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Abstract 

This paper analyzes coalitions among self-interested agents that need to solve combinatorial op- 

timization problems to operate efficiently in the world. By colluding (coordinating their actions by 

solving a joint optimization problem) the agents can sometimes save costs compared to operating 
individually. A model of bounded rationality is adopted where computation resources are costly. It 

is not worthwhile solving the problems optimally: solution quality is decision-theoretically traded 
off against computation cost. A normative, application- and protocol-independent theory of coali- 
tions among bounded-rational agents is devised. The optimal coalition structure and its stability 
are significantly affected by the agents’ algorithms’ performance profiles and the cost of com- 
putation. This relationship is first analyzed theoretically. Then a domain classification including 
rational and bounded-rational agents is introduced. Experimental results are presented in vehicle 
routing with real data from five dispatch centers. This problem is NP-complete and the instances 

are so large that-with current technology-any agent’s rationality is bounded by computational 
complexity. @ 1997 Elsevier Science B.V. 
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Resource-bounded reasoning; Game theory 

1. Introduction 

Automated negotiation systems with self-interested agents are becoming increasingly 

important. One reason for this is the technology push of a growing standardized com- 

munication infrastructure-Internet, WWW, NII, EDI, KQML [ 81, FIPA, Telescript 
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[ 141, Java, etc.-over which separately designed agents belonging to different or- 
ganizations can interact in an open environment in real-time and safely carry out 
transactions. The second reason is strong application pull for computer support for 
negotiation at the operative decision making level. For example, we are witnessing 
the advent of small tr~saction commerce on the Internet for purchasing goods, in- 
formation, and communication bandwidth [ 21,3 11. There is also an industrial trend 
toward virtual enterprises: dynamic alliances of small, agile enterprises which together 
can take advantage of economies of scale when available (e.g., respond to more di- 
verse orders than individual agents can), but do not suffer from diseconomies of 
scale. 

Multiagent technology facilitates the automated formation of such dynamic coalitions 
at the operative decision making level. This automation can save labor time of human 
negotiators, but in addition, other savings are possible because computational agents 
can be more effective at finding beneficial short-term coalitions than humans are in 
strategically and combinatorially complex settings. 

This paper discusses coalition formation in inherently distributed combinatorial prob- 
lems-e.g., resource and task allocation and multiagent planning and scheduling-in 
situations where agents may have different goals, and each agent is trying to maximize 
its own good without concern for the global good. Such self-interest naturally prevails in 
negotiations among independent businesses or individu~s. In building computer support 
for coalition formation in such settings, the issue of self-interest has to be dealt with. 

In cooperative distributed problem solving [7,5], the system designer imposes an 
interaction protocol* and a strategy (a mapping from state history to action; a way to 
use the protocol) for each agent. The approach is usually descriptive: the main question 
is what social outcomes follow given the protocol and assuming that the agents use the 
imposed strategies. On the other hand, in m~ltiugent systems [ 35,23,5,48,42,45], the 
agents are provided with an interaction protocol, but each agent will choose its own 
strategy. A self-interested agent will choose the best strategy for itself, which cannot 
be explicitly imposed from outside. The protocols need to be designed normatively: the 
main question is what social outcomes follow given a protocol which guarantees that 
each agent’s desired local strategy is best for that agent-and thus the agent will use 
it. The normative approach is required in designing robust non-manipulable multiagent 
systems where the agents may be constructed by separate designers and/ or may represent 
different real world parties. 

Interactions of self-motivated agents have been widely studied in microeconomics- 
especially in game theory [29,11,24,34]. Most of that work assumes perfect rationality 
of the agents [ 50,181, e.g., flawless and costless deduction. 

We extend the normative approach of game theory to settings where the agents lack 
full rationality because they cannot enumerate or evaluate all alternative solutions to a 

2 By protocol we do not mean a low level ~ommunica~on protocoi, but a negotiation protocol which 

determines the possible actions that agents can take at any point of the negotiation. An example protocol is 

the sealed-bid $rst-price aucrion, where each bidder is free to submit one bid to take responsibility for a 

task, which is awarded to the lowest price bidder at the price of his bid. The analog of a protocol is called a 

mechanism in game theory [ 11,241. 
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coalition’s optimization problem. 3 Instead, they have to search for good solutions. Such 
search incurs expenses in terms of CPU time. Therefore it is unreasonably costly to 
attempt to find optimal solutions to hard problems. Instead, solution quality needs to be 

traded off against the cost of computation. 

1.1. Example application: distributed vehicle routing 

The methods presented in this paper are needed in settings where the agents are 

self-interested, and there is an underlying intractable combinatorial problem that limits 
the agents’ rationality because the problem cannot be solved optimally in practice. 
Applications with these two characteristics include distributed vehicle routing among 
independent dispatch centers, manufacturing planning and scheduling among multiple 
agile enterprises, meeting scheduling, scheduling of patient treatments across hospitals, 
classroom scheduling, planning and scheduling of multi-contractor software projects, 
multiagent information gathering on the World Wide Web, and allocating bandwidth 
in multi-provider multi-consumer computer networks, to name just a few. The methods 

developed in this paper are domain independent. However, to make the concepts more 
concrete, the distributed vehicle routing problem will be used as an example throughout 

the paper. 
The distributed vehicle routing problem that we study is structured in terms of a 

number of geographically dispersed dispatch centers of different companies. Each center 
is responsible for certain deliveries and has a certain number of vehicles to take care of 
them. So teach agent-representing a dispatch center-has its own vehicles and delivery 

tasks. The local problem of each agent is a heterogeneous fleet multi-depot routing 
problem with the following constraints. 

0 

0 

l 

Each vehicle has to begin and end its tour at the depot of its center (but neither 

the pickup nor the drop-off locations of the orders need to be at the depot). 
Each vehicle has a maximum load weight constraint. These differ among vehicles. 
Each vehicle has a maximum load volume constraint. These also differ among 

vehicles. 
l Each vehicle has the same maximum route length (prescribed by law). 
l Every delivery has to be included in the route of some vehicle. 

The objective is to minimize transportation costs: the domain cost is the sum of the 
route lengths of the vehicles in the solution that has been reached. 

The problem is NP-hard, because dTSP can be trivially reduced to it.4 It is in NP, 
because the cost and feasibility of a solution can easily be checked in polynomial time. 
Thus, the problem is NP-complete. Moreover, the problem instances in our experiments 
are so large that even the smallest ones are too hard to solve optimally-unlike the one 
in Fig. 1. 

3 Others in game theory have examined the effects of computational limits on rational play in settings where 

agents play a combinatorially trivial game, but complexity stems from numerous repetitions of that same 

game, see e.,g. [ 321. 

4 ATSP is :I Traveling Salesman Problem where the distances between cities satisfy the triangle inequality. 



TX Sandholm, VR. .kwer/Art@ciai intelligence Q4 (1997) 99-137 

Fig. 1. Small example problem instance of distributed vehicfe routing. This instance has three dispatch centers 
represented in the figure by computer operators. They receive the delivery orders and route the vehicles. Each 
parcel is numbered according to the dispatch center that is responsible for delivering it. No routing solution 
is shown. 

The geographical operation areas of the centers overlap. This creates the potential for 
multiple centers to handle a delivery. The cost of handling it may vary between agents 
because it can often be less expensively integrated into adjacent routes than remote 
ones while honoring the weight, volume and route length constraints. So it can often 
be incorporated with lowest cost into the routing solution of the center that happens to 

have adjacent routes. The asymmetric costs among agents for handling a delivery often 
make it beneficial to reallocate delivery tasks among agents. This allows considerable 
cost savings from coordinative among the agents. 

Distributed vehicle routing is a real world problem, and the problem instances used 
in the experiments of this paper were collected from five real dispatch centers. They 
represent one week delivery order and vehicle data. 5 The collected data is characterized 
in Table 1. Our prior work has already focused on different aspects of automated 

s Company A owned the first three centers and company B owned the last two. Even though some of the 
dispatch centers were owned by the same company, in practice they acted self-interestedly because they had 
their own fiscal goals. The centers were located around Finland. 
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Table 1 

One week of real vehicle and delivery data used in the experiments 

Dispatch 

center 

Number of 

delivery orders 

Number of 

vehicles 

Average 

delivery length 

1 65 10 121 km 

2 200 13 169km 

3 82 21 44km 

4 124 18 145km 

5 300 15 270 km 

All 771 77 187km 

negotiation in this domain [ 38,41,45,39,40,27,46,43], and lately other researchers have 
studied an almost identical problem, yet with randomly generated instances and with a 
non-normative approach [ 91. Also, simpler routing problems have often been used as 

example applications in recent multiagent systems research [ 35,60,53,58]. 

1.2. Coalition formation setting 

In many domains, self-interested real world parties-e.g., companies or individual 
people-need to solve combinatorial optimization problems to operate efficiently. Often 
they can save costs by coordinating their activities with other parties. For example when 
the planning activities are automated, it can be useful to automate the coordination activ- 
ities as well. This can be done via a negotiating software agent representing each party. 

In such automated negotiations among self-interested agents, the following questions 
arise: what coalitions should the agents form, are they stable, and how should costs be 
divided within each coalition? Coalition formation includes three activities: 

l Coalition structure generation: formation of coalitions by the agents such that 
agents within each coalition coordinate their activities, but agents do not coordinate 
between coalitions. Precisely this means partitioning the set of agents into exhaus- 

tive and disjoint coalitions. This partition is called a coalition structure (CS) . For 
example, in the vehicle routing problem, coalition structure generation involves 
choosing which dispatch centers will work together as coalitions. 

l Solving the optimization problem of each coalition. This means pooling the tasks 

and resources of the agents in the coalition, and solving this joint problem. For 
example, in the vehicle routing problem this means solving a routing problem 
with the delivery orders and vehicles of all member agents. The coalition’s objec- 
tive is to maximize monetary value: money received from outside the system for 
accomplishing tasks minus the cost of using resources. 6 

’ In some problems, not all tasks have to be handled. This can be incorporated by associating a cost with 
each omitted task. Then problem solving also involves the selection of tasks to handle. The theory of this 

paper applies to such cases but in our example application, all tasks have to be handled, and no payments 
from outside the system are received for them. 
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* dividing the value of the generated solution among agents. This value may be 
negative because agents incur costs for using their resources. 

These activities interact. For example, the coalition that an agent wants to join depends 
on the portion of the value that the agent would be allocated in each potential coalition. 

This paper addresses these coalition formation activities with a special emphasis on 
settings where the opti~~tion problem cannot be solved exactly due to computations 
limitations. The paper is organized as follows. Section 2 describes our model of bounded 

rationality where computation cost precludes enumerating and evaluating all solutions to 
a coalition’s optimization problem. Section 3 studies the optimal coalition structure, and 
Section 4 analyzes its stability. Section 5 presents experimental results in the distributed 

vehicle routing domain with real data. Externalities and agents with different problem 
solving capabilities are discussed in Section 6. Section 7 presents related research, and 
Section 8 concludes and describes future research directions. 

2. Computation unit cost and algorithm as limits to rationality 

Coalition formation has been widely studied [ 20,57,33,54,53,60,22], but to our knowl- 

edge, only among rarioaal agen& which can solve the coalition’s optimization problem 
exactly, i~ediately, and without computation cost. This section describes how our 
model differs because it takes into account the cost of computation. 

Let us call the entire set of agents A. Say that the lowest cost achievable by agents S C 
A working together, but without any other agents, is c!. For example, in a task allocation 
setting this is the ~nimum cost to handle the tasks of agents S with the resources of 
agents S. A coalition game in characteristic? function form-i.e., a c~aracteristicfirnction 
game (CFG, Fig. 3)-is defined by a characteristic function & which defines the value 
of each coalition S: 

The superscript “R” emphasizes that we mean the rational value of the coalition, i.e., 
the maximum value that is reachable by the coalition given its optimization problem. A 
rational agent can solve this combinatorial problem optimally without any deliberation 

costs such as CPU time costs or time delay costs. 
However, if the problem is hard and the instance is large, it is unrealistic to assume 

that it can be solved without deliberation costs. This paper adopts a specific modeE 

of bounded rationality [ 55,151, where each agent has to pay for the computational 
resources (CPU cycles} that it uses for deliberation. A fixed computation cost ccomp 2 0 
per CPU time unit is assumed. 7 The domain cost associated with coalition S is denoted 
by Q(Q) 3 0, i.e., it depends on (decreases with) the allocated computation resources 

7 In practice, CPU time can already be bought, e.g., on supercomputers. Similarly, the developing infrastruc- 
ture for remotely executing agents provides an equivalent setting. For example in Telescript [ 141, the remotely 
executing agents pay Teieclicks for CPU time to the owner of the host machine. In this paper, the market for 
CPU time is assumed to be so large that the demand of the agents that we are studying has negligible impact 
on the price of a CPU time unit. It is also assumed that this price is common to all agents, which corresponds 
to an open CPU cycle market. 
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Fig. 2. Example experiment from the vehicle routing domain with agents 1, 2, and 3. Left: performance 

profiles, i.e., solution cost as a function of allocated computation resources. The curves become flat when the 

algorithm has reached a local optimum. Right: bounded-rational coalition value as a function of computation 

unit cost. The value of each coalition is negative because the cost is positive. The curves become flat at a 
. 

computanon umt cost ccomp that is so high that it is not worthwhile to take any iterative refinement steps: the 

initial solutions are used (their computation requirements are assumed negligible). 

rs, Fig. 2 (left). For example in the vehicle routing problem, the domain cost is the 
sum of thee lengths of the routes of the coalition’s vehicles. 8 The functions CS( rs) can 
be viewed; as pelformunce profiks of the problem solving algorithm. They are used to 
decide how much CPU time to allocate to each computation. With this model of bounded 
rationality, the value of a coalition with bounded-rational agents can be defined. Each 

coalition minimizes the sum of solution cost (i.e., domain cost, which decreases as more 
computation is allocated) and computation cost (which increases as more computation 

is allocated) : 9 

US(C(:~~~) = -n$dcs(rs) + ccomp. rsl. 

This coalition value decreases as the CPU time unit cost c,,,~ increases, Fig. 2 (right). 
Intuitively, as the unit cost of computation increases, agents need to pay more for 
the computation or they have to use less computation and acquire worse solutions 
accordingly. Our model also incorporates a second form of bounded rationality: the base 
algorithm may be incomplete, i.e., it might never find the optimal solution. If the base 
algorithm is complete, the bounded-rational value of a coalition when ccomp = 0 equals 
the rational value (us(O) = u!). In all, the bounded-rational value of a coalition is 
determined by three factors: 

8 In games where the agents receive revenue from outside-e.g., for handling tasks-this revenue can be 

incorporated into cs(rs) by subtracting the coalition members’ revenues from the coalition’s domain cost. 
g Throughout this chapter on coalition formation, min-operators are used due to their familiarity, although 

strictly speaking the value of such a min-operator may be undefined because cs( rs) need not be continuous. 
Thus, to be precise, infoperators should be used. 
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l The domain problem: tasks and resources of the agents (e.g. trucks and delivery 
orders in our vehicle routing problem). Among rational agents this is the only 

determining factor. 
l The execution architecture on which the problem solving algorithm is run. Specif- 

ically, the architecture determines the unit cost of computation, ccomp. 
l The problem soEving algorithm. Once the coalition formation game begins, the al- 

2.1. Discussion of this model of bounded rationality 

gorithm’s performance profiles are considered fixed. This model incorporates the 

possibility that agents design different algorithms for different possible allocations 
of computation resources. We make no assumptions as to how effectively the algo- 
rithm uses the execution architecture. This is realistic because in practice it is often 

hard to construct algorithms that optimally use the architecture. For example, Rus- 
sell and Subramanian have devised algorithms that are optimal for the architecture 
in simple settings, but in more complex settings they had to resort to an asymptotic 

criterion of optimality [ 361. 

Conceptually we allow the agents to use design-to-time algorithms [ 12,59,13] : once 
an agent has decided how much CPU time rs it will allocate to a computation, it 
can design an algorithm that will find a solution of cost cs( rs). The design-to-time 
framework is used instead of the anytime framework [44,4,17,59] because to devise a 

normative theory of self-interested agents, the possibility that they design their algorithms 
to time has to be accounted for. With deterministic performance profiles, for any desired 

CPU time allocation or solution quality, a noninterruptible design-to-time algorithm can 
be constructed that performs no worse than an interruptible anytime algorithm. In the 
worst case, the design-to-time algorithm may actually consist of executing the anytime 
algorithm. However, there are cases where the algorithm can be beneficially tailored for 
a specific CPU time allocation or solution quality, and in such cases the design-to-time 
algorithm will outperform the anytime algorithm. 

We assume that the performance profiles exactly predict the solution cost attained 
for any given CPU time allocation. So, we have relaxed the assumption that the base 
level algorithm is optimal (complete and costless), but instead we assume that the 
deliberation controller (meta-level reasoner) is exact and costless. However, we do 
not assume that the deliberation controller composes the optimal sequence of base 

level computation actions since even the most advanced methods for such composi- 
tion rely on assumptions that often do not hold in practice [37]. Assuming that the 
meta-level exactly and costlessly predicts the solution cost is more realistic than assum- 
ing optimality of the base level, but it still does not match reality exactly. In practice 

there is uncertainty in each performance profile: the meta-level is not exact. lo Sec- 
ondly, the performance profile depends on several features of the problem instance, 

lo If the performance profiles are only probabilistically known, anytime algorithms may be desirable due to 

their flexibility with respect to termination time. In general, for optimal meta-reasoning, the remaining part 

of a probabilistic performance profile should be conditioned on the algorithm’s performance on that problem 

instance on previous CPU time steps [44,59,16]. 
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and computing the mapping from the instance to the performance profile [44] may 
take considerable time, thus making the meta-level costly. In the limit, the base algo- 

rithm would be run at the meta-level to determine what it would achieve for a given 

time setting. Our assumptions regarding the meta-level enable us to analyze bounded 
rationality at the base level in isolation from uncertainty of the performance profiles. 

They also allow us to sidestep the problem of having a meta-meta-level controlling 
the meta-level, a meta-meta-meta-level controlling the meta-meta-level, and so on ad 
infinitum. 

For now-this is relaxed in Section 6-we assume that the agents solve the combi- 
natorial optimization problems equally well. For any coalition’s problem and for any 

setting of CPU time, the cost of the solution potentially generated by each agent is the 
same. The agents need not generate the same solutions, only the same quality. 

With such shared deterministic performance profiles, each agent knows the value 

us(c,,,r) of each potential coalition S up front. Therefore coalition formation is best 
off taking place before any computation. This guarantees that no computation is wasted 

on coalitions that will not prevail. 
After collusion, each coalition computes its solution using the optimal amount of CPU 

time rs as defined by Eq. (2). Because in our model, rationality is bounded by CPU 
time cost, it costs the same for one agent to use nt CPU time units as it costs n agents to 
use t units. Therefore, it is best if a coalition’s optimization problem is solved by a single 
agent. This is trivially true since an agent could simulate distributed problem solving 
among n agents for time t by using a local algorithm for nt. Conversely, it is not always 
possible (due to redundancy, etc.) for n agents solving the problem for time t to reach a 

solution of the same quality as one agent using nt can reach. The computing agent can 
be arbitrarily chosen from within the coalition, and the coalition pays that agent its true 
cost for computing. This cost along with the domain solution cost contribute-as was 

defined in Eq. (2)-to us(c,,,r), which is divided among the agents in the coalition 

as will be presented later. To summarize, with our model of bounded rationality it is 
best to centralize computation within each coalition but computation may be distributed 

across coalitions. I1 

3. Social .welfare maximizing coalition structure. 

Outcomes of a game can be analyzed with respect to social welfare, which is defined 

as the sum of the agents’ payoffs. The payoff that agent i gets is denoted by xi E R. 
The sum of the agents’ payoffs has to equal the sum of the values of the coalitions in 
the coalition structure that formed. 

” In our model, there is no cost to real-time. This corresponds to reality in settings where the domain cost 

is (practically) unaffected by the real-time that is used when consuming the optimal amount of CPU time. 

This can occur either because the amount of real-time is short, or because the domain cost is insensitive to 
real-time. To model settings where these conditions are not met, the cost of realtime should be incorporated 

into the model of bounded rationality. Under such a model, it might no longer be optimal to centralize the 
computation within each coalition because distributed computing may reduce the amount of real-time used. 
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A game is called su~eradd~tive if any pair of coaIitions is best off by merging into 

one coalition: 

Definition 1. A game is superadditive if v FuUT 3 (I! + v$ for all disjoint coalitions 
S,T G A.‘* 

When computation cost is ignored, superadditivity almost always holds, because at 

worst, the agents in the composite coalition can use the solutions that they had when 
they were in separate coalitions. A game can be non-superadditive only if the collusion 
process itself involves some cost, e.g., anti-test penalties. The concept of superadditivity 
is important because it implies optimality of a specific coalition structure. Precisely, all 
superadditive games are grand coalition games, i.e., the agents are best off by forming 

the grand coalition where all agents operate together. In other words, in such games, 

{A) is a social welfare maximizing coalition structure for rational agents. Some non- 
superadditive games are ~uba~~t~ve, Fig. 3: 

Definition 2. A game is subadditive if &- < z$ + u; for all disjoint coalitions 

S,T S A. 

In subadditive games, the agents are best off by operating alone, i.e., {(al}, {a~}, . . . , 
{alAl}} is a social welfare maximizing coalition structure for rational agents. Some 
games are neither superadditive nor subadditive because the characteristic function fulfills 
the condition of superadditivity for some coalitions and the condition of subadditivity 

for others. In other words, some coalitions are best off merging while others are not. In 
such cases, the social welfare maximizing coalition structure varies. The grand coalition 
may be the optimal coalition structure even in games which are not superadditive. 

Similarly, every agent operating alone may be optimal even in games which are not 
s~badditive. 

With bounded-rational agents, the coalition values incorporate the computation costs 
as described earlier. Now we generalize the concept of superadditivity to allow for 
bounded-rational agents. A game is called bounded-rational superadditive (BRSUP) 

if any pair of coalitions with bounded-rational agents is best off by merging into one 

coalition. In other words, a game is BRSWP if the best value that one coalition can 
reach given the computation cost plus the best value that another coalition can reach 
given the computation cost is never greater than the best value that these coalitions can 
reach as a composite coalition given the computation cost: 

Definition 3. A game is bounded-rational superadditive (BRSUP) for computation unit 

cost ccomp if USUT ( ccomp 1 2 0 (ccomp > + UT( ccomp) for all disjoint coalitions S, T C A. l3 

I2 ~~~~tions 1,2 and 10 are from game theory. 
I3 The classic definition of rational superadditivity (Definition 1) is a special case of hounded-ration 

superadditivity (Definition 3) where the agents have complete algorithms (ones that find the optimal solution 
given enough computation time) and computation is costless (ccomp = 0). 
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Normal form game WFG) 

Characteristic function game (CFG) \ / / 
Fig. 3. Venn diagram of negotiation domains for rational agents. Normal lines show the classification from game 
theory. Dotted lines show the domain classification of Rosenschein and Zlotkin [ 351. They use “Subadditive” 
to mean that an agent’s cost for handling tasks is subadditive in tasks. We use subadditive to refer to coalition 
value functions that are subadditive in agents. The figure does not reflect the fact that Rosenschein and Zlotkin 
do not allow side payments. 

Every ElRSUP game is a bounded-rational grand coalition game. In such games, 
bounded-rational agents are best off by all working together, i.e., by forming the grand 
coalition. In other words, in such games, {A} is a social welfare maximizing coalition 
structure for bounded-rational agents. There also exist bounded-rational grand coalition 
games which are not BRSUP: the grand coalition may be the optimal coalition structure 
although not all local poolings are beneficial. 

Bounded-rational superadditivity does not always coincide with superadditivity. In 
general, for a given computation unit cost, a game can be superadditive, BRSUP, both, 

or neither. 
Only some non-BRSUP games are bounded-rational subadditive: 

Definition 4. A game is bounded-rational subadditive (BRSUB) for computation unit 

cost Ccomp if QUZ-(~~~~~) < u~(c,,~~ ) + UT(C,~~~) for all disjoint coalitions S, T G A. 

In BRSUB games, the agents are best off by operating alone, i.e., {{al}, {az}, . . . , 
{alAl}} is a social welfare maximizing coalition structure for bounded-rational agents. 
This coalition structure may be optimal even in games that are not BRSUB. In games 
that are neither BRSUP nor BRSUB, the optimal coalition structure varies, and several 
coalition structures may be equally good with respect to social welfare. 
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Bounded-rational characteristic fmctian game (BRCFG) 

Bounded-m&mat superadditive (BRSUP) 

Bounded-rational stable (BRC # 0) 

45 x 

Fig. 4. Venn diagram of negotiation domains for bounded-rational agents. A particular game can lie in any 
region of this space, and it can simultaneously lie in any region of Fig. 3. Therefore, the domain classifications 
for bounded-rational and rational agents can be merged by observing that each region of one classification 
intersects with each region of the other classification. By “region” we mean any area enclosed by lines, not 
just the named classes. To enhance readability, the two classitkations are presented in separate figures. 

If the algorithm’s performance profiles and the unit cost of computation are known, the 
bounded-rational values of potential coalitions can be computed according to Eq. (2). 
Based on these values, all different coalition structures can be evaluated, and an optimal 
coalition structure determined. However, some general results hold which may make 
this enumeration process unnecessary. The rest of this section analyzes the relationship 

between the shape of the performance profiles and the class of the game. Specifically, 
the question is: what types of performance profiles make a game BRSUF’ {or BRSUB) 
for all computation unit costs? If the agents have these types of performance profiles, 

they know the optimal coalition structure irrespective of the unit cost of computation. 

This is important for example when agents are sent to execute on a remote host where 
the unit cost of computation is unknown. 

Bounds-rayons superaddi~vity depends on the p~rfo~ance profiles and the unit 
cost of computation. The next theorem states a natural condition on the performance 
profiles. If the condition holds, the game is BRSUP for any computation unit cost. 
Proofs of the theorems are presented in Appendix A. 

Theorem 5. (BRSUP (sufficient condition} ) If csUT( rs + rT) < cs( Q) + Q(Q) for 
all disjoint coalitions S, T C A and all computation allocations rsI rT 2 0, then the 
game is Bk?SUP for all computation unit costs. 
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The condition states that the domain cost for coalition S after allocating a certain 
amount rs of computation plus the domain cost to another coalition T after allocating a 

certain amount rT of computation is never less than the domain cost of these coalitions 
combined after allocating rs + rr. This is always achievable in theory because in the 
worst case, the algorithm can allocate rs on the problem of S and then allocate rT on 
the problem of T separately. In other words, if the algorithm decomposes the problem 
by solving each agent’s problem separately, bounded-rational superadditivity is trivially 
guaranteed by bounded-rational additivity. However, this trivial decomposition does not 

allow the .agents to benefit from cooperation. 
Some other problem decomposition-i.e., decision regarding which coalitions’ prob- 

lems to allocate computation on and how much-may guarantee bounded-rational su- 

peradditivity while allowing some benefits from cooperation. However, given a large 
coalition, :It may be difficult to find an efficient decomposition. 

Often, the algorithm that is used on the composite problem does not apply this type 

of problem decomposition. The real desideratum is not necessarily to generate algo- 
rithms that guarantee bounded-rational superadditivity (and thus the superiority of the 
grand coalition over other coalition structures), but algorithms that provide the highest 
social wel-fare (for the best coalition structure, which need not be the grand coalition). 
Sometimes these two goals are in conflict. Whether the algorithm’s performance pro- 
files actual!ly satisfy the conditions for bounded-rational superadditivity without using a 
decomposition method depends on the problem, the specific instances under study, and 

the algorithm itself. 
In gene:ral, a game can be bounded-rational superadditive for all computation unit 

costs even if the condition of Theorem 5 does not hold on the performance profiles: 

Theorem 16. [ cSUT( rs + rT) 6 cs( rs) + cT( rT) for all disjoint coaktions S, T C A and 
all compu,iation allocations rs, rT > 0] p’: Game is BRSUP for all computation unit 
costs. 

It is reasonable to assume that the performance profile es(r) is decreasing in r if 
the agent can inexpensively store the best solution it has arrived at so far. Furthermore, 
cs (r) is often convex in r: greater savings are achieved in the early stages of computa- 
tion and the savings per time unit decrease as problem solving proceeds. We conjecture 
that performance profiles of design-to-time algorithms are almost always convex. On 

the other hand, performance profiles of anytime algorithms are typically not convex 
at points where the base algorithm switches from one mode to another. One exam- 
ple is completing an iterative refinement algorithm by running an exhaustive complete 
algorithm after the refinement phase. Another example is switching from using one re- 
finement operator (e.g., 2-swap in TSP [ 26,411) to using another refinement operator 
(e.g., 3-swap in TSP). Furthermore, refinements often decrease solution cost in a step- 

wise, noncontinuous manner rendering the performance profiles locally nonconvex-as 
in our experiments (Fig. 2 (left)). If the algorithm is stochastic, these step-related 
nonconvexities are reduced as the performance profile is averaged over multiple runs. 
The performance profiles in our experiments exhibited an overall convex nature, but also 
had true local nonconvexities (because the design-to-time algorithms were constructed 
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from anytime ~gorithms, and were not tailored for each time setting separately, Sec- 
tion 5). Convexity is significant because with convex performance profiles, a domain is 
BRSUP for all computation unit costs if and only if the condition of Theorem 5 on the 
performance profiles holds: 

Theorem 7. (BRSUP (necessary and suf~~ie~t condi~on)) Let c&r) be decreasing 

and convex in r for every coalition U S A. Now, [csu~(rs + rT) < es( rs) + C&-T) far 
all disjoint coalitions S, T 2 A and all computation allocations rs, rr 3 0] ($ Game is 
BRSUP for all computation unit costs. 

Analogous to Theorem 5, there is an easy sufficient condition on the performance 

profiles that guarantees that the game is bounded-rational subadditive for all computation 

unit costs: 

Theorem 8. (BRSUB (sufficient condition) ) If c~r( rs + r-r) > cs( rs) + CT{ rT) fur 
all disjoint coalitions S, T C A and all camputati~n allocations rs, rr 2 0, then the 
game is BRSUB for all computation unit casts. 

This implies that the agents would be best off by operating separately regardless of the 

execution platform. 
Again, a game can be bounded-rational subadditive for all computation unit costs 

even if the condition of Theorem 8 does not hold on the performance profiles. Unlike 
in the case of bounded-rational superadditivity, the implication does not turn into an 
equivalence even for convex performance profiles: 

Theorem 9. [ c$.)T( rS + r--r) > cs( r-s) 4- cT(rr) for aR disjoint coalitions S, T 5. A and 
all computation allocations rs,rr 3 0] 6 Game is BRSUB for all computation unit 
costs. This holds even if all per$armance profiles are decreasing and convex. 

4. Stability of the coalition structure 

In the previous section we presented methods for determining the social welfare 

m~imizing coalition structure. In this section we analyze the sta~~~~~ of that st~cture. 
Specifically, can the social good be distributed so that every subgroup of agents is 

better off staying in the social welfare maximizing coalition structure than by separating 
into a new coalition (individual agents and the group of all agents are also considered 
subgroups here) ? The cure (C) is the solution concept that satisfies this requirement 

[ 20,57,33]. The core of a game is a set of p~o~can~~~rat~~ns (x, CS), where each n 
is a vector of payoffs to the agents in such a manner that no subgroup is motivated to 
depart from the coalition structure CS. Given payoffs according to Y, the value of each 
subgroup is no greater than the sum of the payoffs that the agents of that subgroup get 
under CS. Obviously, only coalition structures that maximize welfare can be stable in 
the sense of the core because from any other coalition structure, the group of all agents 
would prefer to switch to a social welfare maximizing one. The core can be formaily 
defined as follows: 
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The core is the strongest of the classical solution concepts in coalition formation. 
It is often too strong: in many cases it is empty [20,57,33,60]. In such games there 

is no way to divide the social good so that the coalition structure becomes stable: any 
payoff configuration is prone to deviation by some subgroup of agents. The new solution 
that is acquired by the deviation is again prone to deviation and so on. There will be 

an infinite sequence of steps from one payoff configuration to another. To avoid this, 
explicit mechanisms such as limits on negotiation rounds, contract costs, or some social 
norms need to be in place in the negotiation setting. 

Another problem is that the core may include multiple payoff vectors and the agents 
have to agree on one of them. An often used solution is to pick the nucleolus which, 
intuitively speaking, corresponds to a payoff vector that is in the center of the set of 

payoff vectors in the core [20,57,33]. A further problem with the core is that the 
constraints in the definition become numerous as the number of agents increases. This 
is due to the combinatorial subset operator in the definition. 

Now we generalize the core to allow for bounded-rational agents. The classic defini- 
tion (Definition 10) corresponds to the special case where the agents’ algorithms are 

complete, and computation unit cost is zero. 

Definition 11. The bounded-rational core (BRC) for computation unit cost ccomp is 

BRC(c,,,,) = {(x, CS) 1 V’s c A xxi b ~s(~corn~) 
iES 

and c xi = c us, (cCO,p) } . 
iEA jECS 

If the B’RC is not empty, bounded-rational agents can divide the social good among 
themselves in a way that no subgroup is motivated to break away from CS. Sometimes 
the BRC is empty, but this does not always coincide with the core being empty. There 
are games where the BRC and the core exist, games where either one of them exists 

separately, and games where both are empty. 
If the agents are best off working separately, the coalition structure with separate 

agents is stable: 

Theorem 12. (BRC in BRSUB games) Game is BRSUB for computation unit cost 

ccomp =+ B’RC(cc,,) # 8. 

In domains that are not BRSUB, the BRC is sometimes empty. The condition C # 0 
can be converted into necessary and sufficient conditions on the v! values in games 
where the grand coalition maximizes social welfare [ 52,6]. We convert the condition 
BRC( ccOITIp) # 8 into conditions on the US( ccomp) values analogously. Let B1, . . . , B, 

be distinct, nonempty, proper subsets of A. The set B = {Bt , . . . , BP} is called balanced 
if there are positive coefficients At,. . . , A, such that Vi E A, xljliEB, l Aj = 1. A minimal 
balanced set includes no other balanced sets. 



Table 2 
Conditions for existence of the BRC in a 4-agent bounded-rational grand coalition game; the last column 

shows the number of constraints generated from the constraint by permuting the agents (including the 
presented pe~u~tion) 

Id Constraint % 

~!{i.z}(Ccamp) + u{3,4} (Ccomp) 6 u{1,2,3,4} (Ccomp) 3 

D{l,2,3} (hmpf f U{4) (cc~mp) < uj1.2.3.4) ihmp) 4 

“{1.2) (Ccomp 1 + U{3}(Ccnmp) + ~{4}(Ccomp) < U{1,2,3,4} (Gomp) 6 

iu{I,*,3) (Ccomp) + $u{1,2,4) (C camp) + iL’{3,4} (Ccomp) < u{1,2.3,4} (Ccomp) 6 

~{t)(Ccomp) + u{Z}(Ccomp) + ~{3)(Ccomp) + ~{4}fCcompI 6 a( 1,2,3,4} (Ccomp) I 

-$J{,.2) (Gcmlp) + fU(1,3] tGxnpf + 4U{2,3) fhllp) + ~f(4ffGomp~ < ~~{1,2,3.4) tee”,,) 4 

&1,&j) (c=Omp) +- ~~(L,4)bb”~) + ${2,4)hOmp) + +(3)bhm,7) < u{1,2,3.4} (%,m,) 12 

$‘{,,2.3) tccomp) + f~{,/,+Omp) + ~~{2,4)ho”I,d + &(X,4) (b”p) < u{l,2,3,4} (Ccomp) 4 

l 

Theorem 13. (BRC in bounded-rational grand coalition games (necessary and suffi- 

cient condition}-analogous to Shapley [52] ) in games where (A) is il- social welfare 
rn~~rn~zing ~oa~it~o~ ~t~ct~~e for bounded-r~tio~~~ agents for ~orn~ut~tio~ unit cost 

Ccomp, BRC ( ccomp ) =# 0 iffor every minimal hlanced set L3 = { B1 , . . . , B,}, 

,j=t 

Example 14. In any 3-agent game where {A} is a social welfare maximizing coalition 
structure for bounded-rational agents for computation unit cost ccomp, BRC(c,,,) + 8 
iff 

u{ 1) ( Gomp > + u(2,3}(ccomp) f ~{1,2,3)(hxnp)r 

~{Z}(‘%om~) + ~(1,3)(Ccomp) < ~{1,2,3}hhnp). 

U{3>(fc*mpS + u~l,2~(C=~rn~~ < u{l,2,3}(C~~m~~, 

U{ 1) (Ccomp ) + U{2}(Ccomp) + ~{3)(%xnp) 6 ~{1,2,3}(~comp)~ 

~U{1,2)(CcompI + ~~{1,3)(%xnp) + $U(2,3}(Ccomp) G u{1,2,3) 

and 

( Ccomp 

All but the last in~uality are impIi~ by the fact that (A) is a social welfare rn~i~zi~g 

coalition structure. 

Example 15. In any 4-agent game where {A} is a social welfare maximizing coalition 

structure for bounds-rational agents for computation unit cost c,,,~, BRC ( ccOmp) # 8 
iff the 41 inequalities of Table 2 hold. constants 1, 2, 3 and 5 correspond to partitions 
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of A (every A equals 1). They are thus implied by the fact that {A} is a social welfare 
maximizing coalition structure. 

In BRSUP games, a subset of the above inequalities suffices. Let us call a minimal 
balanced set proper if no two of its elements are disjoint. 

Theorem 16. (BRC in BRSUP games (necessary and sufficient condition) -analogous 
to Shapley [ 521) In a game that is BRSUPfor computation unit cost ccomp, BRC( ccO,) 
# 0 iff for every proper minimal balanced set t3 = {Bl , . . . , Bp}, 

P 

c A.juBj,(Ccomp) < uA(Ccomp). 

j=l 

Furthermore, this set of inequalities is minimal: no smaller set is suficient (analogous 

to [61). 

Example 17. In a 3-agent game that is BRSUP for computation unit cost ccomp, 

BRC(ccomp) + 0 iff 

~us{,2) (ccomp) + ;us{,,9) (ccomp) + ~us{*.s) (ccomp) 6 us{,.2.3) (ccomp). 

Example 18. In a 4-agent game that is BRSUP for computation unit cost ccomp, 
BRC( cconlp) # 8 iff the 11 conditions acquired from Table 2’s constraints 4, 8, and 9 

are satisfied. 

Next we present conditions on the performance profiles that are s@icient to guarantee 
that the BRC exists. According to Theorem 12, the conditions on the performance 
profiles that guarantee bounded-rational subadditivity (Theorem 8) form one such set 
of conditions. The following set suffices for games where {A} is a social welfare 
maximizing coalition structure for bounded-rational agents: 

Theorem 19. (BRC in bounded-rational grand coalition games (sufficient condition) ) 
In games where {A} is a social welfare maximizing coalition structure for bounded- 

rational agents for computation unit cost ccomp, uor every minimal balanced set f3 = 

{Bl,..., 19p}, WB E a,v’rB b 0) cy=, AjcBj(rBj) 2 CA(~& hjrB,)l * BRC(hmp) 

+ 0. 

In games where {A} is a social welfare maximizing coalition structure for bounded- 
rational agents for ull ccomp (2 0), the above conditions guarantee existence of the 

BRC(cc,,,p) for all ccomp (2 0). This would mean stability of the grand coalition for 

any execution platform. In BRSUP games, fewer conditions suffice: 

Theorem 20. (BRC in BRSUP games (sufficient condition) ) In a game that is BRSUP 

for some 17,,,~ , > 0, lfor every proper minimal balanced set B = {Bl , . . . , BP}, (VB E 

a,vrB b ‘3) c$ AjcB,(rBj) > CA(~;=I AjrBj)l * BRC(ccomp) # 8. 
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Again, if the game is BRSUP for all ccomp (2 0), the above conditions guarantee 
existence of the BRC( ccOmp> for all ccomp (2 0). This would mean stability of the 

grand coalition for any execution platform. 

Example 21. In a 3-agent game that is BRSUP Vccomp, [ (‘v’r{l,2) > 0, b’r-{1,3) 2 

o&-(2,3} 2 0)~ ${1,2)k{1,2)) + +{1,3}(~{1,3)) + ${2,3}k(2,3)) 2 C{,,2,3)($(1,2) + 

5-{1,3} + $-{2,3))1 =+ ‘k,,,BRC(c,,,) # 8. 

5. Experimental results 

Although one can construct problems, problem instances, and algorithm performance 
profiles to populate any region of the Venn diagrams of coalition games (Figs. 3 and 4), 
this does not mean that real world cases uniformly populate this space. The role of the 
experiments of this section is to analyze where a particular real world problem, its 
instances, and a sensible iterative refinement algorithm fall in the space of coalition 
games. Some quite surprising results appeared. 

Coalition formation among bounded-rational agents was tested on the vehicle routing 
problem using the large-scale real world vehicle and delivery order data described earlier. 

The domain cost cs ( rs) for a coalition S was the sum of the route lengths of the vehicles 
of that coalition (while handling all of its orders) in the solution that had been reached 
after computation rs. So, the rational value ( L$) of each coalition is defined by the tasks 
(delivery orders) and the resources (vehicles, depots) of the agents in the coalition. 

The problem instances in our example are so large that even the smallest ones are too 
hard to solve optimally. Therefore, rational coalition formation algorithms for vehicle 

routing problems [28] are unusable in this case. 
To analyze a game, we ran the same algorithm on the vehicle routing problem of each 

subgroup of agents separately and thus acquired a performance profile for each potential 
coalition. The algorithm first generates an initial solution by giving each vehicle one 

long delivery and then, in order, giving each vehicle the delivery that can be added 

to its route with the least cost without violating the constraints. The second phase of 
the algorithm is based on iterative refinement. At each step, a delivery (chosen from a 
randomly ordered circular list) is removed from the routing solution and inserted back 
to the solution, but into the least expensive place while not violating the constraints. 
The drop-off location of the delivery has to be inserted after the pickup location into 
the same vehicle’s route, but not necessarily into the same leg. We ran the refinement 
algorithm until no remove-insert operation enhanced the solution: a local optimum was 
reached. In the performance profiles we ignored the time to construct the initial solution, 
and only viewed how the solution cost decreased with more CPU seconds of iterative 
refinement, Fig. 2 (left). The refinement algorithm is an anytime algorithm, but because 
the performance profiles are exact (as explained, they are precomputed for experimental 
purposes by running the base algorithm itself), the agents do not gain information from 
execution on that instance so far. Therefore the algorithm is equivalent to a design-to- 
time algorithm for our purposes. 
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We analyzed all of the (z) = 10 3-agent games that can be acquired by choosing 
3 of the 5 dispatch centers. There are 7 subgroups of the 3 agents: {l}, {2}, {3}, 

{1,2}, {2,3}, (3, l}, {1,2,3} and 5 coalition structures: {{l}, {2}, {3}}, {{l}, {2,3}}, 
{{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}. Fig. 2 shows the performance profiles with 
agents 1, 2 and 3. 

Each of our games is superadditive for rational agents because at worst, a compos- 
ite coaliti,on can use the solutions of separate coalitions. In general, a game can be 

non-superadditive only if the collusion process itself involves some cost, e.g., anti-trust 
penalties. Thus rational agents would be best off by forming the grand coalition. Surpris- 

ingly, none of the games were BRSUF’ for any ccomP, Fig. 5. For ccomp in the mid-range, 
the 3-agent games were often BRSUB (point M in Fig. 4)) while in the low and high 
ranges (point LH), they were often neither BRSUP nor BRSUB. In some of these 
mixed games, for low ccomP, the grand coalition was the best coalition structure (point 

Lg). Existence of the core for rational agents is unknown for our games: the points M, 
LH, and Lg might really be M’, LH’, and Lg’ in Fig. 3. The BRC was non-empty in 
all 3-agent games for all values of c,,,r. To summarize, in our 3-agent games, rational 

agents would be best off forming the possibly unstable grand coalition, while bounded- 
rational agents should form varying coalition structures (the grand coalition for some 

low values of ccomp), which are always stable. We also reran the experiments without 
the maximum route length restriction, and these results prevailed, Fig. 5. 

Centers 2, 3 and 5 were located near each other, while 1 and 4 were far from 
each other and the other centers. Centers 1, 3, 4 and 5 transported heavy low volume 
items, while 2 transported light voluminous items. Intuitively, adjacent centers have 
more potential savings from cooperation. Secondly, heavy and light items can often be 
beneficially combined to a load without violating the maximum load weight or maximum 
load volume constraint. Both with and without the route length restriction, 2 and 5 were 
best off by only mutually colluding for any c,,,r. Their deliveries have considerable 
area1 overlap due to adjacency, and the light voluminous items and heavy low volume 
items can be profitably joined into the weight and volume constrained vehicles. Centers 

2 and 3 did not collude as much as 2 and 5 because 3’s vehicles had tighter volume 
constraints than S’s-hindering the transport of 2’s goods. No other two centers besides 

2 and 5 were always best off in a 2-agent coalition independent of the third agent of 

the game. Relaxing the route length constraint increased collusion between the distant 
2 and 4 while demoting collusion of the adjacent 2 and 3. 

Next we analyzed the (3 = 5 4-agent games and the 5-agent game with and without 
the route length restriction. In every game, the existence of BRC(c,,,) varied many 

times as a function of ccomp but it existed for the largest values of ccomP. No game was 

BRSUP for any ccomp, but some games were BRSUB for values in the medium range, 
Fig. 5. The grand coalition was the best coalition structure in only one of the twelve 
games with four and five agents. This happened for low ccomp in the game with agents 1, 
2, 3, and 4, and the route length restriction. When this occurred, BRC ( ccomp) happened 
to be non-empty (point Lg in Fig. 4). In all of the three, four, and five agent games, 

BRC(ccon,r) was always nonempty when the best coalition structure was the grand 

coalition. To summarize, depending on ccomp. the games were at the points M, LH, Lg, 
or 45 (or M’, LH’, Lg’, or 45’). The best coalition structure varied despite the fact 
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J-agent games with route length restriction (BFWJB = Bounded rational subadditive) 

l11,Wl (25lA31 (251.(41 

J-agent games without route length restriction 

l”““t~~~~~~P;t= ~Ut.G$Pll~b ,WP-~~ l(WWlb ,P5t.VtE I ;$I;,$ ) I ,;.., (11131 l511u5)~~311u1~31&51,~31 n,.; 

l11,~41,~1 ~151,(41 Utd4t,W tL5trl41 L , WWt GW31,~41 L , is.451 ~3td4tm l35l~l41 

1 BRSUBI ~BRSUB~ IBRSUB~ IBRSUB~ ' IBRSUBl 

4-agent games with route length restriction 

WA41 WAt~l31 U&31.~41 l11.~21~~31.l41 _ , Ut,l2JtrW h ~1td251,~41 ) ,l7M4~(nst 1 ll5t,l3td4t~ , Wt.l~td4t ) 

4-agent games without route length restriction 

11531~~41 ~11,l21,~31,t41, , Ut,I25td31_ ,~11,~25t.l41 L jlt.(3,45t ~11,~3td41#) ~15td31~(41 (11.131.(41,(51 ~1,51,~31,~41 
I 

1 BRSUB 1 
[25),{3),(4L 

5-agent game with route length restriction 5agent game without route length restriction 

(11. (251,~31. (41 111, (251.131,141 

Fig. 5. Optimal coalition structure for bounded-rational agents and bounded-rational subadditivity as a function 

of Ccomp. Tested by evaluating all possible coalition structures and bounded-rational super/subadditivity at 

varying points of ccomp chosen from a grid where ccamp is always incremented by 1%. Each arrow corresponds 

to a different subset of agents. The arrows are not drawn to scale. 

that rational agents would be best off forming the grand coalition due to superadditivity. 
Again, whenever both agents 2 and 5 participated, they were best off by mutually 
colluding for all computation unit costs. In those games no other agents colluded. 

Put together, the main surprising result is that although rational agents should always 

form the grand coalition, this is anything but obvious among bounded-rational agents. 

None of the vehicle routing games of our experiments-using real data and a sensible 
iterative refinement algorithm-exhibited bounded-rational superadditivity. The observed 
bounded-rational subadditivity of some of the games implies a non-empty BRC: the best 
coalition structure in those games is stable. Even when bounded-rational subadditivity 
did not hold, the BRC was often non-empty-especially for large ccomp. 

Another interesting observation is that the presented normative theory prescribes the 
bounded-rational agents to choose coalition structures that agree closely with what hu- 
man agents would select. The best bounded-rational coalition structures mostly agreed 
with our intuitions of what coalitions should form based on domain specific considera- 
tions such as adjacency of the dispatch centers and the combinability of their loads. On 
the other hand, these coalition structures differ significantly from those which rational 
agents would choose. 

Finally, higher computation unit costs seem to often promote smaller coalitions than 
lower computation unit costs. This has a possible intuitive explanation. Each step of 
the refinement algorithm takes O(ud*) time, where u is the number of vehicles and d 
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is the number of deliveries. Because this is superlinear in deliveries, a larger coalition 
can make fewer refinement steps in a given time than the agents in partitions of that 
coalition can. To compensate, a refinement step of the larger coalition would need to 
reduce solution cost more than a refinement step of a smaller coalition. The size of the 

saving has to be averaged over all refinement steps in the optimal time allocation. If 
ccomp is low, more time is allocated, and small coalitions will often run out of profitable 
refinements. If ccomp is high, less time is allocated, and all coalitions will have profitable 
refinements, though the larger coalition will have time to make fewer of them. Thus it 

was not surprising that in games where the grand coalition was optimal, it was optimal 
for very small computation unit costs only. 

Surprisingly, two agents colluding was often better than all agents working separately 
even for large computation unit costs. The result that higher computation unit costs 
promote smaller coalitions is somewhat de-emphasized by our choice of not including the 
initial solution construction phase in the performance profiles. Shifting the performance 
profiles right to begin at the time when the initial solution was finished (instead of at 
zero) would shift the performance profiles of small coalitions less than the performance 

profiles of large coalitions because the initial solution construction is superlinear both 
in tasks and vehicles. Thus small coalitions would gain an advantage-that is most 

significant for large ccomp. If the time of initial solution generation is discarded, the best 

coalition structure for the highest computation unit costs depends only on the quality of 
the initial solutions of the different coalitions because no refinement steps are beneficial. 

In our experiments, coalitions { 1,5}, {2,5}, and {3,5} ac h ieved a better initial solution 
cost than the sum of the initial solution costs of the two agents separately, Fig. 5 (this 
set of pairs prevailed even without the route length restriction). 

6. Externalities among coalitions and different algorithms among agents 

As is common practice [20,53,54,60,22], so far in this paper we have restricted 
our attention to studying coalition formation in characteristic function games (CFGs), 

Fig. 3. In such games, the rational value of each coalition is independent of nonmembers’ 
actions (it is given by the characteristic function u!) . However, in general the value of a 

coalition may depend on nonmembers’ actions due to positive and negative externalities 
(interactions of the agents’ solutions). Such settings can be modeled as normal form 

games (NFGs) . CFGs are a strict subset of NFGs, Fig. 3. l4 
Negative externalities between a coalition and nonmembers are often caused by shared 

resources. Once nonmembers are using the resource to a certain extent, not enough of 
that resource is available to agents in the coalition to carry out the planned solution 
at the minimum cost. Negative externalities can also be caused by conflicting goals. In 
satisfying their goals, nonmembers may actually move the world further from the coali- 

I4 The two are equivalent in constant-sum games with unrestricted side payments and perfect communication. 
In such games, the characteristic function value of a coalition is its minimax value from the normal form 

game [ 571. A coalition’s minimax value is the maximum payoff that the coalition can bring about for itself 

given that nonmembers choose strategies that are worst for the coalition. 



tion’s goal state(s) [ 351. Positive externalities are often caused by partially overlapping 
goals. In satisfying their goals, nonmembers may actually move the world closer to the 

coalition’s goal state(s) . From there the coalition can reach its goals less expensively 
than it could have without the actions of nonmembers. 

Let us now introduce a new domain class: bounded-rational characteristic function 
game (BRCFG), Fig. 4. In BRCFGs, the value of each coalition S is defined by the 
bounded-rational value US( ccOmp ). Thus, so far in this paper we have studied BRCFGs. 

Externalities between domain solutions of different coalitions may exclude some 

problems from the class BRCFG also. In general, the rational value of a coalition may 
depend on the actions of nonmember agents due to positive and negative interactions of 

the agents’ domain solutions as discussed above. Such games are NFGs, but not CFGs. 

For the same reason, the value of some bounded-rational ~oalition’s domain solution- 
computed by a bounds-r~ion~ agent-may depend on the actions of nonmembers, 

and is therefore not characterized by any u~(c,,,&. Such games are not in the class 

BRCFG. 
There is also another reason why a game may not be a BRCFG. If the agents have 

different pe@ormance profiles for a given coalition -due to different algorithms-the 
game may not be a BRCFG because the value of a coalition can depend on whether a 
nonmember agent is willing to compute the solution for the coalition (for a payment). 

This becomes an issue if the nonmember agent has a better algorithm than any of 
the coalition members. In other words, the value of a coalition may depend on the 
computational actions of nonmembers. 

Games where the agents have different unit costs (ccomp) for computation-e.g., due 
to different execution platforms-are also in general not BRCFGs. Such games are 
analogous to games with a global c,,~~ but agents with different performance profiles. 

A game where agents have different computation unit costs can be modeled as a game 

with a uniform computation unit cost after the ccomp-axis of each US(C~~~~) function is 
appropriately resealed based on the real ccOmp of the corresponding coalition S. 

There exist BRCFGs that are not CFGs. This is due to the fact that one can construct 

games where the domain cost of the actual solution (for any coalition) attained by the 
algorithm of a bounded-rational agent may be independent of the actions of nonmembers 

even though the domain cost of the best solution attained by a rational agent depends 
on the actions of nonmembers. For example, in some domains it is possible to restrict 
oneself to using aI~orithms that only consider solutions whose values are not affected 
by nonmembers. There also exist CFGs that are not BRCFGs. For example, the agents 
may have different performance profiles and therefore the bounded-rational value of a 
coalition may depend on whether nonmembers are willing to carry out the computation 

for the coalition. There is also another reason why some CFGs are not BRCFGs. The 
algorithms that the agents use may produce solutions whose values depend on the actions 
of nonmembers although the values of the optimal solutions would not. 

In the distributed vehicle routing problem discussed earlier, there are no positive or 
negative domain solution interactions between coalitions. There are no shared resources 
because all of the resources-vehicles and depots-are exclusively and exhaustively 
distributed among the agents (and thus among coalitions). Secondly, each agent (and 
thus each coalition) has its own goal: delivering all of the parcels at the lowest possible 
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cost. A coalition’s handling of its deliveries is unaffected by how nonmember agents 
handle their deliveries. Therefore this vehicle routing problem is a CFG. For the same 
reason, do’main solution interactions do not preclude the problem from belonging to the 
class BRCFG. So, if all agents have the same performance profiles-as was assumed 
earlier-the distributed vehicle routing games are BRCFGs. I5 Yet if the agents had 
different performance profiles or computation unit costs, the games would not necessarily 
be BRCFGs. 

The core solution concept (as well as superadditivity and subadditivity) is defined via 
the coalition values vf which are well-defined only in games where nonmembers’ phys- 

ical and computational actions do not affect the coalition value (CFGs) . Therefore, that 
solution cloncept is not applicable for the more general games (non-CFGs). Similarly, 
in non-BRCFGs, the bounded-rational core (as well as bounded-rational superadditiv- 
ity and bounded-rational subadditivity) is undefined. Thus other solution concepts are 
needed. The rest of this section discusses appropriate alternative solution concepts which 
are applicable to general NFGs. They also have a strategic foundation which guarantees 
that agents are motivated to adhere to their strategies: they analyze stable points in the 

space of agents’ strategies. This differs from the core solution concept presented ear- 
lier which has a purely axiomatic foundation: it postulates desirable stability properties 

of the outcomes, but does not guarantee stability of the strategies that lead to those 

outcomes. l6 
One alternative solution concept is the Nash equilibrium [ 30,241. It guarantees stabil- 

ity in the sense that no agent alone is motivated to deviate by changing its strategy given 
that others do not deviate. Often the Nash equilibrium is too weak because subgroups 
of agents IGUI deviate in a coordinated manner. 

The Strong Nash equilibrium [ 1 ] is a solution concept for NFGs that guarantees 

more stab:ility. It requires that there is no subgroup that can deviate by changing their 
strategies jointly in a manner that increases the payoff of all of its members given that 
nonmembers do not deviate from the original solution. The Strong Nash equilibrium is 
often too strong a solution concept: in many games no such equilibria exist. 

Recentlly, the Coalition-Proof Nash equilibrium [2,3] for NFGs has been suggested 
as a partial remedy to the nonexistence problem of the Strong Nash equilibrium. This 

solution concept requires that there is no subgroup that can make a beneficial deviation 
(keeping the strategies of nonmembers fixed) in a way that the deviation itself is stable 
according to the sume criterion. A conceptual problem with this solution concept is that 
the deviation may be stable within the deviating group, but the solution concept ignores 
the possibility that some of the agents that deviated may prefer to deviate again with 
agents that did not originally deviate. Furthermore, even Coalition-Proof Nash equilibria 
do not exist in all NFGs. Clearly, there is room for further research on coalition formation 
solution concepts-even among fully rational agents. 

l5 Also in many distributed scheduling domains, domain interactions do not occur unless agents share re- 

sources. On -the other hand, even in toy problems such as the blocks world, positive and negative interactions 

often occur. 
I6 On the other hand, results with strategic solution concepts arc specific to a given interaction protocol while 

core-based analyses are not (unless the coalition formation process itself affects the payoffs). 
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The solution concepts presented above guarantee forms of stability for the beginning 
of the game. To ensure stability throughout the game, the equilibria should prevail in 
subtrees of the game tree also. To guarantee this, subgame perfect [ 51,241, perfect 

Bayesian [ 241, or sequential [ 24,251 refinements of the above solution concepts could 
be used. 

The strategic solution concepts presented above provide a rigorous tool for analyzing 
general games (NFGs), and they also extend the strategic approach to settings where 
axiomatic solution concepts like the core are well-defined. New analyses of coalition 
formation among bounded-rational agents should extend each agent’s strategy to include 
its computational actions and communication actions. This type of modeling of strategies, 

and the use of the strategic solution concepts in the space of those strategies would 
allow one to formulate theories of the coalition formation process-as opposed to just 
the outcomes-which normatively incorporate computation and communication. This is 

part of our current research. 

7. Related research on computational coalition formation 

Coalition formation has been widely studied in game theory [20,2,3,1,57,33], and 
only the most relevant concepts were presented. Many of the solution concepts for 
coalition formation are static. They address the question of how to divide the payoffs 

among agents. Some of them also address the question of which coalition structure 
should form. But being static in nature, they do not usually address the dynamics of the 

coalition formation process. This section reviews work that has addressed the dynamics. 
Friend [ 10,201 has developed a program that simulates a 3-agent coalition forma- 

tion situation where agents can make offers, acceptances, and rejections to each other 
regarding coalitions and payoffs. In the model, at most one offer regarding each agent 
can be active at a time. A new offer makes old offers regarding that agent void. Players 
consider only current proposals: there is no lookahead or memory. The negotiations ter- 
minate when two agents have reach a dyad and the third one has given up. Specifically, 
the termination criterion is based on a local threat-counterthreat examination: an agent 
does not necessarily accept a new better offer if that introduces a risk of being totally 
excluded in the next step. The model is purely descriptive. There is no guarantee that a 
self-interested agent would be best off by using the specified local strategy. 

Transfer schemes are another dynamic approach to coalition formation [ 201. The 
agents stay within a given coalition structure and iteratively exchange payments in a 
prespecified manner. Again, there is no guarantee that a self-interested agent would be 
best off by using the specified local strategy: by using some other strategy, an agent may 
be able to drive the negotiation to a final solution that is better for the agent. Transfer 
schemes address the payoff distribution problem but not the optimization problem or 
coalition structure generation. For example, a transfer scheme for the core solution 
concept has been developed. This scheme alternates between two operators. In the first, 
an agent’s payoff is incremented by its coalition’s excess (value of the coalition minus 
the sum of the members’ current payoffs) divided by the number of agents in the 
coalition. In the second, every agent’s payoff is decremented equally, and just enough 
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to keep the total payoff vector feasible. The method can be implemented in a largest- 
excess-first manner, or in a round-robin manner among agents. Both schemes converge 

to a payoff vector in the core if the core is nonempty, i.e., if such a stable payoff 
vector exists. Transfer schemes reduce the cognitive demands placed on the agents. For 
example in the case of the core, the agents do not need to search for a payoff vector 
that satisfies the numerous constraints in the definition of the core. Instead they can 
simply follow the transfer scheme until a payoff division in the core has been reached. 
Transfer schemes assume that the agents know the values of the characteristic function. 

On the otlher hand, our work addresses precisely the problem of agents not being able 
to solve these values due to combinatorial complexity. Transfer schemes can trivially be 

used in cclnjunction with our work. In this hybrid method, our approach would be used 
to determine the bounded-rational coalition values, and the transfer scheme would be 
used to find an appropriate payoff division given those values. 

Zlotkin and Rosenschein [60] analyze coalitions among rational agents that cannot 
make side payments, while our agents do. Their analysis is limited to “Subadditive 

Task Oriented Domains” (STODs), which are a strict subset of CFGs, Fig. 3. In their 
work, the coalition structure generation is trivial since the agents always form the grand 
coalition. More specifically, one agent handles the tasks of all agents. In STODs this 
is optimal because STODs never exhibit diseconomies of scale. We do not assume that 

one agent can take care of all the agents’ tasks. Unlike our work, they also assume that 
all agents have the same capabilities (symmetric cost functions for task sets). Their 
method guarantees each agent an expected value that equals its Shapley value [ 20,331. 
The Shapley value is a specific payoff division among agents that motivates individual 
agents to stay with the coalition structure and the group of all agents to stay. Unlike the 
core, the Shapley value does not in general motivate every subgroup of agents to stay. 

In a subset of STODs, “Concave Task Oriented Domains” (Fig. 3), the Shapley value 
also motivates every subgroup to stay, i.e., that payoff configuration is in the core. 

A naive method that guarantees each agent an expected payoff equal to the Shapley 
value has exponential complexity in the number of agents, but Zlotkin and Rosenschein 
present a novel cryptographic method for achieving this with linear complexity in the 
number of agents. Yet each one of these linearly many problems involving the agents’ 

tasks needs to be solved optimally. In combinatorial problems such as the vehicle routing 
problem presented in this paper-and the Postmen Domain of Zlotkin and Rosenschein 
for that m.atter-this is clearly intractable if the problem instances are large. 

In this paper we assumed that the problem instances (tasks and resources) of all 
agents are common knowledge. This is somewhat unrealistic in open environments 
with a large number of agents. In practice it is often necessary to learn the other 
agents’ characteristics from previous encounters. Alternatively, the agents can be made 
to explicitly declare their tasks and resources, but they may lie in order to gain mon- 
etarily. Rosenschein and Zlotkin have analyzed when rational agents are motivated to 
declare truthfully [ 351. Unfortunately that work assumes only two agents and that they 

can optimally solve exponentially many NP-complete problems without computation 
costs. Even under these assumptions, in most cases, truth-telling is not achieved. To 
our knowledge, the effect of bounded rationality on truthful revelation has not been 
studied. 
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Our problem is outside the domain classification of Rosenschein and Zlotkin [35], 
Fig. 3, because agents do not have symmetric capabilities due to heterogeneous fleets. 
If Rosenschein and Zlotkin’s definition were extended to allow asymmetric capabilities, 
our domain would be in the class SOD but outside the subclass TOD. Our domain would 
not be a TOD because any one agent is not necessarily able to individually handle all 
tasks of all agents. If we further dropped the maximum route length constraint (this 
experiment was also presented), and restricted ourselves to domains where each center 
has at least one sufficient vehicle to satisfy the weight/volume constraints of any order 

of any center (not true in our data), then the domain would be a TOD. The following 
simple example shows that it would still not be a “Subadditive TOD” because the depots 

are geographically distributed. Let us look at a game with just two agents (Al and A2), 
two delivery tasks (Tl and T2), and two identical vehicles-one for each agent. Say 
that the pickup site and the drop-off site of Tl are close to Al’s depot, and T2’s pickup 
and drop-off are close to A2’s depot. Now say that the depots are far from each other. 
Thus the sum of the route lengths when Al manages Tl and A2 manages T2 is lower 
than when either agent individually manages both tasks. 

Ketchpel [ 221 presents a non-normative coalition formation method for rational agents 
which have different expectations of coalition values. The (computational) origin of 
these expectations is not addressed. His assumption of imperfect information differs 
from our setting where the agents have perfect information but cannot perfectly deduce. 
The method addresses coalition structure generation as well as payoff distribution. These 

two activities are handled simultaneously. Ketchpel’s coalition formation algorithm runs 
in cubic time in the number of agents, but does not guarantee stability. His protocol is 

based on mutual offers. In practice it may be hard to prevent out-of-protocol offers such 
as multiagent offers. In our approach, if the agents’ payoff vector is chosen from within 
the bounded-rational core, the coalition structure is stable against all offers. Finally, his 
2-agent auction is manipulable and computationally inefficient. 

Ketchpel’s method is related to a contracting protocol of Sandholm [ 41,471 ( TFCACO- 
NET) where agents construct the global solution by contracting a small number of tasks 
at a time, and payments are made regarding each contract before new contracts take 
place. An agent updates its approximate local solution after each task transfer. 

In general equilibrium market mechanisms such as WALRAS [ 581, non-manipulative 
agents iterate over the allocation of resources and tasks, and payments are usually made 
only after a final solution has been reached. Unlike our work, general equilibrium meth- 
ods are only guaranteed to work in very restricted settings. For example, an equilibrium 
may not exist if the domain exhibits economies of scale. General equilibrium mecha- 
nisms assume that agents view the prices as fixed-although in reality the agents affect 
the prices. If all agents act as price takers, and an equilibrium is reached for the market, 
that equilibrium is guaranteed to be in the core: no subgroup of agents is motivated 
to leave the market and form their own market [29]. This is not the case if agents 
speculate how their demands and supplies affect the market prices. Recently, Sandholm 
and Ygge have devised general insincere strategies that allow an agent to drive the 
market to an equilibrium where the agent’s maximal gain from speculation materializes 
[49]. Speculative behavior in general equilibrium markets has recently been studied in 
the context of learning by Hu and Wellman [ 191. 
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Shehory and Kraus [54] analyze coalition formation among rational agents with 
perfect information in CFGs that are not necessarily superadditive. Their protocol guar- 
antees that if agents follow it (this assumption makes their approach non-normative), a 
certain stability criterion (K-stability) is met. This requires the solution of an exponen- 
tial number of optimization problems. Their other protocol guarantees a weaker form of 
stability (polynomial K-stability), but only requires the solution of a polynomial number 
of optimization problems. Unfortunately, each one of these may be intractable. Their 

algorithm switches from one coalition structure to another guaranteeing improvements at 
each step: coalition structure generation is an anytime algorithm although each domain 
problem is solved optimally. On the other hand, in our work, each domain problem is 

solved using an approximation (design-to-time) algorithm. 
Shehory and Kraus [ 531 also present an algorithm for coalition structure generation 

among cooperative-social welfare maximizing, i.e., not self-interested-agents. Among 

such agents the payoff distribution is a non-issue and is thus not addressed. The dis- 
tributed algorithm forms disjoint coalitions -which by their definition can only handle 

one task each-and allocates tasks to the coalitions. The complexity of the problem 
is reduced by limiting (possibly compromising optimality) the number of agents per 
coalition. ‘The greedy algorithm guarantees that the solution is within a loose ratio bound 
from the best solution that is possible given the limit on the number of agents. The work 

assumes that the domain problem of each coalition can be solved optimally and without 
cost, which is not the case in the combinatorial problems of this paper. Also, in our 
work a coalition can handle more than one task. 

Put together, most prior work on coalition formation has addressed the payoff di- 
vision activity and sometimes the coalition structure generation activity, but not the 
optimization activity. That work has been targeted to reduce the computational com- 

plexity in the number of agents while assuming that the optimization problems can be 

solved exactly and costlessly. On the other hand, the work in this paper reduces the 
computatilonal complexity of the optimization problem of each coalition while consid- 
ering all possible coalition structures-the number of which grows exponentially in the 
number of agents. Future work should focus on simultaneously reducing complexity off 
all three activities of coalition formation-along both of these complexity generating 

dimensions. 

8. Conclusions and future research 

This paper studied settings where agents coordinate their computational actions and 
real world. actions within each coalition but not across coalitions. A normative, applica- 
tion- and protocol-independent theory of coalitions in combinatorial domains was pre- 
sented where the rationality of self-interested agents is bounded by computational com- 
plexity. This work is an extension of game theory which classically assumes perfect 
rationality: algorithms that find the optimal solution, and zero computation unit cost. 
On the other hand, in this paper, computational limitations were quantitatively modeled 
by a unit cost of computation and performance profiles of the agents’ problem solving 
algorithms. 
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The algorithms used by the agents significantly impact the coalition structure that 
should form. From the model of bounded rationality of this paper, the social welfare 
maximizing coalition structure can always be determined when the performance profiles 
and computation unit cost are known. However, for example when agents are sent to 

execute at a remote host, the computation unit cost is not necessarily known in advance. 
To attack this problem, a sufficient condition (Theorem 5) on the performance profiles 
was presented that guarantees that any two coalitions are best off merging for any 
computution unit cost, i.e., for any execution platform. It follows that the best coalition 
structure would be the grand coalition. Next it was shown that the presented condition is 

not a necessary condition in general (Theorem 6) but is one if the performance profiles 

exhibit diminishing returns to added computation (Theorem 7). This is usually the 
case with design-to-time algorithms, and often anytime algorithms exhibit this general 
character also. Finally, a sufficient condition on the performance profiles was presented 

that guarantees that, for any computation unit cost, any possible coalition is best off by 
splitting up (Theorem 8). It follows that all agents are best off alone. This condition does 
not turn into a necessary condition even if the performance profiles exhibit diminishing 

returns to added computation (Theorem 9). 
Stability of the payoff configuration was analyzed in terms of the core solution con- 

cept: the configuration is considered stable if no subgroup of agents can increase their 
payoff by breaking off and forming a new coalition. From the formal model of com- 

putational limitations, the stability can always be determined. There are games that 
have stable coalition structures for both rational and bounded-rational agents, for one 
but not the other, and for neither. Theorems relating the shapes of the performance 
profiles and the computation unit cost to stability were also presented. First, if these 
computation limitations are such that the agents are best off operating individually, 

then that coalition structure is stable (Theorem 12). Second, necessary and sufficient 
conditions on the coalition’s bounded-rational values were presented that guarantee 

stability if the mentioned beneficial merging property (bounded-rational superadditiv- 
ity) holds (Theorem 16), and more generally, if the best coalition structure is the 
grand coalition (Theorem 13). Finally, sufficient conditions were presented on the per- 

formance profiles that guarantee stability when the beneficial merging property holds 
(Theorem 20), or more generally, if the best coalition structure is the grand coalition 
(Theorem 19). 

An application-independent domain classification was also presented for bounded- 
rational agents (Fig. 4). Its relationship to two existing domain classifications for fully 
rational agents (one from game theory, and one by Rosenschein and Zlotkin, Fig. 3) 
was detailed. The domain classification carries with it information about the optimal 
coalition structure and its stability. It also incorporates domain classes where the value 
of a coalition is affected by the actions of nonmembers. Such games occur if agents have 
different optimization algorithms or if there are domain solution interactions-unlike in 
the vehicle routing problem and many other real world problems. Such games require 
different solution concept as was discussed in Section 6. 

Coalitions were experimentally analyzed using real world data from a distributed ve- 
hicle routing problem. A local routing algorithm that was based on iterative refinement 
was used. The experiments show that the computational limitations of the agents signif- 
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icantly impact the coalition structure that should form as well as its stability. Although 
the benefic:ial merging property (superadditivity) holds for rational agents in almost all 

domains, it was surprisingly anything but obvious in practice among bounded-rational 
agents. None of the vehicle routing games of our experiments exhibited this property for 
bounded-rational agents. The optimal coalition structure for bounded-rational agents var- 
ied although rational agents should always form the grand coalition. Section 3 developed 
conditions on the performance profiles that guarantee that the beneficial merging property 
holds for bounded-rational agents. It also discussed a separate solving approach-based 

on a problem decomposition step-that guarantees that the base algorithm fulfills those 
conditions. With our sensible deterministic iterative refinement algorithm, these condi- 

tions were-somewhat surprisingly-never met. The real desideratum is not necessarily 
to generate algorithms that guarantee beneficial merging (and thus the superiority of the 
grand coalition over other coalition structures), but algorithms that provide the highest 

social welfare (for the best coalition structure, which need not be the grand coalition). 

Sometimes these goals conflict. 
In the experimental games where the agents were best off separately, the coalition 

structures were stable as our theory predicts. Even in games were subgroups were not 
necessarily best off by splitting up, the coalition structures were often stable-especially 
for large computation unit costs. 

The experiments suggest that often with superlinear iterative refinement steps, low 
computation unit costs promote large coalitions while high computation unit costs pro- 
mote smaller ones. A plausible explanation for this phenomenon was presented. 

Another interesting observation is that the presented normative theory prescribes the 
bounded-rational agents to choose coalition structures that agree closely with what 

human agents would select. The best coalition structures among bounded-rational agents 
mostly agreed with our intuitions of what coalitions should form based on domain 

specific considerations such as adjacency of the dispatch centers and the combinability 
of their loads. On the other hand, these coalition structures differ significantly from 
those which rational agents would choose. 

Our model of bounded rationality is based on costly computation resources. Future 
work includes analyzing another model where each agent has a fixed free CPU and no 
more CPI.J time can be bought. If the domain cost increases with real time due to a 

dynamic environment, such agents with bounded computational capabilities are often 
best off b:y distributing the computation. In such settings, the problem of coordinating 
the computations themselves arises. On the other hand, in the costly computation model 
of this paper, it is best to allocate each coalition’s computation to a single agent. The 
models arc equivalent if the domain cost increases linearly with real time and distribution 
does not speed up computation. Certainly other models of bounded rationality besides 

these two also deserve attention. 
Our current work includes analyzing the interplay of dynamic coalition formation and 

belief revision among bounded-rational agents [ 561. Extensions of our work include 
generalizing the methods of this paper to agents with different and probabilistic per- 
formance profiles, as well as anytime algorithms where the performance profiles are 
conditioned on execution so far [ 44,59,16]. Agents with probabilistic performance pro- 
files may want to reselect a coalition if the value of their original coalition is lower 
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than expected-but sunk computation cost has already been incurred. Future research 
should also address agents that can refine solutions generated by others. Finally, we are 
in the process of developing interaction protocols that efficiently guide self-interested 
agents towards the optimal and stable (whenever possible) coalition structures-as de- 
termined by the theory developed in this paper. The goal is to construct normative 

methods that reduce the complexity-in the number of agents and in the size of each 
coalition’s optimization problem-of coalition structure generation, optimization, and 
payoff division. 

Appendix A. Proofs 

Proof of Theorem 5. Let us analyze two arbitrary potential coalitions S and T, where 
S, T G A and S n T = 0. The conditions in the theorem state 

Vrs 3 0,VrT 2 0, csdrs + r7-) < cdrs) + cdr7-) 

and obviously 

3-k, r$ 2 0 s.t. cs(rk) + ccomp . r$ + CT($) + ccOmp . r$ 

= min[cdr) + ccomp r . rl + kn[cdr) + ccomp . r] r 

It follows that 

% 4 2 0 S.t. csdr$ + rb) + ccomp . (r$ + r&) 

< min[cs(r> + ccomp 
r 

* rl + min[dr> + ccomp . r] r 

H 3’ 2 0 s.t. c&r’) + ccOmp . r’ 

< mMcs(r) + Ccomp i- 
. t-1 + min[cdr) + Ccomp . rl r 

@ minicsdr) + ccomp . rl 6 m;ln[cs(r> + ccOmp. rl + midcAr) + c,,,~. rl r r 

@ WJT(ccomp) > 4ccomp) + Q-(ccomp) 

which completes the proof. 0 

Proof of Theorem 6. Counterexample. Let us analyze a 2-agent game where A = { 1,2}. 
Let the performance profiles of the algorithms be 

C(l)(r) = C{2j(r) = 

ifO<r<l, 

ifr>l 

and 
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Fig. A. 1. Performance profiles and value functions of the counterexample. 

1 ifO<r<l, 

c{1,2j(r) = 2-r if 1 <r<2, 

0 if r > 2. 

Thus (see also Fig. A.l), 

~{l~(~cComp) =u{2)(cComp) = -m!n[c{2)(r) + ccomp. r-1 

i 

-GXlIp if ccomp 6 3, 
= 

1 -- 
2 if ccomp > i 

and 

~{1,2}bmlp) = - r ~n[ql,2j(r) + ccomp. rl 

i 

-2ccomp if ccomp < i, 
= 

-1 if ccomp > 1. 

So when ccomp < $, 

~{1,2}(Gomp) = -2ccomp = -ccomp + -Ccomp = ~{1}(Ccomp> + ~{2}(Gomp) 

and when ccomp > i, 

~{1,2}(cComp - ) - -1 = -$ + -1 = ~{1}(CconIp) +u{2}(CcoInp). 

Thus, wc~omp, ‘v’ST G A, S n T = 8>, USUT(C~~~~) Z ~~~~~~~~~ + UT(C~~~~), i.e., the 
game is BRSUP for all ccomp. Butc(,,2)(~+~)=1>d+t=cc,>(4)+~(~>(~). 0 
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The proof of Theorem 7 relies on the following lemma: 

Lemma A.1. Let f(x) be a decreasing, convex function. For any given x*, 3 > 0 
such that 

min[f(x> + CX] = f(x*) + CX*. 
x 

Proof. Let us define x’ = argmin, [f(x) + cc]. Assume-for contradiction-that 3x* 

s.t. Vc > 0, 

m;tn[fW -t cxl + .0x*) + CX* ti f(d) + cxf + fcx*) + cx* 

Because f(x) is convex, 

Thus c > 0 is well-defined when chosen as follows: 

B’T 
j-(x*) - f(x* - 8) < _c < l im _ftx* + 8) - f(x*) 

-4 8 S-+0 s . 

Now there are two cases: 
Case 1: xl < x*. 

x’ < x* 

* argmin[f(x) + cx] < x* 
X 

e f(argmin[f(x) +cxl) +c.argmin[f(x) +cx] < f(x*) +CX* 
X X 

H f(x’) -t cx’ < f(x*> -t- cx* 

* f(x* - E) + c . (x* -E) < f(x*) + cx* 

w f(x*> - f(x* -E) > -C& 

* t-(x*> - f(x* -E) > _c 
E 

* f(x*) - .0x* - El > lim f(x*) - f(x* - 6) 
& S-0 8 * 

This violates convexity. Contradiction. 



TM! Sandholm, KR. L.esser/Artijicial Intelligence 94 (1997) 99-137 131 

Case 2: x’ > x*. 

x’ > x+ 

* argmin[f(x) + cn] > x* 
X 

eS .f(argmin[f(x) + cx]) + c. argmin[f(x) + cx] < f(x*) + cx* 
X x 

w .f(x’> + cx’ < f(x*) + cx* 

H .ex* + E) + c * (x* + E) < f(x*) + cx* 

* p* +e> - f(x*) < -c 
E 

j f(x* + 8) - Rx*) < l im .0x* + 6) - Rx*) 
& 640 s . 

This also violates convexity. Contradiction. Because both cases lead to a contradiction, 
the original assumption is false. 0 

Proof of Theorem 7. The if-part was proven in Theorem 5. Now the only if-part is 

proven. 

Game is BRSUP ‘v’c~,,,,,~ 

++ ( \JCcomp VS,T C A, SnT=0), 

wJT(Gmlp) b ~S(Gmlp) + ~dccolnp) 

@ ( ~bnpr VS,T C A, SflT=!!J), 

Inid CSuT(r) + Ccomp f 11 < min[cS(r) + ccomp f I] + min[cr(r) + c,,, . rl 
r r r 

@ ( Vccompr VS,TGA, SflT=0, V’rs,rT>O), 

Now, by Lemma A. 1, for any ?-s + ?-T > 0, ~ccomp 2 0 s.t. min, [c&~-(r) + ccomp . I-] = 

CSUT(r.7 + TT) + Ccomp ’ (TS + TT). ~‘JSv 

(v/s,T c A, SnT = 8, vrS,rT 2 0, komp 2 o), 

CSUT ( 0 + TT) + Ccomp ’ (TS + IT) < cS(rS) + ccomp ’ rS + cT(rT) + ccomp ’ rT 

w (v’s,TcA, SnT=& v’rs,rT>o, 3Ccomp~o), 

CSUT(rS + IT) < do) + cT(rT) 

w (v’S,TsA, snT=8, v’rS,rT>o), 

CSUT(rS + IT) 6 cS(rS) + cT(rT) 

This completes the proof. •i 
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Proof of Theorem 8. 

(VS,TGA, SnT=0, t, rs,Pr > O), CsUT(n + Q) > c&do) + CT(TT) 

(WT C A, SnT = 0, h,rS”T 2 O), 

a_dmJT) > cs(~s) + Q-(rSUT - rs) 

(komp~ ‘dS,TC A, SnT=(I), ‘hs,rsuT ZO), 

CSUT ( rSUT > + Ccomp ’ rSlJT 

> cscf-S) + Gomp * rS + 0” f fSUT - YS 1 i- Ccomp - (QUT - Q) 

WCcomp9 VS,TC A, SnT=@, vr,Y,rsuT 30), 

min[csdr) + Ccomp + rl r 
> Cs(~s) + ccomp . rs + c-r(rsur - f-s) + Gomp t (Q~T - rs) 

>, m.[cdr) + ccomp * rl + T[cdr) + Cwmp 9 (r) 1 

WGomp, VSTc A* SnT=fl), USUT(‘%omp) < u~(ccomp) +uT(Ccomp) 

Game is bounded-rational subadditive tJcComp 

This completes the proof. c? 

Proof of Theorem 9. It suffices to show an example where all performance profiles are 
decreasing and convex, the game is BRSUB for all ccomp, and the condition [ (VS, T 5 
A,SnT = &~'Q,Q 2 O),c~"~~~~ + q) > cs(r,y) + q-(p)] fails to hoId. Let us 
analyze a %-agent game where A = (1,2}. Let the decreasing and convex performance 

profiles of the algorithms be 

{ 

0.6 - 0.6r if 0 6 r < I, 
C(l)09 = o 

ifr> 1, 

{ 

0.4 - 0.4r if 0 < r < 1, 
C{2)W = o 

ifr>l, 

{ 

1.01 - QSr if 0 < r < 2 
C{1,2}W = 

0.01 if r > 2. 

Now, ~{i,~l(O t- 1) = 0.51 < 0.6 + 0 = ceil + qq(1). This violates [(VS,T 2 

A,SnT=P),v~rs,rT3O).csuT(rs+rT) >cdrs) +c24vIl. 
What remains to be shown is that the game is BRSUB for all cComP 

Case 1: 0 < c,,,, < 0.4. 

u{ 1) t &amp ) = -Ccomp 9 U(Z)(Ccomp) = -Ccompr ~{1,2)(Gomp) = -2Ccomp - 0.01. 

So, u{1,2}(Ccomp) < u{l}(%omp) + u(2)CCcomp). 
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Case 2: 0.4 < ccomp < 0.5. 

ql}(‘:comp) = -Ccomp9 ~{2}(CcoInp) = -0.4, u{1,2}(ccomp) = -2ccomp - 0.01. 

So, q1,2}(Ccomp) < ~{l}(Cco,) + ~{2}(Ccomp). 

Case 3: 0.5 < ccomp < 0.6. 

U{l}(Ccomp) = -Ccomp, ~{2}(Ccanp) = -0.4, U{1,2}(Cc0mp) = -1.01. 

So, q1,2}(Ccomp) < ~{l}(Ccomp) + ~{2}(Ccomp)* 

Case 4: 0.6 < ccomp. 

u{l)((-‘comp) = -0.6, u{~~(ccorn~) = -0.4, u{1,2~(cc0mp) = -1.01. 

So, ~{1,2}(Ccomp) < ~{1}(Ccomp) + ~{2}(Cc,nlp). 0 

Proof of Theorem 12. Let a game be bounded-rational subadditive for ccomp, i.e., 

(V&T C A, S n T = 8), ~r(c,,,~) < US(C,~~~) + w(c~~~,,). Let us study the 
coalition structure CS = {{l}, {2}, . . . , {[AI}} which clearly maximizes social welfare. 

Let US chofose x s.t. Vi E A, xi = U(i) ( cCOmp). NOW, 

C X; = C U(i) (ccomp) = C Us, (ccomp) and 
iEA GA jECS 

V’s c A, c xi = c u(i) (Ccomp) 2 e(Ccomp) 

if3 iES 

Thus x E BRC(c,,,,) which implies BRC(C,,,~) Z 8. 0 

Proof of Theorem 13. Shapley [ 521 proved the following fact (his Theorem 2) for 
rational agents. In games where {A} is a social welfare maximizing coalition structure 
for rational agents, C # 8 iff for every minimal balanced set B = {Bl, . . . , BP}, 
Cy=, hjuEj < ~2. Theorem 13 follows by analogy. 0 

Proof of Theorem 16. Shapley [ 521 proved the following fact (his Theorem 3) for 
rational agents. In a superadditive game, C # 8 iff for every proper minimal balanced 
set B={Bl,. **vBp}vC~=1 AjUij < u:. Charnes and Kortanek [6] proved that this set 
of inequalities is minimal. Theorem 16 follows by analogy. 0 

Proof of Theorem 19. Let us analyze an arbitrary minimal balanced set B = {Bl, . . . , 

BP). 

(‘JB E B, VrB 2 O>, f: AjCB, (rBj) > CA (2 AjrB,) 

j=l j=l 

* (‘JCcomp, VBEI~, VrB>O, gr,JaO), 

1’ P 

> lAjCBj(rBj) +ccomp. (-rA +cAjrBj) 2 cA(rA) 
j::l j=l 
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e wcomp, VBEB, vrg>o, 31A>b), 

P P 

c AjCBj (‘Bj > f hnnp ’ c AjrBj 3 CA ( rA ) + Ccomp ’ IA 

j=l .j=l 

@ WCcomp9 VBEB, b >o), 
P P 

c A,jcBj(rBj) + CCOmp. C AjrBj 2 mW.c~(r> + cCOmp. rl r 
.j=l j=l 

H (vCcomp9 VBEB, VrB>o), 

P 

c Aj[CBj(rBj) + Ccomp . rBjl > min[cA(r) + ccomp . r] * 
j=l 

* (VCcomp), kAjyLCsCrk,I +CCOmp.rkjl bmjn[CA(r) +Ccomp.r] 

j=l EI 

* (VCcomp) t f: AjuB, (ccomp> 6 uA(ccomp) 

j=l 

Since this holds for an arbitrary minimal balanced set, it has to hold for every minimal 
balanced set. Thus, by Theorem 13, BRC(ccomp) # 0. 0 

Proof of Theorem 20. Analogous to the proof of Theorem 19, except that now an 
arbitrary proper minimal balanced set is considered. Furthermore, the reference to The- 
orem 13 should be changed to a reference to Theorem 16. 0 

Acknowledgements 

Supported by AREA contract N00014-92-J-1698. The content does not necessarily 
reflect the position or the policy of the Government and no official endorsement should 
be inferred. Tuomas Sandholm was also supported by a University of Massachusetts 
Graduate School Fellowship, the Finnish Science Academy, Finnish Culture Founda- 
tion, Finnish Culture Foundation Rank Xerox Fund, Information Technology Research 
Foundation, Transportation Economic Society, Leo and Regina Wainstein Foundation, 
Jenny and Antti Wihuri Foundation, Honkanen Foundation, Ella and George Ehrnrooth 
Foundation, and the Thanks to Scandinavia Foundation. A short early version of this 
paper appeared in [ 451. 

References 

[ I] R. Aumann, Acceptable points in general cooperative n-person games, in: Contributions to the Theory 
of Games, Vol. IV (Princeton University Press, Princeton, NJ, 1959). 

[2] B.D. Bemheim, B. Peleg and M.D. Whinston, Coalition-proof Nash equilibria I: concepts, J. Economic 
Theory 42 (1987) 1-12. 



T.W Sandholtn, VR. L.esser/Art@cial Intelligence 94 (1997) 99-137 135 

[ 31 B.D. B#emheim and M.D. Whinston, Coalition-proof Nash equilibria II: applications, J. Economic Theory 
42 (1987) 13-29. 

[4] M. Boddy and T.L. Dean, Deliberation scheduling for problem solving in time-constrained environments, 

Artificial Intelligence 67 (1994) 245-285. 
[ 51 A.H. Eland and L. Gasser, Readings in Distributed Artijicial Intelligence (Morgan Kaufmann, San Mateo, 

CA, 1988). 

[6] A. Charnes and K.O. Kortanek, On balanced sets, cores and linear programming, Tech. Rept. 12, 

Department of Industrial Engineering and Operations Research, Cornell University, Ithaca, NY ( 1966). 

[7] E. Durfee, V.R. Lesser and D. Corkill, Cooperative distributed problem solving, in: A. Barr, P. Cohen 

and E.A. Feigenbaum, eds., The Handbook ofArtificial Intelligence, Vol. IV (Addison-Wesley, Reading, 

MA, 1989). 

[ 81 T. Finin, R. Fritzson and D. McKay, A language and protocol to support intelligent agent interoperability, 

in: Proceedings CE & CALS Washington ‘92 Conference (1992). 
]9] K. Fischer, J. Miiller, M. Pischel and D. Schier, A model for cooperative transportation scheduling, 

in: Proceedings 1st International Conference on Multi-Agent Systems (ICMAS-95). San Francisco, CA 

(1995) 109-116. 

[lo] K.E. Friend, An information processing approach to small group interaction in a coalition formation 

game, Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA (1973). 

[ 1 I] D. Fudenberg and J. Tirole, Game Theory (MIT Press, Cambridge, MA, 1991). 

[ 121 A. Garvey and V.R. Lesser, Design-to-time real-time scheduling, IEEE Trans. Systems Man Cybernet. 
23 (1993) 1491-1502. 

[ 131 A. Garvey and V.R. Lesser, A survey of research in deliberative real-time artificial intelligence, Real-lime 
Systems 6 (1994) 317-347. 

[ 141 General Magic, Inc., Telescript technology: the foundation for the electronic marketplace (1994), White 

paper. 

[ 151 1. Gocd, Twenty-seven principles of rationality, in: V. Godambe and D. Sprott, eds., Foundations of 
Statistrcal Inference (Holt, Rinehart, Winston, Toronto, Ont., 1971). 

[ 161 E.A. Hansen and S. Zilberstein, Monitoring the progress of anytime problem-solving, in: Proceedings 
AAAI-!)6, Portland, OR (1996) 1229-1234. 

[ 171 E. Horvitz, Reasoning about beliefs and actions under computational resource constraints, in: Proceedings 
3rd Workshop on Uncertainty in Artificial Intelligence, Seattle, WA (American Association for Artificial 

Intelligence, 1987) 429-444; also in: L.N. Kanal, T.S. Levitt and J.F. Lenuner, eds., Uncertainty in 
Art$cral Intelligence, Vol. 3 (Elsevier, Amsterdam, 1989) 301-324. 

[ 181 N. Howard, Paradoxes of Rationali@: Theory of Metagames and Political Behavior (MIT Press, 

Cambridge, MA, 1971). 

[ 191 J. Hu and M.P. Wellman, Self-fulfilling bias in multiagent learning, in: Proceedings 2nd Znternational 
Conference on Multi-Agent Systems (XMAS-96), Kyoto, Japan (1996) 118-125. 

[ 201 J.P Kahan and A. Rapoport, Theories of Coalition Formarion (Lawrence Erlbaum, London, 1984). 

[21] R. Kalakota and A.B. Whinston, Fr0ntier.s of Electronic Commerce (Addison-Wesley, Reading, MA, 

1996) 

[ 221 S. Ketchpel, Forming coalitions in the face of uncertain rewards, in: Proceedings AAAI-94, Seattle, WA 

(1994) 414-419. 

[ 231 S. Kraus, J. Wilkenfeld and G. Zlotkin, Multiagent negotiation under time constraints, Artificial 
Intelligence 75 (1995) 297-345. 

[ 241 D.M. Kreps, A Course in Microeconomic Theory (Princeton University Press, Princeton, NJ, 1990). 

[25] D.M. Kreps and R. Wilson, Sequential equilibrium, Econometrica 50 (1982) 863-894. 
[26] S. Lin and B.W. Kemighan, An effective heuristic procedure for the traveling salesman problem, 

Operarions Research 21 (1971) 498-516. 
[27] S. Linnainmaa, 0. Jokinen, T.W. Sandholm and A. Vepsalainen, Advanced computer supported vehicle 

routing for heavy transports, in: Proceedings Finnish Artificial Intelligence Conference (STeP-92), New 
Directtons in Artificial Intelligence, Vol. 3, Espoo, Finland (1992) 163-172. 

[ 281 M.G. Lundgten, K. Jomsten and P V&brand, On the nucleolus of the basic vehicle routing game, Tech. 

Rept. 1992-26, Department of Mathematics, Linkoping University, Sweden ( 1992). 



136 TW. Sandholm, VR. L.esser/Art@cial Intelligence 94 (1997) 99-137 

[29] A. Mas-Colell, M. Whinston and J.R. Green, Microeconomic Theory (Oxford University Press, Oxford, 

1995). 

[30] J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. 36 ( 1950) 48-49. 

[ 311 Office of Technology Assesment, Electronic enterprises: looking to the future ( 1994). 

1321 C.H. Papadimitriou and M. Yannakakis, On complexity as bounded rationality, in: Proceedings STOC-94 
(1994) 726-733. 

[ 331 H. Raiffa, The Art and Science of Negotiation (Harvard University Press, Cambridge, MA, 1982). 

[341 

r351 

[361 

[371 

[381 

E. Rasmusen, Games and Information (Basil Blackwell, Oxford, 1989). 

J.S. Rosenschein and G. Zlotkin, Rules of Encounter (MIT Press, Cambridge, MA, 1994). 

S.J. Russell and D. Subramanian, Provably bounded-optimal agents, J. Art@ Intell. Res. 1 (1995) l-36. 

S.J. Russell and E. Wefald, Do the Right Thing: Studies in Limited Rationality (MIT Press, Cambridge, 

MA, 1991). 

T.W. Sandholm, A strategy for decreasing the total transportation costs among area-distributed 

transportation centers, in: Nordic Operations Analysis in Cooperation (NOAS- ): OR in Business, 
Turku School of Economics, Finland ( 199 1) 

[391 

1401 

[411 

~421 

(431 

1441 

T.W. Sandholm, Automatic cooperation of area-distributed dispatch centers in vehicle routing, 

in: Proceedings International Conference on Artijcial Intelligence Applications in Transportation 
Engineering, San Buenaventura, CA (1992) 449-467. 

T.W. Sandholm, A bargaining network for intelligent agents, in: Proceedings Finnish Artificial 
Intelligence Conference (STeP-92), New Directions in Artijicial Intelligence, Vol. 3, Espoo, Finland 

(1992) 173-181. 

T.W. Sandholm, An implementation of the contract net protocol based on marginal cost calculations, in: 

Proceedings AAAI-93, Washington, DC ( 1993) 256-262. 

T.W. Sandholm, Limitations of the Vickrey auction in computational multiagent systems, in: Proceedings 
2nd International Conference on Multi-Agent Systems (ICMAS-96). Kyoto, Japan (1996) 299-306. 

T.W. Sandholm, Negotiation among self-interested computationally limited agents, Ph.D. Thesis, 

University of Massachusetts, Amherst, MA ( 1996). 

T.W. Sandholm and V.R. Lesser, Utility-based termination of anytime algorithms, in: Proceedings ECAI 
Workshop on Decision Theory for DA1 Applications, Amsterdam, Netherlands ( 1994) 88-99; extended 

version: Tech. Rept. 94-54, Department of Computer Science, University of Massachusetts at Amherst, 

MA (1994). 

[451 

[46J 

[471 

[481 

[491 

1501 

[511 

1521 

T.W. Sandholm and V.R. Lesser, Coalition formation among bounded rational agents, in: Proceedings 
IJCAI-95, Montreal, Que. (1995) 662-669. 

T.W. Sandholm and V.R. Lesser, Equilibrium analysis of the possibilities of unenforced exchange in 

multiagent systems, in: Proceedings IJCAI-95, Montreal, Que. ( 1995) 694-701. 

T.W. Sandholm and V.R. Lesser, Issues in automated negotiation and electronic commerce: extending the 

contract net framework, in: Proceedings 1st International Conference on Multi-Agent Systems (ICMAS- 
95), San Francisco, CA (1995) 328-335. 

T.W. Sandholm and V.R. Lesser, Advantages of a leveled commitment contracting protocol, in: 

Proceedings AAAI-96, Portland, OR ( 1996) 126-133; extended version: Tech. Rept. 95-72, Computer 

Science Department, University of Massachusetts at Amherst, MA ( 1995). 

T.W. Sandholm and E Ygge, On the gains and losses of speculation in equilibrium markets, in: 

Proceedings IJCAI-97, Nagoya, Japan ( 1997). 

K. Schweers Cook and M. Levi, The Limits of Rationality (University of Chicago Press, Chicago, IL, 

1990). 

R. Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrggheit, 2 ftir die gesamte 

Sraarswissenschaft 12 (1965) 301-324. 

L.S. Shapley, On balanced sets and cores, Naval Res. Logist. Quart. 14 (1967) 453-460. 
[53] 0. Shehory and S. Kraus, Task allocation via coalition formation among autonomous agents, in: 

Proceedings IJCAI-95, Montreal, Que. ( 1995) 655-661. 

[ 541 0. Shehory and S. Kraus, A kernel-oriented model for coalition-formation in general environments: 

implementation and results, in: Proceedings AAAI-96, Portland, OR ( 1996) 134-140. 

[55] H.A. Simon, Models of Bounded Rationaliry, Vol. 2 (MIT Press, Cambridge, MA, 1982). 



T.U? Sandholm, VR. L.esser/Arti$cial Intelligence 94 (1997) 99-137 137 

[ 561 F. TohIm and T.W. Sandholm, Coalition formation processes with belief revision among bounded rational 

self-interested agents, in: Proceedings IJCAI Workshop on Social Interaction and Communityware, 
Nagoya, Japan ( 1997). 

[ 571 W.J. van der Linden and A. Verbeek, Coalition formation: a game-theoretic approach, in: H.A.M. Wilke, 

ed., Coalition Formation, Advances in Psychology, Vol. 24 (North-Holland, Amsterdam, 1985). 

[58] M.P. Wellman, A market-oriented programming environment and its application to distributed 

multicommodity flow problems, J. Art$ Intell. Res. 1 ( 1993) l-23. 

[59] S. Zilberstein and S.J. Russell, Optimal composition of real-time systems, Artificial Intelligence 82 
(1996) 181-213. 

[60] G. Zlotkin and J.S. Rosenschein, Coalition, cryptography and stability: mechanisms for coalition 

formation in task oriented domains, in: Proceedings AAAI-94, Seattle, WA ( 1994) 432-437. 


