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Abstract

One of the benefits of belief networks and
influence diagrams is that so much knowl-
edge is captured in the graphical structure.
In particular, statements of conditional irrel-
evance (or independence) can be verified in
time linear in the size of the graph. To re-
solve a particular inference query or decision
problem, only some of the possible states and
probability distributions must be specified,
the“requisite information.”

This paper presents a new, simple, and effi-
cient “Bayes-ball” algorithm which is well-
suited to both new students of belief net-
works and state of the art implementations.
The Bayes-ball algorithm determines irrele-
vant sets and requisite information more ef-
ficiently than existing methods, and is linear
in the size of the graph for belief networks
and influence diagrams.

Keywords: irrelevance, independence, requisite in-
formation, belief networks, influence diagrams, d-
separation.

1 Introduction

One of the benefits of belief networks and influence
diagrams is that so much knowledge is captured in
the graphical structure. Without the need to compute
with or even assess possible states and probabilities,
many important properties of a model can be recog-
nized (Pearl 1988; Shachter 1988). To fully specify a
network, the possible states and probability distribu-
tions must be obtained for all variables. For a partic-
ular inference query or decision problem, only some of
that information is requisite.

Because this information is stored in the network
structure, it lends itself to efficient analysis . In partic-
ular, statements of conditional irrelevance (or indepen-
dence) in belief networks can be verified in time linear
in the size of the graph (Geiger et al 1989). Identifica-

tion of requisite information can also be determined in
time linear in the size of the graph. These algorithms
have been generalized to deal with deterministic nodes
in belief networks and influence diagrams (Geiger et al
1990; Shachter 1990).

This paper introduces the Bayes-Ball algorithm, a sim-
pler and more efficient algorithm to identify condi-
tional irrelevance and requisite information. For belief
networks, Bayes-Ball runs in time linear in the size of
the active part of the graph, so it is considerably faster
when most of a graphical knowledge base is irrelevant.
It also corrects an error in the requisite information al-
gorithm given in Geiger (1990). More significantly, for
decision problems it runs in time linear in the size of
the graph; up until now the fastest algorithm (Shachter
1990) has been O((number of decisions)(graph size)).
Finally, the decision algorithm has been extended to
allow multiple separable value nodes.

The identification of irrelevant nodes and requisite in-
formation is a fundamental operation in any belief net-
work or influence diagram processor. It allows quick
pruning of graphical knowledge bases, provides simple
explanations for fundamental relationships (Poh and
Horvitz 1996), and even suggests new algorithms (Lin
and Drudzel 1997). Although it has not been pub-
lished before now, the Bayes-ball algorithm for belief
networks has been freely shared in the community and
is implemented in systems such as Knowledge Indus-
tries’ DXPressTM and Microsoft’s MSBNTM .

Section 2 contains the notation and framework for the
paper and the previous results from the literature. Sec-
tion 3 develops and proves the Bayes-ball algorithm for
belief networks, and Section 4 extends and refines it
for influence diagrams.

2 Notation and Framework

2.1 Irrelevance

A structured belief network B = (N,A,F ) consists of
nodes N and directed arcs A which together form a
directed acyclic graph G(N,A), and a subset F of
the nodes that are deterministically (functionally) re-



Figure 1: Different assessment orders reveal different
irrelevances

lated to their parents. Corresponding to each node j
is an uncertain variable Xj . Consider the belief net-
work shown in Figure 1a. This represents a contest
in which the prize depends on the state of two flipped
coins. Coin 1 and Coin 2 are oval probabilistic nodes
and Win Prize is a double oval deterministic node.

In referring to the graph G(N,A), for any node i ∈ N ,
Pa(i) denotes the parents of i and De(i) denotes the
descendants of i.

A joint probability distribution over XN is said to ad-
mit a directed factorization with respect to a struc-

tured belief network B = (N,A,F ) if Xj is a deter-
ministic function of XPa(j) for all j ∈ F and

Pr{XN} =
∏

j∈N

Pr{Xj |XPa(j)}.

Given a joint probability distribution for XN , Pr{XN},
XJ is probabilistically irrelevant (usually called “inde-

pendent”) to XL given XK for some J,K, L ⊆ N if

Pr{XJ |XK ,XL} = Pr{XJ |XK}.

Given a structured belief network B = (N,A, F ) and
sets J,K, L ⊆ N , XJ is said to be irrelevant to XL

given XK in B, denoted XJ ⊥B XL|XK , if XJ is prob-
abilistically irrelevant to XL given XK for any joint
probability distribution Pr{XN} that admits a di-
rected factorization with respect to B.

Less formally, XJ is irrelevant to XL given XK in B if,
having observed XK , one can learn nothing more about
XJ by also observing XL. The following proposition is
well known (Pearl 1988).

Proposition 1 (Irrelevance Decomposition)
Given any structured belief network B = (N,A, F ) and
any subsets J,K,L ⊆ N , XJ ⊥B XL|XK if and only if
Xj ⊥B Xl|XK for all j ∈ J and l ∈ L.

It is important to understand that probabilistic irrel-
evance is not the same as the irrelevance represented
by a belief network. For example, Proposition 1 does
not hold for particular probability distributions un-
less their independence is completely representable in
a structured belief network. Consider the coin flip-
ping contest shown in Figure 1a. The decision-maker
believes that the two flips are irrelevant but that the
prize is determined by them. If he believes that the
coins are both fair and the prize will be awarded if
the two coins match, then the network in Figure 1b is

also valid, since he believes that the state of one coin
tells him nothing about whether he will win. (That
would not be true if the coins were not fair or the
contest were won with two heads.) A misapplication
of Proposition 1 would suggest that seeing both coins
would tell him nothing about whether he will win!

2.2 Deterministic Irrelevance

Given any structured belief network B = (N,A, F )
and a deterministic node j ∈ F , the variable Xj is
certain or effectively observed if the parents of node j,

Pa(j), are observed. Similarly, if each parent of j ∈
F is either observed or effectively observed, then the
variable Xj is also effectively observed. More formally,
if the variables XK are observed for some K ⊆ N , a
node j is said to be functionally determined by K if
either j ∈ K or Xj is a deterministic function of XK.
The set of nodes functionally determined by K, FK,
can be described by the recursive equation,

FK ← K ∪ {i ∈ F : Pa(i) ⊆ FK},

corresponding to nested instances of effective observa-
tion. For example, in Figure 1a, if the two coins are
observed then it is functionally determined whether
the prize will be awarded.

Proposition 2 (Deterministic Irrelevance)
Given a structured belief network B = (N,A, F ) and
sets J,K ⊆ N , XJ is functionally determined by XK

in belief network B if and only if XJ ⊥B XN |XK.

As a special case of Proposition 2,

XFK ⊥B XN |XK for all K ⊆ N.

2.3 Target Sets

Efficient computation of the following sets is one ob-
jective of this paper. The other objective is efficient
computation of the related requisite sets for sequential
decision problems represented by influence diagrams.

The irrelevant nodes for XJ given XK, denoted
XNi(J |K), are those nodes which are conditionally ir-
relevant to XJ given XK ,

Ni(J |K) = {i ∈ N : Xi ⊥B XJ |XK}.

The requisite or required information needed to com-

pute Pr{XJ |XK} depends on the probabilistic irrele-
vance, rather than the conditional irrelevance revealed
in the belief network graph. Thus, from the graph we
can only recognize the information which “might” be
needed for any probability distribution.

The requisite probability nodes for J given K, denoted

Np(J |K), are those nodes for which conditional prob-
ability distributions (and possible states) might be
needed to compute Pr{XJ |XK}. The conditional
probability distribution for a deterministic node is usu-
ally specified as a deterministic function.



The requisite observations for J given K, Ne(J |K) ⊆
K, are those observed nodes for which observations
(and hence the possible states which might be ob-
served) might be needed to compute Pr{XJ |XK}.

In previous papers (Shachter 1988; Shachter 1990),
these sets were referred to as the “minimal sets of rel-
evant nodes,” Nπ(J |K) = Np(J |K) and NΩ(J |K) =
Np(J |K) ∪Ne(J |K).

2.4 D-separation

The Bayes-ball algorithm is strongly based on the con-
cept of d-separation (Geiger et al 1989; Pearl 1988;
Pearl et al 1990) and its deterministic generalization,
D-separation (Geiger et al 1990).

An active path from J to L given K is a simple trail
(or undirected path) between i ∈ L and j ∈ J , such
that every node with two incoming arcs on the trail is
or has a descendant in K; and every other node on the
trail is not functionally determined by K. As a special
case, active paths can be just a single node, that is,
i = j.

Given sets of nodes, J , K, and L from belief network
B, K is said to D-separate J from L in B if there is
no active path from J to L given K. This condition
determines all irrelevancies represented in the belief
network (1990).

Theorem 1 (D-Separation) Given a structured be-
lief network B = (N,A, F ) and J,K, L ⊆ N ,
XJ ⊥B XL|XK if and only if K D-separates J from
L in B.

Geiger (1989; 1990) devised linear-time reachability al-
gorithms for finding active paths from J given K that
inspired the Bayes-ball algorithm. Unfortunately, ac-
tive paths are not adequate for gathering requisite in-
formation since they cannot enter clusters of function-
ally determined nodes. The active path algorithms
also must search the entire graphical model to find the
ancestors of K and the nodes functionally determined
by K.

An alternative characterization of the irrelevance rep-
resented by a belief network involves a conversion to
related undirected graphical structures (Lauritzen et
al 1990). Those results could be generalized for deter-
minacy following the approach in (Shachter 1991) but,
due to the nature of the conversion, the undirected ap-
proaches cannot find all nodes irrelevant to J given K
in linear time.

3 The Bayes-Ball Algorithm

This section presents two versions of the Bayes-ball
algorithm, a simpler, preliminary version and a more
refined, final version. The final version determines the
irrelevant and requisite sets for a given inference query
in time linear in the size of the belief network.

Figure 2: The Bayes-ball bounces back and passes
through differently based on the type of node and the
direction from which it came

3.1 Simpler Bayes-Ball

The simpler version of the Bayes-ball algorithm for J
given K sends a bouncing ball to visit nodes in the
belief network, starting from nodes J . Depending on
the type of node and the direction from which the ball
came to visit (from parents; from children), the ball
can pass through the node (from any parent to all chil-

dren; from any child to all parents), bounce back (from
any parent to all parents; from any child to all chil-
dren), or be blocked. This is summarized in Figure 2
in which:

• an unobserved probabilistic node passes balls
through but also bounces back balls from children;

• an observed node bounces back balls from parents
but blocks balls from children; and

• a deterministic unobserved node always passes
balls through.

Algorithm 1 (Simpler Bayes-Ball Algorithm)
The algorithm explores a structured belief network B =
(N,A,F ) with respect to the expression Pr{XJ |XK}.

1. Visit each node in J (as if from one of its chil-
dren).

2. When visiting a node j:

(a) If the visit to j is from a child:

i. If j ∈ K then do nothing;
ii. otherwise, if j ∈ F then visit each of j’s

parents;
iii. otherwise, visit each of j’s parents and

each of j’s children.

(b) If the visit to j is from a parent:

i. If j ∈ K then visit each of j’s parents;
ii. otherwise, visit each of j’s children.

As an example of the simpler Bayes-ball algorithm,
consider the belief network shown in Figure 3a, in
which J = {6} (denoted by the parents of the “ghost”
rounded rectangle) and K = {2, 5} (denoted by shad-
ing). The simpler Bayes-ball algorithm is illustrated in



Figure 3: The simpler and refined versions of the
Bayes-ball algorithm applied to a small belief network.

Figure 3b. Starting from the rounded rectangle, visit
its parent, node 6. From node 6 pass the ball through
to nodes 3 and 5 (and to the children of node 6 if it
had any). Node 5 does not send the ball anywhere,
but node 3 bounces it to its children, nodes 2 and 6,
(and would pass it through to its parents if it had any).
Node 6 has no children to pass to, but node 2 bounces
the ball back to its parents, nodes 1 and 3. In turn,
nodes 1 and node 3 both bounce it back to node 2.
Although the ball will keep bouncing forever, at this
point it has visited all of the nodes it will ever visit
from all of the directions it will ever visit them.

3.2 The Final Bayes-Ball Algorithm

An obvious improvement to this algorithm is to main-
tain a list of nodes to be visited from parents and
from children. Another, more critical improvement is
to only visit the same arc in the same direction once.
(This is not only more efficient, but necessary to termi-
nate the infinite loops.) It is accomplished by marking
the top of a node when the ball is sent to the node’s
parents, marking the bottom of the node when the
ball is sent to the node’s children, and checking an
observed node when it is visited. These marks not
only allow the algorithm to terminate, but they also
record significant results. Returning to the belief net-
work shown in Figure 3a, apply these modifications to
obtain the network shown in Figure 3c. At the start,
node 6 is visited (as if from its child) and it sends the
ball to its parents and children, marking its top and
bottom. Node 5 does not send the ball anywhere, so
it is checked but not marked. Now node 3 is visited
from its child node 6, so it sends the ball to its parents
and children and marks its top and bottom. Node 6
receives the ball from parent node 3 and it would send
it to its children if its bottom were not marked already.
Node 2 receives the ball from parent node 3, sends it
to its parents, and marks its top. Node 1 receives the
ball from child node 2, sends it to its parents and chil-
dren, and marks its top and bottom. Finally node 2
and node 3 receive the ball and recognize that there is
nothing new to do with it.

The Bayes-ball algorithm was run on the belief net-
work queries shown in parts a, c, e, and g of Figure 4

Figure 4: The Bayes-ball algorithm applied to some
small belief networks

to obtain the networks shown in parts b, d, f, and h. In
Figure 4b, nodes 1 and 2 are not visited. In Figure 4d,
nodes 4, 5, and 6 are not visited because observed node
2 will not let the ball pass through, although node 2
does bounce it back to its parents. In Figure 4f, the
ball is passed through nodes 5 and 4, but it is not
passed through node 3, so node 1 is not visited. Fi-
nally, in Figure 4h, the ball is passed through nodes 6,
5, 4, and 2, but because there is no bounce back from
node 1, the deterministic node 2 never passes the ball
through to node 3.

These examples help to illustrate some of the proper-
ties of the Bayes-ball algorithm:

• the node j is visited by the algorithm if and only if
observing xj might change one’s belief about XJ

given XK\{j};

• we need no information about any node which has
not been visited;

• we might need to know what state was observed
for any observed node which is visited;

• the ball bounces back to a parent from a child
only if that child is observed, such as node 2 in
Figure 4d;

• the ball never bounces back to a child from a par-
ent functionally determined by K, such as nodes
1 and 2 in Figure 4h;

• the ball is passed to parents to find requisite infor-
mation and passed to children looking for relevant
observations;

• any node not marked on its bottom is irrelevant
to J given K;



• we might need a conditional probability distri-
bution (or deterministic function) for any node
marked on its top.

Algorithm 2 (Bayes-Ball) The algorithm explores
a structured belief network B = (N,A,F ) with respect
to the expression Pr{XJ |XK} and constructs the sets
of relevant and requisite nodes.

1. Initialize all nodes as neither visited, nor marked
on the top, nor marked on the bottom.

2. Create a schedule of nodes to be visited, initialized
with each node in J to be visited as if from one of
its children.

3. While there are still nodes scheduled to be visited:

(a) Pick any node j scheduled to be visited and
remove it from the schedule. Either j was
scheduled for a visit from a parent, a visit
from a child, or both.

(b) Mark j as visited.

(c) If j /∈ K and the visit to j is from a child:

i. if the top of j is not marked, then mark
its top and schedule each of its parents to
be visited;

ii. if j /∈ F and the bottom of j is not
marked, then mark its bottom and sched-
ule each of its children to be visited.

(d) If the visit to j is from a parent:

i. If j ∈ K and the top of j is not marked,
then mark its top and schedule each of its
parents to be visited;

ii. if j /∈ K and the bottom of j is not
marked, then mark its bottom and sched-
ule each of its children to be visited.

4. The irrelevant nodes, Ni(J |K), are those nodes
not marked on the bottom.

5. The requisite probability nodes, Np(J |K), are
those nodes marked on top.

6. The requisite observation nodes, Ne(J |K), are
those nodes in K marked as visited.

3.3 Bayes-Ball Proofs

The section proves that Bayes-ball properly computes
the irrelevant and requisite sets and does it in sub-
linear time.

Theorem 2 (Bayes-Ball Irrelevance) Given a
structured belief network B = (N,A,F ) and J,K,L ⊆
N , XJ ⊥B XL|XK if and only if L ⊆ Ni(J |K), as de-
termined by the Bayes-Ball algorithm.

Proof: Based on Theorem 1 it is sufficient to show
that a node l will be marked on the bottom if and
only if there is an active path from J to l given K.

First, any node i is or has a descendant inK if and only
if it would always bounce the ball back to its parents
after one of them sent the ball to it, since the bounce
back can only come from an observed descendant.

Second, i is functionally determined by K if and only if
it would never bounce the ball back to its children after
one of them sent the ball to it, since any unobserved
probabilistic ancestor would bounce it back.

Therefore, given any active path from J to l, Bayes-
ball can travel the path (perhaps with the detours just
described) and it will be visiting the children of node l,
either by passing through or bouncing back. Similarly,
if the Bayes-ball is sent from l to its children then there
must be an active path from J to l. 2

Theorem 3 (Bayes-Ball Requisite Sets) Given a
structured belief network B = (N,A, F ), for any
J,K ⊆ N , the Bayes-ball algorithm determines the
requisite probability nodes, Np(J |K), and the requisite
observation nodes, Ne(J |K).

Proof: Whether a node j is visited does not depend at
all on whether it is observed or deterministic, but only
on the properties of other nodes leading to it. If the
algorithm visits an unobserved probabilistic node j,
then it will mark j on the bottom and, by the preced-
ing theorem, j appears relevant to J given K. Thus,
the algorithm will visit node j if and only if, keeping
all other nodes unchanged but changing j to be unob-
served and probabilistic, Xj might be relevant to XJ

given XK .

As a result, the state of an observed node k provides
no information about J given K unless it is visited.
Thus, Ne(J |K) comprises those nodes in K which are
visited during the algorithm.

To determine Np(J |K), add a new observed parent
(a probability distribution/deterministic function) to
every node. These new nodes would not have req-
uisite observations unless they were visited, and this
would occur only when their corresponding children
have been marked on top. 2

The last part of the preceding proof relates to the
flaw in the requisite information algorithm in Geiger
(1990). In that paper, relevance is used to recognize
requisite distributions, but that can introduce uncer-
tainty and eliminate functional determinacy. On the
other hand, in this work, requisite information is based
on the need for observations and thus no spurious un-
certainty is introduced. Bayes-ball is able to gather
both irrelevance and requisite information by recog-
nizing their distinction—visiting parents for requisite
information and visiting children for relevance.

Theorem 4 (Bayes-ball Complexity)
Given a structured belief network B = (N,A, F ),
for any J,K ⊆ N , the Bayes-ball algorithm runs in
O(|N |+ |Av |), where Av are the arcs incident to the
nodes marked during the algorithm. In the worst case,



Figure 5: Informational arcs, separable values, and
decision windows

it is linear time in the size of the graph.

Proof: Each node has to be visited to initialize flags
and to harvest results and then at most once for each
“active” incident arc. Only the active arcs will be vis-
ited, because the algorithm searches locally to deter-
mine whether a node has an observed descendant or is
functionally determined. 2

4 Bayes-Ball for Decisions

The results in Section 3 determining requisite sets
for probabilistic inference can be applied to problems
of decision making under uncertainty (Shachter 1986;
Shachter 1988). In this section, the Bayes-ball algo-
rithm is adapted to determine the requisite informa-
tion for decision problems represented by influence di-
agrams, yielding a new, significantly more efficient and
powerful algorithm.

The influence diagram is a belief network augmented
with rectangular decision nodes, representing vari-
ables under the control of the decision maker, and
rounded rectangular value nodes, representing the cri-
terion whose expectation the decision maker maxi-
mizes to choose among decision alternatives. The deci-
sions, D, are assumed to be ordered in time, d1, . . . , dm,
and the uncertain variables are partitioned into sets
E,W1, . . . ,Wm+1 such that the uncertain variables Wi

are assumed to be observed before decision di but af-
ter decision di−1. Some of the uncertainties, Wm+1,
will not be observed before any of the decisions, while
others, E, have already been observed. We assume
that if there are multiple value nodes in V that they
are related by a separable function, that is, either a
sum or a product (of nonnegative factors). This struc-
ture is illustrated in Figure 5. Implicit in the figure
is the no forgetting assumption that at the time of
any decision, the decision maker will remember all pre-
vious decisions and the uncertain variables known at
the time they were made. These are captured in the
information sets, I(di), for each decision di. It follows

that I(d1) = W1 ∪ E and I(di) = Wi ∪ di−1 ∪ I(di−1)
for i = 2, . . . , m. These information sets are indicated
in the influence diagram by information arcs into the
decision nodes.

Consider the influence diagram shown in Figure 6a
modeling the design of an experiment. The decision
maker seeks to maximize expected Benefit minus Cost.

Figure 6: A design of experiment decision model with
different informational assumptions

Benefit depends on the uncertain variable State and
the decision Act. He has already observed History
which depends on State, and before making the Act
decision, he will observe Experiment, which depends
on both the Design decision and the State. There is
a Cost to the Design decision. This problem is solved
recursively through dynamic programming to deter-
mine an optimal policy, d∗m(xI(dm)) for the latest de-
cision, dm as a function of the information available
at the time of the decision. Only the value nodes
which are descendants of dm are affected by this pol-
icy, Vm = V ∩De(dm) (Heckerman and Shachter 1995;
Shachter and Peot 1992). This policy must satisfy

E{Vm|d∗m(xI(dm)), xI(dm)} = maxdE{Vm|d, xI(dm)}.

This suggests the use of the Bayes-ball algorithm to
determine the requisite sets. The decision dm can be
replaced by the optimal policy to obtain the influence
diagram shown in Figure 6c, in which Act is now a de-
terministic function of the requisite observations, De-
sign, Experiment, and History. At this point, the value
nodes Vm are irrelevant of any earlier decisions given
the requisite observations at the time of decision dm.
So the value for dm−1 can be characterized in terms
of Vm−1 and the requisite observations from the first
step. Continuing with the example, Cost, Design, Ex-
periment, and History are the goals for Design, and the
policy is a function of History as shown in Figure 6e.

Suppose instead that the decision-maker were able to
observe the State before the Act decision, as shown in
Figure 6g. Now, State is the only requisite observed
node before Act, yielding the diagram shown in Fig-



ure 6i. As a result, Cost and State are the goals for
Design as shown in Figure 6k.

The requisite probability nodes for decision i, denoted

N i
p, are those nodes for which conditional probability

distributions (and possible states) might be needed to
evaluate the decision problem starting with decision
i. N0

p is the set of requisite probability nodes for the
entire decision problem.

The requisite observations for decision i, denoted N i
e,

are those nodes which can be observed before decision
i that might be worth observing (and hence for which
the possible states might be needed) in order to evalu-
ate the decision problem starting with decision i. N0

e
is the set of requisite observation nodes before the en-
tire decision problem, assuming that we have observed
nodes E now; if E = ∅ then N0

e = ∅.

Algorithm 3 (Decision Bayes-Ball)
This algorithm constructs the sets of requisite nodes
for an influence diagram with separable value nodes
V , evidence nodes E, and time-ordered decision nodes
D = {d1, . . . , dm}.

1. start with the last decision, dm:

(a) Determine the relevant value nodes, Vm =
V ∩ De(dm). (If there is only one value node
for the problem, it should be in Vm.)

(b) Run the Bayes-ball algorithm on Vm|{dm} ∪
I(dm), ignoring any informational arcs.

(c) If dm is not marked as visited then deci-
sion dm is irrelevant–it has no effect on the
decision-maker’s value.

(d) The requisite observation nodes for decision
dm are the nodes in I(dm) marked as visited,

Nm
e = Ne(Vm|{dm} ∪ I(dm)) ∩ I(dm).

(e) The requisite probability nodes starting with
decision dm are the nodes marked on top,

Nm
p = Np(Vm|{dm} ∪ I(dm)).

2. iterate backwards for each earlier decision di, i =
m− 1, . . . ,1:

(a) Determine the relevant value nodes, Vi =
V ∩ (De(di) \ De(di+1)), ignoring any infor-
mational arcs in determining descendants.

(b) Resume the Bayes-ball algorithm on Vi ∪
N i+1
e |{di}∪I(di), ignoring any informational

arcs.

(c) If di is not marked as visited then decision di
is irrelevant.

(d) The requisite observation nodes for decision
di, N i

e, are those nodes in I(di) marked as
visited.

(e) The requisite probability nodes starting with
decision di, N

i
p, are all of the nodes marked

on top.

3. compute the requisite information at the start of
the decision problem (now) given current observa-
tions E:

(a) Resume the Bayes-ball algorithm on N1
e |E,

ignoring any informational arcs.

(b) The requisite observations needed now, N0
e ,

are those nodes in E marked as visited. (If
E is empty, then no observations are needed
now.)

(c) The requisite probability nodes starting now,
N0
p , are all of the nodes marked on top.

Consider the influence diagram examples shown in Fig-
ure 6. As explained earlier, the left column represents
the influence diagram at each step as decisions are re-
placed by policies for the situations without and with
observation of State before the Act decision. The right
column shows how the Bayes-ball algorithm for de-
cisions is applied sequentially to the original problem
structure. Bayes-ball works efficiently on influence dia-
grams by resuming rather than restarting at each step.
The sets computed by the algorithm are shown in the
following table:

Figure 6 i N i
e N i

p

a/b 2 Design, History, Benefit, History,
Experiment Experiment, State

c/d 1 History above + Cost
e/f 0 History above

g/h 2 State Benefit
i/j 1 History Benefit, Cost,

History, State
k/l 0 History above

Theorem 5 (Decision Bayes-Ball) Given an in-
fluence diagram with separable value nodes and evi-
dence now, Algorithm 3 will determine the requisite
node sets in O(|N |+ |A|), that is, linear time in the
number of nodes and arcs.

Proof: The correctness of the requisite sets follows
from the Bayes-ball algorithm and the decision theory
summarized in this section, so the big question here is
the computational complexity.

There are two issues to be resolved there. First,
the sets of value nodes can be determined in linear
time in the size of the graph. Second, the Bayes-
ball algorithm for each decision can be resumed dur-
ing the algorithm, keeping the previous results. This
works because the information sets are monotone,
E ⊆ {d1} ∪ I(d1) ⊆ . . . ⊆ {dm} ∪ I(dm). Once the
algorithm has been run on Vi ∪ N i+1

e |{di} ∪ I(di), it
is easy to run it on Vi−1 ∪ N i

e|{di−1} ∪ I(di−1). The
nodes ({di} ∪ I(di) \ {di−1} ∪ I(di−1)) = {di} ∪ Wi

are no longer observed, but the previously requisite
observations N i+1

e \ N i
e are now scheduled to receive

messages from their children, so they will now pass
the Bayes-ball through to their parents automatically!
The Bayes-ball sets of nodes visited, marked on the



top, and marked on the bottom, can grow monotoni-
cally as the decisions are visited in reverse order. The
computation of N i

e is still correct, since only the cur-
rently observed visited nodes are included and the
number of node visits is O(|N |+ |A|). 2

5 Conclusions

This paper has introduced a simple and efficient algo-
rithm to compute irrelevant and requisite sets for infer-
ence and decision problems represented as structured
belief networks and influence diagrams. Because these
procedures can be used before states and distributions
are assessed they are quite useful. Although the ef-
ficiency gain over earlier belief network algorithms is
modest (sub linear vs. linear time), the computation
of requisite information is performed at the same time
as irrelevance is determined.

The significant improvement presented here is in
determining requisite information for decision prob-
lems. The new algorithm is linear time instead of
O((number of decisions)(graph size)), and can exploit
separable values.

These algorithms recognize the special properties of
deterministic relationships. Such models are becom-
ing increasingly useful as new developments arise in
causal models (Heckerman and Shachter 1995). An
interesting extension of the deterministic model would
be to represent determinism in more than one assess-
ment order, such as representing when deterministic
relationships are invertible.

Another extension is to apply Bayes-ball to cyclical
networks (Pearl and Dechter 1996). Bayes-ball can be
applied to such networks without any modifications.

Although the algorithm recognizes the full informa-
tion requirements to value decision problems, it can
be modified to recognize some additional efficiencies in
the dimensions of policy. For example, in Figure 6k,
the choice of Design would not depend on History if the
total value were the sum of Cost and Benefit, although
the value derived would indeed depend on History. As
a result we wouldn’t need a probability distribution
for History and State to determine the optimal policy,
but we would need them to value that policy.
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6 Correction

This builds on a seminal paper, ”Identifying Indepen-
dence in Bayesian Networks,” by Dan Geiger, Thomas
Verma, and Judea Pearl which appeared in Networks
(Geiger et al 1990). One of the algorithms in Geiger
(1990) determines the probability distributions re-
quired to answer a given query, but it does not atte-
mopt to determine which deterministic functions and
observations are required. Although Geiger (1990)
makes clear that it is not trying to determine all of
the required information, in this paper I incorrectly
characterize Geiger (1990) as having an ”error” in this
algorithm. That is an unfortunate characterization,
and it came about because I did not examine Geiger
(1990) while preparing this paper. When I did exam-
ine Geiger (1990), I realized my mistake. I know of no
errors in Geiger (1990) at all.


