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ABSTRACT 
Agents guided by synthetic pheromones can imitate the behavior 
of insects in tasks such as path planning. These systems are well 
suited to problems such as path planning for unmanned robotic 
vehicles. We have developed a model for controlling robotic 
vehicles in combat missions using synthetic pheromones. In the 
course of our experimentation, we have identified the need for 
proper tuning of the algorithms to get the desired behavior. We 
briefly describe the synthetic pheromone mechanisms for 
dynamically finding targets and planning safe paths. Genetic 
algorithms for automatically tuning the behavior of the 
pheromone equations are described. 
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1. INTRODUCTION 
Synthetic pheromones have been applied to a number of domains. 
In DARPA’s JFACC program [12], we use pheromones to control 
air combat missions, with special emphasis on unmanned air 
vehicles. In the course of our research, we identified several 
difficulties with generalizing this technique so that human 
commanders could easily apply them under a number of 
battlefield scenarios. We report on recent research that has 
identified promising techniques to address these challenges. This 
report describes pheromone-based movement control (Section 2), 
reviews the two evolutionary mechanisms we have developed for 
tuning these systems (Section 3), and discusses the results 
(Section 4). 

2. SYNTHETIC PHEROMONE 
MECHANISMS 
Agility in military operations requires units to learn of changes in 
opportunities and threats quickly. Missions must be re-planned 
dynamically to take advantage of new information. Funneling 
intelligence into a centralized location that computes a new 

solution is too slow and subject to failure. Ant colonies are able to 
quickly adapt to changing food sources without such 
centralization. They construct networks of paths with pheromones 
(evaporative scent markers) that connect their nests with food 
sources. Mathematically, these networks form minimum spanning 
trees [9], minimizing the energy ants expend in bringing food into 
the nest. This optimal structure emerges from the actions of 
individual ants acting on their environment. 
The potential of insect models for multi-agent coordination and 
control is receiving increasing attention. [13] and [2] outline 
several mechanisms, including pheromones, that lend themselves 
to practical application. [5] and [7] offer theoretical discussions 
with simple applications, and [6] shows how these techniques can 
play a credible game of chess.  
The most mature practical use of pheromone techniques is in 
routing telecommunications packets (e.g. [1] and [10]). 
Application of these techniques to moving physical entities can be 
traced to the Cascade system [11], a self-routing modular material 
handling system. The application of these techniques to routing 
and load balancing is being evaluated in the ESPRIT MASCADA 
project [14]. Steels proposed similar mechanisms for coordinating 
small robots used in exploring remote planets [17]. Dorigo and 
colleagues [4]; [8] have applied these mechanisms to a range of 
optimization problems including the traveling salesperson 
problem and the quadratic assignment problem. 
Pheromone fields are a type of potential gradient. The notion of 
movement guided by a potential gradient has been applied to 
robot navigation [15], which automatically maps from a given 
distribution of targets and obstacles to a movement plan. Many 
different fields are used to represent different classes of targets 
and obstacles.  
We are interested in using a pheromone field to guide unmanned 
robotic vehicles (URV’s) through the battlespace that includes 
targets and threats. In these scenarios, robotic vehicles seek to 
find safe ingress and egress paths to targets that are defended by 
various threats. To be useful in warfighting, a fielded system 
requires four characteristics: 
Diverse.—It must fuse information of various types and from 
various sources, including targets to be approached, threats to be 
avoided, and the presence of other URV’s with whom 
coordination is required.  
Distributed.—Centralized processing of a potential field imposes 
bottlenecks in communications and processing, and presents 
single points of failure. Ideally, the potential field should be 
distributed and stored close to the point it is generated and used.  
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Dynamic.—The battlespace is an uncertain and rapidly changing 
environment, and the methods and architecture used to construct 
and maintain the field must be able to incorporate and react to 
such changes rapidly. 
Easy to Use.—The commander thinks in terms of mission and 
task objectives. He seeks to maximize the objectives obtained and 
minimize the losses while acting within the rules of engagement.  
The architecture described in [12] inspired by insect pheromones 
satisfies the first three requirements, while the research we discuss 
here addresses the fourth. These approaches will eventually allow 
the commander to specify their objectives to the system and the 
system will evolve a solution that dynamically meets those 
objectives.  

2.1 Basic Mechanisms 
Our implementation of synthetic pheromones has four 
components: a distributed network of place agents that maintain 
the pheromone field and perform aggregation, evaporation, and 
diffusion, the Red surrogate agents representing the enemy targets 
and threats, the walkers representing the Blue or friendly URVs, 
and ghosts which wander over the place agents building 
pheromone paths. In JFACC, we tile the physical space with 
hexagons, each representing a place agent with six neighbors but 
in principal both regular and irregular tiling schemes can be 
employed. The underlying mathematics of the pheromone field, 
including critical stability theorems, is described in [3].  
Battlefield intelligence from sensors and reconnaissance activities 
causes the instantiation of Red surrogate agents representing 
known targets and threats. These agents deposit pheromones on 
the places representing their location in the battlespace. The field 
they generate is dynamic since targets and threats can move, new 
ones can be identified, or old ones can disappear or be destroyed. 
A walker agent is associated with one place agent at any given 
time. It can read the current strength of pheromones at that place 
and at each of its neighbors, and can deposit its own pheromones 
into the place. A walker moves from one place to another by 
spinning a roulette wheel whose segments are weighted according 
to this set of strengths. 
The walkers continually send out ghost agents to travel over the 
distributed network of place agents and find the safest, shortest 
path to a target, While walkers move from place to place at the 
speed of the URV they represent, ghost agents move at the speed 
of the network. Ghost agents can also sense and deposit 
pheromones. They look for targets and then build and reinforce a 
pheromone path from the walker to the target. The walker then 
follows the path laid down by the ghost agents to the target. The 
mechanism employed by the ghosts to build paths to targets under 
different scenarios is the subject of this research. 

2.2 Ghost Mechanism 
In our applications, the ghost’s choice function weights the 
various input pheromones to create a single "net pheromone" or 
attractive force for each neighbor that is used in weighting the 
roulette wheel for determining the ghost’s next move. The basic 
pheromone flavors are: 

• RTarget: deposited by the Red surrogate for a target (e.g. 
Red headquarters). 

• RThreat: deposited by the Red surrogate for a threat (e.g., 
Red air defense) 

• GTarget: deposited by a ghost that has encountered a target 
and is returning to the URV. 

• GNest: deposited by a ghost that has left the URV and is 
seeking a target. 

In addition, the ghost may know Dist, an estimate of the distance 
to the target when the target location is known. 
We experimented with several different forms of the equation. 
Manual manipulation of the equation yielded the current form: 

( )( ) ( )( ) βϕβρ
βγθ

αδ +++⋅
+⋅+⋅

++ )1RThreatDistGNest
GTargetRTarget  

Table 1 lists the tunable parameters in the equation and the effect 
that increasing the parameter has on the ghost’s behavior. Though 
this table provides general guidance to the practitioner, in 
practice, the emergent dynamics of the interaction of ghost agents 
with their environment makes it impossible to predict the behavior 
of the ghosts. Thus tuning the parameters of this or any 
pheromone equation becomes a daunting task. Even if a skilled 
practitioner were able to tune the equation by hand, the system 
would still be impractical for end users who don’t think of their 
problem in terms of α, β, and γ. It was this that led us to 
investigate the possibility of using evolutionary methods to tune 
the parameters of the equation. The next section describes the 
results of several evolutionary approaches to tuning the equation. 

3. Evolving the Parameters 
[16] describes a number of approaches that could be taken to 
evolving parameter assignments and presents some preliminary 
results. We consider two approaches here: some simple 
evolutionary strategies and a genetic algorithm. 
In the original JFACC program over a dozen different test 
scenarios were used. Each scenario consisted of a particular 
configuration of targets and threats representing various degrees 
of difficulty for the ghosts. Tests were performed with static 
environments and dynamic environments (Red and Blue units 
mobile) and with complete and incomplete knowledge 
(knowledge of Red forces incomplete and uncertain). No single 
set of parameter values could solve all the test cases. Manual 
tuning was required to find the best set of parameters for each 
scenario. 
For the purposes of the evolutionary experiments, we chose six 
representative static tests with complete knowledge. Figure 1 
shows four of the cases we report here. The shortest safest path is 

Table 1: Tunable Parameters and their Effect on Ghosts 

Parm Effect of Increasing 

α Increases ghost repulsion to threat at longer distances to 
target 

δ Narrows the beam of ghosts moving to a specific target  

ϕ Increases threat avoidance near target 

ρ Increase ghost exploration (by avoiding GhostNest
pheromone) 

θ Increases attraction to RTarget pheromone 

β, γ Avoid discontinuities, offsets null pheromone levels 
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marked along with the distance of that path. Two Targets presents 
two equidistant targets with different strengths (the second target 
is not shown). Gauntlet is a challenging problem since ghosts 
must find the entrance some distance from the target and then 
similarly find their way back out. This problem proved to be 
intractable with conventional potential field methods. The sealed 
gauntlet forces the agents to eventually decide to pierce the threat 
barrier to reach the target. Finally the Distant Target scenario tests 
the ability of the ghosts to find distant targets and then build and 
maintain a stable path over that distance. The other two cases not 
shown were sealed versions of the Two Targets and Distant Target 
scenarios.  

3.1 Evolutionary Strategies 
The first algorithm tested was a simple evolutionary strategy. The 
walker sends out three new ghosts every ten time steps. Ghosts are 
initially created with random values (uniform distribution about a 
mean) for each parameter. Ghosts have a life of 1000 time steps so 
the total population of ghosts reaches a maximum of 300. The 
ghosts that return to the nest after finding a target are placed in a 
queue for the remainder of their life. While there are two or more 
ghosts in the queue, new ghosts are created by randomly selecting 
parameters from two parent ghosts in the queue. Every 100 
choices, a random value is chosen. Parents were either chosen 
from the head of the queue only (labeled “Queue ES”) or from a 
round robin of all the ghosts in the queue (“Round Robin ES”). 
Ghosts that found the shortest paths would remain in the queue 
longer and therefore pass on more of their parameters to offspring. 
The algorithm also included a means to explore values outside the 
initial range of the parameters in case that range was too narrow. 

These experiments were compared to the results achieved when 
all the ghosts used the best set of hand-tuned parameters and 
when all the ghosts were given random parameter settings.  
Despite the simplicity of the algorithm and the lack of accounting 
for the effect of threats, these ghosts performed surprisingly well, 
solving the scenarios correctly in almost every trial. Figure 2 plots 
the level of GTarget pheromone next to the walker for the Two 
Targets test case. This is a measure of the strength of the path and 
the guidance provided by the ghosts to the walker. The 

evolutionary strategies far outperformed the hand-tuned results 
building stronger paths in less time. The round robin was slightly 
better than the queue strategy. In fact the random settings slightly 
outperformed the best hand-tuned result.  
A third evolutionary strategy was developed because the initial 
strategies did not always solve all six configurations nor did they 
take into account threats. In this strategy ghosts are given a 
strength value that is decremented by encounters with threats 
according to the following equation: 

∑
=

j
i d

s 1
 

where dj is the strength of a threat (defending unit) encountered 
by the ghost. The ghosts that return are again placed in a queue 
for the remainder of their life. But the parents are selected from 
the two ghosts in the queue with the highest remaining strength 
(labeled “Strength ES”). With this strategy the ghosts were able to 
correctly and consistently solve all six test cases, but as shown in 
Figure 2, they were slower in developing a strong path.  
Figure 4 plots the GTarget strength of the Strength ES strategy for 
the four cases depicted in Figure 1. The result of one of the 
genetic algorithms described below is also shown for reference. 
Figure 5 shows the strength of the pheromone field at the end of 
the experiment. One can clearly see that a stronger path to the 
target has been formed by the Strength ES strategy than by the 
hand tuned parameters. 
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Figure 1: Four of the test scenarios used 
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Figure 2: Simple evolutionary strategies outperform the best 
hand tuned results on Two Targets 
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All runs were stopped after 40,000 time steps. At the end of the 
run, the Strength ES strategy had not always settled on a single set 
of parameters. There were often several “species” of individuals 
that seemed to evolve out of the population. Figure 3 plots the 
evolution of the α parameter over the course of the experiment for 
each of the four test cases. For Two Targets, only two values 
remained. For the others there were several parameter values at 
the end of the run. The Distant Target shows an initial period of 
random parameter selection followed by a gradual narrowing of 
the number of values of α in the population. The expansion of the 
initial range can also clearly be seen in this plot.  

3.2 Genetic Algorithm 
A genetic algorithm was developed for the ghosts. The first 300 
ghosts are created with random values uniformly distributed over 

the range 0-50. Ghosts are given a fitness value based on their 
ability to find targets and avoid threats. The fitness of a ghost is 
defined by the following equation: 

∑
∑ +

=
j

i
i d

Nt
f  

where ti is the strength of a target found by the ghost and dj is the 
strength of a threat (a defending unit) it encounters. N is 1 until 
the ghost returns back to the walker (the "nest") when it is set to 
10. For our experiments the ghosts sought only one target. The 
target strength was 10. All threats had strength of 5. When the 
ghost returns to the walker it no longer moves, but remains in the 
breeding population for the remainder of its life.  
After the first 300 ghosts have been created, the rest of the ghosts 
are created from a genetic operation. The values for the 
parameters are encoded as a bit string with 16 bits per parameter 
for a chromosome of 128 bits (the upper and lower β were 
encoded separately). Two parents are selected based on a roulette 
wheel selection from all ghosts in the population weighted by 
their fitness. The probability that the ith ghost is selected for 
breeding is ∑ ffi / . A single point crossover operation is used 

to generate the offspring. Single bit random mutations occur with 
a probability of 1%.  
The genetic algorithm was able to solve all six of the test cases, 
though there was one change required on the penalty function for 
encountering threats in order to consistently solve the gauntlet 
problem. The original threat strength of 2 was insufficient to keep 
the ghosts from occasionally building paths that pierced the threat 
barrier. Increasing it to 5 solved the problem.  
Figure 6 shows the GTarget strength next to the walker. The 
genetic algorithm was better at building a stronger path faster than 
the evolutionary strategies in all test cases.  
The genetic algorithm also resulted in different species. These 
species were not always as well defined as the evolutionary 
strategies. The crossover operation and the bit mutation both 

 
Figure 3: Evolution of the alpha parameter resulted in several dominant individuals 
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Figure 4: Final ES performance on four of the test cases 
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generate new parameters values for the GA population. The ES 
must wait for the rare bit mutation before it sees a new parameter 
value appear in the population. Thus the GA explores more values 
and does not settle as quickly onto a few individuals as the ES 
does.  
 
Figure 5 shows the final GTarget pheromone concentration for 
the Two Targets scenario using three methods: hand tuned, 
Strength ES and GA. The Strength ES and GA paths are clearly 
defined at the end of the experiment (and in fact have been well 
established long before that time).  
Table 2 compares the values for each parameter for the three 
primary strategies studied: hand tuned (HT), Strength ES (ES), 
and the genetic algorithm (GA). For the ES and GA columns, the 
values represent those of the dominant species in the final 
population. For the distant target scenario, there was no single 
dominant individual in the final GA population. Surprisingly, 
though both ES and GA found good solutions, there is little 
resemblance in the final set of parameters they have chosen.  

4. DISCUSSION 
The experiments have demonstrated that both the Strength ES and 
the GA strategies were very effective in solving all six of the test 
cases. The GA strategy was slightly more successful at building a 
stronger path more quickly than the Strength ES strategy. Both of 
them were vastly superior to the hand tuned parameter settings. 
The results of the experiments were obtained in a matter of 

minutes, while the hand-tuned parameters took over a month to 
develop.  
It is interesting that the GA population tends to reduce its 
exploratory behavior over time while the ES population still 
shows some wandering (evidenced by the broader deposit of 
pheromone in Figure 5). This is good if the intent is to focus on a 
single target, but it could be a problem if you want to keep 
exploring and looking for other alternatives.  
For example, in the Two Targets dynamic experiment, where the 
walker follows the path laid down by the ghosts, the ghosts 
maintained paths to both targets throughout the run, with the 
stronger of the two paths leading to the stronger of the two targets. 
The second path acted as a “cache” of useful information. If 
something happened with the first target (say the appearance of a 
previously undetected threat in the path, or the destruction of the 
stronger target by some other force) then the ghosts would be able 
to quickly reinforce the path to the secondary target since they 
wouldn’t need to start from scratch. This exploratory behavior is 
an important component of the adaptability of the population and 
the GA strategy would need to be investigated further to 
determine the extent to which it narrows down on a single 
solution excluding other possibilities.  
The GA approach described here is a centralized algorithm. A 
natural extension is to restrict the breeding population to just 
those ghosts that make it back to the walker as in the evolutionary 
strategies. This would keep the computation completely 
decentralized.  
There are some interesting differences between this GA and 

Hand Tuned Strength ES Genetic AlgorithmHand TunedHand Tuned Strength ESStrength ES Genetic AlgorithmGenetic Algorithm

 
Figure 5: Final pheromone strength for the TwoTargets test case for the three main strategies 
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Figure 6: GTarget strength using the genetic algorithm 

Table 2: Comparison of parameter values for the dominant 
species 

Two Targets Gauntlet 
Sealed 

Gauntlet 
Distant 
Target 

Parm HT ES GA HT ES GA HT ES GA HT ES

αααα    10.0 11.1 5.1 10.0 9.5 11.0 3.0 1.0 1.2 10.0 8.0

δδδδ    0.0 1.8 42.1 0.0 1.0 7.9 4.0 6.0 15.3 9.0 25.1

ϕϕϕϕ    1.5 0.8 3.4 1.5 0.2 0.1 1.5 0.1 0.7 4.0 0.4

ρρρρ    1.0 0.1 7.6 1.0 0.2 47.7 3.0 0.3 35.8 1.0 6.9

θθθθ    1.0 0.5 4.7 0.0 0.8 46.6 1.0 0.3 15.3 0.0 15.2

ββββ 0.5 0.2 24.2 0.5 0.1 36.2 0.5 0.7 26.8 0.5 12.8

γγγγ    0.5 0.7 7.1 0.5 0.8 25.3 0.5 0.6 40.0 0.5 18.2
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traditional GA. Normally in GA the entire population is 
synchronized. All breeding occurs at the same time and the entire 
population is replaced in one generation. In our approach, 
breeding occurs in parallel with the evaluation of the ghosts and 
only 1% of the population is replaced in each generation. Since 
the evaluation of an individual can take 100 – 300 time steps (the 
round trip distance with room for wandering) forcing a complete 
evaluation cycle before breeding would probably have slowed 
down the algorithm considerably.  
Evaluation of the fitness of an individual is normally performed 
separately for each individual in the population, or in a 
tournament where individuals from separate populations compete 
with each other. Our GA does neither. The ghosts are part of a 
mixed population. Each of them is depositing pheromones and 
reacting to pheromones in a common environment. Thus, unfit 
individuals are depositing pheromones in the same environment 
being sensed by fit individuals potentially causing the fit 
individuals to score lower than they would otherwise. This fact 
initially concerned us. We weren’t sure whether ES or GA would 
even work under those circumstances. However, this particular 
problem appears to have a number of reasonable solutions (as 
evidenced by Table 2) so the effect of having a mixed population 
did not prevent the algorithms from identifying and rewarding the 
better individuals.  
These results lead to an intriguing idea. Can we use evolutionary 
algorithms to go directly from a statement of a requirement to a 
solution? In our path planning system ideally the commander 
would specify commands such as, “Find the strongest target in 
Sector H and create the shortest path where the probability of kill 
is less than 0.5%”. This information could be fed directly into the 
objective functions that weight the ghosts for selection as parents. 
As ghosts encounter threats they would determine their 
probability of being killed through simple kill probability tables 
that are readily available. If their probability of kill rises above the 
threshold specified, they would die and not participate in 
breeding. Ghosts would be awarded points based on the strength 
of the target they found in the specified sector. Breeding would be 
weighted towards the ghosts that returned with the most points, 
and the least probability of being killed. Their tenure in the 
breeding pool would be determined by their life remaining so that 
ghosts that found shorter paths would breed longer and produce 
more offspring. Now rather than having to figure out how to hand 
tune the parameters to meet the specified constraints and 
objectives, the system evolves the parameters that meet those 
objectives.  

5. CONCLUSION 
The evolutionary algorithms explored in these experiments have 
demonstrated the ability to automatically tune the parameters of a 
pheromone-based path planning system so it can successfully 
function in a number of test scenarios. These solutions 
consistently outperformed the best hand tuned parameters that 
took skilled programmers over a month to develop.  
Fine-grained agent systems exhibit complex behaviors. Though 
they have demonstrated their ability to solve complex problems 
such as path planning, programming the individual behaviors of 
the agents to achieve an overall system behavior has proven to be 
challenging. For this particular system, evolutionary methods 
seem capable of moving us closer to the goal of specifying the 

system behavior and letting the agents evolve their individual 
behavior to reach that goal. 
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