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ABSTRACT
Autonomous agents interacting in an open world can be
considered to be primarily driven by self interests. Previ-
ous work in this area has prescribed a strategy of reciprocal
behavior, based on past interactions, for promoting and sus-
taining cooperation among such self-interested agents. Here
we present a new mechanism where agents base their deci-
sions both on historical data as well as on future interaction
expectations. A decision mechanism is presented that com-
pares current helping cost with expected future savings from
interaction with the agent requesting help. We experiment
with heterogeneous agents that have varying expertise for
different job types. We evaluate the effect of both change
of agent expertise and distribution of task types on subse-
quent agent relationships. The reciprocity mechanism based
on future expectations is found to be robust and flexible in
adjusting to the environmental dynamics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Experimentation

Keywords
Cooperation, reciprocity, agents, adaptation

1. INTRODUCTION
Agent-based systems provide a useful framework for de-

veloping real world applications like electronic commerce,
recommender systems and personal assistants. Agents de-
ployed in these applications often interact in an open envi-
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ronment with other agents or humans [2, 7]. The interac-
tions involve cooperation, collaboration or competition for
resources to achieve the specified goals of these agents. With
increase in the complexity of agent interactions, the behav-
ioral characteristics of agents acting in a group should be
studied in detail and suitable interaction strategies devel-
oped that improve or optimize system performance.

We have been interested in interaction strategies of agents
that can promote cooperation in groups of self-interested
agents. Our approach is different from other researchers
who have designed effective social laws that can be imposed
on agents [12]. We assume that typical real-world environ-
ments abound in cooperation possibilities: situations where
one agent can help another agent by sharing work such that
the helping cost of the helper is less than the cost saved by
the helped agent. The development of cooperative relation-
ships leading to exchanges of help can improve both agent
and system-level performances (the latter through minimiz-
ing resource consumption, increasing throughput, etc.). We
have designed suitable interaction strategies that take ad-
vantage of cooperation possibilities in the environment. Ad-
ditionally, we identified that reciprocal cooperation among
learning agents with different expertise for different task
types generated stable, mutually beneficial groups among
agents with complementary expertise [5]. In our previous
work on agents forming reciprocal groups based on identify-
ing others’ expertise, the decision mechanism of agents was
solely dependent on past interaction history [10]. An agent,
while deciding whether or not to honor a help request from
another agent, was more likely to help if it had a net profit
from help exchanges with that agent in the past. This is an
effective decision mechanism if the probabilities of arrival
of different task types are time-invariant and the agents are
assumed to have fixed expertise levels over different task
types for the duration of the experiments. The agents do
not look into the future, and hence, a change in the pattern
of task arrival or an agent acquiring new expertise, that
might happen in the future, was not accounted for in the
decision procedure. This inflexibility can result in perfor-
mance degradation of agents in more dynamic domains.

In this paper, we modify the decision mechanism used by
reciprocative agents to incorporate an outlook for the future.
We endow our agents with an expectation on the future be-
havior of the task arrival pattern and the ability to adapt to
expertise changes of other agents. In our framework, a given
agent is expert in only one task type. The cost of perform-
ing a task depends on the expertise of the agent in that task
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type and has two component metrics: the time to complete
the task and the quality of performance. An agent bases
the decision of helping another agent on the expected util-
ity of its action by using expectations of future interactions
with the help-seeking agent. We posit that such expected
utility based decision mechanism is effective in generating
significant cost savings under time varying task arrival dis-
tributions. We evaluate the effectiveness of this new decision
mechanism for enabling the agents to identify others’ ex-
pertise and forming stable, mutually beneficial groups with
agents having complementary capabilities. We also investi-
gate the effects of agents dynamically adopting new behav-
iors. It is observed that the expected utility based strategy
endows an agent to identify such changes and reform its
relationships with agent groups.

2. EXPECTED UTILITY BASED HELPING
DECISIONS

We assume a set of A agents executing tasks from a set
Υ. Let H denote the interaction histories of the agents. H
is an ordered list of tuples where each tuple is of the form
〈i, j, x, t, ci, cj , help〉 where the components are respectively
the agent requesting help for a task, the agent being asked
for help, the task type, the time instance, the cost of per-
forming the task to the requesting agent, the cost of perform-
ing the task to the agent being asked for help, and whether
or not j helped i. Let Hi,j ⊆ H be the part of the history
that contains interactions between agents i and j only. Let
H denote the space of all possible histories. Our goal is to
derive a decision procedure F : A×A×Υ×H → Y es/No
that maps a request from an agent to another agent to a
boolean decision based on the task type involved and the
interaction history of these two agents.

We introduce an expected utility based decision mecha-
nism used by the reciprocative agents to decide whether or
not to honor a request for help from another agent. When
requested for help, an agent, using this decision mechanism,
estimates the utility of agreeing to the request by evaluating
its chance of obtaining help from the asking agent in future.
An agent, being self-interested, has the objective of earning
more savings by receiving help than cost incurred by helping
others in the long run. When an agent using this strategy
decides whether or not to provide help, it uses a statistical
summary of its past interactions with the requesting agent
as a metric for evaluating its expected interaction pattern
with the latter in future. Using this information, it eval-
uates the difference between the expected benefit and the
expected cost it might incur for that agent by helping it in
the future. In the following, we present the expected utility
based decision mechanism that agent m uses to evaluate a
help request by another agent o for helping with task type τ .
The expected utility of agent m for interacting with agent o
at time T and future time steps, ET (m, o, τ ), is defined as:

ET (m, o, τ ) =
∞�

t=T
γt−T [

�

x∈Υ

(Dt
m(x)Prt

m,o(x)costm(x))−

�

x∈Υ

(Dt
m(x)Prt

o,m(x)costm(x))]− costm(τ ), (1)

where costi(x) is the expected cost that i incurs doing a
task of type x, costm(τ ) is the cost to be incurred by agent

m to help agent o in the current time instance, γ is the
time discount, and Υ is the set of different task types. We
assume that an agent is expert in only one of the possible
task types. The evaluation of the expected utility of agent m
helping agent o considers all possible interactions in future
and for all task types. In equation 1, Dt

m(x) is the expected
future distribution of task types that agent m will receive at
time instance t. We define Prt

i,j(x) as the probability that
agent i will receive help from agent j at time step t, given
it has a task of type x.

The term
�∞

t=T γt−T �
x∈Υ Dt

m(x)Prt
m,o(x)costm(x) rep-

resents the time discounted (with discount factor γ) ex-
pected savings of m by receiving helps from o in future.
We assume that when an agent is helped by another agent,
the helped agent incurs no cost for the task. Hence, when an
agent m is helped with task type x, its savings is costm(x),
the cost it would have incurred to complete the same task
on its own. We use an infinite time horizon and increas-
ingly discount the impact of estimates for future interac-
tions by the factor γt−T , where 0 < γ < 1, and t refers
to the time period. The sum of the terms −costm(τ ) and�∞

t=T γt−T �
x∈Υ Dt

m(x) Prt
o,m costm(x) is the net expected

cost that can be incurred by m for (a) helping on the cur-
rent time instance and (b) incurring helping cost for o in the
future. Thus, ET (m,o, τ ) gives the net time-discounted fu-
ture expected benefit that agent m has for interacting with
agent o.

We note that the task distributions values, Dt
m(x) in the

future and the help giving probabilities Prt
i,j(x) will not be

known to an agent. As an approximation, we estimate these
values by the corresponding observed values over the last
time period. For example, we use the ratio of the count of
the number of times j helped i with task type x to the count
of the number of tasks of type x received by i in the last
time period to approximate Prt

i,j(x). We assume that the
near past is a predictor of the near future, and accordingly
estimate the probabilities of future task arrivals based on
observed counts only in the last time period and not over
all previous time periods. With this approximation, the
E(m, o) term given in Equation 1 can be rewritten as:

ET (m, o, τ ) =
∞�

t=T
γt−T [

�

x∈Υ

(DT
m(x)Prm,o(x)costm(x))−

�

x∈Υ

(DT
m(x)Pro,m(x)costm(x))]− costm(τ ). (2)

Our suggested decision mechanism F will evaluate a help
request from agent o to agent m for a task x0 of type τ at
time T given the history of interactions, HT

m,o and HT
o,m,

between these two agents. The history is used to first cal-
culate Prm,o(x) and Pro,m(x) values and the distribution of
task arrivals. It then calculates the expected utility of agent
m for interacting with agent o in the current and future time
steps, ET (m,o.tau). Our prescription is for agent m to help
agent o in the current time if E(m,o) is greater than the
expected cost of an agent processing its next assigned task
without receiving help from others, i.e.,

F(o, m, τ,HT
m,o ∪HT

o,m) = Yes, if

ET (m, o, τ) +
�

x∈Υ

Dm(x)costm(x) > 0,

= No, otherwise, (3)

where the summation term is the expected cost of agent m
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for doing a task in the next time instance. This summation
term represents the initial bias or willingness for an agent m
to help another agent o incurring a risk of not being recip-
rocated. As initial probability values are all zero, the agent
will not help another without this initial bias.

Each agent also maintains its own as well as others’ esti-
mates of costs for doing tasks of each type. It updates the
estimates using a simple reinforcement learning mechanism
that is outlined in Section Problem domain.

3. PROBLEM DOMAIN
We evaluate our hypothesis using simulations in a job

completion problem domain. In this domain each of N
agents are assigned m jobs. There are Υ job types and each
agent has expertise in exactly one of these job types. Each
job requires a finite time t and a quality of performance q to
be completed. The total cost of finishing a job is t/q, where
t is the time taken to complete the task and q is a quality
measure indicating how well the task was completed. An
agent who is an “expert” in a particular job type can do
jobs of that type in less time and with higher quality, and
therefore at lower cost, than other job types.

In our simulation, we generate the time and quality of
performance from a normal distribution with a preset mean
and a standard deviation. We use two different values of
the mean: “high” and “low”. For a task type in which
an agent is expert, the time required to complete the task
is computed from the distribution using the “low” mean
value, i.e., the agent completes the task in which it is an
expert, in less time. We draw the quality of performance of
an expert using the “high” mean value i.e. experts produce
higher quality task completions. For performance measure
of a non-expert, however, we use the “high” and “low” mean
values for computing the time and quality respectively. The
standard deviation of performance is the same for both ex-
perts and non-experts. Each agent is assigned the same
number of tasks at each time period of our simulation that
runs for a total of τ time periods. Once tasks are assigned,
the agents ask for help from one another. When asking for
help, agents compute the cost C1, incurred by itself to do
that task. The estimated cost C2 that the prospective help-
ing agent incurs for that task is also computed. Help is
obtained only if C2 < C1. This condition corresponds to
a “cooperation possibility”. Agents have estimates of their
own abilities to do the different job types. Estimates are of
two types: time estimate, which reflects the possible time of
completion of the job, and quality estimate, which reflects
the possible performance level of an agent to do that job.
Agents also keep estimates of every other agents’ abilities.

Initially, agents have neutral estimates about their own
abilities and that of other agents. To obtain accurate es-
timates about their own abilities, agents must themselves
perform jobs of different types. When an agent performs a
task, it requires a certain time and achieves a certain qual-
ity of performance. These values are used by the agents to
measure their performance. When an agent helps another,
the helped agent updates its estimate of the helper agent’s
capability of the relevant task type using the time taken
and quality produced by the helper agent. The reinforce-
ment scheme that we use to update the time and quality
estimates, after n + 1 observations, is given by

tn+1
ij ← (1− α)tn

ij + αtij ,

where tij is the time taken by agent i to do task j on the nth

interaction between the two agents for this task type, and α
is a learning parameter with values in the interval (0, 1]. We
use a similar update policy for the quality of performance
qij .

The agents complete all the assigned jobs for one time
period and then receive their assignments for the next time
period. The simulation runs for a fixed number of time peri-
ods. We have used a population of reciprocative agents only,
all using the decision mechanism of equation 3. Our goal,
in this paper, is to identify the suitability of such a strategy
in generating savings for agents and allowing them to form
mutually beneficial groups with agents of complementary ca-
pabilities and adapt to dynamically changing environment.

4. EXPERIMENTAL RESULTS
In this section we describe the results of our simulations

that evaluate the performance of agent groups, the effects of
changing agent behaviors and time-varying task generation
on group performance.

In our experiments, we have considered three task types
{0, 1, 2}. When an agent helps another agent, the helping
agent incurs a cost by which it increases its “balance” with
the helped agent. The helped agent, having saved some
cost, decreases its balance with the helping agent by the
cost it saved. We designate the total balance in a group
(x, y) to be the sum of the balances between two agents
such that one agent has expertise in task type x and the
other has expertise in task type y. We use the total balance
of a group as a metric of the effectiveness of the group. We
also use the total savings earned by agents of a group, by
receiving help from other members of the group, as a metric
indicating the performance of a member of that group. In
the following, we first describe our results under conditions
where the task generation is time-invariant and agents do
not change behavior. Next, we report results under dynamic
conditions where agents detect changes in behavior of other
agents and maintain future expected distributions of task
types by observing task arrival trends over the last time
interval. At the end we describe results with a much larger
group of agents.

The primary hypotheses we are trying to evaluate are the
following:

Opportunistic help-giving behavior: We expect our ex-
pected utility based help-giving agents to exchange
help with agents of complementary expertise. Hence
an agent with expertise in a particular task type would
have significantly more negative balances with agents
with expertise in other task types than with agents
who are experts in the same task type.

Adaptability to change in agent expertise: If other agents
change expertise, our expected utility based help-giving
agent with an expertise in task type x should be able
to respond in the following time interval and either in-
crease, decrease, or maintain the level of its willingness
to help that agent depending on whether that agent
changed its expertise from task type x to y �= x, from
y �= x to x, or from y �= x to z �= x respectively.

Adaptability to change in task distribution: If the dis-
tribution from which the arriving tasks are drawn changes,
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our agent should adaptively modify its help-giving be-
havior to others. For example, if an agent is expert in
task type x, and over time the frequency of task type
y �= x increases (decreases), then this agent would be
more (less) inclined to help agents with expertise in
task type y.

Scalability of reciprocative behavior: We believe that
this help-giving strategy will scale well with larger
agent population provided that population is relatively
stable. This implies that as the agent population in-
creases, the pattern of help-exchange will not signifi-
cantly differ provided the number tasks per time in-
terval is increased proportionately.

4.1 Group performance under static condi-
tions

In this set of experiments we studied group performance in
terms of balances generated and the savings earned among
agent members of a group. We assumed time-invariant task
generation and static agent expertise. Thus, the probability
of a task type arriving at any instant of time is fixed and
agents do not change expertise. We used a total of 6 agents,
with equal number of agents having each of the three exper-
tise. The simulations were carried out with a total of 100
tasks per agent per time interval, for a total 10 time inter-
val1. The discount factor γ was set at 0.25. Figures 1 and 2
show the results averaged over 10 runs.

Figure 1 shows the total savings earned per time inter-
val by different agent groups over time. We have shown
only the savings earned by groups formed by agents with
different expertise, i.e., groups (1, 2), (0, 2) and (0, 1). The
savings earned by agents with similar expertise are much less
compared to savings earned by groups of agents with het-
erogeneous expertise, and hence, they are excluded from the
figure due to scaling issues. From the figure we notice that
agents use the first time period to recognize the benefit of
forming groups with agents with complementary expertise.
In the following time periods, agents can use performance
estimates from previous time period to effectively give and
obtain help from other agents. The total savings of such
groups of agents with complementary capabilities, therefore,
converge to a steady state value. Thus, agents form stable
relationships by identifying those with complementary ca-
pabilities and forming mutually beneficial groups.

Figure 2 shows the total, cumulative balance that an agent
with expertise in task type 2 has with all other agents of
different expertise. This agent does not have any balance
with other agents with a matching expertise (agents with
expertise in task type 2). This indicates that, it does not
receive help from agents of its own type. Its balances with
those having complementary expertise, in task types 0 and

1Though we work with finite time periods, we assume that
the agents are not aware a priori of the number of tasks to
process and thus will not be doing strategic reasoning based
on the remaining number of tasks. It is well recognized in
game-theoretic literature that to promote stable group in-
teractions, it is preferred that agents use an infinite time
horizon in their reasoning process. This will also be the
case when agents have no knowledge about when their in-
teractions will end. Also, agents are still more interested in
receiving higher utility in the near future compared to the
more distant future. These assumptions justify the use of
the time discount parameter γ.
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Figure 1: Total savings by different heterogeneous
groups per time interval (static condition).

1, however, continually decrease over successive time peri-
ods. Note that a negative balance implies more help received
than given. This shows how an agent benefits by receiving
help from others with complementary expertise. The result
corroborates the observation (in Figure 1) of the greater ben-
efit generated by groups of agents with dissimilar expertise
by explaining the phenomenon on a per-agent scale.

4.2 Group performance with varying task and
agent behavior

In this set of experiments we remove the restriction of
static task generation and non-changing agent expertise used
in the previous experiments. First, we demonstrate the ef-
fectiveness of the expected utility based decision mechanism
in enabling an agent to identify changing agent expertise and
to respond by altering its relationships with those agents.
Second, we show that with time varying agent expertise and
task generation patterns, our agents can effectively adopt
to the dynamic environment and shift their alliance with
specific groups by gradually decreasing/increasing their in-
teractions with them.

Figures 3 and 4 shows respectively the total group sav-
ings earned per time period by the groups of agents with
heterogeneous capabilities and the cumulative balance ob-
tained by an agent expert in a given task type from other
agents of different expertise when some agents change their
task expertise over time. A total of 6 agents and 100 tasks
per agent per time interval were used. The simulation was
conducted for 10 time intervals. A time discount factor γ of
0.25 is used. In this experiment, at time period 3 one agent
switches expertise from task type 1 to 2. From Figure 3
we see that this change impacts the group savings earned
by the groups (0, 2) and (0, 1) but not that of (1, 2). Since
there is one more agent with expertise in task type 2, the
group (0, 2) earns more total savings than the previous time
period due to the additional help received from the agent
who has changed its expertise. For similar reasons, group
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Figure 2: Cumulative balance of an agent with oth-
ers (static condition).

(0, 1) earns lesser than the previous time period because
of the reduction of the size of agent population of experts
in type 1 by one agent. The group (1, 2) maintains their
previous cumulative savings since there has not been any
effective change in their composition. We observe a similar
phenomenon at time period 5 when an agent of expertise
in task type 2 switches to expertise in type 0. At period 7,
again, we observe the effect of an agent of expertise type 0
switching to expertise type 1. We notice that group savings
adapt flexibly to changes in agent expertise. This indicates
that agents are able to quickly identify the switching of ex-
pertise by other agents and accordingly alter their affinity
for or reluctance to interaction with corresponding groups.
For example, at time instance 3, the agents identify the indi-
vidual that has switched from expertise task type 1 to task
type 2 and hence, are able to earn more savings as a group
(group (0, 2)) by benefiting from the new expertise of the
changed agent.

In Figure 4, we study the total balance that an agent x
with an initial expertise in task type 1 has with other agents
of different expertise. Agent x, initially having expertise in
task type 1, had a zero balance with other agents of its own
expertise in the first time period. It had a favorable balance
with agents having complementary expertise (task types 0
and 2). At time period 2, x switched its expertise to task
type 2. Agents with expertise in task types 0 and 1 are able
to identify this alteration and the balances of x with agents
of expertise in types 0 and 1 improve. At time period 4,
another agent y switches expertise from task type 2 to task
type 0. This increases the population of agents with exper-
tise in task type 0 and reduces that of task type 2. Hence,
agent x, who is now expert in task type 2, maintains a lower
balance with agents of type 0 and higher with those of type
2 as there are less number of agent experts in that task type.
At time period 6, there is another switch in expertise by an
agent z from task type 0 to task type 1. Thus, the popula-
tion of agents with expertise in type 1 increases while that
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Figure 3: Total savings per time period of heteroge-
neous groups (time varying agent expertise).

with expertise in task type 0 reduces. The agent set with
one of x’s complementary expertise, task type 1, increases
while the set with the other complementary expertise, task
type 0, reduces. This results in reduced balances for agent
x (still an expert in type 2) with the agents having exper-
tise in task type 1 and increased balances with those having
expertise in task type 0. Its balances with agents expert in
task type 2 remain unchanged. This sequence of alterations
in agent expertise and consequent change in group behavior
for agent x implies that our agents, using the expected util-
ity based strategy, are capable of responding effectively to
such dynamic situations.

In the next experiment we studied the effects of chang-
ing the task generation pattern and having agents dynam-
ically adopt new expertise on the help-giving behavior of
the agents. Figure 5 shows the cumulative balance that an
agent x with initial expertise in task type 1 has with all
other agents of different expertise over successive time peri-
ods. Before time period 2, x had zero balance with others of
similar expertise and favorable, i.e., negative balances with
those having complementary capabilities. At time instant
2, x switches expertise to task type 2. We observe that its
behavior with the other agents changes: its balance with
agents of type 2 remains constant from thereon and those
with expertise in task types 0 and 1 decrease. This qualifies
our claim that the agents can recognize a change in agent ex-
pertise and alter their behavior by entering into new groups
(x enters into stable relationship with agents of task type 1)
or refraining from others (x refraining from the previously
beneficial grouping with experts in task type 2). At time
instants 4 and 6, we observe similar switching of expertise
by other agents and corresponding shift in behavior by our
agent x who continues to be an expert in type 2.

So far the description of events in Figure 5 resembles that
of Figure 4. In Figure 5, we also observe the effect of altering
the distribution of task arrival by decreasing the probability
of occurrence of task types 1 by a constant percentage (2%
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Figure 4: Cumulative balance of an agent with oth-
ers (time varying agent expertise).

decrement) over successive time intervals and increasing the
probabilities of occurrences of the other two task types by
half the amount. As specified before, our agents estimate
future expected distributions of task types by recording the
arrival rates of different task types over the immediately pre-
vious time interval. The changing arrival rates of different
task types are observed by the agents and they use this in-
formation to calculate the parameter DT

i (x) in Equation 2.
We find that, beyond time instant 6, the balance earned
by x with other expert in task type 1 slowly levels off. The
balance of x with agents expert in task type 0, however, con-
tinues to increase. The results from this experiment clearly
demonstrate that agents with an expectation of future task
distributions are able to effectively adapt help-giving behav-
ior under time-varying task distributions.

4.3 Scaling up
Experiments in the previous section were performed with

a small number of agents. To find out the scaling up prop-
erty of the expected utility based help-giving behavior we
experimented with several larger agent groups. We now
present results from experiments with a group size of 60,
a group that is an order of magnitude larger than those in
the experiments reported above.

In the first set of experiments, we start with an equal
distribution of agent expertise over the three task types,
i.e., initially there are 20 experts in each task type. We then
decrease the number of experts in task type 1 by 2 in each
time step and these agents become experts in task type 2.
We stop this decrease when there are only 4 agents left with
expertise in task type 1. At this point there are 36 agents
expert in task type 2. In figure 6 we plot the balance of
an agent expert in task type 0 with its average balance with
experts in different task types. The balance of the agent with
others expert in task type 0 is negligible. It is interesting
to note that as the number of agents expert in a task type
decreases (increases), the average balance of our agent, of
complementary expertise, with those agents become more
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Figure 5: Cumulative balance of an agent with oth-
ers (time varying task generation and agent exper-
tise).

(less) negative. This is shown by the more negative value of
the average balance with agents with task type 1 compared
to task type 2. The two curves have opposite curvatures up
to the point when there are no more expertise changes.

This observation can be explained from the fact that as
there are less expert agents in task type 1, an agent with
expertise in task type 0 is more likely to need help more
frequently from any one agent expert in task type 1. Cor-
respondingly this agent will also be more inclined to help
agents with expertise in task type 1. This observation is
supported by Figure 7 where we plot the expected utilities
of an agent expert in task type 0 for helping agents with
different task expertise. We note that the expected utility
of the agent for interacting with a type 1 agent increases
and that with a type 2 agent decreases over time. This is
because there are increasingly more agents of the latter type
than the former. The utilities become stable once the change
of expertise stops.

We also plot, in Figure 8, the total balances of an agent
with expertise in task type 0 with all the agent experts of
different task types. From the figure we find that the total
balance with agents expert in task type 2 dominate that of
the total balance with agents expert in task type 1. This ob-
servation, combined with the previous analysis, means that
even though less help is obtained from any one agent ex-
pert in task type 2 compared to an agent expert in task
type 1, the total saving from experts in task type 2 is sig-
nificantly larger than the total saving from experts in task
type 1. This suggests that as experts in a given task type
decreases, others do not get enough help for that particu-
lar task type. This is because the remaining few experts do
not find it useful to honor all the help requests they receive.
After providing some help, their expected utility calculation
will prevent them from providing more help as that would
be derogatory to their self-interest.

To round up the experiments, we ran a further set of ex-
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Figure 6: Balance of an agent with others (time
varying agent expertise).

periments where in addition to the change of agent expertise,
as in Figure 6, we also decreased the frequency of arrival of
task type 1 and proportionately increased frequency of task
types 0 and 2. This situation is similar to the results pre-
sented in Figure 5 with experiment run on a smaller group of
agents. The results from this set of experiments is presented
in Figure 9 and follow a similar pattern to Figure 5. We find
that though initially a decrease in the number of experts in
task type 1 makes our expert in task type 0 more inclined to
exchange help those agents, over time such exchanges reduce
significantly as fewer and fewer tasks of type 1 arrive. So,
after a while, more help is exchanged with experts in task
type 2 even though they are far more in number. This is
because there is also a much larger number of tasks of type
2 and hence it proves beneficial to be more helpful to those
agents.

The above set of experiments lend credence to each of
our hypotheses about our expected utility based help-giving
behavior including (a) responsiveness to agents with comple-
mentary expertise, (b) adaptability to changing agent exper-
tise and task distribution, and (c) scale up to larger agent
groups.

5. RELATED WORK
Complex problem solving involving distributed tasks often

rely on the formation of effective agent groups. Assigning
groups of agents to do a task or multiple tasks has the ad-
vantage of complementary individual agent expertise being
used to complete different parts of the global problem.

Some research in the area of coalition formation in agent
societies has focused on cooperative agents [11]. A related
work on coalition in agent societies takes self-interested agents
into account [8]. But it does not consider the possible het-
erogeneity in performance of a task between different agents.
Our work is different from these because it takes into con-
sideration self-interested agents that have different perfor-
mance levels for different task types. We also have a learn-
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Figure 7: Expected utility of an agent for interacting
with others (time varying agent expertise).

ing parameter in our agents which is used to identify other’s
capabilities. Learning of cooperative behavior has also been
addressed in [4]. However, there the learning uses an off-line
learning module which generates situation-action pairs using
a genetic algorithm. To determine the fitness of the evolved
situation-action pairs during off-line learning an agent-model
is required. Our work uses only online learning and agents
do not have to store a priori models of other agents.

A fair number of approaches have been developed that
use reasoning mechanisms that consider exchange of help
or social reputations in deciding how to interact with other
agents. Our own work has concentrated on the use of a
probabilistic decision mechanism for deciding to help based
on past balance with the requesting agent [9]. Castelfranchi,
Conte, and Paolucci use normative reputation [3] to enhance
the performance of agents that comply with social norms.
In the SPIRE framework developed by Grosz and collab-
orators [6, 13], performance in a group is improved when
agents reason about the effects of withdrawing from social
commitments on their reputation.

Our approach of using expected utility based decision
mechanism is different from recent work on utility based
strategies for sharing information [1] because we take into
consideration dynamically changing environments and en-
dow our agents with the ability to maintain future expecta-
tions of such dynamics to adaptively alter group behaviors.

6. CONCLUSIONS
We hypothesized that cooperative behavior based on fu-

ture expected utility is a robust decision mechanism for
agents to develop stable, mutually beneficial groups con-
taining agents with complementary capabilities. This type
of decision mechanism benefits agents by allowing them to
quickly respond to changing behaviors of other agents and
the environmental conditions. We simulated artificial en-
vironments and conducted experiments both under static
conditions and where agents dynamically adopt new strate-
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Figure 8: Total balance of an agent with each group
of experts (time varying agent expertise).

gies or task arrival distributions change. Our experiments
established that the expected utility based strategy allows
the agents to form mutually beneficial relationships with
agents of complementary qualities and to respond quickly
and effectively to dynamic environments. We also demon-
strated successful scale-up to agent groups that are larger
by an order of magnitude.

We have restricted our simulations using agents employ-
ing the utility-based decision strategy. We plan to intro-
duce other competitive decision mechanisms to determine
the relative effectiveness of different agent interaction strate-
gies under dynamic agent behavioral and environmental set-
tings. Evaluating scenarios where agents have the freedom
of using different decision mechanisms can produce interest-
ing insight about evolving agent strategies. We also plan
to investigate the effects of task failures and performance
variation on the stability and strength of the relationship
between agents of complementary expertise.
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