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Abstract

In this paper we analyze the process of allocating tasks
to self-interested agents in uncertain changing open en-
vironments. The allocator in our model is responsible
for the performance of dynamically arriving tasks using
a second price reverse auction as the allocation protocol.
Since the agents are self-interested (i.e. each agent at-
tempts to maximize its own revenue), previous models
concerning cooperative agents aiming for a joint goal
are not applicable. Thus the main challenge is to iden-
tify a set of equilibrium strategies - a stable solution
where no agent can benefit from changing its strategy
given the other agents’ strategies - for any specific en-
vironmental settings. We formulate the model and dis-
cuss the difficulty in extracting the agents’ equilibrium
strategies directly from the model’s equations. Con-
sequently we propose an efficient algorithm to accu-
rately approximate the agents’ equilibrium strategies. A
comparative illustration through simulation of the sys-
tem performance in a closed and open environments is
given, emphasizing the advantage of the allocator oper-
ating in the latter environment, reaching results close to
those obtained by a central enforceable allocation.

Introduction
Allocating tasks to agents in Multi-Agent Systems (MAS)
is a fundamental problem that has attracted the attention of
many authors in the field of AI. Obviously, the best allo-
cation (given any efficiency criteria) can be reached when a
non-computational bounded allocator assigns tasks to agents
it fully controls, while having complete information con-
cerning tasks and and the agents’ performance capabili-
ties. Nevertheless, since such a scenario is principally non-
realistic, many mechanisms have been suggested for enhanc-
ing the task allocation process in environments where agents
are not necessarily cooperative (Vulkan & Jennings 2000)
or when a centralized mechanism is infeasible due to uncer-
tainty, incomplete information, communication costs, com-
putational complexities, etc. (Shehory & Kraus 1998).

In this paper we consider the problem of a self-interested
agent (”central manager”) responsible for performing dif-
ferent types of tasks which arrive dynamically along time.
This central manager may be defined as a government, a mu-
nicipality, a company, a project manager, etc., operating in
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an uncertain environment. The central manager can reas-
sign any of the arriving tasks to other self-interested agents,
operating in its environment. The incentive for reassign-
ing a task is either insufficient required resources for per-
forming the task by itself or the possibility of performing
it with a smaller cost by one of the agents. Nevertheless,
since the central manager does not own these agents (i.e. the
agents represent different organizations and/or individuals)
or cannot acquire full control over them (Vulkan & Jennings
2000), their willingness to perform a task is associated with a
payment they demand in return. Therefore, the central man-
ager needs to come up with a negotiation mechanism (pro-
tocol), defining the payments it is willing to pay in exchange
for performing each task, and the rules for determining the
performer among the agents that are willing to perform it.

We focus on open environments, allowing the entrance
and exit of agents. New agents are not always available, but
rather arrive dynamically, and choose to enter only if they
find the process profitable. Similarly, agents leave the envi-
ronment upon being assigned tasks (willingly) or if their ex-
pected net revenue at the current time is negative (i.e. loss).

Different agents have different sets of basic capabilities.
In the context of our model, an agent’s capability for per-
forming a given task depends on the specific world state
it needs to operate in. By being assigned a task, an agent
receives an immediate payment. However it needs to allo-
cate resources in order to perform the task, thus incapable of
competing for additional tasks in the near future (possibly
associated with better world states and/or smaller competi-
tion). Hence, each agent determines its negotiation strategy
according to the tradeoff between the immediate gains and
the loss of future opportunities. Both, are affected by the
protocol set by the central manager, the current world state
and its beliefs concerning the other agents’ strategies in cur-
rent and future world states.

Though the allocation is central, the control of the central
manager over the final result is limited to the selection of
the allocation mechanism. In order to evaluate a specific
allocation protocol, the central manager needs to be able to
extract the strategies used by different agents given such a
protocol (Vulkan & Jennings 2000). For any environment
and specific settings, a stable solution is a set of strategies,
derived from an equilibrium where no agent can benefit from
changing its strategy given the other agents’ strategies. The
main performance measure used by the central manager for
the evaluation of the achieved allocation, using a specific
protocol, is the average expense per task.
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Two typical applications associated with the above model
are described in (Sarne, Hadad, & Kraus 2004). The first is
an under-water exploration mission (where different compa-
nies are encouraged to compete for different tasks, such as
underwater surveys, inspections, mapping, pollution preven-
tion and recovery, using their own Remotely Operated Vehi-
cles (ROVs)). The second involves self interested servers,
with different configurations and changing loads, competing
for the execution of jobs arriving from an external source,
such as universities. Additional typical applications in this
domain include exploration of remote planets, urban search,
and rescue (Dias 2004). In all these applications the agents’
capabilities (i.e. costs) to perform any given task are dissim-
ilar in different world states. Thus, upon the arrival of a new
task, each agent can calculate its own cost (given the current
world state) and assess the distribution of costs among the
other agents for performing it. Based on this information the
agents have to promptly decide their negotiation strategies.

In this paper, we focus on a specific negotiation mecha-
nism used by the central manager - an auction. Auctions
provide an efficient way to resolve one-to-many negotia-
tions, particularly in automated agents based environments
(Vulkan & Jennings 2000). Specifically, the central manager
in our model uses a reverse Vickrey auction1.

The proposed model and the analysis are partially based
on the framework introduced in (Sarne, Hadad, & Kraus
2004). Nevertheless, the solution methodology given there
is limited to closed environments where the entrance of new
agents is prohibited (i.e. once an agent is awarded a task,
the number of remaining agents always decreases by one).
Using such a permissive assumption allowed a backward in-
duction based solution, which we cannot use in our open en-
vironment based model. While in closed environments there
are no mutual dependencies between the strategies applied
in different auctions, in our model the strategy taken in any
of the world states affects all other possible world states’
strategies. This significantly complicates our problem.

The main contributions of this paper are threefold: First,
we formally model and analyze the task allocation problem
using a specific auction based mechanism in an open envi-
ronment with self-interested agents (which is more compat-
ible to real-life applications). Second, we prove that the use
of the mechanism in open environments results in lower bids
of the agents (i.e. less expenses for the central manager) in
comparison to closed environments in similar world states.
Finally, we supply efficient algorithms to approximate the
equilibrium strategies, thus the mechanism’s performance
can be evaluated for any specific open environment.

Related Work
The main objective of task allocation is to decide who does
what and how to collaborate with others. Generally, task al-
location mechanisms in MAS can be divided according to
a bi-dimensional classification. The first dimension is the
distribution level of the mechanism, ranging from a central
allocator for the entire system (Gerkey & Mataric 2002) to
a complete distributed approach where agents have initial

1A reverse Vickrey auction is a sealed bid auction in which the
winner is payed the lowest amount bid by a loser

tasks which they can reallocate through negotiations (Sand-
holm 1993). While the distributed algorithms do not nec-
essarily reach the optimum allocation, they have the ad-
vantage of decreasing the communication and coordination
requirements, as well as eliminating the need for a neu-
tral central allocator. The second dimension is the level
of cooperation between the agents in the system, ranging
from fully cooperative agents (Dias 2004; Shehory & Kraus
1998) to self-interested agents (Vulkan & Jennings 2000;
Walsh & Wellman 1999). The latter can be found also in
the wide Contract Net protocol literature (Sandholm 1993).
While cooperative agents share the same goals or have no
notion of individual utilities or preferences, when consid-
ering self-interested agents, there is a possibility that some
might have an incentive to deviate from the requested co-
operation. Thus equilibrium considerations (which become
significantly complex in open environments) are the basic
infrastructure of the self interested case.

Our model resides in the domain of centralized allocation
to self-interested agents, thus requiring a market based ap-
proach - an auction. Market based allocation methods in
competitive environments are not new (Walsh & Wellman
1999; Vulkan & Jennings 2000). However, they mainly fo-
cus on static environments where tasks and other agents are
known. Our model integrates an open environment where
both agents and tasks arrive dynamically, thus equilibrium
considerations become much more complex. The same
holds for the analysis given for auctions in ecommerce do-
mains. Here, the main emphasis is (basically due to the large
number of participating agents) on maximizing the utility
of a single agent that faces multiple dynamic opportunities
(Shehory 2002), rather than long term equilibrium analysis.

The Model
We consider an open environment with a central manager
and a changing number of self interested agents. The cen-
tral manager is responsible for allocating tasks which arrive
from an external source dynamically, at some inter-arrival
time (assumed as a single time unit, for simplification) be-
tween two subsequent occurrences. We assume both the
central manager and the agents are rational and seek to max-
imize their net revenue (minimize the costs in the case of the
central manager). The dynamic nature of the environment
suggests possible entrance of new agents (either former auc-
tion winners once they have completed their tasks, or brand
new ones). The potential number of agents entering the envi-
ronment between two subsequent auctions is associated with
a probability function. We assume new agents enter the en-
vironment sequentially, right after an auction, and only if
their expected net revenue in this environment is positive.

An agent’s capability of performing a specific task is asso-
ciated with a cost derived by its basic capabilities, the task’s
characteristics and the world state. This cost can be modeled
as drawn from a specific probability function, shared by all
agents (Sarne, Hadad, & Kraus 2004). Additionally, each
agent is associated with a cost per time unit, while waiting
idly for a task (common to all agents, as similar resources
need to be spent).

Upon the arrival of a new task, the central manager initi-
ates a reverse Vickrey auction. Regardless of the bids made
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for any specific auction, the maximum payment to an agent
for performing a task is limited by a value set by the central
manager. This can be seen as the cost of performing the task
by the central manager itself or an external fixed-cost con-
tractor, thus the central manager is willing to delegate a task
to any agent for a payment smaller or equal to this cost. If
all agents in the environment bid above this value, the task is
not allocated but rather performed by the central manager or
the contractor with a cost equal to the maximum payment.

We assume all agents are acquainted with the total num-
ber of agents in the environment at the current time, the costs
distribution function, the cost per time unit in an idle state,
the maximum payment set by the central manager, the in-
terarrival time between tasks, and the entrance rate of new
agents. Thus, within a given auction, each agent can evalu-
ate its own cost to perform the proposed task and knows the
distribution associated with the other agents’ costs.

Problem Formulation
We base our problem formulation on the definitions given in
(Sarne, Hadad, & Kraus 2004) and extend them to better re-
flect our open environment model, where agents are allowed
to enter and exit. We consider a set A of k self interested
agents. We denote an agent g by Ag . An agent’s cost associ-
ated with the performance of a given task in world state st,
is denoted cAg (st), drawn from a probability function Pc(x)
defined over an N discrete values interval [cmin, . . . , cmax].
An agent’s cost per time unit in an idle state, is denoted C.
The maximum payment to an agent for performing a task
is M . The probability of having z new agents arriving to
the environment within a time unit is given by Pnew(z),
z = 0, ..., m,

∑
Pnew(z) = 1 where m is the maximum

number of new agents considering entrance. For any spe-
cific environment and given a total of k agents in a world
state st, our problem is finding the equilibrium bid, denoted
Bk(cAg (st)), for agent Ag associated with a cost cAg (st).

Model Analysis
When analyzing an open environment with agents’ en-
trances and exits, a key issue under consideration is the high-
est possible number of participants an agent might encounter
in an auction, denoted K. Obviously the value K is derived
from the internal forces forming the equilibrium rather than
set by the central manager2. From the single agent’s per-
spective, the increase in the number of competitors within
the environment has a two-fold negative effect. First, the
increased competition in each specific auction results in a
smaller revenue as the margin between its bid (upon win-
ning) and the second best bid decreases. Second, the ex-
pected number of auctions the agent needs to participate in
until winning, increases, thus the expected cost of being in
an idle state increases. The value K can be seen as the num-
ber of agents that once reached, no additional agent will have

2The central manager would never decide to limit the number
of agents participating in an auction because any increase in the
number of agents competing for a task enhances rigorous competi-
tion and thus reduces the overall expected cost paid eventually for
any given number of tasks being performed.

an incentive to join such an auction mechanism, as its ex-
pected revenue (as well as the other agents’ expected rev-
enues) from the process is negative. Similarly, the existence
of K suggests that none of the agents will leave the envi-
ronment intentionally (unless assigned a task) as long as the
number of agents in the environment is smaller or equal to
K. Formally, the existence of K can be proved by using
K > 2(M−cmin)

C − 1. Here each of the agents in the en-
vironment will undoubtedly gain a negative revenue, as the
lower bound for the agent’s expected cost is greater than the
upper bound for its expected payment.

The usage of K is critical for the completeness of the
equilibrium analysis as it bounds the number of equations
that needs to be handled simultaneously and prevents the
existence of scenarios where agents still compete in multi-
participant auctions where it is obvious that their expected
long term revenue is negative (loss). In the rest of this sec-
tion we present the appropriate modifications of the equi-
librium equations given in (Sarne, Hadad, & Kraus 2004),
adjusted to reflect a revenue based entrance of new agents
into the environment, and discuss the equilibrium structure.

Notice that given the above model’s assumptions, the
agents’ strategy is stationary, i.e., any agent A1 associated
with a cost cA1(s1) and k competing agents in a given auc-
tion will bid the same as agent A2 associated with cA2(s2)
and k competing agents, where cA1(s1) = cA2(s2). Thus
in the rest of this paper, we will refer to all costs cAg (st)
satisfying cAg (st) = ci ∈ [cmin, . . . , cmax] (Ag ∈ A) as ci.
Similarly, we denote the equilibrium bid Bk(ci) as Bk

i .
Based on the above, consider an agent which is about to

attend an auction with a total of k (k ≤ K) participating
agents. We denote the expected revenue of this agent by
Rk. The expected revenue of the agent currently participat-
ing in an auction, where its cost for the proposed task is ci

is denoted by Rk
ci

. Thus the expected revenue Rk can be
calculated as:

Rk = −C +
∑

y∈[cmin,cmax]

Rk
yPc(y) (1)

An agent winning an auction, when bidding Bk
i , will

be awarded the second bid value (bounded by M ). Oth-
erwise, it will move on to the next auction where its ex-
pected revenue will be either (assuming k agents in the last
auction)

∑m
j=0 Pnew(j)Rmin(j+k−1,K), if one of the other

agents won this auction; or
∑m

j=0 Pnew(j)Rmin(j+k,K), if
all agents used a bid higher than M . For simplification,
in the rest of this paper we will use: Rk+p(j) to denote∑m

j=0 Pnew(j)Rmin(j+k,K). The probability, Pnew(j) is
closely related to the eagerness of the agents to win an auc-
tion. Any increase in this parameter’s mean results in lower
expected bids within any auction and a greater number of
tasks assignments per time unit. Consequently, such an in-
crease has an opposite affect on K (the equilibrium value of
K decreases as the entrance rate increases).

The basic rationale and analysis given in (Sarne, Hadad,
& Kraus 2004) for the bidding strategies of the different
agents, given a world state st and a total of k competing
agents, remains valid in our model using the above modifi-
cations. Consequently we can prove that in equilibrium the
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agents are divided according to their cost, ci, into 3 contin-
uous groups. The first consists of agents with a cost ci for
performing the current task, satisfying ci < M−Rk+p(j)−1.
These agents (Type I) will always bid Bk

i = Rk+p(j)−1 + ci

and their equilibrium expected net revenue is given by:

Rk
ci

=
X

y∈[ci+1,cmax]

(min(Bk
y , M)− ci)(Pc(c ≥ y)k−1− Pc(c > y)k−1) (2)

+ Peq(B
k
i − ci) + (1− Pc(c ≥ ci+1)

k−1 − Peq)R
k+p(j)−1

where Peq =
∑k−1

j=1

(
k−1

j

)Pc(ci)
jPc(c>ci)

k−j−1

j+1 is the proba-
bility the agent will win the auction when one or more addi-
tional agents have the same cost ci.

The second group (Type II) consists of agents bidding M
as their equilibrium strategy. The expected revenue of an
agent from this group, associated with a cost ci is:

Rk
ci

= (M − ci)Pwin + (1− Pwin)Rk+p(j)−1 (3)

where Pwin =
∑k−1

j=0

(
k−1

j

)Pc(c≤c≤c)jPc(c>c)k−j−1

j+1 is the
probability the agent will win the auction when bidding M ,
and c and c denote the lowest and highest costs associated
with an M bidding strategy, respectively.

The last group (Type III), is of agents associated with a
cost ci > c. These agents will bid Bk

i > M , as their pre-
ferred strategy, given their cost ci is to wait for the next auc-
tion. The expected net revenue of these agents is given by:

Rk
ci

=Pc(c > c)k−1Rk+p(j)+(1−Pc(c > c)k−1)Rk+p(j)−1

(4)
At this point, two major obstacles prevent a solution.

First, we do not have any means for calculating K, thus we
cannot finalize the set of simultaneous equations of types
(1-4) that needs to be solved. Second, even if we did have
the value of K, the complexity of the equations and the mu-
tual dependencies of the different strategies suggest a major
computational challenge that needs to be overcome using an
algorithmic approach. For this purpose we propose three al-
gorithms, each built on top of the other, that can facilitate
the calculation of the equilibrium. The first algorithm is de-
signed to calculate the different agents’ equilibrium bids in
an auction with k ≤ K participants, given a value K and the
expected revenues that can be obtained in any future auction,
Rki , ∀ki 6= k. This algorithm is used as an infrastructure for
the second algorithm which calculates the equilibrium Rk

values, thus evaluating the validness of the value used for
K. Finally, we show how the value of K can be bounded
efficiently, and searched over the proposed interval.
Algorithm 1 calculating equilibrium bids for a specific auction
Input: ρ - precision level for the algorithm; K - Maximum
number of participants in equilibrium ; k - number of partic-
ipants in current auction ; M - maximum payment; c[1 : N ]
, Pc[1 : N ] - Vectors of the possible discrete costs and their
associated probabilities, respectively; Pnew(x) - entrance rate;
R1, ..., Rk−1, Rk+1, ..., RK - expected revenues in future auctions.
Output: B[1 : N ],Rk - Array of equilibrium bids, and the
expected revenue of this auction.
1 Set Rk =

−C+
Pm

j=1 Pnew(j)Rmin(j+k,K)

1−Pnew(0)

2 Set B[i] = Rk+p(j)−1 + c[i] , ∀i = 1, ..., N ;
3 Find the first element, i, in B[ ], satisfying B[i] > M . If R[i]

calculated using Equation (3) is greater than when calculated us-
ing Equation (4) then set B[i] = M . Repeat this stage until reach-
ing an element c for which the above condition is not satisfied;
4 Calculate R[i] using equations (2-4) , ∀i = 1, ..., N ;
5 Calculate Rk using equation (1);
6 Set B[i] = min(Rk+p(j)−1 + c[i], M) , ∀i = 1, ..., c;
7 Find the last element, i∈B[ ], satisfying B[i] = M . If R[i] cal-
culated using Equation (3) is smaller than when calculated using
Equation (4) then set B[i] = M +1. Repeat this stage until reach-
ing an element c for which the above condition is not satisfied;
8 If the condition in step 7 was satisfied at least once, or the dif-
ference between the last two calculations of Rk is greater than ρ
then goto 4. Else, stop and return B[1:N];

Theorem 1 (a) Algorithm 1 always terminates in finite time.
(b) The array B[1 : N ] stores the equilibrium bids with a
precision ρ after the algorithm execution is completed3.
Sketch of Proof:
Since the detailed proof is quite extensive only its general
flow is presented. First, we prove that Rk calculated in
step 1 is a lower bound for the equilibrium Rk. Then we
prove that using the bids calculated in step 2, the execution
of step 3 will lead to a lower bound for c and an upper bound
for c (defining the interval of agents bidding M ). For this
purpose, we prove and use a proposition, stating that if an
agent’s optimal bid is M (type (II)), then any other agent
associated with a smaller cost and not complying with the
condition for type I agents, will bid M as well. Finally,
we prove that in the loop executed in steps 4-8: (a) The
value of Rk inevitably increases over each calculation; (b)
The value of c (c) derived from each execution of steps 7-8
can only decrease (increase), respectively; (c) It is suffice to
check the stability of M -value bids downward. Thus over
each execution of the main loop, the bid values as well as
the value of Ri and the division of types defined by c and c
converge to their equilibrium values. Also, since all parame-
ters’ values are either strictly increasing or strictly decreas-
ing throughout the algorithm execution, a stable configura-
tion (in terms of the division into different types) eventually
is reached. The accuracy of the bids’ values in equilibrium
is determined by the parameter ρ. ¤

The complexity of the algorithm is o(MN
ρ ). Any attempt

to find the equilibrium bids for k agents using direct compu-
tation of equations (1-4) will require solving N(N+1)

2 per-
mutations of N simultaneous linear equation sets. Each
such set can be solved using Gaussian Elimination with a
complexity of o(N3). Since N is highly correlated with the
number of possible world states, we expect the ratio between
M and ρ to be smaller in its magnitude compared to N2.

Finding the System Equilibrium
Denoting the expected revenue of an agent in a closed envi-
ronment by Rk and the expected revenue of the agent cur-
rently participating in an auction where its cost for the pro-
posed task is ci by Rk

ci
, we introduce the following theorem.

Theorem 2 For any k value satisfying k ≤ K, the expected
revenue of an agent participating in an auction in a closed

3Notice that the discrete essence of the environments also sug-
gests rare scenarios where an equilibrium does not exist. Neverthe-
less, the algorithm can be extended to handle such scenarios.
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environment is an upper bound for the expected revenue of
an agent participating in an action with k′ ≥ k agents in an
open environment. Formally: Rk ≥ Rk+i∀i = 0, ..., K − k.

Sketch of Proof: Proof by induction. Consider agent Ag

operating in a closed environment and agent Ag operating in
an open environment. When k = 1, agent Ag can use the
same strategy as Ag (in any k-agents’ auction), resulting in
an equal or better revenue as its cost components are similar
to Ag’s, while its expected payment, M , is an upper bound
for the expected payment to Ag. Thus R1 is an upper bound
for Rk (k=1, ..., K). Similarly for k=2 each agent uses higher
bids in the open environment, since its alternative expected
revenue (i.e. if it does not win the current auction) is greater
(because R1 ≥ Rk+i, ∀i = 0, ..., K − k). Thus we obtain that
R2 is an upper bound for Rk (k = 2, ..., K). And so on.¤

The above theorem suggests that the solution for the
closed environment can be a good starting point for finding
the equilibrium in an open environment.

Theorem 3 Given a value K and a set R = (cR1, ...,dRK)

where cRi is an upper bound to the equilibrium Ri, if a sub-
set of new upper bounds R′ can be found where Ri′ ≤ cRi

∀(Ri′ ∈ R′), then any Rj′ calculated by substituting Ri =

min(cR1, Ri′)∀Ri ∈ R (where i 6= j) in equation (1) is also
an upper bound for Rj satisfying Rj′ ≤ cRj .

Sketch of Proof: Using equation (1) we prove that as long
as any of the Ri values used is an upper bound to the real
values, the calculated value is also an upper bound. ¤

The above two theorems result in a structured method for
checking if a given K = k is the equilibrium maximum
number of agents in an auction, and if so, for calculating the
agents’ equilibrium strategies. This concept is used in the
following algorithm.

Algorithm 2 An algorithm for checking the validity of K.
Input: similar to algorithm 1, excluding the Rk values which are
not necessary for this algorithm
Output: B[1 : K][1 : N ] - An array of equilibrium bids (if exist).
01 Calculate R=(R1, ..., RK) using alg. 1 with Pnew(x)=0, ∀x;
02 Repeat {
03 Set Ri∗ = Ri ∀i ≤ K;
04 For (j=1;j ≤ K;j++) calculate Rj and B[j][ ] using alg. 1;
06 If (Ri∗ −Ri) < ρ ∀i ≤ K then {
07 Calculate RK+1 using algorithm 1;
08 If RK+1 < 0 then return(null);
09 Else return B[ ][ ]; } };

Theorem 4 (a) Algorithm 2 will always terminate in finite
time. (b) If K is the equilibrium value, then B[ ][ ] will store
the equilibrium bids with a precision ρ after the algorithm
execution is completed.

Sketch of Proof: We use theorem 2 to establish any Ri in
step 1 as an upper bound for the equilibrium expected net
revenue given i agents ∀i = 1, ..., K. Then, according to the-
orem 3, R[ ]’s elements will always contain decreased upper
bounds, converging to the equilibrium strategy, given K. ¤

Notice that while in steps 4-5 of the algorithm we use
a simple heuristic by which we calculate Rj sequentially,
many alternative heuristics can be used. For example, a

heuristic that starts with RK and calculates the different Rj

values sequentially backward, or one that incorporates some
level of logic in identifying the next element which will have
the maximum affect over future calculations. As long as the
basic concept of continuously updating the expected net rev-
enue value is maintained, any heuristic concerning the order
by which the different elements are updated will result with
equilibrium, in a finite time.

Finally, by using the above algorithm 2, we can outline an
additional algorithm that finds the equilibrium K value, by
exploring the interval (1, ..., Kupper), where Kupper is an
upper bound for K (e.g. the bound given at the beginning of
the former section). The search for K in this interval can be
done using a binary search, since we know that below this
value the system will always yield a positive net revenue and
above this value a negative one. Obviously this algorithm,
as well as the former two algorithms, can be executed of-
fline prior to the agent’s entrance to the environment as they
supply the full set of strategies (for all possible world states).

Simulation Results
In this section we aim to illustrate the performance of the
open environment compared to those that can be obtained
in the closed environment model given in (Sarne, Hadad, &
Kraus 2004) and in a central enforceable allocation model.
We use an environment where the costs are uniformly dis-
tributed in the interval [10, 50] with 100 discrete values, and
the parameters: M = 100, C = 2. The entrance probability
used is P (0) = 1− α and P (1) = α, thus E[Pnew] = α.

Figure 1, considers the agents’ strategies when reaching a
specific auction with k = 4 participants within the sequence
of auctions. The four curves depict the expected bid as a
parameter of the agent’s cost for performing the task, ci (the
horizontal axis), in a closed environment and for different
entrance rates (α = 0.1, 0.5, 0.9) in an open environment.
As expected, the bids of the agents in the closed environment
are always higher than in the open environment, as these
agents confront less competition.

Figure 2 depicts the central manager’s average expense
per task, as a function of the entrance rate of new agents.
In the absence of a common ground for the different mod-
els we used the following comparative method which equal-
ize the testing conditions for the open and closed environ-
ment. For each α value, we extracted the appropriate equi-
librium Kα value in an open environment (results ranged
from K0.05 = 42 to K0.95=7). Then, for each (α,Kα) pair
we simulated a closed environment, starting with Kα agents
and obtained (using 10,000 runs each time) the expected
number of tasks performed (until running out of agents),
nα

tasks, and the expected average cost per task (assuming
non-assigned tasks are performed by an external contractor
with a cost M ). The latter parameter is described by the
most upper curve in the graph, and the changes in its value
are associated with the different Kα starting points used, as
inherently it is not influenced by α. Then we used a sim-
ulation of an open environment (with new agents entering
according to α), starting with Kα agents, and checked the
expected average cost per task (using 10,000 runs), for per-
forming nα

tasks tasks (described by the middle curve). As
expected, the increase in the the entrance rate (associated
with α) increases the difference between the performance
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Figure 1: Agents’ bids in different environments

achieved in the two environments. The lower horizontal line,
represents the expected cost per task, when the central man-
ager fully controls the agents. Here the central manager only
needs to pay the cost C per an idle time of the agents it hires
and the actual cost ci of the agent assigned an arriving task
(if any). Thus the central manager’s problem is finding the
optimal number of agents, Kopt to be hired prior to the ar-
rival of a new task. This can be extracted by finding the
K value minimizing the expected cost function (per task),
R(K), of the central manager for this case:

R(K) = C ·K +

cmaxX
y=cmin

min(y, M)(P (x ≥ y)K−P (x > y)K) (5)

Notice that the second term on the left hand side of the equa-
tion is actually the expected minimum of a K-size sample.
For our environment we found that the optimum is Kopt = 4
and the associated expected cost is 26.

A complete analysis concerning the improvement
achieved as a function of the different model parameters
would require further detailed and more comprehensive sce-
narios and environments. Nevertheless, such an analysis is
beyond the scope of this paper, as our main focus is on the
introduction of the general model and its solution method.

Discussion and Conclusions
Scenarios in which an agent or a central manager have lim-
ited control over the agents they wish to cooperate with and
reallocate tasks, are common in MAS environments. An im-
portant sub-class of these scenarios is where all agents are
self-interested and attempt to maximize their net revenue.
In such case, the performance evaluation of any negotiation
protocol towards allocation should be derived from an equi-
librium analysis. Here, each agent’s strategy should take into
consideration both the other agents’ long term strategies and
the influence changes in its own strategy will have on these
strategies. Such an analysis implies a significant complexity,
which increases further in open changing environments, thus
algorithmic based computational approaches are required.
We find the growing interoperability between different sys-
tems and environments to be an important factor, leading to-
wards open environments rather than traditional closed ones.
We cannot think of a scenario where a central allocator will
reject new arrivals as such a strategy will necessarily reduce
competition and will result with greater costs per task.

In this paper we focused on the use of an important spe-
cific allocation protocol - initiating a second price reverse
auction for each arriving task. Former analysis and results
that are available for a closed environment model (Sarne,
Hadad, & Kraus 2004), can be considered as a specific case
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Figure 2: Central Manager’s average expense as a function of α

of our general open model. By presenting a solution for open
environments, we significantly extend the applicability of
our model, as many MAS environments are inherently open.
Obviously, as new entries are allowed, the possible strategy
space becomes infinite and a bound must be placed on the
number of agents in the environment. The advantage of our
model is that the restriction over the number of agents in the
environment emerges from the internal balance according to
equilibrium considerations (i.e., the existence of an expected
positive revenue), rather than an external limit. This concept
fits well into our algorithmic-based solution approach, by-
passing the complexities of any attempt of solving the prob-
lem using permutation based equation sets.

The solution methodology and the different algorithms
given in the former sections, are an important milestone in
the process of finding the best negotiation protocol the cen-
tral manager should use, in terms of the performance mea-
sure defined in the introduction. In future work we intend to
explore the performance of additional negotiation protocols
to be set by the central manager, using a similar equilibrium-
based analysis. Additionally, as suggested in the solution
methodology sections, we are currently evaluating alterna-
tive heuristics that can be integrated in the proposed mecha-
nism to further improve the computation process of the equi-
librium strategies given different environmental parameters.

References
Dias, M. 2004. TraderBots: A New Paradigm for Ro-
bust and Efficient Multirobot Coordination in Dynamic En-
vironments. Ph.D. Dissertation, Robotics Institute, CMU.
Gerkey, B., and Mataric, M. 2002. Sold!: Auction methods
for multi-robot control. IEEE Transactions on Robotics
and Automation 18(5):758768.
Sandholm, T. 1993. An implementation of the contract net
protocol based on marginal cost calculations. In Proc. of
AAAI-93, 256–262.
Sarne, D.; Hadad, M.; and Kraus, S. 2004. Auction equi-
librium strategies for task allocation in uncertain environ-
ments. In CIA04, 271–285.
Shehory, O., and Kraus, S. 1998. Methods for task alloca-
tion via agent coalition formation. AIJ 101:165–200.
Shehory, O. 2002. Optimal bidding in multiple concurrent
auctions. IJCIS 3-4:315–327.
Vulkan, N., and Jennings, N. 2000. Efficient mechanisms
for the supply of services in multi-agent environments. De-
cision Support Systems 28:5–19.
Walsh, W., and Wellman, M. 1999. Efficiency and equilib-
rium in task allocation economies with hierarchical depen-
dencies. In IJCAI’99, 520–526.

AAAI-05 / 169


