
Sequential Decision Making in Parallel Two-Sided
Economic Search

David Sarne
School of Engineering and Applied Sciences

Harvard University
Cambridge MA 02138 USA

Teijo Arponen
Institute of Mathematics

Helsinki University of Technology
SF-02015 TKK, Finland

ABSTRACT

This paper presents a two-sided economic search model in which

agents are searching for beneficial pairwise partnerships. In each

search stage, each of the agents is randomly matched with several

other agents in parallel, and makes a decision whether to accept a

potential partnership with one of them. The distinguishing feature

of the proposed model is that the agents are not restricted to main-

taining a synchronized (instantaneous) decision protocol and can

sequentially accept and reject partnerships within the same search

stage. We analyze the dynamics which drive the agents’ strategies

towards a stable equilibrium in the new model and show that the

proposed search strategy weakly dominates the one currently in use

for the two-sided parallel economic search model. By identifying

several unique characteristics of the equilibrium we manage to ef-

ficiently bound the strategy space that needs to be explored by the

agents and propose an efficient means for extracting the distributed

equilibrium strategies in common environments.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—

Intelligent agents

General Terms

Algorithms, Economics

Keywords

Two-Sided Search, Matching

1. INTRODUCTION
A two-sided economic search is a distributed mechanism for

forming agents’ pairwise partnerships [5].1 On every stage of the

process, each of the agents is randomly matched with another agent

1
Notice that the concept of ”search” here is very different from the classical

definition of ”search” in AI. While AI search is an active process in which
an agent finds a sequence of actions that will bring it from the initial state
to a goal state, economic search refers to the identification of the best agent
to commit to a partnership with.
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and the two interact bilaterally in order to learn the benefit en-

capsulated in a partnership between them. The interaction does

not involve bargaining thus each agent merely needs to choose be-

tween accepting or rejecting the partnership with the other agent.

A typical market where this kind of two-sided search takes place

is the marriage market [22]. Recent literature suggests various

software agent-based applications where a two-sided distributed

(i.e., with no centralized matching mechanisms) search takes place.

An important class of such applications includes secondary mar-

kets for exchanging unexploited resources. An exchange mecha-

nism is used in those cases where selling these resources is not the

core business of the organization or when the overhead for sell-

ing them makes it non-beneficial. For example, through a two-

sided search, agents, representing different service providers, can

exchange unused bandwidth [21] and communication satellites can

transfer communication with a greater geographical coverage. Two-

sided agents-based search can also be found in applications of buy-

ers and sellers in eMarkets and peer-to-peer applications. The two-

sided nature of the search suggests that a partnership between a pair

of agents is formed only if it is mutually accepted. By forming a

partnership the agents gain an immediate utility and terminate their

search. When resuming the search, on the other hand, a more suit-

able partner might be found however some resources will need to

be consumed for maintaining the search process.

In this paper we focus on a specific class of two-sided search

matching problems, in which the performance of the partnership

applies to both parties, i.e., both gain an equal utility [13]. The

equal utility scenario is usually applicable in domains where the

partners gain from the synergy between them. For example, con-

sider tennis players that seek partners when playing doubles (or

a canoe’s paddler looking for a partner to practice with). Here

the players are being rewarded completely based on the team’s

(rather than the individual) performance. Other examples are the

scenario where students need to form pairs for working together on

an assignment, for which both partners share the same grade, and

the scenario where two buyer agents interested in similar or inter-

changeable products join forces to buy a product together, taking

advantage of discount for quantity (i.e. each of them enjoys the

same reduced price). In all these applications, any two agents can

form a partnership and the performance of any given partnership

depends on the skills or the characteristics of its members. Fur-

thermore, the equal utility scenario can also hold whenever there is

an option for side-payments and the partnership’s overall utility is

equally split among the two agents forming it [22].

While the two-sided search literature offers comprehensive equi-

librium analysis for various models, it assumes that the agents’

search is conducted in a purely sequential manner: each agent lo-

cates and interacts with one other agent in its environment at a time
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[5, 22]. Nevertheless, when the search is assigned to autonomous

software agents a better search strategy can be used. Here an agent

can take advantage of its unique inherent filtering and information

processing capabilities and its ability to efficiently (in compari-

son to people) maintain concurrent interactions with several other

agents at each stage of its search. Such use of parallel interactions

in search is favorable whenever the average cost2 per interaction

with another agent, when interacting in parallel with a batch of

other agents, is smaller than the cost of maintaining one interac-

tion at a time (i.e., advantage to size). For example, the analysis of

the costs associated with evaluating potential partnerships between

service providers reveals both fixed and variable components when

using the parallel search, thus the average cost per interaction de-

creases as the number of parallel interactions increases [21].

Despite the advantages identified for parallel interactions in adja-

cent domains (e.g., in one-sided economic search [7, 16]), a first at-

tempt for modeling a repeated pairwise matching process in which

agents are capable of maintaining interaction with several other

agents at a time was introduced only recently [21]. However, the

agents in that seminal model are required to synchronize their de-

cision making process. Thus each agent, upon reviewing the op-

portunities available in a specific search stage, has to notify all

other agents of its decision whether to commit to a partnership (at

most with one of them) or reject the partnership (with the rest of

them). This inherent restriction imposes a significant limitation on

the agents’ strategic behavior.

In our model, the agents are free to notify the other agents of

their decisions in an asynchronous manner. The asynchronous ap-

proach allows the agents to re-evaluate their strategy, based on each

new response they receive from the agents they interact with. This

leads to a sequential decision making process by which each agent,

upon sending a commit message to one of the other agents, delays

its decision concerning a commitment or rejection of all other po-

tential partnerships until receiving a response from that agent (i.e.,

the agent still maintains parallel interactions in each search stage,

except that its decision making process at the end of the stage is se-

quential rather than instantaneous). The new model is a much more

realistic pairwise model and, as we show in the analysis section, is

always preferred by any single agents participating in the process.

In the absence of other economic two-sided parallel search mod-

els, we use the model that relies on an instantaneous (synchronous)

decision making process [21] (denoted I-DM throughout the rest

of the paper) as a benchmark for evaluating the usefulness of our

proposed sequential (asynchronous) decision making strategy (de-

noted S-DM).

The main contributions of this paper are threefold: First, we for-

mally model and analyze a two-sided search process in which the

agents have no temporal decision making constraints concerning

the rejection of or commitment to potential partnerships they en-

counter in parallel (the S-DM model). This model is a general

search model which can be applied in various (not necessarily soft-

ware agents-based) domains. Second, we prove that the agents’ S-

DM strategy weakly dominates the I-DM strategy, thus every agent

has an incentive to deviate to the S-DM strategy when all other

agents are using the I-DM strategy. Finally, by using an innova-

tive recursive presentation of the acceptance probabilities of differ-

ent potential partnerships, we identify unique characteristics of the

equilibrium strategies in the new model. These are used for supply-

ing an appropriate computational means that facilitates the calcula-

tion of the agents’ equilibrium strategy. This latter contribution is

2
The term ”costs” refers to resources the agent needs to consume for main-

taining its search, such as: self advertisement, locating other agents, com-
municating with them and processing their offers.

of special importance since the transition to the asynchronous mode

adds inherent complexity to the model (mainly because now each

agent needs to evaluate the probabilities of having each other agent

being rejected or accepted by each of the other agents it interacts

with, in a multi-stage sequential process). We manage to extract the

agents’ new equilibrium strategies without increasing the compu-

tational complexity in comparison to the I-DM model. Throughout

the paper we demonstrate the different properties of the new model

and compare it with the I-DM model using an artificial synthetic

environment.

In the following section we formally present the S-DM model.

An equilibrium analysis and computational means for finding the

equilibrium strategy are provided in Section 3. In Section 4 we re-

view related MAS and economic search theory literature. We con-

clude with a discussion and suggest directions for future research

in Section 5.

2. MODEL AND ANALYSIS

We consider an environment populated with an infinite num-

ber of self-interested fully rational agents of different types3. Any

agent Ai can form a partnership with any other agent Aj in the en-

vironment, associated with an immediate perceived utility U(Ai, Aj)
for both agents. As in many other partnership formation models

(see [5, 21]) we assume that the value of U(x, y) (where x and y

are any two agents in the environment) is randomly drawn from

a continuous population characterized with a probability distribu-

tion function (p.d.f.) f(U) and a cumulative distribution function

(c.d.f.) F (U), (0 ≤ U < ∞). The agents are assumed to be ac-

quainted with the utility distribution function f(x), however they

cannot tell a-priori what utility can be gained by a partnership with

any specific agent in their environment. Therefore, the only way by

which an agent Ai can learn the value of a partnership with another

agent Aj , U(Ai, Aj), is by interacting with agent Aj . Since each

agent in two-sided search models has no prior information concern-

ing any of the other agents in its environment, it initiates interac-

tions (i.e., search) with other agents randomly. The nature of the

two-sided search application suggests that the agents are satisfied

with having a single partner, thus once a partnership is formed the

two agents forming it terminate their search process and leave the

environment.

The agents are not limited to interacting with a single potential

partner agent at a time, but rather can select to interact with several

other agents in parallel. We define a search round/stage as the inter-

val in which the agent interacts with several agents in parallel and

learns the utility of forming a partnership with each of them. Based

on the learned values, the agent needs to decide whether to commit

or reject each of the potential partnerships available to it. Com-

mitment is achieved by sending a commit message to the appropri-

ate agent and an agent cannot commit to more than one potential

partnership simultaneously. Declining a partnership is achieved by

sending a reject message. The communication between the agents

is assumed to be asynchronous and each agent can delay its deci-

sion, concerning any given potential partnership, as necessary.4 If

two agents Ai and Aj mutually commit to a partnership between

3
The infinite number of agents assumption is common in two-sided search

models (see [5, 22, 21]). In many domains (e.g., eCommerce) this derives
from the high entrance and leave rates, thus the probability of running into
the same agent in a random match is negligible.
4
Notice that the asynchronous procedure does not eliminate the inherent

structure of the search. The search is still based on stages/rounds where on
each search round the agent interacts with several other agents, except that
now the agent can delay its decision making process (within each search
round) as necessary.
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them, then the partnership is formed and both agents gain the im-

mediate utility U(Ai, Aj) associated with it. If an agent does not

form a partnership in a given search stage, it continues to its next

search stage and interacts with more agents in a similar manner.

Given the option for asynchronous decision making, each indi-

vidual agent, Ai, follows the following procedure:

1: loop

2: Set N (number of parallel interactions for next search round)

3: Locate randomly a set A = {A1, . . . , AN} of agents to in-

teract with

4: Evaluate the set of utilities {U(Ai, A1), . . . , U(Ai, AN )}
5: Set A∗={Aj |Aj∈A and U(Ai, Aj)>U(resume)}
6: Send a reject message to each agent in the set {A \ A∗}
7: while (A∗ �= ∅) do

8: Send a commit message to Aj = argmaxAl∈A∗U(Ai, Al)
9: Remove Aj from A∗

10: Wait for Aj’s decision

11: if (Aj responded ”commit”) then

12: Send ”reject” messages to the remaining agents in A∗

13: Terminate search

14: end if

15: end while

16: end loop

where U(resume) denotes the expected utility of continuing the

search (in the following paragraphs we show that U(resume) is

fixed throughout the search and derives from the agent’s strategy).

In the above algorithm, any agent Ai first identifies the set A∗ of

other agents it is willing to accept out of those reviewed in the cur-

rent search stage and sends a reject message to the rest. Then it

sends a commit message to the agent Aj ∈ A∗ that is associated

with the partnership yielding the highest utility. If a reject message

was received from agent Aj then this agent is removed from A∗

and a new commit message is sent according to the same criteria.

The process continues until either: (a) the set A∗ becomes empty,

in which case the agent initiates another search stage; or (b) a dual

commitment is obtained, in which case the agent sends reject mes-

sages to the remaining agents in A∗. The method differs from the

one used in the I-DM model in the way it handles the commitment

messages: in the I-DM model, after evaluating the set of utilities

(step 4), the agent merely sends instantaneously a commit message

to the agent associated with the greatest utility and a reject message

to all the other agents it interacted with (as a replacement to steps

5-15 in the above procedure). Our proposed S-DM model is much

more intuitive as it allows an agent to ”hold” and possibly exploit

relatively beneficial opportunities even if its first priority partner-

ship is rejected by the other agent. In the I-DM model, on the other

hand, since reject messages are sent alongside the commit message,

simultaneously, a reject message from the agent associated with the

”best” partnership enforces a new search round.

Notice that the two-sided search mechanism above aligns with

most other two-sided search mechanisms in a sense that it is based

on ”random matching” (i.e., in each search round the agent encoun-

ters a random sample of agents). While the maintenance of the ran-

dom matching infrastructure is an interesting research question, it

is beyond the scope of this paper. Notwithstanding, we do wish

to emphasize that given the large number of agents in the environ-

ment and the fact that in MAS the turnover rate is quite substantial

due to the open nature of the environment (and the interoperabil-

ity between environments). Therefore, the probability of ending up

interacting with the same agent more than once, when initiating a

random interaction, is practically negligible.

THEOREM 1. The S-DM agent’s decision making process: (a)

is the optimal one (maximizes the utility) for any individual agent

in the environment; and (b) guarantees a zero deadlock probability

for any given agent in the environment.

Proof:

(a) The method is optimal since it cannot be changed in a way that

produces a better utility for the agent. Since bargaining is not ap-

plicable here (benefits are non-divisible) then the agent’s strategy is

limited to accepting or rejecting offers. The decision of rejecting a

partnership in step 6 is based only on the immediate utility that can

be gained from this partnership in comparison to the expected util-

ity of resuming the search (i.e., moving on to the next search stage)

and is not affected by the willingness of the other agents to commit

or reject a partnership with Ai. As for partnerships that yield a util-

ity greater than the expected utility of resuming the search (i.e., the

partnerships with agents from the set A∗), the agent always prefers

to delay its decision concerning partnerships of this type until re-

ceiving all notifications concerning potential partnerships that are

associated with a greater immediate utility. The delay never results

with a loss of opportunity since the other agent’s decision concern-

ing this opportunity is not affected by agent Ai’s willingness to

commit or reject this opportunity (but rather by the other agent’s

estimation of its expected utility if resuming the search and the re-

jection messages it receives for more beneficial potential partner-

ships). Finally, the agent cannot benefit from delaying a commit

message to the agent associated with the highest utility in A∗, thus

will always send it a commit message.

(b) We first prove the following lemma that states that the prob-

ability of having two partnering opportunities associated with an

identical utility is zero.

LEMMA 2.1. When f is a continuous distribution function, then

lim
y→x

 »Z y

z=x

f(z)dz

–
2
!

= 0.

Proof: since f is continuous and the interval between x and y is
finite, by the intermediate value theorem (found in most calculus
texts) there exists a c between x and y thatZ y

z=x

f(z)dz = f(c)(y − x)

(intuitively, a rectangle with the base from z = x to z = y and
height = f(c) has the same area as the integral on the left hand
side.). Therefore»Z y

z=x

f(z)dz

–
2

= |f(c)|2|y − x|2

When y → x, f(c) stays bounded due to continuity of f , moreover
limy→x f(c) = f(x), hence

lim
y→x

 »Z y

z=x

f(z)dz

–
2
!

= f(x)2 lim
y→x

|y − x|2 = 0. .

An immediate derivative from the above lemma is that no tie-

breaking procedures are required and an agent in a waiting state is

always waiting for a reply from the single agent that is associated

with the highest utility among the agents in the set A∗ (i.e., no other

agent in the set A∗ is associated with an equal utility). A deadlock

can be formed only if we can create a cyclic sequence of agents in

which any agent is waiting for a reply from the subsequent agent in

the sequence. However, in our method any agent Ai will be wait-

ing for a reply from another agent Aj , to which it sent a commit

message, only if: (1) any agent Ak ∈ A, associated with a util-

ity U(Ai, Ak) > U(Ai, Aj), has already rejected the partnership

with agent Ai; and (2) agent Aj itself is waiting for a reply from

agent Al where U(Al, Aj) > U(Aj , Ai). Therefore, if we have a

sequence of waiting agents then the utility associated with partner-

ships between any two subsequent agents in the sequence must in-

crease along the sequence. If the sequence is cyclic, then we have a
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pattern of the form: U(Ai, Al) > U(Al, Aj) > U(Aj , Ai). Since

U(Ai, Al) > U(Aj , Ai), agent Ai can be waiting for agent Aj

only if it has already been rejected by Al (see (1) above). However,

if agent Al has rejected agent Ai then it has also rejected agent

Aj . Therefore, agent Aj cannot be waiting for agent Al to make a

decision. The same logic can be applied to any longer sequence. �

The search activity is assumed to be costly [11, 1, 16] in a way

that any agent needs to consume some of its resources in order to

locate other agents to interact with, and for maintaining the inter-

actions themselves. We assume utilities and costs are additive and

that the agents are trying to maximize their overall utility, defined as

the utility from the partnership formed minus the aggregated search

costs along the search process. The agent’s cost of interacting with

N other agents (in parallel) is given by the function c(N). The

search cost structure is principally a parameter of the environment

and thus shared by all agents.

An agent’s strategy S(A′) → {commit Aj ∈ A′, reject A′′ ⊂
A′, N} defines for any given set of partnership opportunities, A′,

what is the subset of opportunities that should be immediately de-

clined, to which agent to send a commit message (if no pending

notification from another agent is expected) or the number of new

interactions to initiate (N ). Since the search process is two-sided,

our goal is to find an equilibrium set of strategies for the agents.

2.1 Strategy Structure
Recall that each agent declines partnerships based on (a) the part-

nerships’ immediate utility in comparison to the agent’s expected

utility from resuming search; and (b) achieving a mutual commit-

ment (thus declining pending partnerships that were not rejected

in (a)). Therefore an agent’s strategy can be represented by a pair

(N t, xt) where N t is the number of agents with whom it chooses

to interact in search stage t and xt is its reservation value5 (a thresh-

old) for accepting/rejecting the resulting N potential partnerships.

The subset A∗, thus, will include all partnership opportunities of

search stage t that are associated with a utility equal to or greater

than xt. The reservation value xt is actually the expected utility for

resuming the search at time t (i.e., U(resume)). The agent will al-

ways prefer committing to an opportunity greater than the expected

utility of resuming the search and will always prefer to resume the

search otherwise.

Since the agents are not limited by a decision horizon, and their

search process does not imply any new information about the mar-

ket structure (e.g., about the utility distribution of future partnership

opportunities), their strategy is stationary - an agent will not accept

an opportunity it has rejected beforehand (i.e., x1 = x2 = ... = x)

and will use the same sample size, N1 = N2 = ... = N , along its

search.

2.2 Calculating Acceptance Probabilities
The transition from instantaneous decision making process to a

sequential one introduces several new difficulties in extracting the

agents’ strategies. Now, in order to estimate the probability of be-

ing accepted by any of the other agents, the agent needs to recur-

sively model, while setting its strategy, the probabilities of rejec-

tions other agents might face from other agents they interact with.

In the following paragraphs we introduce several complementary

definitions and notations, facilitating the formal introduction of the

acceptance probabilities. Consider an agent Ai, using a strategy

(N, xN ) while operating in an environment where all other agents

5
Notice the reservation value used here is different from a reservation price

concept (that is usually used as buyers’ private evaluation). The use of
reservation-value based strategies is common in economic search models
[21, 17].

are using a strategy (k, xk). The probability that agent Ai will

receive a commitment message from agent Aj it interacted with

depends on the utility associated with the potential partnership be-

tween them, x. This probability, denoted by Gk(x) can be calcu-

lated as:6

Gk(x) =

8><
>:

„
1 −

Z
∞

y=x

f(y)Gk(y)dy

«k−1

if x ≥ xk

0 otherwise.

(1)

The case where x < xk above is trivial: none of the other agents

will accept agent Ai if the utility in such a partnership is smaller

than their reservation value xk. However even when the partner-

ship’s utility is greater or equal to xk, commitment is not guaran-

teed. In the latter scenario, a commitment message from agent Aj

will be received only if agent Aj has been rejected by all other

agents in its set A∗ that were associated with a utility greater than

the utility of a partnership with agent Ai.

The unique solution to the recursive Equation 1 is:

Gk(x) =

8>>>>><
>>>>>:

“
1+(k−2)

R
∞

y=x
f(y)dy

” 1−k

k−2
, k>2, x≥xk,

exp(−
R
∞

y=x
f(y)dy), k=2, x≥xk,

1, k=1, x≥xk

0, x < xk.

(2)

Notice that as expected, a partnership opportunity that yields the

maximum mutual utility is necessarily accepted by both agents, i.e.,

limx→∞ Gk(x) = 1. On the other hand, when the utility associ-

ated with a potential partnership opportunity is zero (x = 0) the

acceptance probability is non-negligible:

lim
x→0

Gk(x) = (k − 1)
1−k

k−2 (3)

This non-intuitive result derives from the fact that there is still a

non-negligible probability that the other agent is rejected by all

other agents it interacts with.

2.3 Setting the Agents’ Strategies
Using the function Gk(x), we can now formulate and explore

the agents’ expected utility when using their search strategies. Con-

sider again an agent Ai that is using a sample of size N while all

other agents are using a strategy (k, xk). We denote by RN (x)
the probability that the maximum utility that agent Ai can be guar-

anteed when interacting with N agents (i.e., the highest utility to

which a commit message will be received) is at most x. This can be

calculated as the probability that none of N agents send agent Ai a

commit message for a partnership associated with a utility greater

than x:

RN (x) =
“
1 −

Z
∞

max(x,xk)
f(y)Gk(y)dy

”N
(4)

Notice that RN (x) is in fact a cumulative distribution function, sat-
isfying: limx→∞ RN (x) = 1 and dRN (x)/dx > 0 (the function
never gets a zero value simply because there is always a positive
probability that none of the agents commit at all to a partnership
with agent Ai). Therefore, the derivative of the function RN (x),
denoted rN (x), is in fact the probability distribution function of the
maximum utility that can be guaranteed for agent Ai when sam-
pling N other agents:

rN (x) =
dRN (x)

dx
=

8<
:

Nf(x)Gk(x)
N+k−2

k−1 , x ≥ xk

0, x < xk

(5)

6
The use of the recursive Equation 1 is enabled since we assume that the

number of agents is infinite (thus the probability of having an overlap be-
tween the interacting agents and the affect of such overlap on the probabil-
ities we calculate become insignificant).
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This function rN (x) is essential for calculating VN (xN ), the ex-

pected utility of agent Ai when using a strategy (N, xN ), given the

strategy (k, xk) used by the other agents:

VN (xN )=

Z
∞

y=max(xN ,xk)
yrN (y)dy+

“
1−

Z
∞

y=max(xN ,xk)
rN (y)dy

”
VN (xN ) − c(N) (6)

The right hand side of the above equation represents the expected

utility of agent Ai from taking an additional search stage. The first

term represents the expected utility from mutual commitment sce-

narios, whereas the second term is the expected utility associated

with resuming the search (which equals VN (xN ) since nothing has

changed for the agent). Using simple mathematical manipulations

and substituting rN (x), Equation 6 transforms into:

VN (x) =

R
∞

y=max(x,xk) yNf(y)Gk(y)
N+k−2

k−1 dy − c(N)

R
∞

y=max(x,xk) Nf(y)Gk(y)
N+k−2

k−1 dy

(7)

and further simplified into:

VN (x) = max(x, xk) +

Z
∞

max(x,xk)
(1 − Gk(y)

N

k−1 )dy − c(N)

1 − Gk(max(x, xk))
N

k−1

(8)

Equation 8, allows us to prove some important characteristics of

the model as summarized in the following Theorem 2.

THEOREM 2. When other agents use strategy (k, xk):

(a) An agent’s expected utility function, VN (xN ), when using a

strategy (N, x), is quasi concave in x with a unique maximum,

obtained for the value xN satisfying:

VN (xN ) = xN (9)

(b) The value xN satisfies:

c(N) =
`
max(xN , xk) − xN

´`
1 − Gk(xk)

N

k−1
´
+

+

Z
∞

max(xN ,xk)
(1 − Gk(y)

N

k−1 )dy (10)

The proof is obtained by deriving VN (xN ) in Equation 8 and set-

ting it to zero. After applying further mathematical manipulations

we obtain (9) and (10).

Both parts of Theorem 2 can be used as an efficient means for

extracting the optimal reservation value xN of an agent, given the

strategies of the other agents in the environment and the number

of parallel interactions it uses. Furthermore, in the case of com-

plex distribution functions where extracting xN from Equation 10

is not immediate, a simple algorithm (principally based on binary

search) can be constructed for calculating the agent’s optimal reser-

vation value (which equals its expected utility, according to 9), with

a complexity O(log( x̂
ρ
)), where ρ is the required precision level for

xN and x̂ is the solution to:
R

∞

y=x̂
yNf(y)F (y)N−1dy = c(N).

Having the ability to calculate xN , we can now prove the follow-

ing Proposition 2.1.

PROPOSITION 2.1. An agent operating in an environment where

all agents are using a strategy according to the instantaneous par-

allel search equilibrium (i.e., according to the I-DM model [21])

can only benefit from deviating to the proposed S-DM strategy.

Sketch of proof: For the I-DM model the following holds [21]:

c(N) =
N

2N − 1

Z
∞

y=x
I−DM

N

(1 − F (y)2N−1)dy (11)

We apply the methodology used above in this subsection for con-

structing the expected utility of the agent using the S-DM strategy

as a function of its reservation value, assuming all other agents are

using the I-DM search strategy. This results with an optimal reser-

vation value for the agent using S-DM, satisfying:

c(N) =

Z
∞

y=x
S−DM

N

(1 − (1 −

1

N
+

F (y)N

N
)N )dy (12)

Finally, we prove that the integrand in Equation 11 is smaller than

the integrand in Equation 12. Given the fact that both terms equal

c(N), we obtain xS−DM
N > xI−DM

N and consequently (according

to Theorem 2) a similar relationship in terms of expected utilities.

Figure 1 illustrates the superiority of the proposed search strat-

egy S-DM, as well as the expected utility function’s characteris-

tics (as reflected in Theorem 2). For comparative reasons we use

the same synthetic environment that was used for the I-DM model

[21]. Here the utilities are assumed to be drawn from a uniform

distribution function and the cost function was taken to be c(N) =
0.05 + 0.005N . The agent is using N = 3 while other agents

are using k = 25 and xk = 0.2. The different curves depict the

expected utility of the agent as a function of the reservation value,

x, that it uses, when: (a) all agents are using the I-DM strategy

(marked as I-DM); (b) the agent is using the S-DM strategy while

the other agents are using the I-DM strategy (marked as I-DM/S-

DM); and (c) all agents are using the S-DM strategy (marked as

S-DM). As expected, according to Equation 8 and Theorem 2, the

agent’s expected utility remains constant until its reservation value

exceeds xk. Then, it reaches a global maximum when the reserva-

tion value satisfies VN (x) = x. From the graph we can see that the

agent always has an incentive to deviate from the I-DM strategy to

S-DM strategy (as was proven in Proposition 2.1).
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Figure 1: The expected utility as a function of the reservation

value used by the agent

3. EQUILIBRIUM DYNAMICS
Since all agents are subject to similar search costs, and their per-

ceived utilities are drawn from the same distribution function, they

all share the same strategy in equilibrium. A multi-equilibria sce-

nario may occur, however as we discuss in the following paragraphs

since all agents share the same preferences/priorities (unlike, for

example, in the famous ”battle of the sexes” scenario) we can al-

ways identify which equilibrium strategy will be used.

Notice that if all agents are using the same sample size, N , then

the value xN resulting from solving Equation 10 by substituting

k = N and xk = xN is a stable reservation value (i.e., none of the

agents can benefit from changing just the value of xN ).

An equilibrium strategy (N, xN ) can be found by identifying an

N value for which no single agent has an incentive to use a different

number of parallel interactions, k (and the new optimal reservation
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value that is associated with k according to Equation 10). While

this implies an infinite solution space, we can always bound it us-

ing Equations 8 and 10. Within the framework of this paper, we

demonstrate such a bounding methodology for the common case

were c(N) is linear7 or convex, by using the following Theorem 3.

THEOREM 3. When c(N) is linear (or convex), then: (a) When

all other agents sample k potential partners over a search round,

if an agent’s expected utility of sampling k + 1 potential partners,

Vk+1(xk+1), is smaller than Vk(xk), then the expected utility when

sampling N potential partners, VN (xN ), where N > k+1, is also

smaller than Vk(xk). (b) Similarly, when all other agents sample

k potential partners over a search round, if an agent’s expected

utility of using k − 1 potential partners, Vk−1(xk−1), is smaller

than the expected utility when using k potential partners, Vk(xk),

then the expected utility when using N potential partners, where

N < k − 1, is also smaller than Vk(xk).

Proof: Let us use the notation ci for c(i). Since Vk(xk) = xk ∀k

(according to Equation 9), the claims are: (a) if xk+1 < xk then

xN < xk for all N ≥ k + 1, and (b) if xk−1 < xk then xN < xk

for all N ≤ k − 1.

(a) We start by proving that if xk+1 < xk then xk+2 < xk.

Assume otherwise, i.e., xk+1 < xk and xk+2 > xk. Therefore,

according to Equation 10, the following holds:

0 < ck+2 − 2ck+1 + ck <

Z
∞

xk+2

(1 − Gk(y)
k+2

k−1 )dy

− 2

Z
∞

xk

(1 − Gk(y)
k+1

k−1 )dy +

Z
∞

xk

(1 − Gk(y)
k

k−1 )dy

where the transition to inequality is valid since c(i) is convex. Since

the assumption in this proof is that xk+2 > xk then the above can

be transformed into:

Z
∞

xk

“
2Gk(y)

k+1

k−1 − Gk(y)
k+2

k−1 − Gk(y)
k

k−1

”
dy > 0 (13)

Now notice that the integrated term is actually −Gk(y)
k

k−1

`
1−

Gk(y)
1

k−1

´2
which is obviously negative, contradicting the initial

assumption, thus if xk+1 < xk then necessarily xk+2 < xk.

Now we need to prove the same for any xk+j . We will prove

this in two steps: first, if xk+i < xk then xk+2i < xk. Second, if

xk+i < xk and xk+i+1 < xk, then xk+2i+1 < xk. Together these

constitute the necessary induction arguments to prove the case (a).

We start with the even case, using a similar methodology: Assume

otherwise, i.e., xk+l < xk ∀l = 1, ..., j − 1 and xk+2i > xk.

According to Equation 10, and the fact that c(i) is convex, the fol-

lowing holds:

Z
∞

xk

“
2Gk(y)

k+i

k−1 − Gk(y)
k+2i

k−1 − Gk(y)
k

k−1

”
dy > 0 (14)

And again the integrand is actually −Gk(y)
k

k−1

`
1−Gk(y)

i

k−1

´2

which is obviously negative, contradicting the initial assumption,

thus xk+2i < xk.

As for the odd case, we use Equation 10 once for k + i + 1
parallel interactions and once for k + 2i + 1. From the convexity

of ci, we obtain: ck+2i+1 − ck+i − ck+i+1 + ck > 0, thus:

Z
∞

xk

`
Gk(y)

k+i

k−1 +Gk(y)
k+i+1

k−1 −Gk(y)
k+2i+1

k−1 −Gk(y)
k

k−1
´
dy>0 (15)

7
A linear cost function is mostly common in agent-based two-sided search

applications, since often the cost function can be divided into fixed costs
(e.g. operating the agent per time unit) and variable costs (i.e., cost of pro-
cessing a single interaction’s data).

This time the integrated term in Equation 15 can be re-written as

Gk(y)
k

k−1 (1 − Gk(y)
i

k−1 )(Gk(y)
i+1

k−1 − 1) which is obviously

negative, contradicting the initial assumption, thus xk+i+1 < xk.

Now using induction one can prove that if xk+1 < xk then

xk+i < xk. This concludes part (a) of the proof.

The proof for part (b) of the theorem is obtained in a similar

manner. In this case: ck − 2ck−i + ck−2i > 0 and ck − ck−i−1 −

ck−i + ck−2i−1 > 0.

The above theorem supplies us with a powerful tool for elimi-

nating non-equilibrium N values. It suggests that we can check the

stability of a sample size N and the appropriate reservation value

xN simply by calculating the optimal reservation values of a sin-

gle agent when deviating towards using samples of sizes N − 1
and N + 1 (keeping the other agents with strategy (N, xN )). If

both the appropriate reservation values associated with the two lat-

ter sample sizes are smaller than xN then according to Theorems

3 the same holds when deviating to any other sample size k. The

above process can be further simplified by using VN+1(xN ) > xN

and VN−1(xN ) > xN as the two elimination rules. This derives

from Theorem 3 and the properties of the function VN (x) found in

Theorem 2.

Notice that a multi-equilibria scenario may occur, however can

easily be resolved. If several strategies satisfy the stability condi-

tion defined above, then the agents will always prefer the one as-

sociated with the highest expected utility. Therefore an algorithm

that goes over the different N values and checks them according

to the rules above can be applied, assuming that we can bound the

interval for searching the equilibrium N . The following Theorem

4 suggests such an upper bound.

THEOREM 4. An upper bound for the equilibrium number of

partners to be considered over a search round is the solution of the

equation:

A(N) = c(N) (16)

provided A(N − 1) > c(N − 1), where we denote,

A(N) :=

Z
∞

y=0
yNf(y)Gk(y)

N+k−2

k−1 dy.

Proof: We denote:

A(N, x) =

Z
∞

y=x

yNf(y)Gk(y)
N+k−2

k−1 dy

so that A(N) = A(N, 0). From Equation 7:

VN (x) =
A(N, x) − c(N)

N
R
∞

x
f(y)Gk(y)bdy

=
A(N, x) − c(N)

positive
,

Clearly A(N) ≥ A(N, x)∀x since the integrand is positive. Hence

if A(N)− c(N) < 0, then A(N, x)− c(N) < 0∀x and VN (x) < 0∀x.

Next we prove that if A(N)−c(N) gets negative, it stays negative.

Recalling that for any g(y):

d

dN
(g(y)b(N)) = g(y)b(N) log(g(y))

db

dN

we get:

A′′(N) =
−1

(k − 1)2

Z
∞

0
Gk(y)

N

k−1 (log Gk(y))2dy

which is always negative, since the integrand is nonnegative. There-

fore A(N) is concave. Since c(N) is convex, −c(N) is con-

cave, and a sum of concave functions is concave, we obtain that
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A(N) − c(N) is concave. This guarantees that once the con-

cave expression A(N) − c(N) shifts from a positive value to a

negative one (with the increase in N ), it cannot become positive

again. Therefore, having N∗ such that A(N∗) = c(N∗), and

A(N∗∗) > c(N∗∗) for some N∗∗ < N∗, is an upper bound for N ,

i.e., VN (x) < 0 ∀N ≥ N∗. The condition we specify for N∗∗ is

merely for ensuring that VN is switching from a positive value to a

negative one (and not vice versa) and is trivial to implement.

Given the existence of the upper bound, we can design an al-

gorithm for finding the equilibrium strategy (if one exists). The

algorithm extracts the upper bound, N̂ , for the equilibrium num-

ber of parallel interactions according to Theorem 4. Out of the set

of values satisfying the stability condition defined above, the algo-

rithm chooses the one associated with the highest reservation value

according to Equation 10. This is the equilibrium associated with

the highest expected utility to all agents according to Theorem 2.
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Figure 2: The incentive to deviate from strategy (N, xN )

The process is illustrated in Figure 2 for an artificial environment

where partnerships’ utilities are associated with a uniform distribu-

tion. The cost function used is c(N) = 0.2 + 0.02N . The graph

depicts a single agent’s expected utility when all other agents are

using N parallel interactions (on the horizontal axis) and the appro-

priate reservation value xN (calculated according to Equation 10).

The different curves depict the expected utility of the agent when

it uses a strategy: (a) (N, xN ) similar to the other agents (marked

as VN (xN )); (b) (N + 1, xN ) (marked as VN+1(xN )); and (c)

(N − 1, xN ) (marked as VN−1(xN )). According to the discussion

following Theorem 3, a stable equilibrium satisfies: VN (xN ) >

max{VN+1(xN ), VN−1(xN )}. The strategy satisfying the latter

condition in our example is (9, 0.437).

4. RELATED WORK
The two-sided economic search for partnerships in AI literature

is a sub-domain of coalition formation8. While coalition forma-

tion models usually consider general coalition-sizes [24], the part-

nership formation model (often referred as matchmaking) consid-

ers environments where agents have a benefit only when forming a

partnership and this benefit can not be improved by extending the

partnership to more than two agents [12, 23] (e.g., in the case of

buyers and sellers or peer-to-peer applications). As in the general

8
The use of the term ”partnership” in this context refers to the agreement

between two individual agents to cooperate in a pre-defined manner. For
example, in the buyer-seller application a partnership is defined as an agreed
transaction between the two-parties [9].

coalition formation case, agents have the incentive to form part-

nerships when they are incapable of executing a task by their own

or when the partnership can improve their individual utilities [14].

Various centralized matching mechanisms can be found in the lit-

erature [6, 2, 8]. However, in many MAS environments, in the

absence of any reliable central matching mechanism, the matching

process is completely distributed.

While the search in agent-based environments is well recognized

to be costly [11, 21, 1], most of the proposed coalition formation

mechanisms assume that an agent can scan as many partnership

opportunities in its environment as needed or have access to central

matchers or middle agents [6]. The incorporation of costly search

in this context is quite rare [21] and to the best of our knowledge, a

distributed two-sided search for partners model similar to the S-DM

model has not been studied to date.

Classical economic search theory ([15, 17], and references therein)

widely addresses the problem of a searcher operating in a costly en-

vironment, seeking to maximize his long term utility. In these mod-

els, classified as one-sided search, the focus is on establishing the

optimal strategies for the searcher, assuming no mutual search ac-

tivities (i.e., no influence on the environment). Here the sequential

search procedure is often applied, allowing the searcher to investi-

gate a single [15] or multiple [7, 19] opportunities at a time. While

the latter method is proven to be beneficial for the searcher, it was

never used in the ”two-sided” search models that followed (where

dual search activities are modeled) [22, 5, 18]. Therefore, in these

models, the equilibrium strategies are always developed based on

the assumption that the agents interact with others sequentially (i.e.,

with one agent at a time). A first attempt to integrate the parallel

search into a two-sided search model is given in [21], as detailed in

the introduction section.

Several of the two-sided search essences can be found in the

strategic theory of bargaining [3] - both coalition formation and

matching can be represented as a sequential bargaining game [4]

in which payoffs are defined as a function of the coalition structure

and can be divided according to a fixed or negotiated division rule.

Nevertheless, in the sequential bargaining literature, most emphasis

is put on specifying the details of the sequential negotiating process

over the division of the utility (or cost) jointly owned by parties or

the strategy the coalition needs to adopt [20, 4]. The models pre-

sented in this area do not associate the coalition formation process

with search costs, which is the essence of the analysis that eco-

nomic search theory aims to supply. Furthermore, even in repeated

pairwise bargaining [10] models the agents are always limited to

initiating a single bargaining interaction at a time.

5. DISCUSSION AND CONCLUSIONS
The phenomenal growth evidenced in recent years in the number

of software agent-based applications, alongside the continuous im-

provement in agents’ processing and communication capabilities,

suggest various incentives for agents to improve their search per-

formance by applying advanced search strategies such as parallel

search. The multiple-interactions technique is known to be bene-

ficial for agents both in one-sided and two-sided economic search

[7, 16, 21], since it allows the agents to decrease their average cost

of learning about potential partnerships and their values. In this

paper we propose a new parallel two-sided search mechanism that

differs from the existing one in a sense that it allows the agents

to delay their decision making process concerning the acceptance

and rejection of potential partnerships as necessary. This, in com-

parison to the existing instantaneous model [21] which force each

agent to make a simultaneous decision concerning each of the po-

tential partnerships revealed to it during the current search stage.
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As discussed throughout the paper, the new method is much more

intuitive to the agent than the existing model - an agent will always

prefer to keep all options available. Furthermore, as we prove in

the former sections, an agent’s transition to the new search method

always results with a better utility.

As we prove in Section 2, in spite of the transition to a sequential

decision making, deadlocks never occur in the proposed method as

long as all agents use the proposed strategies. Since our analysis is

equilibrium-based, a deviation from the proposed strategies is not

beneficial. Similarly, we show that a deviation of a single agent

(back) to the instantaneous decision making strategy is not bene-

ficial. The only problem that may arise in the transition from an

instantaneous to sequential decision making is when an agent fails

(technically) to function (endlessly delaying the notification to the

agents it interacted with). While equilibrium analysis normally do

not consider malfunction as a legitimate strategy, we do wish to em-

phasize that the ”malfunctioning agent” problem can be resolved

by using a simple timeout for receiving responses and skipping this

agent in the sequential decision process if the timeout is exceeded.

Our analysis covers all aspects of the new two-sided search tech-

nique, from individual strategy construction throughout the dynam-

ics that lead to stability (equilibrium). The difficulty in the extrac-

tion of the agents’ equilibrium strategies in the new model derives

from the need to recursively model, while setting an agent’s strat-

egy, the rejection other agents might face from other agents they

interact with. This complexity (that does not exist in former mod-

els) is resolved by the introduction of the recursive function Gk(x)
in Section 2. Using the different theorems and propositions we

prove, we proffer efficient tools for calculating the agents’ equi-

librium strategies. Our capabilities to produce an upper bound for

the number of parallel interactions used in equilibrium (Theorem 4)

and to quickly identify (and eliminate) non-equilibrium strategies

(Theorem 3) resolves the problem of the computational complexity

associated with having to deal with a theoretically infinite strategy

space.

While the analysis we present is given in the context of software

agents, the model we suggest is general, and can be applied to any

two-sided economic search environment where the searchers can

search in parallel. In particular, in addition to weakly dominating

the instantaneous decision making model (as we prove in the anal-

ysis section) the proposed method weakly dominates the purely se-

quential two-sided search model (where each agent interacts with

only one other agent at a time) [5]. This derives from the fact that

the proposed method is a generalization of the latter (i.e., in the

worst case scenario, the agent can interact with one other agent at

a time ”in parallel”).

Naturally the attempt to integrate ”search theory” techniques into

day-to-day applications brings up the applicability question. Justi-

fication and legitimacy considerations for this integration were dis-

cussed in the wide literature we refer to throughout the paper. The

current paper is not focused on re-arguing applicability, but rather

on the improvement of the the core two-sided search model. We

see great importance in future research that will combine bargain-

ing as part of the interaction process. We believe such research can

result in many rich variants of our two-sided search model.
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