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Abstract 

 

Patrolling tasks can be encountered in a variety of 
real-world domains, ranging from computer network 

administration and surveillance to computer wargame 

simulations. It is a complex multi-agent task, which 

usually requires agents to coordinate their decision-

making in order to achieve optimal performance of the 

group as a whole. In this paper, we show how the 

patrolling task can be modeled as a reinforcement 

learning (RL) problem, allowing continuous and 

automatic adaptation of the agents’ strategies to their 

environment. We demonstrate that an efficient 

cooperative behavior can be achieved by using RL 

methods, such as Q-Learning, to train individual agents. 
The proposed approach is totally distributed, which 

makes it computationally efficient. The empirical 

evaluation proves the effectiveness of our approach, as 

the results obtained are substantially better than the 

results available so far on this domain.  

 

 

1.  Introduction
1
 

 

Patrolling is literally “the act of walking or traveling 

around an area, at regular intervals, in order to protect or 

supervise it” [1]. Performing this patrolling task 

efficiently can be useful for various application domains 

where distributed surveillance, inspection or control is 

required. For instance, patrolling agents can be used for 

helping administrators in the surveillance of failures or 

specific situations in an Intranet [3], for detecting recently 

modified or new web pages to be indexed by search 

engines [6], for identifying objects or people in dangerous 

situations that should be rescued by robots [13], etc. 
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Despite its high potential utility, only recently this 

problem has been rigorously addressed. Our research 

group, in particular, has done pioneering work on this 

matter. Initially, in [10], we presented an original in-depth 

analysis of the patrolling task issues, and proposed 

different multi-agent-based solutions which were 
empirically evaluated on a simulator that we developed. 

Later, in [2], more sophisticated (multi-agent-based but 

non-adaptive) solutions were proposed and evaluated, and 

more complex instances of the problem were considered. 

More recently, colleagues addressed the problem of 

performing this task with real robots [15]. 

Although many of the previously developed solutions 

showed good empirical results, we noticed that for each 

proposed architecture, there were always some problem 

settings (e.g., a particular environment topology) on 

which it performed badly [2]. One of the reasons is that, 

for this domain, it is very difficult to design beforehand a 

general distributed strategy, since the task necessitates a 

fair amount of topology-dependent coordination between 

the agents’ actions. Thus, adaptive machine learning 

techniques can be very useful in this respect. In fact, some 

of them have been previously used with success in other 
multi-agent domains, such as robotic soccer [16], as a 

way to automatically achieve coordination.  

In this paper, we investigate the creation of adaptive 

agents that learn to patrol using reinforcement learning 

techniques [17]. The use of such techniques, in this case, 
is not straightforward. In order to use most of the RL 

algorithms, it is necessary to model this task as a Markov 

Decision Process (MDP), but many characteristics of this 

domain, such as the multi-agent setting, make it difficult 

to do so. One of the challenges, for example, lies in the 

definition of an appropriate model of the instantaneous 

rewards that would be conducive for achieving a high 

long-term collective performance. Such difficulties, and 

the ways to overcome them, are discussed in this work. 

Two RL-based agent architectures, using different 
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communication schemes, are proposed, implemented, 

empirically evaluated and compared to non-adaptive 

architectures from our previous work. The optimality of 
these solutions is also analytically studied. 

The remainder of this paper is structured as follows: 

Section 2 defines our task and revises previous work. 

Section 3 summarizes the reinforcement learning 

concepts. Section 4 presents a model of this task as a RL 

problem. Section 5 shows the experimental results, and 
Section 6 provides our conclusions and future work. 

 

2.  The Patrolling Task 
 

In order to obtain a more general, yet precise, 

definition of the patrolling task, we adopted a more 

abstract representation of the terrain being patrolled: a 

graph, where the nodes represent specific locations and 

the edges represent possible paths, as shown in Fig. 2. 

This abstract representation can be easily mapped to many 

different domains, from terrains and maps to computer 

networks, for instance. Given a graph, the patrolling task 

studied in the remainder of this paper consists in 
continuously visiting its nodes. 

Intuitively, a good patrolling strategy is the one that, 

for each node, minimizes the time lag between two visits 

to the same node. However, to be more precise, our 

previous work suggests some evaluation criteria for 

patrolling strategies, using the notion of idleness [10]. 

Considering that a cycle is a single simulation step, the 

instantaneous node idleness for a node n at a cycle t is the 

number of cycles elapsed since the last visit before t 

(number of cycles n remained unvisited). The 

instantaneous graph idleness is the average instantaneous 

idleness over all nodes in a given cycle. Considering long-
term performance criteria, the average idleness is the 

mean of the instantaneous graph idleness over a t-cycle 

simulation. In the same context, another measure is the 

worst idleness: the highest value of the instantaneous 

node idleness encountered during the simulation.  

With reasonable strategies, performance with respect 

to these measures tends to improve as the number of 

agents grows. However, the lack of appropriate 

coordination may diminish the improvement expected 

from insertion of new agents. In order to assess 

coordination quality, we can measure the individual 
contribution of each agent by normalizing these criteria: 

nodesofnumber

agentsofnumber
valueabsolutevaluenormalized

__

__

__ ×=  (1) 

 

2.1. Overview of Previous Work 
 

Our first work on this task considered the problem of 

patrolling in non-weighted graphs (distance between 

adjacent nodes is one) [10]. The implemented solutions 

were simple, but covered several multi-agent architectures 

with varying parameters such as agent communication 

(allowed vs. forbidden), coordination scheme (central and 
explicit vs. emergent), agent perception (local vs. global), 

etc. Then, we considered the real distances between 

nodes, representing them as weights on the edges of the 

graph [2].  With this representation, we explored more 

sophisticated (non-adaptive) solutions that employed 

several heuristics based on node idleness values and path 

lengths, combined with negotiation mechanisms [11]. 

These studies improved the previous results, and we use 

them in this work as a baseline for evaluating our adaptive 

agents in Section 5. Recently, [15] addressed the problem 

of patrolling with robots, and challenges inherent to the 

complexity of the real world, such as the necessity for 
robots to recharge, were dealt with.  

One of the lessons learned from these work is that the 

solutions were too sensitive to variations on problem 

settings [2]. This conclusion led us to look for machine 

learning techniques, such as reinforcement learning, in an 

attempt to build a more general solution. In the next 

section, we review the theory of reinforcement learning, 

and the current efforts on its use in other cooperative 

multi-agent domains. 

 

3.  Reinforcement Learning 
 

Reinforcement learning is often characterized as the 

problem of “learning what to do (how to map situations to 

actions) so as to maximize a numerical reward signal” 

[17]. This framework is mostly defined over the theory of 

Markov Decision Processes (MDP), which we briefly 

review in the following sections. 
 

3.1. Markov Decision Processes 
 

Consider an agent that sequentially makes decisions in 

an environment. At each step, this agent chooses an 

action from a finite set A, based on a state signal from the 

environment. This state comes from a finite set S, and 

summarizes the present and past sensations in a way that 

all relevant information is retained [17]. The process’ 
dynamics is described by two components: the state 

transition probability distribution, P, and the expected 

immediate reward function, R. Both of them are defined 

on triples <s,a,s’>, where s is the current state, a is the 

agent’s action and s’ is the next state. Both functions are 

assumed to satisfy the Markov property. In summary, a 

finite Markov Decision Process, is specified by a tuple 

<S, A, P, R>, of the elements defined before. In this 

formalism, the agent acts according to some policy π(s,a), 

representing the probability of choosing action a ∈ A at 

state s ∈ S. The main goal is to maximize a long-term 
performance criterion, called return, which is often 

defined as a sum of the discounted rewards. The agent 
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then tries to learn an optimal policy π*, which maximizes 

the expected return, called the value function, V
π

(s), as 
shown in (2), over the set of all possible policies:  

⎭
⎬
⎫

⎩
⎨
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where γ  is a discount factor 0 ≤γ < 1, and rt is the 
immediate reward received at step t.  

Similarly, we can define the action-value function, 

Q
π

(s, a), as the expected return when starting from state s, 

performing action a, and then following π thereafter. If 
one can learn the optimal action-value function Q

*
(s, a), 

an optimal policy can be constructed greedily: for each 

state s, the best action a is the one that maximizes Q.  

 

3.2. Q-Learning 
 

Q-Learning [17] is a traditional RL algorithm for 

solving MDPs. Skipping technical details, it consists in 

iteratively computing the values for state-action pairs, on-

line, using the following update rule: 

[ ]),()'(),(),( asQsVrasQasQ −⋅++← γα  
 (3) 

where V(s’) = maxaQ(s’,a), and α is a learning rate. 
This algorithm is guaranteed to converge to the 

optimal Q function in the limit, under the standard 

stochastic approximation conditions. Note that a priori 

knowledge about the process’ dynamics is not necessary.  

 

3.3. Semi-Markov Decision Processes 
 

Conventional MDPs do not involve temporal 

abstraction or temporally extended actions [18]: the 

unitary action taken at time t affects only the state and 

reward at time t+1. Semi-Markov Decision Processes 

(SMDPs) can be seen as a more general version of the 

MDP formalism, where actions may take variable amount 

of time. There are extensions of MDP algorithms, such as 

Q-Learning, which can also solve SMDPs in tractable 

time. SMDPs are more suitable for modeling our 
patrolling task, as will be shown on next sections.  

 

3.4. Cooperative Multi-Agent Reinforcement 

Learning 

 
As the MDP theory only deals with the single-agent 

case, one can try to consider the whole multi-agent system 

as a centralized single-agent, but this solution is 

intractable as it has an exponentially large number of 

actions.  In contrast to this approach, many solutions use 

RL agents as independent learners [11], however, having 

no guarantees of achieving a satisfactory global behavior. 

The issue of creating cooperative agents that learn to 

coordinate their actions through RL has been studied in 

the current literature [5][9][7][19]. Although the problem 

of finding a globally optimal solution for a cooperative 

group of agents with partial information is known to be 

intractable in theory [4], many proposed approaches have 
achieved good results in practice. 

The main difficulty is that, when a group of agents is 

solving a common task in a distributed manner, if each 

agent tries to optimize its own rewards, this does not 

necessarily leads to a globally optimal solution. In this 

context, [19] investigates the design of a more collective 

intelligence through the use of different utility functions. 

In the Wonderful Life Utility (WLU), the agents optimize 

a private utility that is aligned with the global utility. In 

other words, the utility functions for each agent assure 

that they do not work in cross-purposes. This approach 

was implemented in the past for some tasks by including 
penalties when more than one agent competed for the 

same reward. This utility has been compared to others, 

such as the selfish utility (SU), where each agent tries to 

maximize its own utility, and to the team game utility 

(TG), where the global performance is given to each agent 

as a reward. The TG seems to suffer from very poor 

learnability, as each agent’s actions contribute little 

individually to the global reward/penalty received.  

From the communication point of view, distributed RL 

approaches can be classified into three major groups, 

according to the information available to each agent [11].  
In Black-Box systems, the agents do not know about the 

actions of other agents, the effect of which is perceived as 

part of the environmental stochasticity. In White-Box 

systems, also known as joint action learners, each agent 

knows about the actions of all other agents.  Finally, in 

Gray-Box systems, agents can communicate their actions, 

or their intentions for future actions. In this paper, we 

consider Black-Box and Gray-Box architectures, with the 

latter exhibiting a superior performance. 

 

4.  Patrolling Task as a Reinforcement 

Learning Problem 

 

Some characteristics of this task can cause a huge 

impact on the difficulty of building the MDP model. 

Because of this, we discuss our model incrementally, 

from simpler to more complex instances. While we 

discuss it, we introduce the main aspects of our approach. 

 

4.1. The Simplest Single-Agent Case 
 

Consider a simplified patrolling task, in which there is 

only a single-agent, and the terrain abstraction consists of 

a graph without weights (unitary distance between nodes). 

For this task to be considered an MDP, it is necessary to 

define the tuple <S, A, P, R>, as stated in section 3.1.  

A natural design for the action space A is a set of 

actions that let the agent navigate between adjacent nodes 
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in the graph. In other words, with one action, the agent 

can traverse one edge on the terrain abstraction.  

Although it is not necessary to define P for a model-
free algorithm like Q-Learning, the state transition 

probabilities can be easily obtained, as with a single agent 

our environment is completely deterministic. 

To properly define a reward function, R, we should 

take into account the evaluation criteria that we would 

like to optimize. The agents created in this work were 

designed to optimize a single criterion: the average 

idleness criterion, which turned out to be very natural for 

the RL setting. Being I(t) the instantaneous idleness at 

cycle t, then, the average idleness, M(T), after a T-cycle 

simulation, is represented as follows: 

T

tI

TM

T

t

∑
=

=

0

)(

)(  
 

(4) 

Let us denote by Pos(t) the node visited by the agent at 

cycle t and by Φ(Pos(t),t) the idleness of this node at cycle 

t. Considering that the idleness of each of the n nodes 
increases by one at each cycle of the simulation (if the 

node is not visited), the agent can easily calculate the 

value of I(t) with the following recurrence relation: 

enessInitialIdlI =)0( ; 

n

ttPosn
tItI

)),((
)1()(

Φ−
+−=  

(5) 

From equation (4), it can be seen that if the sum of the 

instantaneous idleness is minimized, consequently, the 

average idleness is also minimized. A plausible 

reinforcement (actually, a punishment), would be the 

instantaneous idleness of the graph I(t) after each agent’s 

action, calculated using (5). Then, if the return is defined 

by a sum of discounted rewards, such a model would not 

be optimal (as equation 4 is not discounted over time), but 

would yield an approximation. Actually, to seek for 

optimal performance with this reward function, we should 

consider RL methods that optimize the value function 
relative to the average expected reward per-time-step, 

such as R-Learning [17]. However, we do not deal with 

such methods in this paper, for two main reasons. First, 

their use would not be a reasonable starting point for our 

task, as there is still very little experience with these 

methods in the community. Second, although using I(t) as 

a reward function is useful enough for the single-agent 

case, it makes a huge assumption that would make it 

difficult to generalize to the multi-agent case. Namely, it 

assumes that the agent has a complete model of the whole 

environment (it encapsulates the model of the idleness of 

the whole graph). In the single-agent case, this works, 
because the environment is only modified by the agent 

itself. In the multi-agent case, communication between 

the agents or with a central information point would be 

necessary to form such a reward signal. We show now 

how a more general reward function can be obtained.  

Expanding Eq. (5), and considering that InitialIdleness 

is zero, a closed-form expression can be given by: 

n

iiPosnt

tI

t

i

∑
=

Φ−×

=
0

)),(()(

)(  
(6) 

Substituting (6) in (4), M(T) is given by: 

( )

Tn

iiPosiT
TTn

TM

T

i

×

Φ×−−
+×

=

∑
=0

2

)),(()(
2

)(

)(  
(7) 

In Eq. (7), we notice that the only term that depends on 

the agent’s policy is: 

( )∑
=

Φ×−

T

i

iiPosiT

0

)),(()(  (8) 

Thus, if the agent can learn a policy that maximizes 

(8), such policy is optimal for the average idleness 

criterion. If we use the function Φ(Pos(t),t) as a reward 

function, the policy learned by Q-Learning would be the 

one that maximizes the sum of the discounted rewards:  

( )∑
=

Φ×

T

i

i
iiPos

0

)),((γ  (9) 

The difference between (8) and (9) is that (8) is 
discounted over an arithmetic progression, while (9) is 

discounted over a geometric progression. By using an 

appropriate value for γ, we can approximate (8), 

achieving a policy that is optimal in many cases. 

Furthermore, this reward function is entirely local, 

depending only on the idleness of the node currently 

being visited by the agent, and it does not need to assume 

anything about the rest of the environment.  

At first sight, it could seem contradictory to minimize 

the average idleness of the graph by maximizing the 

idleness values of the visited nodes. But intuitively it 
means that, if the agent’s reward is the idleness of the 

node that it visits, it will try to visit the nodes with highest 

idleness, thus, decreasing the global idleness, as shown. 

Having defined A, P and R, we are left with the 

definition of the state space S to obtain a complete MDP 

model. We would like our state representation to be such 

that the resulting model has the Markov property, so that 

the choice of the best next node to visit could be made 

only based on the current state and independently of the 

whole history of positions of the agent. Past positions are 

important for future decisions only in that they impact the 

idleness of the nodes on the graph.  Thus the state of the 
environment can be fully captured, with the Markov 

assumption, by the current position of the agent and the 

idleness (the number of cycles) of each node on the map. 

However, as the idleness values are not bounded, this 

state space is not finite. One possible solution is to group 

idleness values into a finite set of values, but that would 

still lead to a great number of states. If k is the number of 

considered levels and n is the number of nodes in the 
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graph, there are n x k
n
 possible states, which grows 

exponentially in the number of nodes. This issue becomes 

even more problematic with real-valued distances 
between nodes. We discuss it in the next sections. 

 

4.2. Considering the Real Distance 

 
In the formulation of the patrolling task, as presented 

in the previous section, we considered that every edge on 

the graph had a length of one. Intuitively, the problem 
with the case where edges may have arbitrary lengths is 

that, if the agent is trying to maximize rewards over time, 

it should avoid actions taking longer time intervals, since 

during such periods it does not receive any rewards (the 

idleness of the graph only grows).  

The following example illustrates the problem: 

Consider the nodes A, B and C in Fig. 1. Suppose that an 

agent is at 1 and has to decide between the path (A, B, C) 

(non dotted) or the path (A, C, B) (dotted), considering 

the utility of each path as the return estimated using Q-

Learning, for example. Using the last reward function 
defined in section 4.1, considering that all idleness values 

were zero initially, and γ = 0.8, we would have: 

Reward (A,B,C) = 0 + γ · 6 + γ
2 

· 12 = 12.5, and 

Reward (A,C,B) = 0 + γ · 10 + γ
2
 · 16 = 18.2. The agent 

would, though, choose the path (A, C, B), but if we use 

equation (7) to calculate the average idleness (considering 

that the function Φ is zero while on an edge), we see that 

the path (A, B, C) is actually better. In fact, this path takes 

only 12 cycles to be executed, while the dotted one takes 

16, and the agent does not take this into account. 

 

Fig. 1. Weighted graph for patrolling. Agent (at 

A) has to choose path (A,B,C) or (A,C,B) 

 

Fortunately, the Semi-Markov Decision Process 

formalism [18] already deals with this issue. By using a 

discrete-time finite SMDP, the γ factor can be discounted 

over all time steps, instead of being discounted only at the 

times of the actions’ final outcomes. In this case, for our 

previous example, the new value function, calculated 

using equation (2), would be: Reward(A,B,C) = 0 + 

γ
6
 · 6 + γ

12
 · 12 = 2.4, and Reward(A,C,B) = 0 + γ

10 
· 10 + 

γ
16 

· 16 = 1.52, thus yielding a correct policy.  

If the function Φ(Pos(t), t) is redefined to be the 

idleness of the visited node at time t, if the agent visited 

any node, and zero otherwise, all equations defined in 
section 4.1 remain unchanged, and the model developed 

earlier naturally generalizes to weighted graphs. 

 

4.3. The Multi-Agent Case 
 

Our approach for extending the model presented in the 

previous sections to the multi-agent case is based on the 

concept of independent learners [11]: we try to solve our 

global (collective) optimization problem by solving local 
(individual) optimization ones. In the rest of this section, 

we describe how this can be done. 

The action set, A, can remain the same as in the single-

agent case. However, there are some problems regarding 

the rest of the items.  

By the same arguments that showed that an optimal 

policy with respect to the average idleness criterion is the 

one that maximizes equation (8), we can generalize this 

result to the multi-agent case: if G is the number of agents 

and Posj(t) is a function that tells the position (node) of a 

specific agent j, 1 ≤ j ≤ G, we want now to maximize: 

( )∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
Φ×−

G

j

T

i

j iiPosiT

1 0

)),(()(  (10) 

Let us consider that each agent of the group uses the 

same reward function as in the single-agent case: 

Φ(Posj(t),t), that is, the idleness of the nodes they visit. 

Consequently, each of them will try to independently 

maximize an internal summation from (10), in the same 

way as shown in section 4.1.  
However, as the value of Φ, for any node, can be 

affected potentially by the policy of any agent j, this 

approach is selfish (each agent will do no effort to help 

the other agents to maximize theirs rewards) and even that 

we had a Markovian representation for each agent, it 

would not guarantee a globally optimal solution. 

Recalling from section 3.4, this result is equivalent to the 

selfish utility. We can also adapt this reward model with 

the concept of wonderful life utility in the same way as 

[8], by giving penalties when agents compete for idleness 

(rewards) on the same node.  
Although the model presented in this section has no 

guarantees of global optimality, it is perfectly well-suited 

for a distributed implementation: the only feedback that 

each agent receives is the idleness of the node currently 

being visited. This reward is completely local, and can be 

implemented by a very simple scheme of flag 

communication: for every node that the agent visits, it 

places a flag containing the number of the cycle that it has 

been there, and this flag can be seen by other agents.  

Analyzing now the state space S, as the single-agent 

case was already intractable, the same can be said for the 

multi-agent case. With that in mind, we decided to 

A 

B 

C 

6 6 

10 
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represent partial information on the state of our agents. In 

particular, we represent a few characteristics of its 

surroundings, analyzing empirically the effect of each 
new characteristic added to the state vector, as will be 

detailed later. Although this is a simplification, it has 

some advantages. First, this formulation is cheaper in 

terms of computational complexity. Second, it is more 

realistic than the one proposed to the single-agent case, in 

which the agent needs to have access to the state of the 

whole world, which is not possible in most practical 

instances of patrolling. Third, it is well-suited for a 

distributed implementation, since each agent can only 

observe its immediate surroundings. 

Considering the state transition probabilities P on the 

multi-agent case, now each agent faces a non-
deterministic environment, if it does not know the actions 

that the other agents will perform. Worse than that, since 

all agents are adapting their behavior simultaneously, P 

will be a non-stationary distribution. This problem can 

make our attempt to learn by reinforcement useless, since 

we would not have a MDP or a SMDP. In order to 

diminish the side effects of this non-determinism, we 

investigate architectures using different schemes of 

communication, which we detail in the next section.  

 

4.4. Agents in more Details 
 

Two agents were modeled in this work, using the 

different communication schemes explained in section 

3.4: a) a Black-Box Learner Agent (BBLA), which 

communicates only by placing a flag in each node visited. 

This flag can be seen by the other agents and considered 

in theirs state space representation. b) a Gray-Box Learner 

Agent (GBLA), which communicates also by flags, but 

can communicate their intentions of actions. Including 
these intentions in the state representation of each agent, 

the non-stationarity of the environment is diminished. 

We did several experiments in order to achieve a 

satisfactory state representation, doing our best effort to 

balance the complexity of the state representation with the 

performance of the agent. After these experiments, the set 

of possible states for the BBLA was defined to be a vector 

of the following characteristics (consider m as the 

maximum node connectivity, and n the number of nodes): 

i) the node in which the agent is - n possible values; ii) the 

edge from which it came from, informing the agent about 

its past actions – m values; iii) the neighbor node which 
has the highest idleness – m values; iv) the neighbor node 

which has the lowest idleness – m values. 

The set of possible states for the GBLA is the same as 

the BBLA, plus some information that comes from the 

communication of their intentions: v) the adjacent nodes 

which are intended to be visited by other agents – 2
m
 

possible values. To implement this, after each decision 

step, each agent broadcasts a message containing 

information about the node it plans to visit. When another 

agent receives a message containing a neighbor node, it 

includes this information in its state. If communication is 
expensive, these messages do not need to be broadcasted 

to all agents, but only to those that are adjacent to the 

node informed in the message. With this representation, 

each BBLA has about 6.250 possible states for the Maps 

A and B shown on Fig. 2, and each GBLA about 200.000 

possible states.  

 

5.  Experimental Results 
 

A simulator was developed to evaluate patrolling 

strategies, and different test instances (maps) were 

created; two of them are shown in Fig. 2. Map A has few 

obstacles (highly connected). Map B has the same number 

of nodes, but fewer edges. 

 

   
 

Fig. 2 - Maps A and B from our simulator. 

Black blocks in the maps represent obstacles, 

edges represent possible paths 

 

Our experimental results are divided in two main steps. 

First, we do some preliminary experiments comparing 
WLU and SU rewards, with a fixed architecture (BBLA). 

Second, having defined a proper reward model, we 

evaluate the BBLA and GBLA architectures, comparing 

them with non-adaptive architectures. The team game 

utility (TG) was not compared, as initial experiments 

showed very poor results and no convergence on training. 

 

5.1. Preliminary Results: Comparison of Reward 

Models  
 

We measured the average idleness for a population of 

10 agents, after 6 millions training iterations (with 

estimated parameters), using non-weighted graphs for 

simplification. The results (see Fig. 3) show that SU 

perform better than the WLU, particularly due to 

instability of WLU performance. Although surprising, as 

both BBLA and GBLA include little information about 

other agents in its state, we did not expect significant 

improvements in the asymptotic performance of WLU. 
However, we will investigate in the future the use of 

WLU with a more complete state representation. It is 

Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 



 

 

interesting to notice also that GBLA_WLU performs 

worse than BBLA_WLU, showing that there is no point 

in using WLU with GBLA, as the communication of 
intentions allows agents to naturally learn to deviate from 

potential conflicts with other agents if these conflicts are 

not rewarding for them. 

As the results yet did not justify the use of WLU, the 

experiments on next section were all done using SU, and 

compared the gain from communicating intentions 

(GBLA to BBLA) and adaptive possibilities (BBLA and 

GBLA to previous non-adaptive work).  

 

5.2. Best Agents Performance Comparison 
 

Our agents were implemented using a tabular 

implementation of Q-Learning, with each Q-Table 

learned individually, and the ε-Greedy method for 
balancing exploration and exploitation [17]. Some 

preliminary experiments were done to achieve a 

satisfactory set of values for each of the learning 

parameters, such as the decay for the learning rate, 

discount factor and exploration probability. The final 

values of these parameters are shown on Table 1. 

 

Learning Rate Discount Factor 
Exploration 

Probability 
1

15

),(#
2

−

⎟
⎠

⎞
⎜
⎝

⎛
+

asvisits  
0.9 10% 

 

Table 1. Parameters estimated for training phase 
 

For each population size (2, 5, 10, 15, 25 

homogeneous agents), we simulated 6 million cycles for 

training, with all agents in the population learning 

simultaneously, and 23.000 cycles after the training, with 

no learning or exploration, for evaluation. This process 

was done for the BBLA and repeated exactly for the 

GBLA. This result is compared with the same experiment 

done with the best previous architectures: the 

Conscientious reactive [10] and the Heuristic Coordinator 

[2]. Fig. 4 shows the results for the average idleness, 

normalized according to (1). These results were run on 
Map B from Fig. 2. 
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Fig 4. Average idleness comparison, 

normalized according to equation (1)  

 

5.3. Discussion 
 

Analyzing the experimental results from the last 

section, it can be seen that both adaptive solutions are 
superior to the other solutions in most of the experiments, 

in terms of the average idleness criterion. The GBLA can 

reach a performance that is more than 35% better than the 

best non-adaptive, for a population of 10 agents, and 

performs always better for populations of more than 2 

agents. This is a clear example of an emerging 

coordination, which can be stated when observing the 

agents on our simulator: we can see that they are able to 

subdivide the graph into sub-regions, and each agent 

becomes responsible for one of these regions (bigger 

regions sometimes are patrolled by more than one agent). 

The BBLA also showed performance better or equal to 
the best non-adaptive technique in all cases, but it 

relatively decreases performance as the population grows 

and the noise from other agent’s actions is augmented. As 

the reward model used was developed to optimize the 

average idleness criterion, both architectures showed 

worse results than the non-adaptive techniques when 

compared on the worst idleness criterion, which was 

already expected.  

Observing the agents behavior on the simulator, we 

can see the consequences of our selfish formulation of the 

learning task: sometimes, an agent “invades” an area that 
is already being patrolled by another agent, seeking a 

better area for itself, at the price of a loss in global 

performance.  We can observe also that when there is a 

small population (1 or 2 agents), although they are able to 

learn coherent paths, the fact that they have only local 

information in theirs state representation (thus not 

satisfying the Markov property), makes them “forget” to 

visit some areas for a while, decreasing performance.  

Besides the good results, these architectures have two 

attractive characteristics: first, they are distributed, 

differentiating them from the Heuristic Coordinator one, 
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which is centralized and assumes full accessibility to the 

whole world. Second, they have the ability to learn and 

adapt continuously to the environment, a desirable 
characteristic in many patrolling instances. 

 

6.  Conclusions and Future Work 

 

This work investigated several alternatives for the use 

of reinforcement learning on the multi-agent patrolling 

task and represents the first successful effort in applying 

an adaptive strategy in this context. The applied RL 

algorithm, Q-learning, was operating in an unusual 

context, namely in a non-stationary environment, caused 

by the simultaneous and independent adaptation of all the 

agents.  Notwithstanding this, no unstable behavior was 

observed and the learning process converged to very good 

solutions. The approach required very little intervention 
into the design of the coordination strategy, as the 

coordinated behavior emerged mainly automatically as 

the result of collective learning. The distributed nature of 

this approach made it computationally very efficient and 

thus appealing for real-time applications. We gave a 

detailed treatment of the issues involved in modeling the 

patrolling task in the RL framework and the analysis of 

the optimality of its solutions, in particular for the average 

idleness criterion. The insights presented can be equally 

valuable for other problems with similar properties. This 

work constitutes a valuable positive case study for similar 
applications of standard RL techniques in multi-agent 

systems. 

In the future, we plan to experiment with other designs 

of the reward function and state representation to 

investigate whether an added complexity and 

communication would result in significant increase of 

performance. To take full advantage of adaptation 

capabilities, we also intend to experiment in more 

dynamic environments, where the graph topology changes 

and regions have different patrolling priorities, possibly 

changing over time. Finally, we are developing an 

architecture, aiming to achieve a globally optimal 
performance, through explicit coordination of the agent’s 

actions, using an extension to the Coordinated 

Reinforcement Learning method [7].  
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