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ABSTRACT

This paper presents eMediator, a next generation electronic
commerce server that demonstrates some ways in which al-
gorithmic support and game theoretic incentive engineering
can jointly improve the efficiency of ecommerce. First, its
configurable auction house includes a variety of generalized
combinatorial auctions, price setting mechanism, novel bid
types, mobile agents, and user support for choosing an auc-
tion type. Second, its leveled commitment contract opti-
mizer determines the optimal contract price and decommit-
ting penalties for a variety of leveled commitment contract-
ing protocols, taking into account that rational agents will
decommit insincerely in Nash equilibrium. Third, its safe
exchange planner enables unenforced anonymous exchanges
by dividing the exchange into chunks and sequencing those
chunks to be delivered safely in alternation between the
buyer and the seller. Each of the three components is based
on different types of game theoretic equilibrium analysis,
and also required development of new algorithms and GUI
designs to make it feasible.

1. INTRODUCTION

Electronic commerce is taking off rapidly, but the full power
of algorithmic support and game theoretic tools has not been
harnessed to improve its efficiency. This paper presents e Me-
diator, a next generation electronic commerce server that
demonstrates some ways in which these techniques can im-
prove ecommerce both in terms of processes and outcomes.
The result of our 2-year implementation effort is now avail-
able for use on the web at http://ecommerce.cs.wustl.edu/
emediator/. Three components of eMediator are discussed:
an auction house, a leveled commitment contract optimizer,
and a safe exchange planner. Each one exhibits interesting
interplay between algorithms and game theoretic incentive
engineering.

2. eAuctionHouse

Several successful commercial Internet auction sites exist—
such as eBay and Yahoo—and interesting academic auction
houses have recently appeared on the Internet [27, 16]. Our
motivation in developing an auction server was to proto-
type novel next generation features, and test their feasibil-
ity both computationally and in terms of user comfort. One
of the services that eMediator provides is a free-to-use In-
ternet auction prototype called eAuctionHouse. It allows
users from across the Internet to buy and sell goods as well
as to set up auctions. It is a third party site, so both sell-

ers and buyers can trust that it executes the auction pro-
tocols as stated. It is implemented in Java, with some of
the computationally intensive matching algorithms in C++.
The information about the auctions is stored in a relational
database to increase reliability. To our knowledge, our server
is the first—and currently only—Internet auction that sup-
ports combinatorial auctions, bidding via graphically drawn
price-quantity graphs, and by mobile agents. It also offers a
wide range of auction types to be chosen from, and supports
the user in that choice. These features are now discussed in
order.

2.1 Combinatorial auctions

In a sequential auction, items are auctioned one at a time.
If a bidder has preferences over bundles, i.e. combinations
of items (as is often the case e.g. in electricity markets, eq-
uities trading, bandwidth auctions [12], and transportation
exchanges [18]), then bidding in such auctions is difficult.
To determine her valuation for an item, the bidder needs to
guess what items she will receive in later auctions. This re-
quires speculation on what the others will bid in the future
because that affects what items she will receive. Further-
more, what the others bid in the future depends on what
they believe others will bid, etc. This counterspeculation
introduces computational cost and other wasteful overhead.
Moreover, in auctions with a reasonable number of items,
such lookahead in the game tree is intractable, and then
there is no known way to bid rationally. Bidding rationally
would involve optimally trading off the cost of lookahead
against the gains it provides, but that would again depend
on how others strike that tradeoff. Furthermore, even if
lookahead were computationally manageable, usually uncer-
tainty remains about the others’ bids because agents do not
have exact information about each other, e.g. each others’
preferences. This often leads to inefficient allocations where
bidders fail to get the combinations they want and get ones
they do not.

In a parallel auction the items are open for auction simul-
taneously and bidders may place their bids during a certain
time period. This has the advantage that the others’ bids
partially signal to the bidder what the others’ bids will end
up being for the different items, so the uncertainty and the
need for lookahead is not as drastic as in a sequential auc-
tion. However, the same problems prevail as in sequential
auctions, albeit in a mitigated form.

Combinatorial auctions can be used to overcome the need
for lookahead and the inefficiencies that stem from the re-
lated uncertainties [15, 18, 17, 12]. In a combinatorial auc-
tion bidders may place bids on combinations of items. This
allows the bidders to express complementarities between
items instead of having to speculate into an item’s valua-
tion the impact of possibly getting other, complementary
items. This capability is particularly important in illiquid,
highly volatile, or non-commoditized markets where it is un-
sure whether one can acquire the items of a desired bundle



one at a time. Our auction server supports a variety of com-
binatorial auctions. The following subsections discuss some
of them.

2.1.1 OR bids

In the combinatorial auction setting that has been most
commonly discussed [17], each bidder can bid on combina-
tions of indivisible items, and her bids are joined with non-
exclusive OR, meaning that any number of her bids can be
accepted. While combinatorial auctions have the desirable
features that they can avoid the need for lookahead by the
bidders and tend to therefore lead to more efficient alloca-
tions, they impose significant complexity on the auctioneer
because the auctioneer needs to determine the winners. This
is a nontrivial task. For example, the Federal Communica-
tions Commission saw the desirability of combinatorial bid-
ding in their bandwidth auctions, but it was not allowed due
to perceived intractability of winner determination.

Formally, winner determination with OR bids is the prob-
lem of deciding which bids win so as to maximize the sum
of the bid prices, under the constraint that every item is al-
located to at most one bid. This cannot be done in general
in polynomial time in the size of the input (unless P = N'P)
because the problem is A'P-complete (it is analogous to
weighted set packing which is A'P-complete).

Even approximate winner determination is hard if one is
interested in worst case guarantees:

ProposITION 2.1. No polytime algorithm can guarantee
an allocation within a bound nll—_e from optimum for any
€ >0 (unless N'P equals probabilistic polytime).

We proved this via an approximation preserving reduction
from maximum clique (which is known to be inapproximable
[8]). We present the proof in [20].

If the bids exhibit special structure, better approximations
can be achieved in polynomial time [2, 6, 9, 7], but even these
guarantees are so far from optimum that they are irrelevant
for auctions in practice [20].

Polynomial time winner determination can be achieved by
restricting the combinations on which the agents are allowed
to bid [17]. However, because the agents may then not be
able to bid on the combinations they want, similar economic
inefficiencies prevail as in the non-combinatorial auctions.

We recently generated another approach to optimal winner
determination. The motivation was to

e allow bidding on all combinations.
e strive for the optimal allocation.

e capitalize heavily on the sparseness of bids. In prac-
tice the space of bids is extremely sparsely populated.
For example, if there are 100 items, there are 2'°° — 1
combinations, and it would take longer than the life of
the universe to bid on all of them even if every person
in the world submitted a bid per second. Sparseness of
bids implies sparseness of the allocations that need to
be checked. Our algorithm constructively checks each
allocation that has positive value exactly once, and

does not construct the other allocations. Therefore,
the algorithm only generates those parts of the search
space which are actually populated by bids. The dis-
advantage then is that the run time depends on the
bids received.

We achieve these goals by a tree search algorithm that does
provably sufficient selective generation of children in the
search and by using a method for fast child generation,
heuristics that are accurate and optimized for speed, and
four methods for preprocessing the search space. While the
worst case complexity is exponential (unless P = N'P), the
algorithm scales up very well in practice. For details and ex-
perimental results, see [20]. This algorithm has been further
refined by others [4], and we recently developed a totally
different search algorithm that promises to be drastically
faster [25].

2.1.2 XOR bids

The above methods for conquering the intractability of win-
ner determination are based on the common assumption
that the bids are superadditive: b;(SUS') > bi(S) + bi(S”)
where b;(S) is the bid of agent 7 on combination S. But
what would happen if agent 1 bid b, ({1}) = 5, b1 ({2}) = 4,
and b ({1,2}) = 7, and there were no other bidders? The
auctioneer could allocate items 1 and 2 to agent 1 sepa-
rately, and that agent’s bid for the combination would value
at 54+ 4 = 9 instead of 7. So, the current techniques focus
on situations where combinational bids are introduced to
capture synergies (positive complementarities) among items.
On the other hand, in many real world settings local subad-
ditivities (substitutability) can occur as well. For example,
when bidding for a landing slot for a plane, the bidder is
willing to take any one of a host of slots, but does not want
more than one.

To address this, we introduced a new bid type, XOR bid,
i.e. a bid on multiple combinations such that only one of
the combinations can get accepted. eAuctionHouse supports
XOR bids. This allows the bidders to express general pref-
erences with both positive and negative complementarities.

Optimal winner determination with XOR bids is at least as
hard as the basic winner determination problem because the
latter is a special case of the former. Therefore, the nega-
tive results, P-hardness and inapproximability, apply to
this setting as well. Our winner determination algorithm
for OR bids extends to this setting by inserting the extra
constraints that no two combinations from the same bid can
be accepted [20]. These extra constraints will actually make
the algorithm faster because the constraints prune some al-
locations. Therefore, for a given number of bids, winner
determination tends to be faster for XOR bids than for OR
bids.

To allow an efficient allocation to be reached, it would be de-
sirable to extract truthful valuation revelations as the bids
to the auctioneer. Bidding truthfully can be made incen-
tive compatible (a dominant strategy) by using the Groves-
Clarke mechanism [5, 3]. This means that each bidder is mo-
tivated to bid truthfully irrespective of what the others bid.
This renders counterspeculation unnecessary. The Groves-
Clarke mechanism can be applied to the combinatorial auc-
tion setting as follows. Winning bids are determined so as to



maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bid. The amount
that an agent needs to pay is the sum of the others’ win-
ning bids had the agent not submitted any bids, minus the
sum of the others’ winning bids in the actual optimal allo-
cation. Therefore, the winner determination problem has to
be solved once overall, and once per winning agent without
any of that agent’s bids. This makes fast winner determina-
tion even more crucial. Note that for example just removing
one winning bid at a time would not constitute an incentive
compatible mechanism. Incentive compatibility can also be
lost if either winner determination or price determination is
done only approximately.!

2.1.3 OR-of-XORs bids

In addition to the tractability of winner determination, the
convenience of using combinatorial auctions is another im-
portant issue. While XOR bids allow the bidder to express
general preferences, in the worst case this would involve
placing a bid for each of the 2™ — 1 possible combinations,
where m is the number of items. A shorter representation of
preferences without loss of expressive power could be pos-
sible by allowing a richer input language. One idea toward
this direction was presented early on by Rassenti et al [15].
They allowed the bidder to place combinational bids and to
state the maximal number of combinations that could be ac-
cepted. An XOR bid can be viewed as a special case of this
where that number is one. In our auction server, we allow
the user to submit multiple XOR bids. We do this in table
form, where each row is a combinational bid, and the rows
are combined with XOR (Figure 1). These multiple bids are
combined together with a non-exclusive OR. We do this by
allowing the user to submit multiple tables. Winners can be
determined with the same algorithm as in the case of XOR
bids by using exclusivity constraints only between combina-
tions that are in the same table. This method maintains full
expressive power, but leads to shorter (at least no longer)
input descriptions than XOR bids only. We also believe that
it is a more natural way to input preferences. Other enrich-
ments to the language are also possible. Since even basic
XOR bids have full expressive power, expressiveness should
be viewed as a necessary but not a sufficient condition in
designing combinatorial auctions. Between fully expressive
input languages the appropriate comparison criterion is the
convenience of their use in the particular application domain
in question.

2.1.4  Other combinatorial auction generalizations
Our input representation (Figure 1) also allows combina-
torial double auctions instead of just single-sided auctions.
In other words, there can be multiple buyers and multiple
sellers. In addition to double auction extensions, it allows
combinatorial auctions where the agents can bid for mul-
tiple units of each item in a combination (the number of
units is specified in each cell of the table). The latter splits
into two cases depending on whether the matches of units
have to be exact or whether partial matches (e.g. I am will-
ing to pay a certain amount for this vector of items, or for
more) are allowed. We have also developed optimal winner

' A recent paper shows that under certain conditions, incen-
tive compatibility can be guaranteed even under approxi-
mate winner determination [10].
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Figure 1: An XOR bid. The example is from an
electricity market scenario where the agents can bid
for combinations of electricity for different hours of
the day, and for multiple Mega Watt hours for each
hour of the day. In this example, a refinery operator
wants consecutive hours of electricity for her plant.
She prefers to run the plant for three hours at a
rate of 4 MWh per hour, but running for two hours
at 6 MWh per hour is also feasible. In the last
alternative she acts both as a buyer and as a seller
of different items in one combination.

|6 %l 2@ 23 2|

determination algorithms for these settings [25].

2.2 Bidding via price-quantity graphs
Price-quantity graphs are supported so that bidders can ex-
press continuous preferences, see Figure 2. For example
when a bidder buys a larger quantity, she might only accept
a lower unit price. Naturally, a bidder accepts anything be-
low the curve as well (automatically colored region) because
she will get the same quantity as on the curve, but at a lower
price. Similarly, a seller would accept anything above her
curve.?

In our implementation, the curves are piecewise linear both
for drawing convenience and for the convenience of winner
determination. In single sided auctions with price-quantity
graph bidding, the winner determination algorithm works
as follows. It sums the demand for every unit price (it does
not loop though prices but uses the endpoints of each linear
piece of the curve to do this). Then, it picks the aggregate
solution that maximizes the unit price under the constraint
that not more is demanded than is available. Each bidder
then gets the amount that she bid at that unit price. In
double auctions, both supply and demand curves are sep-
arately aggregated, and any one of the points were supply
meets demand is chosen. If the curves were noncontinuous,
it would be possible that no match exists. This holds both

20ptimark Technologies, Inc. does a fuzzier match where
each bidder specifies how much she prefers different regions
of the price-quantity plane [11].
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Figure 2: A price-quantity graph allows the user to
express continuous preferences in the auction server
of eMediator. This figure corresponds to the user
being able to hold a video-conference at three al-
ternative picture resolutions requiring a bandwidth
of 15, 60, or 120 Mbps. The auctioned item could
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ple, the virtual circuit from LA to Prague can use
several network links owned by different backbone
providers.
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for single and double auctions. To prevent this, we use con-
tinuous curves, i.e. the slope of each linear segment is finite.
We do not assume that the curves are monotonic (Figure 2).

2.3 Support for choosing an auction type

The auction server supports a wide variety of auction types.
The user that sets up a given auction (she may be a buyer, a
seller, or a third party facilitator) decides the auction type.
However, since the space of different auction types is enor-
mous, the auction server helps the user in making the choice.
First, only choices that are sensible based on game theoretic
analyses or economics experiments are provided as alterna-
tives. Furthermore, there is an expert system that restricts
the choice of auction types given the auction setting (Fig-
ure 3). For any given auction setting, it tells the user what
kinds of bids can be accepted, and what price determination
schemes should be used. The auction setting differs based
on whether it is a single or double auction, whether there is
one or multiple items, and whether there is one or multiple
units of each item. Furthermore, the units can be divisi-
ble or indivisible. The bid types include a regular price bid
where the user specifies the price for a good; a price-quantity

graph bid (Figure 2); an OR bid; and an OR-of-XORs bid.

The first-price pricing scheme charges the buyer the price

Bid type Auction setting Pricing scheme

Single auction,

Reeul 1 unit of 1 item First-pric
preig: ;{d Single auction,
multiple units of 1 item
Single auction .
L ’ . 2nd price
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graph bid multiple items,
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- Multi-unit
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1 unit of 1 item

OR bid Double auction,

multiple units of 1 item Groves

Double auction,
multiple items, 1 unit of each

O.R’Of’XORS Double auction,
bid multiple items,

multiple units of each

Figure 3: Expertise showing valid combinations of
choices of some of the parameters of eAuctionHouse.

of her bid. This scheme leads to underbidding. In single
unit ascending open-cry auctions, each bidder’s dominant
strategy is to bid a small increment more than the current
price, and stop when her valuation is reached. In sealed bid
auctions with common knowledge assumptions about the
priors from which the bidders’ private valuations are drawn,
a Nash equilibrium analysis can be conducted to determine
how much each agent should underbid as a function of her
valuation.

The second-price (Vickrey) auction charges the winning bid-
der the price of the second highest bid. Under certain re-
strictions [19], it is each bidder’s dominant strategy to bid
her true valuation [26].

The multi-unit Vickrey auction is a generalization of the
Vickrey auction to settings with multiple units of an item,
or in other words, multiple indistinguishable goods. FEach
bidder can submit multiple bids. The units are assigned
from highest bid downward until they run out. Each winning
bid is charged the price of the bid that it displaces from the
set of winning bids. This achieves incentive compatibility,
i.e. each bidder is motivated to bid truthfully, independent
of what others bid. Another possible generalization of the
Vickrey auction for this setting is to charge every bidder
the price of the highest bid that just did not win. Our
auction server uses the former method because the latter is
not incentive compatible: it falls prey to demand reduction

lies by the bidders [1].

For multi-item auctions (with one or more units per item),
the Groves-Clarke mechanism, discussed earlier, is the ap-
propriate generalization of the Vickrey auction. Each bid-
der’s dominant strategy is to bid truthfully.

In double auctions (exchanges), our server splits the gains
equally in the standard way. The price is half way between
the bid and the ask. In combinatorial double auctions (ex-
changes), we maximize the surplus (prices of accepted bids
minus prices of accepted asks). The surplus can be di-
vided arbitrarily between the buyers, the sellers, and the
exchange—as long as no buyer pays more than the prices of
her accepted bids.



The auctions in eAuctionHouse also have several other pa-
rameters, including:

o Whether or not matches have to be exact in multi-unit
auctions.

o Tie-breaking rule: random, older bid overrides, or newer
bid overrides.

e When to clear the auction: when a specific time is
reached, every time a bid is received, periodically, or
when no bids have been received for a specified time.

o When the auction permanently closes: when it is cleared,

when no bids have been received for a specified time,
or when the auction’s owner cancels it.

o Whether or not bid retraction is allowed (possibly for
a penalty) before winners are determined.

e Whether or not bid retraction is allowed (possibly for
a penalty) after winners are determined.

o What information is revealed to the bidders during

bidding: all bids, highest bids, or none.

o What information is revealed to the bidders after clear-
ing: all bids, winning bids, or none.

2.4 NOMAD: Mobile proxy agents

Our auction house supports mobile agents so that a user can
have her agent actively participating in the auction while
she is disconnected. For example, the user can launch her
agent over the phone from an airplane using a laptop, and
then disconnect. Mobile agents that execute on the agent
dock which is on (or near) the host machine of the auction
server also reduce the network latency—an issue of key im-
portance in time-critical bidding. The Michigan Internet
AuctionBot [27] provides a TCP /IP-level message protocol
via which agents could participate in their auction. Their
auction server differs from ours in that they do not provide
support for mobile agents. Our auction server uses the com-
mercial Concordia agent dock from Mitsubishi to provide
mobile agents a safe execution platform from where they
can observe what is transpiring in the auctions, bid, set up
auctions, move to other hosts, etc. The user has the full flex-
ibility of Java programming at her disposal when designing
her mobile agent. We also provide an easy-to-use HTML
interface for non-programmers where the user can specify
what she wants her agent to do, and our system automati-
cally generates the Java code for the corresponding mobile
agent, and launches it. The following parameterizable mo-
bile agent templates are currently available:

1. The information agent goes to an auction and sends
email to the user when specified events occur. Using
this agent, the user does not have to poll the auction,
and gets notified of important events immediately.

2. The incrementor agent implements the dominant strat-
egy on the user’s behalf in single-item single-unit as-
cending open-cry first-price private value auctions. It
bids a small increment more than the current high-
est price, and stops if the user’s reservation price is
reached. With this agent the user does not have to
follow the auction, and her dominant strategy in these
settings is to report her valuation truthfully to the
agent.

3. The N-agent underbids optimally on the user’s behalf
in single-item single-unit sealed-bid first-price auctions
where the number of bidders, N, is known, and the
bidders’ private valuations are independently drawn
from a uniform distribution. Specifically, the symmet-
ric Nash equilibrium strategy is to bid the user’s val-
uation times N-1 /N [14]. The user is then motivated
to reveal her true valuation to the agent.

4. The control agent goes to an auction and submits very
low noncompetitive bids. It is a speculator’s tool to
artificially increase the number, N, of bidders in an
auction to mislead others, e.g. the N-agent. For ex-
ample, it is in the seller’s interest to submit control
agents so that N-agents would bid higher.

5. The discover agent computes the expected gain from
bidding a small amount more than the current highest
price according to the agent’s current distribution of
her valuation. This is intended for settings where the
user does not know her exact valuation for the item,
but only a probability distribution on it. In the fu-
ture, the probability distribution could be updated by
new events, or in non-private value auctions, by what
others have bid.

Unlike current electronic commerce servers which usually
only provide an auction house, eMediator provides other
types of services for facilitating ecommerce in addition, such
as a leveled commitment contract optimizer, and a safe ex-
change planner. These are discussed in Sections 3 and 4.

3. eCommitter: A leveled commitment
contract optimizer

eMediator includes an optimizer for leveled commitment
contracts. Normal full commitment contracts are unable to
take advantage of the possibilities that such future events
provide. Once an agent agrees to a contract, she has to fol-
low through no matter how future events unravel. Although
a contract may be profitable to an agent when viewed ex
ante, it need not be profitable when viewed after some fu-
ture events have occurred, i.e. ex post. Similarly, a contract
may have too low expected payoff ex ante, but in some re-
alizations of the future events, it may be desirable.

Contingency contracts have been suggested for utilizing the
potential provided by future events among self-interested
agents [13]. The contract obligations are made contingent
on future events. In some games this increases the expected
payoff to both parties compared to any full commitment con-
tract. However, contingency contracts are often impractical
because the space of combinations of future events may be
large and unknown. Also, when events are not mutually ob-
servable, the observing agent can lie about what transpired.

Leveled commitment contracts are another method for cap-
italizing on future events [23]. Instead of conditioning the
contract on future events, a mechanism is built into the con-
tract that allows unilateral decommitting. This is achieved
by specifying in the contract the level of commitment by
decommitment penalties, one for each agent. If an agent
wants to decommit—i.e. to be freed from the obligations of



the contract—it can do so simply by paying the decommit-
ment penalty to the other party. The method requires no
explicit conditioning on future events: each agent can do her
own conditioning dynamically. No event verification mech-
anism against lying is required either. The decommitment
possibility increases each agent’s expected payoff under very
general assumptions [23].

We analyze contracting situations from the perspective of
two risk neutral agents each of which attempts to maximize
his own expected payoff: the contractor who pays to get a
task done, and the contractee who gets paid for handling
the task. The framework can be interpreted as modeling
other types of settings than task allocation also, for example
general allocation of rights and obligations where the agents’
costs and gains of the rights and obligations may change. In
what follows, we word the results in the context of task
allocation.

The contractor tries to minimize the contract price p that
he has to pay to get the task handled. The contractee tries
to maximize the payoff p that she receives from the con-
tractor for handling the task. We study a setting where the
future of the agents involves uncertainty. Specifically, the
agents might receive outside offers.” The contractor’s best
outside offer & is only probabilistically known ex ante by
both agents, and is characterized by a probability density
function f(&). If the contractor does not receive an outside
offer, & corresponds to its best outstanding outside offer or
its fall-back payoff, i.e. payoff that it receives if no contract
is made. The contractee’s best outside offer b is also only
probabilistically known ez anie, and is characterized by a
probability density function g(B) If the contractee does not
receive an outside offer, b corresponds to its best outstand-
ing outside offer or its fall-back payoff. The variables &
and b are assumed statistically independent, and f and g
are assumed to be common knowledge.

The contractor’s options are either to make a contract with
the contractee or to wait for @. Similarly, the contractee’s
options are either to make a contract with the contractor or
to wait for b. The two agents could make a full commitment
contract at some price. Alternatively, they can make a lev-
eled commitment contract which is specified by the contract
price, p, the contractor’s decommitment penalty, a, and the
contractee’s decommitment penalty, b. We restrict our at-
tention to contracts where a > 0 and b > 0, i.e. agents do
not get paid for decommitting. The contractor has to de-
cide on decommitting when he knows his outside offer & but
does not know the contractee’s outside offer b. Similarly, the
contractee has to decide on decommitting when she knows
her outside offer b but does not know the contractor’s. This
seems realistic from a practical contracting perspective.

3.1 Nash equilibria for a given contract

®The framework can also be interpreted to model situations
where the agents’ cost structures for handling tasks and for
getting tasks handled change e.g. due to resources going
off-line or becoming back on-line.

*Games where at least one agent’s future is certain, are a
subset of these games. In such games all of the probability

mass of f(d) and/or g(lv)) is on one point.

One concern is that a rational self-interested agent is re-
luctant in decommitting because there is a chance that the
other party will decommit, in which case the former agent
gets freed from the contract, does not have to pay a penalty,
and collects a penalty from the breacher. [23] showed that
despite such insincere decommitting the leveled commitment
feature increases each contract party’s expected payoff, and
enables contracts in settings where no full commitment con-
tract is beneficial to all parties.

The contractor decommits if he gets a low enough outside
offer, e.g., he can get his task handled at a low cost. We de-
note his decommitting threshold by &*, so his decommitting
probability is

pa= " f(#)da (1)

The contractee decommits if she gets a high enough outside
offer, e.g., gets paid for handling a task. We denote her
decommitting threshold by lv)*, so her decommitting proba-
bility is

po = [ g(b)db (2)

3.2 Sequential decommitting games

In our sequential decommitting game, one agent has to re-
veal her decommitting decision before knowing whether the
other party decommits. While our implementation analyzes
both orders of decommitting, here we only discuss the set-
ting where the contractee has to decide first. The case where
the contractor decides first is analogous. There are two alter-
native leveled commitment contracts that differ on whether
or not the agents have to pay the penalties if both decommit.

If the contractee has decommitted, the contractor’s best
move is not to decommit because —d —a+b< —a+5 (be—
cause a > 0). This also holds for a contract where neither
agent has to pay a decommitment penalty if both decommit
since —d < —a+b. In the subgame where the contractee has
not decommitted, the contractor’s best move is to decommit
if —a—a>—p,i.e.

a*=p—a (3a)

The contractee gets b — b if she decommits, lv)—}- a if she does
not but the contractor does, and p if neither decommits.
Thus the contractee decommits if b—b > pa(lv)—l—a)—l—(l—pa)p.
If po = 1, this is equivalent to —b > a which is false because
a > 0 and b > 0. In other words, if the contractee surely
decommits, the contractor does not. On the other hand, the
above is equivalent to

lv)>p—|—bl+_%d§flv)*whenpa<1 (4a)

3.3 Simultaneous decommitting games

In our simultaneous decommitting games, agents have to re-
veal their decommitment decisions simultaneously. We first
discuss the variant where both have to pay the penalties if
both decommit. The contractor decommits if py - (—é +b—
a)+(1—po)(—t—a) > py-(=d+b)+(1—ps)(—p). If pp =1,
this equates to a < 0, but we already ruled out contracts
where an agent gets paid for decommitting. On the other



hand, this equates to

a def o % 3
T = d when py < 1 (3b)

a<p-—

The contractee decommits if (1 —pa)(lv) —b)+pa (lv) —b+a) >
(1 = pa)p —|—pa(lv) + a). If p, = 1, this equates to b < 0,
but we ruled out contracts where an agent gets paid for
decommitting. However, this equates to

b> p+ 1_bpa def ¥ when Ppa <1 (4b)

In another type of simultaneous decommitting game, neither
agent has to pay if both decommit. The contractor decom-
mits if py -(—2)+ (1~ po)(—di—a) > o+ (—-+b)+ (1—po)(—p).
If p = 1, this equates to b < 0, but we already ruled out
contracts where an agent gets paid for decommitting. On
the other hand, this equates to

c“z<p—a—1lf;b def when pp < 1 (3c)

The contractee decommits if (l—pa)(lv)—b)—l—palv) > (1—pa)p+
pa(lv) + a). If po = 1, this equates to a < 0, but we ruled
out contracts where an agent gets paid for decommitting.
However, this equates to

def ¥

lv)>p—|—b—1“&_b*whenpa<1 (4c)

—pa
3.4 Contract optimizer implementation

For each game, calculating the Nash equilibria amounts to
solving the simultaneous equations (3) and (4) which use
(1) and (2). Given an equilibrium, it is easy to compute
the agents’ expected payoffs under the contract. Further-
more, we have developed algorithms for choosing the con-
tract price and the decommitting penalties in a way that
maximizes the sum of the agent’s expected payoffs, and di-
vides the gains fairly, or in any other way as long as both
parties benefit [24]. That optimization algorithm takes into
account that the agents decommit insincerely in Nash equi-
librium. To begin, the user inputs f and g graphically or
textually. The contract is optimized separately for each one
of the protocols, which vary based on who has to reveal
her decommitting decision first—the simultaneous protocols
are also considered—and whether or not the agents have
to pay the penalties if both decommit. The optimal con-
tracts for each protocol are then presented to the user, see
http://ecommerce.cs.wustl.edu/eComnitter.

4. elxchangeHouse: A safe exchange planner

Contract execution is more difficult in electronic commerce
than physical commerce because the parties may be anony-
mous and can disappear easily. For example, a shopping
agent can vanish by simply killing its process, and litigation
is infeasible unless the other contract party knows which
real-world entity the agent represented. Another problem is
the lack of uniform laws on electronic commerce and partic-
ularly agent-mediated commerce in different countries.

An important aspect of contract execution is making sure
that the seller gets paid, and that the buyer gets the goods.
The risk is that once one party has received the item, he
may be motivated to vanish without delivering his part of

the contract. This could be avoided by a trusted third party
that takes the payment and goods, and carries out the trans-
action only after all parties have delivered their part to the
intermediary. Today’s electronic commerce implements a
coarse one-sided variant of this where the third party takes
the payment into escrow, and releases it to the seller only
after the buyer has verified receipt of the goods. A disad-
vantage of these third party escrow companies like i-Escrow
Inc. and Trade-Direct is the cost of running such an inter-
mediary, which is recovered as fees - currently about 5% of
the contract price - from the contract parties.

A method for tackling this problem without third parties
was developed by [22]. The exchange is divided into chunks
where each party delivers a small amount at a time, and
the exchange proceeds with such alternation. The method
targets settings where dividing the goods into chunks is rel-
atively inexpensive, such as is often the case for example
with information goods and computational services. A se-
quence is called safe if each party is motivated to follow
the exchange at every step in anticipation of the profit from
the rest of the exchange instead of vanishing with what the
other party has delivered so far. Specifically, a safe sequence
can be executed in subgame perfect Nash equilibrium. Some
chunkings allow a safe sequence while others do not. Sim-
ilarly, some sequences of delivering given chunks are safe
while others are not.

As part of eMediator, we built a safe exchange planner called
eFxchangeHouse. In the case where a single divisible good
is exchanged, the user inputs a graph of how the buyer’s
valuation accrues as a function of how much has been de-
livered, and another graph that shows how the seller’s cost
accrues. In the case of multiple distinguishable goods, the
user lists how many goods are to be exchanged, and how
many units of each good. For each possible state of the
exchange (units of good 1 delivered x units of good 2 deliv-
ered X ...) the user inputs the the buyer’s valuation and the
seller’s cost. Combining indistinguishable goods into units
of a single good significantly reduces the state space since
within each good, only the number of units delivered mat-
ters, not which ones. Finally, the user inputs how much
gain the seller is willing to forego to avoid possible repu-
tation costs from defecting in the exchange, and similarly,
how much gain the buyer is willing to forego. Based on
this input, the planner finds a safe chunking that mini-
mizes the number of chunks and a safe chunk sequence if
they exist. If they do not exist, the user is alerted of this.
The chunking algorithms and the chunk sequencing algo-
rithms are highly nontrivial, and are omitted here due to
limited space [22, 21]. eEzchangeHouse is available for use
at http://ecommerce.cs.wustl.edu/eExchangeHouse.

5. CONCLUSIONS

The eMediator prototype exemplifies several new features
that can facilitate more efficient ecommerce in the future.
Its configurable auction house includes a variety of general-
ized combinatorial auctions, price setting mechanism, bid-
ding methods, mobile agents, and user support for choosing
an auction type. The leveled commitment contract opti-
mizer determines the optimal contract price and decommit-
ting penalties for a variety of leveled commitment protocols,
taking into account that rational agents will decommit insin-



cerely. Finally, the safe exchange planner enables unenforced
anonymous exchanges by dividing the exchange into chunks
and sequencing those chunks to be delivered safely in alter-
nation between the buyer and the seller. Each one of the
three mechanisms exhibits an interesting interplay between
algorithms and game theoretic incentive engineering. In the
future we are planning to add to eMediator nonmanipula-
ble reputation maintenance algorithms, product evaluation
methods, a nonmanipulable voting server, and coalition for-
mation support.
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