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Abstract 

Sourcing professionals buy several trillion dollars worth of goods and services yearly.  
We introduced a new paradigm called expressive commerce and applied it to 
sourcing.  It combines the advantages of highly expressive human negotiation with 
the advantages of electronic reverse auctions.  The idea is that supply and demand are 
expressed in drastically greater detail than in traditional electronic auctions, and are 
algorithmically cleared.  This creates a Pareto efficiency improvement in the 
allocation (a win-win between the buyer and the sellers) but the market clearing 
problem is a highly complex combinatorial optimization problem.  We developed the 
world’s fastest tree search algorithms for solving it.  We have hosted $35 billion of 
sourcing using the technology, and created $4.4 billion of hard-dollar savings plus 
numerous harder-to-quantify benefits.  The suppliers also benefited by being able to 
express production efficiencies and creativity, and through exposure problem 
removal.  Supply networks were redesigned, with quantitative understanding of the 
tradeoffs, and implemented in weeks instead of months. 

Historical Backdrop on Sourcing  

Sourcing, the process by which companies acquire goods and services for their operations, 
entails a complex interaction of prices, preferences, and constraints.  The buyer's problem is to 
decide how to allocate the business across the suppliers.   

 Traditionally, sourcing decisions have been made via manual in-person negotiations.  The 
advantage is that there is a very expressive language for finding, and agreeing to, win-win 
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solutions between the supplier and the buyer.  The solutions are implementable because 
operational constraints can be expressed and taken into account.  On the downside, the process is 
slow, unstructured, and nontransparent.  Furthermore, sequentially negotiating with the suppliers 
is difficult and leads to suboptimal decisions.  (This is because what the buyer should agree to 
with a supplier depends on what other suppliers would have been willing to agree to in later 
negotiations.)  The 1-to-1 nature of the process also curtails competition.   

 These problems have been exacerbated by a dramatic shift from plant-based sourcing to global 
corporate-wide (category-based rather than plant-based) sourcing since the mid-1990’s.  This 
transition is motivated by a corporation’s desire to leverage its spend across plants in order to get 
better pricing and better understanding and control of the supply chain while at the same time 
improving supplier relationships.  (See, e.g., (Smock 2004).)  This transition has yielded 
significantly larger sourcing events that are inherently more complex. 

 During this transition, there has also been a shift to electronic sourcing where suppliers submit 
offers electronically to the buyer.  The buyer then decides, using the software, how to allocate 
the business.  Advantages of this approach include speed of the process, structure and 
transparency, global competition, and simultaneous negotiation with all suppliers (which 
removes the difficulties associated with the speculation about later stages of the negotiation 
process, discussed above). 

 The most famous class of electronic sourcing systems - which became popular in the mid-
1990s through vendors such as FreeMarkets (now part of Ariba), Frictionless Commerce (now 
part of SAP), and Procuri - is a reverse auction.  The buyer groups the items into lots in advance, 
and conducts an electronic descending-price auction for each lot. The lowest bidder wins.  (In 
some cases “lowness” is not measured in terms of price, but in terms of an ad hoc score which is 
a weighted function that takes into account the price and some non-price attributes such as 
delivery time and reputation.) 

 Reverse auctions are not economically efficient, that is, they do not generally yield good 
allocation decisions.  This is because the optimal bundling of the items depends on the suppliers' 
preferences (which arise, among other considerations, from the set, type, and time-varying state 
of their production resources), which the buyer does not know at the time of lotting.  Lotting by 
the buyer also hinders the ability of small suppliers to compete.  Furthermore, reverse auctions 
do not support side constraints, yielding two drastic deficiencies: 1) the buyer cannot express her 
business rules; thus the allocation of the auction is unimplementable and the “screen savings” of 
the auction do not materialize in reality, and 2) the suppliers cannot express their production 
efficiencies (or differentiation), and are exposed to bidding risks.  In short, reverse auctions 
assume away the complexity that is inherent in the problem, and dumb down the events rather 
than embracing the complexity and viewing it as a driver of opportunity.  It is therefore not 
surprising that there are strong broad-based signs that reverse auctions have fallen in disfavor.   

The New Paradigm: Expressive Commerce 

In 1997 it dawned on me that it is possible to achieve the advantages of both manual negotiation 
and electronic auctions while avoiding the disadvantages.  The idea is to allow supply and 
demand to be expressed in drastically more detail (as in manual negotiation) while conducting 
the events in a structured electronic marketplace where the supply and demand are 



algorithmically matched (as in reverse auctions).  The new paradigm, which we call expressive 
commerceTM (or expressive competitionTM), was so promising that I decided to found 
CombineNet, Inc. to commercialize it.   

 The finer-grained matching of supply and demand yields Pareto improvements (i.e., win-win 
solutions) between the buyer and the suppliers.  However, matching the drastically more detailed 
supply and demand is an extremely complex combinatorial optimization problem.  We 
developed the world’s fastest algorithms for optimally solving it.  These algorithms are 
incorporated into the market-clearing engine at the core of our flagship product, the Advanced 
Sourcing Application Platform (ASAP). 

 Expressive commerce has two sides: expressive biddingTM and expressive allocation 
evaluation (also called expressive bid takingTM) (Sandholm and Suri 2001). 

Expressive Bidding 

With expressive bidding, the suppliers can express their offers creatively, precisely, and 
conveniently using expressive and compact statements that are natural in the suppliers’ business.  
Our expressive bidding takes on several forms.   ASAP supports the following forms of 
expressive bidding, among others, all in the same event. 

 

• Bidding on an arbitrary number of self-constructed packages of items (rather than being 
restricted to bidding on predetermined lots as in basic reverse auctions).  The packages can 
be expressed in more flexible and more usable forms than what is supported in vanilla 
combinatorial auctions.  For example, the bidder can specify different prices on the items if 
the items get accepted in given proportions, and the bidder can specify ranges for these 
proportions, thus allowing a huge space of packages to be captured by one compact 
expression.  

• Conditional discount offers.  The trigger conditions and the effects can be specified in highly 
flexible ways. 

• Rich forms of discount schedules.  (Simpler forms of discount schedules have already been 
addressed in the literature (Sandholm and Suri 2001a, Sandholm and Suri 2002, Hohner et al. 
2003).)  Figure 1 shows a simple example.  Richer forms allow the bidder to submit multiple 
discount offers and to control whether and how they can be combined.  Discount triggers can 
be expressed as dollars or units, and as a percentage or an absolute.  

 



Figure 1.  A relatively simple discount schedule.  This screenshot is from an actual sourcing 
event.  The scope of the trigger of the discount (STEP 4) can be different than the scope of the 

items to which the discount is to be applied (STEP 5). 

 

• A broad variety of side constraints - such as capacity constraints (Sandholm and Suri 2001a). 

• Multi-attribute bidding (Sandholm and Suri 2001a).  This allows the buyer to leave the item 
specification partially open, so the suppliers can pick values for the item attributes - such as 
material, color, and delivery date - in a way that matches their production efficiencies.  This 
is one way in which the suppliers can also express alternate items. 

• Free-form expression of alternates.  This fosters unconstrained creativity by the suppliers. 

• Expression of cost drivers.  In many of our events, the buyer collects tens or hundreds of cost 
drivers (sometimes per item) from the suppliers.  By expressing cost drivers, the bidder can 
concisely implicitly price huge numbers of items and alternates.  Figures 2 and 3 illustrate 
bidding with attributes and cost drivers. 

 

Figure 2.  A simple example of bidding with alternates, cost drivers, attributes, and constraints.  
This piece of screen is from an actual event for sourcing truckload transportation.  The figure 

shows part of the bid by one bidder on one item. 



 

 

Figure 3.  An example of bidding with cost structures and attributes.  This is part of an actual 
event where printed labels were sourced. 

 All of these expressive bidding features of ASAP have been extensively used by 
CombineNet’s customers.  ASAP supports bidding through web-based interfaces and through 
spreadsheets.  In some cases, catalog prices from databases have also been used.   

 CombineNet’s expressive bidding is flexible in the sense that different suppliers can bid in 
different ways, using different offer constructs.  In fact, some suppliers may not be sophisticated 
enough to bid expressively at all, yet they can participate in the same sourcing events using 
traditional bidding constructs in the same system.  This paves a smooth road for adoption, which 
does not assume sudden process changes at the participating organizations. 

Benefits of Expressive Bidding 



The main benefit of expressive bidding is that it leads to a Pareto improvement in the allocation.  
In business terms, it creates a win-win between the buyer and the suppliers.  There are several 
reasons for this. 

 First, because the suppliers and the buyer can express their preferences completely (and 
easily), the market mechanism can make better (economically more efficient and less wasteful) 
allocation decisions, which translates to higher societal welfare.  In other words, the method 
yields better matching of supply and demand because they are expressed in more detail.  The 
savings do not come from lowering supplier margins, but from reducing economic inefficiency.  
With expressive bidding, the suppliers can offer specifically what they are good at, and at lower 
prices because they end up supplying in a way that is economical for them.  (They can consider 
factors such as production costs and capacities, raw material inventories, market conditions, 
competitive pressures, and strategic initiatives.)  This creates a win-win solution between the 
suppliers and the buyer.  For example, in the sourcing of transportation services, a substantial 
increase in economic efficiency comes from bundling multiple deliveries in one route (back-haul 
deliveries and multi-leg routes).  This reduces empty driving, leading to lower transportation 
costs and yielding environmental benefits as well: lower fuel consumption, less driver time, less 
frequent need to replace equipment, and less pollution. 

 Second, suppliers avoid exposure risks.  In traditional inexpressive markets, the suppliers face 
exposure problems when bidding.  That makes bidding difficult.  To illustrate this point, consider 
a simple auction of two trucking tasks: the first from Pittsburgh to Los Angeles, and the second 
from Los Angeles to Pittsburgh.  If a carrier wins one of the tasks, he has to factor in the cost of 
driving the other direction empty.  Say that his cost for the task then is $1.60 per mile.  On the 
other hand, if he gets both tasks, he does not have to drive empty, and his cost is $1.20 per mile.  
When bidding for the first task in an inexpressive auction, it is impossible to say where in the 
$1.20 - $1.60 range he should bid, because his cost for the first task depends on whether he gets 
the second task, which in turns depends on how other carriers will bid.  Any bid below $1.60 
exposes the carrier to a loss in case he cannot profitably win the second task.  Similarly, bidding 
above $1.20 may cause him to lose the deal on the first task although it would be profitable to 
take on that task in case he wins the second task.  In an expressive auction, the buyer can price 
each of the tasks separately, and price the package of them together, so there is no exposure 
problem.  (For example, he can bid $1.60 per mile for the first task, $1.60 per mile for the second 
task, and $1.20 per mile for the package of both tasks.  Of course, he can also include a profit 
margin.)  Therefore bidding is easier: the bidder does not have to speculate what other suppliers 
will bid in the later auctions.  Also, the tasks get allocated optimally because no bidder gets stuck 
with an undesirable bundle, or misses the opportunity to win when he is the most efficient 
supplier.  Furthermore, when there is an exposure problem, the suppliers hedge against it by 
higher prices.  Removal of the bidders’ exposure problems thus also lowers the buyer’s 
procurement cost. 

 Third, by expressive bidding with side constraints (such as capacity constraints), each supplier 
can bid on all bundles of interest without being exposed to winning so much that handling the 
business will be unprofitable or even infeasible.  This again makes bidding easier because – 
unlike in inexpressive markets – the supplier does not have to guess which packages to commit 
his capacity to.  (In an inexpressive market, making that guess requires counterspeculating what 
the other suppliers are going to bid, because that determines the prices at which this supplier can 
win different alternative packages.)  This also leads to Pareto improvements in the allocation 



compared to inexpressive markets because in those markets each bidder needs to make guesses 
as to what parts of the business he should bid on, and those parts might not be the parts for which 
he really is the most efficient supplier.  

 Fourth, expressive bidding allows more straightforward participation in markets because the 
strategic counterspeculation issues that are prevalent in non-combinatorial markets are removed, 
as discussed above.  This leads to wider access of the benefits of ecommerce because less 
experienced market participants are raised to an equal playing field with experts.  This yields an 
increase in the number of market participants, which itself leads to further economic efficiency 
and savings in sourcing costs.  Broader access also stems from the buyer not lotting the items and 
thus facilitating competition from small suppliers as well. 

 Fifth, in basic reverse auctions, the buyer has to pre-bundle items into lots, but he cannot 
construct the optimal lotting because it depends on the suppliers' preferences.  With expressive 
commerce, items do not have to be pre-bundled.  Instead, the market determines the optimal 
lotting (specifically, the optimizer determines the optimal allocation based on the expressive bids 
and the expressions from the buyer).  This way, the economically most efficient bundling is 
reached, weeks are not wasted on pre-bundling, and suppliers that are interested in different 
bundles compete.  As a side effect, small suppliers' bids together end up competing with large 
suppliers. 

 Sixth, expressive bidding fosters creativity and innovation by the suppliers.  This aspect is 
highly prized by both the suppliers and buyers.  It can also yield drastic savings for the buyer due 
to creative construction of lower-cost alternates. 

 Overall, expressive bidding yields both lower prices and better supplier relationships.  In 
addition to the buyers (our customers), also suppliers are providing very positive feedback on the 
approach.  They especially like 1) that they also benefit (unlike in traditional reverse auctions 
where their profit margins get squeezed), 2) that they can express their production efficiencies, 
and 3) that they can express differentiation and creative offers.  In fact, suppliers like expressive 
commerce so much that they agree to participate in expressive commerce even in events that 
they boycotted when basic reverse auctions had been attempted.  Furthermore, perhaps the best 
indication of supplier satisfaction is the fact the suppliers are recommending the use of 
CombineNet to buyers. 

 The benefits of expressiveness can be further enhanced by multiple buyers conducting their 
sourcing in the same event.  This provides an opportunity for the bidders to bundle across the 
demands of the buyers, and also mitigates the exposure risks inherent in participating in separate 
events.  As an example, in Spring 2005 CombineNet conducted an event where Procter & 
Gamble and its two largest customers, Walmart and Target, jointly sourced their North America-
wide truckload transportation services for the following year (Sandholm et al. 2006).  This 
enabled the carriers to construct beneficial backhaul deliveries and multi-leg routes by packaging 
trucking lanes across the demand of the three buyers.  (This was a huge event.  Procter & 
Gamble’s volume alone exceeded $885 million.) 

Expressive Allocation Evaluation 

The second half of expressive commerce is expressive allocation evaluation, where the buyer 
expresses preferences over allocations using a rich, precise, and compact language (and which is 



natural in the buyer’s business).  It can be used to express legal constraints, business rules, prior 
contractual obligations, and strategic considerations.  

 In our experience, different types of side constraints are a powerful form of expressiveness for 
this purpose.  For example, the buyer can state: “I don't want more than 200 winners (in order to 
avoid overhead costs),” “I don't want any one supplier to win more than 15% (in order to keep 
the supply chain competitive for the long term),” “I want minority suppliers to win at least 10% 
(because that is the law),” “Carrier X has to win at least $3 million (because I have already 
agreed to that),” etc.  ASAP supports hundreds of types of side constraints. 

 ASAP also has a rich language for the buyer to express how item attributes (such as delivery 
date or transshipment specifications) and supplier attributes (such as reputation) are to be taken 
into account when determining the allocation of business (Sandholm and Suri 2001b).   

 A professional buyer - with potentially no background in optimization - can set up a scenario 
in ASAP by adding constraints and preferences through an easy-to-use web-based interface.  (A 
simple example is shown in Figure 4.)  To set up each such expression, the buyer first chooses 
the template expression (e.g., “I don’t want more than a certain number of winners,” or  “I want 
to favor incumbent suppliers by some amount”) from a set of expressions that have been deemed 
potentially important for the event in question.  He then selects the scope to which that 
expression should apply: everywhere, or to a limited set of items, bid rounds, product groups, 
products, sites, and business groups.  Finally, he selects the exact parameter(s) of the constraint, 
e.g., exactly how many winners are allowed.  Constraints and preferences can also be uploaded 
from business rule databases.  Once the buyer has defined the scenario consisting of side 
constraints and preferences, he calls the optimizer in ASAP to find the best allocation of business 
to suppliers under that scenario.   

 

 



 

Figure 4.  A user interface for expressive allocation evaluation by the bid taker.  Every sourcing 
event has different expressiveness forms (selected from a library or preconfigured in a template).  
This particular sourcing event was one of the simpler ones in that relatively few expressions of 

constraints and preferences were included in the user interface.  The buyer uses the interface as 
follows.  First, on the left (Step 1), he selects which one of the expressiveness forms he wants to 

work on, and sets the parameter(s) for that form.  Then, on the right (Step 2) he selects the scope 
to which this rule is to be applied.  In Step 3, he presses the “Add” button to add the rule, and a 
restatement of the rule appears in natural language for verification (not shown).  The buyer can 
then add more rules to the same scenario by repeating this process.  Finally, the buyer presses 

the “Optimize” button (not shown) to find the optimal allocation for the scenario.  This triggers 
the automated formulation of all these constraints and preferences – together with all the bid 

information that the bidders have submitted – into an optimization problem, and the solving of 
the problem via advanced tree search. 

 ASAP takes these high-level supply and demand expressions, automatically converts them into 
an optimization model, and uses sophisticated tree search algorithms to solve the model.  
CombineNet has faced scenarios with over 2.6 million bids (on 160,000 items, multiple units of 
each) and over 300,000 side constraints, and solved them to optimality. 
 

Benefits of Expressive Allocation Evaluation 

Through side constraints and preference expressions, the buyer can include business rules, legal 
constraints, logistical constraints, and other operational considerations to be taken into account 
when determining the allocation.  This makes the auction's allocation implementable in the real 
world: the plan and execution are aligned because the execution considerations are captured in 
the planning.  



 Second, the buyer can include prior (e.g., manually negotiated) contractual commitments into 
the optimization.  This begets a sound hybrid between manual and electronic negotiation.  For 
example, he may have the obligation that a certain supplier has to be allocated at least 80 
truckloads.  He can specify this as a side constraint in ASAP, and ASAP will decide which 80 
truckloads (or more) are the best ones to allocate to that supplier in light of all other offers, side 
constraints, and preferences.  This again makes the allocation implementable.  (A poor man’s 
way of accomplishing that would be to manually earmark some of the business to the prior 
contracts.  Naturally, allowing the system to do that earmarking with all the pertinent information 
in hand yields better allocations.) 

 Third, the buyer obtains a quantitative understanding of the tradeoffs in his supply chain by 
conducting what-if scenario navigation, that is, by changing side constraints and preferences and 
reoptimizing, the buyer can explore the tradeoffs in an objective manner.    For example, he may 
add the side constraint that the supply base be rationalized from 200 to 190.  The resulting 
increase in procurement cost then gives the buyer an understanding of the tradeoff between cost 
and practical implementability.  As another example, the buyer might ask: If I wanted my 
average supplier delivery-on-time rating to increase to 99%, how much would that cost?  As a 
third example, the buyer might see what would happen if he allowed a supplier to win up to 20% 
of the business instead of only 15%.  The system will tell the buyer how much the procurement 
cost would decrease.  The buyer can then decide whether the savings outweighs the added long-
term strategic risks such as vulnerability to that supplier’s default and the long-term financial 
downside of allowing one supplier to become dominant.  In ASAP, the buyer can 
change/add/delete any number of side constraints and preferences in between optimizations. 

 Fourth, quantitative understanding of the tradeoffs also fosters stakeholder alignment on the 
procurement team, because the team members with different preferences can discuss based on 
facts rather than opinions, philosophies, and guesswork. 

Time to Contract in Expressive Commerce 

The time to contract is reduced from several months to weeks because no manual lotting is 
required, all suppliers can submit their offers in parallel, what-if scenarios can be rapidly 
generated and analyzed, and the allocation is implementable as is.  This causes the cost savings 
to start to accrue earlier, and decreases the human hours invested. 

Automated Item Configuration 

An additional interesting aspect of bidding with cost drivers and alternates (e.g., using attributes) 
is that the market clearing (aka. winner determination) algorithm not only decides who wins, but 
also ends up optimizing the configuration (setting of attributes) for each item.  In deciding this, 
the optimizer, of course, also takes into account the buyer’s constraints and preferences.  

Automated Supply Chain Configuration 

In many sourcing events the winner determination also ends up optimizing the supply chain 
multiple levels upstream from the buyer.  For example, in a sourcing event where Procter & 



Gamble sourced in-store displays using our hosting service and technology, we sourced items 
from different levels of the supply chain in one event: buying colorants and cardboard of 
different types, buying the service of printing, buying the transportation, buying the installation 
service, etc. (Sandholm et al. 2006).  Some suppliers made offers for some of those individual 
items while others offered complete ready-made displays (which are, in effect, packages of the 
lower-level items), and some bid for partial combinations.  The market clearing determined the 
lowest-cost (adjusted for the Procter & Gamble’s constraints and preferences) solution and thus, 
in effect, configured the supply chain multiple levels upstream. 

Expressive Commerce as a Generalization of Combinatorial Auctions 

A relatively simple early form of expressive commerce was a combinatorial reverse auction 
(Sandholm et al. 2002), where the only form of expressiveness that the suppliers have is package 
bidding, and the buyer has no expressiveness.  A predecessor of that was a combinatorial auction 
where the bidders are the buyers (and there is only one unit of each item and no side constraints).  
Combinatorial auctions (Rassenti et al. 1982, Sandholm 1993, Sandholm 2002b, Ledyard et al. 
1997, Rothkopf et al. 1998, Kwasnica et al. 2005, Sandholm et al. 2005, Sandholm and Suri 
2003, Hoos and Boutilier 2000, Boutilier 2002, and deVries 2003), enable bidders to express 
complementarity among items (the value of a package being more than the sum of its parts) via 
package bids.  Substitutability (the value of a package being less than the sum of its parts) can 
also be expressed in some combinatorial auctions, usually using different languages for 
specifying mutual exclusivity between bids (Sandholm 2002a, Fujishima et al. 1999, Sandholm 
2002b, Nisan 2000, and Hoos and Boutilier 2001).   

 Expressiveness leads to more economical allocations of the items because bidders do not get 
stuck with partial bundles that are of low value to them.  This has been demonstrated, for 
example, in auctions for bandwidth (McMillan 1994 and McAfee and McMillan 1996), 
transportation services (Sandholm 1993, Sandholm 1996, Sandholm 1991, and Caplice and 
Sheffi 2003), pollution rights, airport landing slots (Rassenti et al. 1982), and carrier-of-last-
resort responsibilities for universal services (Kelly and Steinberg 2000).   

 However, package bids and exclusivity constraints are too impoverished a language for real-
world sourcing.  While any mapping from bundles to real numbers can be expressed in that 
language in principle, the real-world preferences in sourcing cannot be easily, naturally, and 
concisely expressed in it.  Starting in 1997, we tackled this challenge and generalized the 
approach to expressive commerce, with the language constructs discussed above.  Similar 
approaches have recently been adopted by others, but only for drastically less complex (orders of 
magnitude smaller and less expressive) events (Hohner et al. 2003, Metty et al. 2005). 

 The use of our richer expressiveness forms (rather than mere canonical package bids with 
exclusivity constraints) is of key importance for several reasons: 

• Bidders can express their preference in the language that is natural in their domain. 

• Bidders can express their preferences concisely.  To illustrate this point, consider the 
following simple example. A bidder has no production efficiencies and thus has a price for 
each item regardless of what other items he produces.  However, he has a capacity constraint.  
In our bidding language, he can simply express a price for each item and a capacity 



constraint.  In contrast, in the classical combinatorial auction bidding languages, the supplier 
would have to submit bids for an exponential number of packages. 

• Due to the conciseness, the bids are easy to communicate to the bid taker. 

• Our bidding constructs maintain the natural structure of the problem (rather than normalizing 
the structure away into a format that only allows package bids with exclusivity constraints).  
The clearing algorithms take advantage of that structure in many ways, for example, in 
generating cutting planes, deciding what variables to branch on, and so on. 

Tree Search to Enable Expressive Commerce 

A significant challenge in making expressive commerce a reality is that the expressiveness 
makes the problem of allocating the business across the suppliers an extremely complex 
combinatorial optimization problem.  Specifically, the clearing problem (aka winner 
determination problem) is that of deciding which bids to accept and reject (and to what extent in 
the case of partially acceptable bids) so as to minimize sourcing cost (adjusted for preferences) 
subject to satisfying all the demand and all side constraints.  Even in the vanilla combinatorial 
reverse auction where the only form of bidding is package bidding, and no side constraints or 
preferences are allowed, the clearing problem is NP-complete and inapproximable in the worst 
case in polynomial time (Sandholm et al. 2002).  Expressive commerce is a much richer 
problem; thus the NP-hardness and inapproximability carry over.  (Müller et al. (2006) review 
the worst-case complexity of the clearing problem of different variants of combinatorial 
auctions.)  Thus sophisticated techniques are required.   

 In fact, prior to ASAP, no technology was capable of solving clearing problems of the scale 
and expressiveness that our customers wanted to be able to support; for example, Hohner et al. 
(2003) found integer programming techniques to be effective for problems only as large as 500 
items and 5,000 bids.  In 2001, P&G gave us a trial instance of trucking services sourcing that 
took a competing optimization product 30 minutes to solve.  ASAP solved it optimally in 9 
seconds.  While that was already a decisive speed difference, since that time our technology 
development has yielded a further speed improvement of 2-3 orders of magnitude. 

 There is significant structure in the expressive commerce problem instances, and it is 
paramount that the optimizer be able to take advantage of the structure.  Mixed integer 
programming (MIP) techniques for tree search are quite good at this, and ASAP takes advantage 
of them.  However, the techniques embodied in the leading general-purpose MIP solvers are not 
sufficient for the clearing problem. 

 ASAP uses sophisticated tree search to find the optimal allocation.  Given that the problem is 
NP-complete, in the worst-case the run-time is super-polynomial in the size of the input (unless 
P=NP).  However, in real-world sourcing optimization the algorithms run extremely fast: the 
median run-time is less than a second and the average is 20 seconds, with some instances taking 
days.  The algorithms are also anytime algorithms: they provide better and better solutions 
during the search process.   

 I began the algorithm development in 1997, and CombineNet now has 16 people working on 
the algorithms, half of them full time.  The team has tested hundreds of techniques (some from 
the AI and operations research literature and some invented at CombineNet) to see which ones 



enhance speed on expressive commerce clearing problems.  Some of the techniques are specific 
to market clearing, while others apply to combinatorial optimization more broadly.  We 
published the first generations of our search algorithms (Sandholm 2002a, Sandholm and Suri 
2003, and Sandholm et al. 2005).  The new ideas in these algorithms included  

• different formulations of the basic combinatorial auction clearing problem (branching on 
items (Sandholm 2002a), branching on bids (Sandholm and Suri 2003 and Sandholm et al. 
2005), and multi-variable branching (Gilpin and Sandholm 2007)),  

• upper and lower bounding across components in dynamically detected decompositions 
(Sandholm and Suri 2003 and Sandholm et al. 2005),  

• sophisticated strategies for branch question selection (Sandholm 2006, Sandholm 2002a, 
Sandholm and Suri 2003, and Sandholm et al. 2005),  

• dynamically selecting the branch selection strategy at each search node (Sandholm 2006 and 
Sandholm et al. 2005),  

• the information-theoretic approach to branching in search (Gilpin and Sandholm 2007),  

• sophisticated lookahead techniques (Sandholm 2006 and Gilpin and Sandholm 2007),  

• solution seeding (Sandholm 2006),  

• primal heuristics (Sandholm 2006 and Sandholm et al. 2005),  

• identifying and solving tractable cases at nodes (Sandholm and Suri 2003, Sandholm et al. 
2005, Sandholm 2006, and Conitzer et al. 2004),  

• techniques for exploiting part of the remaining problem falling into a tractable class 
(Sandholm 2006 and Sandholm and Suri 2003),  

• domain-specific preprocessing techniques (Sandholm 2002a),  

• fast data structures (Sandholm 2002a, Sandholm and Suri 2003, and Sandholm et al. 2005),  

• methods for handling reserve prices (Sandholm 2002a and Sandholm and Suri 2003), and  

• incremental winner determination and quote computation techniques (Sandholm 2002a).   

Sandholm (2006) provides an overview of the techniques. 

 We have also invented a host of techniques in the search algorithms that we have decided to 
keep proprietary for now.  They include different formulations of the clearing problem, new 
branching strategies, custom cutting plane families, cutting plane generation and selection 
techniques, etc. 

 For the last few years we have also been using machine learning methods to predict how well 
different techniques will perform on the instance at hand.  (For this purpose, the instance is 
represented by about 50 hand-selected numeric features.)  This information can be used to 
dynamically select the technique for the instance at hand, to give time estimates to the user, and 
so on.  Our solver has several dozen important parameters and each of them can take on several 
values.  Therefore, our machine learning approach of setting the parameters well on an instance 
by instance basis is significantly more challenging and more powerful than using machine 



learning to select among a handful of hardwired solvers, an approach that has been pursued in 
academia in parallel (e.g., (Leyton-Brown, Nudelman, and Shoham 2006)). 

 While the literature on combinatorial auctions has mainly focused on a variant where the only 
form of expressiveness is package bidding (sometimes supplemented with mutual exclusion 
constraints between bids), in our experience with sourcing problems the complexity is dominated 
by rich side constraints.  Thus we have invested significant effort into developing techniques that 
deal with side constraints efficiently.  CombineNet has faced several hundred different types of 
real-world side constraints.  ASAP supports all of them.  We abstracted them into eight classes 
from an optimization perspective so the speed improvements that we build into the solver for a 
type of side constraint get leveraged across all side constraint types within the class. 

 The resulting optimal search algorithms are often 10,000 times faster than others’.  The main 
reason is that CombineNet specializes on a subclass of MIP problems and has 32,000 real-world 
instances on which to improve its algorithms.  The speed has allowed our customers to handle 
drastically larger and more expressive sourcing events.  The events have sometimes had over 2.6 
million bids (on 160,000 items, multiple units of each) and over 300,000 side constraints. 

 The state-of-the-art general-purpose MIP solvers are inadequate also due to numeric 
instability.  They err on feasibility, optimality, or both, on about 4% of the sourcing instances.  
We have invested significant effort on stability, yielding techniques that are significantly more 
robust. 

Hosted Optimization For Sourcing Professionals 

CombineNet’s backend clearing engine, ClearBox, is industry-independent, and the interface to 
it is through our Combinatorial Exchange Description Language (CEDL), an XML-based 
language that allows ClearBox to be applied to a wide variety of applications by CombineNet 
and its partners.  See Figure 5. 
 

 

Figure 5. Advanced Sourcing Application Platform (ASAP).  The platform is hosted on a server 
farm with multiple instantiations of each component.  ASAP also includes modules for clearing 

management, server farm management, secure databases, etc. (not shown). 
 



 

 Intuitive web-based interfaces designed for the buyer and for the suppliers bring the power of 
optimization to users with expertise in sourcing, not in optimization.  The users express their 
preferences through interfaces that use sourcing terminology.  The interfaces support simple 
click-through interaction rather than requiring the user to know any syntax.  The approach allows 
sourcing professionals to do what they are best at (incorporating sourcing knowledge such as 
strategic and operational considerations) and the optimizer to do what it is best at (sifting through 
huge numbers of allocations to pick the best one). 

 For every event, separate front-ends are instantiated that support only those bidding and 
allocation evaluation features that are appropriate for that event.  This makes the user interfaces 
easier and more natural to use by sourcing professionals.  User training typically takes a few 
hours.  New front ends typically take a few days or weeks to go from project specification to 
deployment. 

 The user interfaces feed CEDL into ClearBox, and ClearBox then automatically formulates the 
optimization problem for the search algorithms.  This contrasts with the traditional mode of 
using optimization, where a consultant with optimization expertise builds the model.  The 
automated approach is drastically faster (seconds rather than months) and avoids errors.   

 Our web-based products and application service provider (ASP) business model make 
optimization available on demand.  No client-side software installation is necessary.  This also 
avoids hardware investments by customers.  We buy the hardware and leverage it across 
customers, each with temporary load.  (On many instances the search trees exceed 2 gigabytes of 
RAM, rendering 32-bit architectures unusable and requiring a 64-bit architecture.)  See Figure 6.  
The ASP model allows us to quickly and transparently tune our algorithms, and to provide 
enhancements to all customers simultaneously.  We also offer the technology through consulting 
firms. 
 



Figure 6.  CombineNet’s hosting architecture now includes hundreds of computers, hardware 
load balancers, redundant Internet, etc.  Other aspects of the hosting include 24/7 monitoring of 
the hosting infrastructure, backup power from a generator, measures against overheating and 

fire, and physical security against unauthorized entry. 

Market Design 

While we attribute the bulk of the savings to the application of optimization to sourcing, another 
important factor is market design: what forms of expressiveness are allowed, what forms of 
feedback is given to bidders during the event, etc.  ASAP supports sealed bid events (winners are 
determined at the end), events that have a (usually small) number of rounds (winners are 
determined and feedback provided at the end of each round), and “live” events (winners are 
determined and feedback provided every time any participant expresses anything new). 

Scenario Navigation 

The buyer is typically not an individual but an organization of several individuals with different 
preferences over allocations.  Finance people want low sourcing cost, plant managers want small 
numbers of suppliers, marketing people want a high average carrier-delivery-on-time rating, etc.  
ASAP enables the organization to better understand the available tradeoffs.  Once the bids have 
been collected, the buyer conducts scenario navigation.  At each step of that process, the buyer 
specifies a set of side constraints and preferences (these define the scenario), and runs the 



optimizer to find an optimal allocation for that scenario.  This way the buyer obtains a 
quantitative understanding of how different side constraints and preferences affect the sourcing 
cost and all other aspects of the allocation. 

 CombineNet has found that a buying organization will navigate an average of 100 scenarios 
per sourcing event.  (The maximum seen to date had 1107.)  To navigate such large numbers of 
scenarios, fast clearing is paramount. 

 Rapid clearing allows scenario navigation to be driven by the actual data (offers).  In contrast, 
most prior approaches required the scenario (side constraints and preferences, if any) to be 
defined prior to analysis; there were insufficient time and expert modeling resources to try even a 
small number of alternative scenarios.  Data-driven approaches are clearly superior because the 
actual offers provide accurate costs for the various alternative scenarios. 

 The next generation of ASAP will also support  automated scenario navigation.  Compared to 
basic scenario navigation, discussed above, it enables a more systematic and less wasteful 
navigation of the scenario space.  The system queries the sourcing team about their preferences, 
using, for example, tradeoff queries (“how much hassle would an extra supplier be in dollars? - 
give me an upper or lower bound”) and comparison queries (“which of these two allocations do 
you prefer?”).  The system decides the queries to pose in a data-directed way so as to only ask 
the team to refine its preferences on an as-needed basis. (This is desirable because internal 
negotiation in the team is costly in terms of time and goodwill.)  Specifically, based on all the 
offers that the suppliers have submitted, and all answers to previous queries, the system strives to 
minimize maximum regret.  At each iteration of automated scenario navigation, the system finds 
a robust solution that minimizes maximum regret (the regret is due to the fact that the sourcing 
team has not fully specified its preferences, so for some preferences that are still consistent with 
the answers so far, the system’s recommended allocation is not optimal).  As the other step of 
each iteration, the system poses a query to refine the team’s preferences in order to be able to 
reduce the maximum regret further.  The maximum regret also provides a quantitative measure 
of when further negotiation within the team is no longer worth it, and the team should implement 
the current robust allocation.  CombineNet pioneered automated scenario navigation, including 
its different design dimensions and algorithms (Boutilier et al. 2004).  The optimization problem 
of finding the most robust allocation is even more complex than the clearing problem discussed 
in most of this paper.  We have developed a prototype of automated scenario navigation, and will 
solicit customer feedback soon. 

Impact 

The new sourcing paradigm and technology has already had significant impact.  The technology 
development began in 1997 and CombineNet was founded in 2000.  Between December 2001 
and now (December 2006), CombineNet has used ASAP to host 447 highly combinatorial 
procurement events, totaling a spend of $35 billion.  The 60+ buyer companies were mostly 
among the Global 1000.  A total of over 12,000 supplier companies bid in our system.  The 
individual events ranged from $2 million to $1.6 billion, representing the most complex 
combinatorial auctions ever conducted.  They spanned a broad range of categories such as  

• transportation: truckload, less-than-truckload, ocean freight, dray, bulk, intermodal, small 
parcel, air freight, train, fleet, freight forwarding, and other,  



• direct materials: sugars/sweeteners, meat, vegetables, honey, starches, colorants, fibers/non-
wovens, steel, fasteners, solvents, chemicals, casings, resins, and polymers,  

• packaging: cans/ends, corrugates, corrugated displays, flexible film, folding cartons, labels, 
foam trays/pads, caps/closures, shrink and stretch films, bags, pulp, pallets, and printed 
instructions,  

• indirect materials: Management, Repair, and Operations, aka MRO (electrical supplies, 
filters, pipes/valves/fittings, power transmissions, pumps, safety supplies, office supplies, lab 
supplies, file folders, solvents, and furnishings), chemicals (cylinder gasses, fuels, and other), 
technology (laptops/desktops and cameras), leased equipment, fleet vehicles, and 
promotional items, and 

• services: security, janitorial, legal, patent/trademark, consulting, equipment maintenance, 
temp labor, marketing, customization, insurance, shuttling/towing, warehousing, pre-press, 
and advertising, and 

• healthcare: pharmaceuticals as well as medical/surgical equipment and supplies, and 

• telecommunication: sourcing wireless plans for employees of companies. 
 

   On the $35 billion spend, CombineNet delivered hard-dollar savings of $4.4 billion to its 
customers in lowered sourcing costs.  The savings were measured compared to the prices that the 
buyer paid for the same items the previous time the buyer sourced them (usually 12 months 
earlier).  The $4.4 billion is the implementable savings that the system yielded after the buyer 
had applied side constraints and preferences; the unconstrained savings (which can be viewed as 
the savings arising from expressive bidding before the buyer expresses constraints and 
preferences) was $5.4 billion.  The savings figure is remarkable especially taking into account 
that during the same time period, the prices in the largest segment, transportation, increased by 6-
9% in the market overall. 

 The savings number does not include the savings obtained by suppliers, which are harder to 
measure because the suppliers’ true cost structures are proprietary.  However, there is strong 
evidence that the suppliers also benefited, so a win-win was indeed achieved: 1) suppliers that 
have participated in expressive commerce events are recommending the use of that approach to 
other buyers, 2) on numerous occasions, suppliers that boycotted reverse auctions came back to 
the “negotiation table” once expressive commerce was introduced, and 3) suppliers are giving 
very positive feedback about their ability to express differentiation and provide creative 
alternatives.   

 The savings number also does not include savings that stem from reduced effort and 
compression of the event timeline from months to weeks or even days. 

 The cost savings were achieved while at the same time achieving the other advantages of 
expressive commerce discussed above, such as better supplier relationships (and better 
participation in the events), redesign of the supply chain, implementable solutions that satisfy 
operational considerations, and solutions that strike the tradeoffs in a data-driven way and align 
the stakeholders in the buying organization.  See also Sandholm et al. (2006) and case studies at 
www.CombineNet.com.  



 Today CombineNet employs 130 full time (about half of them in engineering) and a dozen 
academics as advisors.  The company has operations on four continents.  It is headquartered in 
Pittsburgh, USA, with European headquarters in Berlin.  It also has offices in Brussels, 
Hamburg, Tokyo, and Beijing. 
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