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ABSTRACT
Recent works in multi-agent systems have identified agent
behaviors that can develop and sustain mutually beneficial
cooperative relationships with like-minded agents and can
resist exploitation from selfish agents. Researchers have
proposed the use of a probabilistic reciprocity scheme that
uses summary information from past interactions to decide
whether or not to honor a request for help from another
agent. This behavior has been found to be close to optimal
in homogeneous groups and outperform exploiters in mixed
groups. A major shortcoming of these experiments, how-
ever, is that the composition of the group in term of agent
behaviors is fixed. We believe that real-life rational agents,
on the contrary, will change their behaviors based on ob-
served performances of different behavioral traits with the
goal of maximizing performance. In this paper, we present
results from experiments on two distinct domains with pop-
ulation groups whose behavioral composition changes based
on the performance of the agents. Based on the experi-
mental results, we identify ecological niches for variants of
exploitative selfish agents and robust reciprocative agents.
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1. INTRODUCTION
With the burgeoning of agent based electronic commerce,

recommender systems, personal assistant agents, etc. it is
becoming increasingly clear that agent systems must inter-
act with a variety of information sources in an open, het-
erogeneous environment. One of the key factors for suc-
cessful agent based systems (ABSs) of the future would be
the capability to interact with other ABSs and humans in
different social and role contexts and over extended peri-
ods of time. Research in societal aspects of agent behaviors
has been relatively scarce. Whereas economic models can
provide a basis for structuring agent interactions [17], other
non-monetary approaches [1, 2, 3, 4, 5, 9, 14] may provide
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effective solutions in certain situations. We assume that
typical real-world environments abound in cooperation pos-
sibilities: situations where one agent can help another agent
by sharing work such that the helping cost of the helper
is less than the cost saving of the helped agent. As agent
system designers we can also define rules of interaction to
increase the likelihood of cooperation possibilities. We are
interested in identifying agent behaviors that allow agents
to take advantage of cooperation possibilities in their envi-
ronments.

The current work is based largely on the work of Sen et
al [14, 15]. They have presented behaviors that promote
cooperation among homogeneous groups and can resist ex-
ploitation by malevolent agents in heterogeneous groups.
Such behaviors can lead to both improved local performance
for individual agents and effective global performance for the
entire system.

A restrictive assumption in this line of work has been that
agents have fixed behaviors. For example, they have as-
sumed that agents with specified behaviors interact repeat-
edly over a sustained period of time and their effectiveness is
calculated as function of the total cost incurred to complete
all assigned tasks. The resultant performance reflects cost
incurred for local tasks, cost incurred to help other agents
with their tasks, and savings obtained from others when help
was received.

A more realistic scenario would be to give an agent the
freedom of choosing from one of several of these behaviors
and to change its behavior as and when it deems appro-
priate. An agent may be prompted to adopt a behavior if
agents using that behavior is seen to be performing better
than others. Such a behavior adoption method leads to an
evolutionary process with a dynamically changing composi-
tion of agent group behaviors. It is not clear a priori if a
behavior that produce highest returns would emerge as the
dominant behavior in a group where agents change behav-
iors regularly based on limited-term performance.

Our goal in this paper is to identify the dominant strate-
gies under different environmental conditions including ini-
tial population composition and the frequencies with which
agents change their behaviors based on observed perfor-
mance. We experiment with a population of agents with
the initial population containing representatives of different
behaviors in specified proportions. Each of these agents are
then assigned some tasks. The cost of executing a task can
be reduced or eliminated if help is obtained from another
agent. After all agents have finished processing their as-
signed tasks, their relative performances are tallied. This



comprises one evaluation period, or generation, of the be-
haviors adopted. The behaviors adopted by the agents in
the next evaluation period is determined by a performance-
proportionate scheme where the probability with which an
agent adopts a strategy increases with the average perfor-
mance of agents employing that strategy in the most recent
evaluation period. Thus, it is likely that more agents are
produced with behaviors that generated above-average per-
formance. This generational scheme is semantically equiva-
lent to every agent periodically selecting its behavior based
on the current relative performance of the set of available
behaviors. This generational approach is akin to work on
identifying “evolutionary stable strategy” [6]. The goal of
that body of work is to use selection pressure to identify
behaviors that can perform dominantly under a variety of
group compositions.

The purpose of our current study is two-fold: (a) to eval-
uate whether conclusions drawn by Sen et al. with fixed be-
havior agents holds up in the more realistic scenarios where
agents change their behavior to more successful ones based
on experience, (b) to identify the environments for which
different behaviors would be dominant in performance. The
latter goal includes the sub-goals of understanding the ef-
fects of (i) initial group compositions and (ii) behavior eval-
uation periods or frequency of behavior reconsideration, on
the emergence of dominant behavior. Whereas Sen et al’s
study tells us what behaviors are dominant in what group
compositions for a fixed number of interactions, it provides
little understanding of how the combination of different group
compositions and evaluation periods affect the choice of the
most effective behavior. Our work identifies such “ecological
niches” for different agent behaviors. In particular, it gives
us a good idea of the minimum number of tasks needed be-
fore reciprocating can be a better choice than exploiting. To
demonstrate the feasibility of this approach we experiment
with two different types of domains: (a) a physical domain
involving delivery of packages, and (b) an information do-
main requiring processing of information tasks.

In the following, we first briefly discuss the motivation
for studying reciprocal behavior in self-interested agents,
identify different variants of selfish and cooperative agent
behaviors, present our experimental framework to evaluate
our conjectures, narrate our experimental results highlight-
ing the non-intuitive results and derive prescriptions for the
adoption of different behaviors based on the expected group
composition and environmental dynamics, and present sum-
mary observations and future research directions.

2. ADAPTATION VIA RECIPROCITY
The social sciences and the economics community have

paid considerable attention to the issue of evolution of co-
operative behavior among a group of self-interested agents.
The social sciences researchers analyze the nature of altru-
ism and the cause for its evolution and sustenance in an-
imal groups [16]. Mathematical biologists and economists
evaluate the rationality of altruistic behavior in groups of
self-interested agents by proposing fitness models that ana-
lyze the success of altruistic individuals and the evolution of
altruistic genetic traits [8, 12]. We do not intend to model
altruistic behavior in animals or humans and hence do not
address the issues raised in the social science or experimental
economics literature on this topic [11].

A significant body of work by mathematical biologists or

economists on the evolution of altruistic behavior deals with
the idealized problem called Prisoner’s dilemma [13] or some
other repetitive, symmetrical, and identical ‘games’. To con-
sider a well-known study in this area, Axelrod demonstrates
that a simple, deterministic reciprocal scheme or the tit-for-
tat strategy is quite robust and efficient in maximizing local
utility [2]. Sen criticizes the simple reciprocative strategy
is not the most appropriate strategy to use in most real-life
situations because most of the underlying assumptions that
motivate its use are violated in these situations [14].

The evaluation framework used by Axelrod considers an
evolving population composition by allowing propagation of
more successful behaviors and elimination of unsuccessful
ones. Sen’s framework, however, contains a static group
composition and relative performance is measured by vary-
ing the total number of interactions of this group of agents.
Though interesting, we believe it represents an incomplete
evaluation of probabilistic reciprocity based behaviors. In
this paper, we evaluate the variants of exploitative and re-
ciprocative behaviors suggested by Sen et al. [15] in a gen-
erational framework as used by Axelrod [2]. This allows us
to see what behaviors emerge to be dominant or are evolu-
tionarily stable.

Though Sen et al. work with heterogeneous groups, these
always have only up to two behavior types. For example
they show that reciprocative agents can resist exploitation
from selfish agents and outperform them in mixed groups.
This, however, does not help us understand if in the pres-
ence of naive or philanthropic agents (who always help when
asked) the selfish would outperform the reciprocative agents.
To understand the dynamics in this more realistic scenarios,
we experiment with mixed groups of exploitative, reciproca-
tive and philanthropic agents.

3. PROBABILISTIC RECIPROCITY
We now present our probabilistic reciprocity framework

for deciding whether or not to help another agent. Each
agent is assigned to carry out T tasks. The jth task assigned
to the ith agent is tij will cost it Cij . However, if agent k
carried out this task together with its own task tkl, the cost
incurred for task tij by agent k is Ckl

ij (no cost is incurred by

agent i). If Cij > Ckl
ij , there exists a cooperation possibility

as agent k can help agent i save Cij by incurring a cost of
only Ckl

ij .
We define Sik and Wik respectively as the cumulative

savings obtained from and extra cost incurred by agent i
from agent k over all of their previous exchanges. Also,
Bik = Sik − Wik is the balance of these exchanges (note
that, in general, Bik �= −Bki).

Sen [14] proposes a probabilistic decision mechanism that
satisfies a set of criteria for choosing when to honor a re-
quest for help that was described at the end of the previous
section. The probability that agent k will carry out task tij

for agent i while it is carrying out its task tkl is given by:

Pr(i, k, j, l) =
1

1 + exp
Ckl

ij
−β∗Ck

avg−Bki

τ

, (1)

where Ck
avg is the average cost of tasks performed by agent

k, and β and τ are constants. This is a sigmoidal probability
function (not a probability distribution) where the probabil-
ity of helping increases as the balance increases and is more
for less costly tasks.
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Figure 1: Probability distribution for accepting re-
quest for cooperation.

A sample probability distribution is presented in Figure 1.
β can be set to a low value to move the probability curve
left (less inclined to cooperate) or to a high value to move
the curve to the right (more inclined to cooperate). Initially,
Bki = 0 for all i and k. At this point the probability that
an agent will help another agent by incurring an extra cost
of β ∗ Ck

avg is 0.5. τ can be used to control the steepness
of the curve. For a very steep curve approximating a step
function, an agent will almost always accept cooperation re-
quests with extra cost less than β ∗ Ck

avg, but will rarely
accept cooperation requests with an extra cost greater than
that value. Another way to consider their role is that β and τ
can be used to choose a cooperation level [10] for the agents.
These are the only two “parameters” in the equation 1 that
can be fine tuned to adjust the level of cooperation. The
other equation variables determine the actual dynamics of
the agent behaviors. The level of cooperation or the inclina-
tion to help another agent is dynamically adapted based on
past interactions with that agent. Note that the sigmoid is
one of several function classes that can be used to represent
a probabilistic reciprocity behavior.

4. SET OF AGENT BEHAVIORS
In this paper we experiemnt with the following basic self-

ish and reciprocative agent types [14]:

Philanthropic agents: Agents that always honor a coop-
eration request irrespective of past experience.

Selfish agents: Agents who ask for help but never return
favors. Selfish agents can thrive on the benevolence of
philanthropic agents.

Reciprocative agents: Agents that use the probabilistic
reciprocity scheme described above.

The variants on these strategies that we have experimented
with are as follows [15]:

Believing reciprocative agents: Agents who use corre-
sponding balances reported by all agents, and not just
their own balances, when deciding whether or not to

help another agent. In place of using Bki in Equa-
tion 1, a believing reciprocative agent k uses

�
j �=i Bji

while calculating the probability of helping agent i.
This variant was designed so that reciprocative agents
can quickly identify and shun the exploitative selfish
agents.

Earned-Trust based reciprocative agents: While eval-
uating a request for help, these agents consider bal-
ances of only those agents with whom they themselves
have favorable balances. In place of using Bki in Equa-
tion 1, a conservatively trusting reciprocative agent k
uses
�

j �=i∧Bkj>0 Bji while calculating the probability

of helping agent i. This behavior is an augmentation of
the believing reciprocative agent and was required to
counter false balance reporting by exploitative agents.

Individual lying selfish agents: These agents exploit the
fact that believing or trusting reciprocative agents use
balances provided by other agents. They reveal false
impressions about other helpful agents to ruin their
reputation. Whereas this behavior is perhaps difficult
to justify for fixed group compositions as used by Sen
et al. it is all the more reasonable when agents can
change behaviors: one can appear to be better than
the rest either by doing well itself or by ruining oth-
ers. When such an agent, j, is asked for its balance
with another agent i, it reveals B′

ji as

B′
ji = C ∗ (−Bji), when Bji > 0

= Bji, otherwise,

where C is a positive constant. Hence, the more an
agent i helps it, the larger the negative balance an
individual selfish agent will report about agent i to
other agents.

Collaborative lying selfish agents: These agents not only
attempt to tarnish the reputation of other helpful agents,
but also collaboratively bolster the reputation of other
selfish agents. When such an agent, j is asked for its
balance with another agent i, it reveals B′

ji given by:

B′
ji = C ∗ (−Bji), when Bji > 0

= P , otherwise

where C is a positive constant as above and P is a
large positive constant.

5. EXPERIMENTAL RESULTS
We performed experiments with two domains: a package

delivery problem [14] and an information processing domain.
In the package delivery problem N agents are assigned to

deliver T packages each. All the packages are picked up for
delivery from a central depot. The package destinations are
located on one of R different radial fins, and at a distance
between 1 and D from the depot. Agents can only move
towards or away from the depot following one of the fins;
they cannot move directly between fins. On arriving at the
depot, an agent is assigned the next package it is to deliver.
At this point, it can ask for help in delivering the package it
is assigned only from another agent currently at the depot
and going to deliver a package on the same fin.

The cost incurred by an agent to deliver one of its pack-
ages individually is double the distance of the delivery point



from the depot. If it carries a package to help another agent,
it incurs one unit of extra cost per unit distance traveled
when it is carrying this extra package up to its own destina-
tion. In addition, if it is overshooting its own destination to
help the other agent, an additional cost measured as double
the distance between the destination of its package and the
destination of the other agent’s package is incurred.

The parameters for the experiments are as follows: N =
100, R = 3, D = 3, τ = 0.75, and β = 2, C = 1, P = 10.
Each of our experiments are run on 10 different randomly
generated data sets, where a data set consists of an ordered
assignment of package deliveries to agents. All the agents
are assigned the same number of deliveries with the same
total delivery cost. The evaluation metric is the average
cost incurred by the agents to deliver all the tasks that they
were assigned and those taken from others while honoring
help requests.

Agent behaviors are randomly initialized according to some
preset distributions. At the end of each evaluation period,
i.e., once the agents have delivered all their assigned tasks
(perhaps with the help of other agents), their total deliv-
ery costs are tallied. Performance of an agent is inversely
proportional to the cost it incurs. New agent behavior as-
signments are made as follows: for each agent i, two agents
are selected proportional to their performance, i.e., the prob-
ability of selecting the jth individual with performance pj

is
pj�N

k=1 pk
. Then, of these two selected agents, the behavior

of the one with higher performance is adopted by agent i1.
This leads to a propagation of successful behaviors or traits.
As a result, if a behavior produces better performance in one
evaluation period compared to other behaviors, we are likely
to see more individuals adopting that behavior in the next
evaluation period. We run this generational process until
the population becomes homogeneous or a fixed number of
evaluation periods (we have used a limit of 20) is reached2.
The behavior in the homogeneous population or the ma-
jority behavior in the case when evaluation period limit is
reached is declared the “winning” or preferred behavior for
the corresponding starting conditions (initial behavior dis-
tribution and the given number of tasks).

We first describe experiments with two types of behav-
iors. In these experiments, the initial percentage of selfish
agents is varied from 10% to 90%. For a given percentage
of selfish agents we ran experiments with different number
of tasks per evaluation period. For small number of tasks,
the selfish behavior will dominate the population since the
agents do not stay ‘on the field’ interacting for sufficient time
and hence reciprocatives fail to identify the exploiters (self-
ish agents). We started these experiments with 10 tasks as-
signed to each agent per evaluation period and increased the

1Selection of the best candidate from a set of randomly se-
lected candidates is known as tournament selection in the
genetic algorithms literature [7]. In our case, the selection
pressure is further increased because the candidate set is not
chosen randomly but proportionate to the fitness of individ-
uals in the population.
2Initially we adopted a purely proportionate selection
scheme without the tournament selection component. In
such cases, the equilibrium population distribution was
mixed, i.e., the dominant population did not completely
eliminate the lesser performing behaviors. We believe such
mixed equilibrium distributions warrants further detailed in-
vestigations. While clearly interesting in its own rights, such
an analysis is beyond the scope of the current paper.
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Figure 2: Tasks required before reciprocative agents
dominate the population in mixed groups of : Re-
ciprocative and Selfish agents (top), Philanthropic,
Reciprocative and Selfish agents (bot).

number of tasks in increments of 10 until the reciprocative
behavior became dominant. The results plotted in Figure 2
(top) shows that as the initial percentage of selfish behav-
iors is increased, it takes more tasks before the reciprocative
strategy evolves and stabilizes to be the dominant strategy.
This result has two implications. First it confirms that Sen’s
conclusion [14] about the reciprocative strategy being domi-
nant do hold in the scenario where agent group composition
evolves based on prior performance of different behaviors.
Secondly, it gives us a more precise understanding of how
many tasks (a measure of evaluation period lengths) are re-
quired before reciprocative behavior can dominate exploita-
tive behavior. Another way to interpret the curves is the fol-
lowing: for a given combination of initial selfish percentage
and a number of tasks to be accomplished, if the correspond-
ing point lies below the curve then exploitative behavior will
prove to be dominant; if the point lies above the curve, re-
ciprocative behavior will be dominant. This interpretation
identifies ecological niches where certain behaviors will come
to dominate other behaviors.

In the same plot (Figure 2 (top)) we also show the cor-
responding curve for a mixed group of selfish and believ-
ing reciprocative agents. We see that the reputation based
believing reciprocity scheme is quickly able to identify ex-
ploiters. Hence the corresponding behavior is found to be
dominant even when most of the initial group are exploiters
and only a few tasks are to delivered.

The next set of experiments are run with mixed groups of
philanthropic, exploitative (selfish), and reciprocative agents
(see Figure 2 (bot)). We varied the initial percentage of phil-
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Figure 3: Variation in percentage of philanthropic,
selfish, and reciprocative agents over two runs.

anthropic agents with the rest of the agents being equally di-
vided between reciprocative and exploitative behaviors. The
question was whether the exploitation of the philanthropic
agents will allow the selfish to increase its percentage early
and enough to dominate the population in the long run.
We observed that the selfish exploited the philanthrop ruth-
lessly to cause its extermination in a few evaluation periods.
Whether or not it got to dominate the population depended
upon the percentage of the population that adopted the self-
ish strategy when the philanthrops became extinct. The ex-
termination of the philanthrops created a run-off between
the selfish and the reciprocative agents. When a significant
percentage of the initial population are philanthrops, the
selfish emerge dominant even for very high number of tasks.
The plot for the believing reciprocative agents in Figure 2
(bot) shows that the believing reciprocative agents are able
to dominate the population even for small number of tasks
per evaluation period for all the different initial philanthrop
percentages.

Though these results provide summary information over
runs, we wanted to understand the dynamics of the popu-
lation over a number of evaluation periods in a single run.
In Figure 3 we plot the variation of group composition over
evaluation periods. Both these plots correspond to initial
philanthrop percentage of 30%. In the plot of Figure 3 (top),
with 650 tasks per agent, the selfish behavior grows to dom-
inate the population. The plot on Figure 3 (bot), with 700
tasks per agent, shows a more interesting phenomena: the
selfish behavior initially dominates but finally loses out to
the reciprocative behavior. This happens partly because the
selfish could not command as high a percentage of the pop-
ulation as in the previous case by the time the philanthropic
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Figure 4: Tasks required before reciprocative agents
dominate the population in mixed groups of : Re-
ciprocative (believing or earned-trust) and Selfish
(individual lying) agents (top), Philanthropic, Re-
ciprocative (believing or earned-trust) and Selfish
(individual lying) agents (bot).

agents die out. The reciprocative agents, then could recu-
perate and eventually dominate the population.

We now summarize observations from experiments with
combinations of individual lying (IL) or collaborative lying
(CL) selfish agents on one hand and believing (B) or earned-
trust (ET) based agents on the other. First, we present com-
parison of IL-B and IL-ET groups. In Figure 4 (top), the
plots for the two compositions are shown with varying ini-
tial selfish percentages when there are no philanthrops in the
agent population. Figure 4 (bot) shows plots for the same
agent compositions with philanthrops introduced in the pop-
ulation. In this later set of plots, for each initial philanthrop
percentage, the rest of the population was equally divided
among the selfish and reciprocatives. Contrary to our ex-
pectations, for smaller selfish and philanthropic percentages,
respectively, the B agents are found to require less tasks to
dominate the population against lying selfish agents when
compared to ET agents. On further analysis of the data,
we found that the earned-trust based agents require a non-
trivial amount of tasks before they earn the trust from each
other and can then mutually identify exploitative agents.
The believing agent believes everyone and avoids this initial
overhead. This naive believing works when few agents are
lying but breaks down completely when a significant portion
of the agents are exploitative liars. The lying selfish dom-
inate against the believing reciprocative, but not against
the earned-trust based exploitative, for arbitrary number of
tasks when they start out in significant majority in the pop-
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ulation. Some of the curves are incomplete in the figure
because, for the corresponding initial selfish or philanthrop
percentages, the reciprocative agents never dominated the
population for the largest number of tasks we experimented
with, viz. 3000.

Similar observations can be made when comparing CL-
B and CL-ET groups (see Figure 5). Actually, the believ-
ing reciprocative agents could never dominate the collabora-
tive lying agents when the initial population contained some
philanthropic agents.

We ran farther set of experiments with an information pro-
cessing domain where tasks of several types were assigned
to agents. Different agents could achieve tasks of different
types with different fixed costs. The agents could hand off a
task to another if the latter could do it with less cost than the
requesting agents. The principal difference with the previ-
ous domain is that in the package delivery domain an agent
could not ask for help when it was “on the road”. This
meant that help-giving behavior influenced the likelihood of
interacting with other agents, and indirectly, the likelihood
of meeting and receiving help from another agent. The in-
formation processing domain decouples the help-giving be-
havior from the opportunity to ask for help. Results from
this domain were qualitatively similar. In Figure 6 we plot
the variation of tasks required for reciprocative agents to
dominate under different initial percentage of philanthrop
agents and in three different combinations of selfish and re-
ciprocative types, viz. CL-B, CL-ET and IL-B. Incomplete
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Figure 6: Tasks required for reciprocative agents to
dominate in the information processing domain.

curves suggest dominance by selfish for higher philanthrop
percentages.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the evolution of variants

of selfish and reciprocative behaviors identified by Sen et
al. [15] in a more realistic scenario where agents change be-
haviors at regular intervals based on observed performance.
Varying initial group composition and the number of tasks
to be executed per evaluation period, the dominant agent
behaviors that we have identified for different environmen-
tal conditions are as follows: (a) collaborative lying for small
number of tasks (likely in real world) or with high initial per-
centage of philanthropic agents (unlikely in real world), and
(b) earned-trust based reciprocation for all other scenarios.
The results reported in this paper corroborate Sen’s prior
work. The significance of this work is the demonstration of
evolutionary stable strategies that emerge in populations of
self-interested agents as the most beneficial strategies un-
der different environmental settings. So, unlike Sen’s pre-
vious work, the agent behaviors in this paper are adaptive,
which is a more realistic and useful model. In addition, these
results make available, for the first time, a clear guideline
to prescribing agent help-giving behavior when estimates of
initial distribution of strategies in the population and the
period of interaction in the group, e.g., the number of task
deliveries in the package delivery domain, are known.

One future goal is to analytically capture the dynamics of
the evolution of agent population. Given a particular group
composition and tasks per evaluation period, we plan to an-
alyze and predict the behavioral composition of the group
over time. We also plan to investigate alternate schemes
for adopting new behaviors, e.g., neighborhood-based rather
than global sampling which is more realistic. Another inter-
esting study will be to verify whether groups or coalitions
evolve among the agents that exhibit mutually complemen-
tary behavior.
Acknowledgments: This work has been supported in part
by an NSF CAREER award IIS-9702672.
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