements
of individually rational agents.

The Kernel which serves as the basis for our coalition formation algorithms is limited for
TU (transferable utility) games. This limitation stems from the necessity to pass parts of
the excesses to reach stability. Serrano [33] has introduced a reinterpretation of the Kernel
which results in the expansion of the Kernel solution concept to the NTU games. This is an
important addition to the Kernel theory, however it does not include any specification for
implementing this concept among autonomous agents. As is common among game theorists,
the main issue is what a stable configuration is, and not how the single agent acts in order

to reach it and increase its own outcome.
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Coalitions in the context of game theory were also discussed in [42, 38]. In his study, Vohra
[42] discusses non-cooperative approaches to coalitions. He concentrates on the core and the
bargaining set, specifically considering the consistency of cooperative and non-cooperative
coalition theory. However, he does not discuss the kernel nor does he provide methods for
coalition formation. A study of coalition formation is presented by [38], discussing several
bargaining-set solution concepts and their properties. The research focuses on what coalitions
will form and what payoffs will be assigned to the agents. However, it does not discuss the
coalition formation process and the actions of the single agent within it.

A significant part of the recent research in n-person game theory discusses n-person
games in which all of the agents, together, reach an agreement (e.g., [15]). Such approaches
which allow for repeated games are fairly dynamic, however do not allow coalition formation
(except for a grand coalition).

As can be observed, advances in game theory provide us with a good basis for our research,
however they do not address the issues which are most important to our research, i.e., the

explicit protocols and strategies to be followed by the agents to form coalitions.

& Conclusion

Coalition formation is an important way to execute tasks and to maximize the payoff of
autonomous agents in multi-agent environments. The purpose of a coalition formation algo-
rithm is to reach a stable PC within a reasonable time period and with reasonable compu-
tational efforts. Since the general problem is of exponential complexity, we first developed
an exponential algorithm (DEK-CFM) that reaches a Pareto-optimal solution. Then, with
some significant modifications and restrictions, we reduced the complexity to a polynomial
order (DNPK-CFM). The algorithms we present lead to coalition formation and payoff dis-
bursements among the coalition members.

The DEK-CFM is a distributed algorithm that provides the agents with a stable Pareto-
optimal coalition configuration and payoff vector. It is computation-oriented, best used for
instances where there is a small number of agents or time and computations are cheap. The
DEK-CFM is proposed as the appropriate solution for coalition formation in environments
of distributed agents with sufficient computational resources.

The DNPK-CFM is negotiation-oriented. It is useful for instances where the number of
agents is large (e.g., tens of agents), computations are costly and time is limited. This is
because the model leads to coalition formation within a polynomial time and a polynomial
amount of calculations. The ability to reach such a low complexity is due to a new approach
presented — the polynomial K-e-stability. The DNPK-CFM leads to distribution of both
calculations and communications and to a vast reduction of the computational complexity.

In addition, it is an anytime algorithm: if halted after any negotiation step, it provides the
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agents with a set of formed polynomial-K-e-stable coalitions. A deficiency of the DNPK-CFM
is that in polynomial time it cannot guarantee that a Pareto-optimal PC will be reached.
However, for calculating a Pareto-optimal PC, all of the coalitional configurations in the CCS
must be approached, and therefore there cannot be any polynomial method to find Pareto-
optimality. An important advantage of our algorithm is that the average expected payoft of
the agents is an increasing function of the time and effort spent by the agents performing
the DNPK-CFM steps (except for the optional second stage). Therefore, if cooperation is
beneficial for the agents, using the DNPK-CFM will always improve their payoffs. The last
property, together with the anytime, distribution and other advantages of the DNPK-CFM
have been proven via the simulations we performed.

The models we present are suitable for various multi-agent environments. They are not
restricted to the super-additive environment, an environment for which there are already
several coalition formation algorithms in DAI [18, 35, 45]. However, the generality of the
models does not make them inapplicable. An application of the DNPK-CFM for handling
the database autonomy requirement during decentralized information-gathering by rational
information agents is presented in [20]. There, methods for terminological knowledge repre-
sentation and inference, as well as for coalition formation among the information agents, are
used. The DNPK-CFM is used, with minor modification, as the coalition formation proto-
col, to enable a beneficial information gathering in remote databases, while respecting the
database autonomy requirements. Each database is represented by a computational agent,
and the agents form coalitions.

As opposed to the majority of solution concepts presented in game theory, we present
a detailed method for how the individual agent should act in order to form coalitions thus
increase its personal payoff. We give examples to illustrate the models and to show their
applicability. Due to their advantages, we believe that our algorithms should be adopted by
designers of agents that would like their agents to cooperate and form coalitions in order to

increase their benefits in both super-additive and non-super-additive environments.
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