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Abstract

Autonomous agents in a multi-agent system must sometimes
collaborate with other agents in order to perform complex
tasks, regardless of whether they are inherently self-interested
or cooperative. However, the nature of such a collaboration
may vary in duration, from a single-task short-term coalition
to a stable contractual alliance. The real world is replete with
instances of both types of organizations.
We present a multi-agent environment with self-interested
agents whose aim is to perform tasks by forming simple
teams with other agents. Team leaders recruit agents to
join teams by proposing contracts that allocate various pay-
off shares to the team members. Contracts can be long-
term (indefinite-length commitment with a buy-out penalty
for leaving the team) or dynamic (commits the joining agent
to the team only for a single task). We compare several al-
ternative strategies for forming stable teams empirically and
show that in the proposed environment, stable teams have
greater organizational efficiency than dynamic teams. We
also identify specific conditions and strategies for which sta-
ble teams have an advantage over dynamic ones.

Keywords Multi-agent Systems, Long-term Team Forma-
tion, Stable Teams

Introduction
Autonomous agents, like humans, are social entities. Even
in relatively simple environments, they will often need to
collaborate with other agents. This may be because of the
distributed nature of the problem to be solved or the limi-
tations of agents. The need for collaboration holds true for
self-interested as well as cooperative agents. Human soci-
ety is a perfect example of such a system. Humans can not
survive on their own and need the help of other humans to
achieve many of their goals. Completion of these goals may
benefit the entire population, as well as directly compensates
those individuals who contributed. Regardless of a human
agent’s personal inclination to altruism, there is an incentive
to collaborate on joint goals with others.

The analogy can be carried over to a multi-agent sys-
tem. A number of researchers have looked at the prob-
lem of dynamically forming teams to perform tasks, where
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the skills of multiple agents are required for task comple-
tion. However, this research has largely been focused on
cooperative agents. The research on coalition formation for
self-interested agents generally focuses on the problem of
forming short-term “one-shot” teams for individual tasks.
In human society, by contrast, agents frequently form long-
term alliances rather than short-term coalitions. This may be
partly because humans tend to prefer working with people
they know, but collaborating for longer period also infuses
necessary elements like stability, trust and security into the
alliance.

Intuition tells us that if it works for the human society
then it should work for multi-agent systems as well. We an-
alyze a simple multi-agent environment with a set of agents
having different capabilities, in which tasks are introduced
at regular intervals. Most of the tasks require more than
one agent’s capabilities for completion. Agents can either
form short-term (“dynamic”) teams for the duration of a sin-
gle task or long-term (“stable”) teams to work together for
longer periods of time. We investigate different strategies
for each and compare their performances empirically, con-
cluding that even without an explicit element of trust, when
competing against each other, stable teams are more suc-
cessful than dynamic teams.

Related Work

The problem of forming teams in a multi-agent system has
been studied by many researchers emphasizing different as-
pects of the problem. Task allocation, resource allocation,
team formation, coalition formation, and dynamic organi-
zation all provide different perspectives on the same basic
problem, and provide a variety of techniques for assigning
roles to agents for individual tasks. Very little of this work
has explored the need for, or advantages of, stable teams.
Our work is in a sense complementary to this body of liter-
ature: Any of these techniques for allocating roles to agents
could in principle be integrated with our contractual model
for forming stable teams. Detailed below are some of the
different approaches used for solving the team-formation
problem. Unless otherwise specified, work described here
is all designed to form short-term dynamic teams for indi-
vidual tasks that are dissolved upon task completion.



Dynamic Teams. Gerkey and Matarić (2003) define the
problem of task allocation as assigning tasks to agents while
taking environmental constraints into consideration. By
contrast, Chavez et al. (1997) model the problem of assign-
ing processes to machines as a resource allocation problem,
where machine agents are treated as resources, and the aim is
to find an assignment of resources to processes. Tambe and
his team have looked at the problem of team formation in
complex, dynamic multiagent domains that include uncer-
tainty, incomplete information and the possibility of agent
failure (Tambe 1998), (Tambe 1997a), (Tambe 1997b).

Recently, researchers have modeled the team formation
problem as a Distributed Constraint Satisfaction Problem
(DCSP) (Yokoo et al. 1998; Yokoo & Hirayama 2000).
However, DCSP fails to capture the rapidly changing en-
vironment in a dynamic multi-agent system; to address this
situation, the notion of dynamic DCSP (Niemelä 1999) was
introduced. Modi et al. (2001) have proposed a dynamic
DCSP approach to resource allocation using the Asyn-
chronous Weak Commitment (AWC) algorithm. In this ap-
proach, the set of constraints (roles to be filled for each task)
to be satisfied are allowed to be dynamic. Their algorithm
addresses a subset of dynamic DCSPs in which only the lo-
cal constraints are allowed to be dynamic.

Researchers have also used market-based approaches
based on methods from economics. In voting, the solu-
tion is determined from inputs taken from all the agents.
Different auction mechanisms, such as sequential auc-
tions (Boutilier, Goldszmidt, & Sabata 1999) and simulta-
neous auctions (Greenwald & Boyan 2001), have also been
applied to this problem. Sandholm (2002) discusses meth-
ods for determining optimal winners in combinatorial auc-
tions where agents can bid for more than one items and their
valuations are different for different combinations of items.
Contract nets (Huhns & Stephens 2001) have also been used
to allocate tasks to contractor agents who bid for these tasks.
The contractor can recruit other agents to complete the task
and pay them for their services.

Wellman (1995; 1996) and Gerkey and Matarić (2002)
survey and analyze methods for creating market-oriented
multi-agent systems. The market approach defines costs
of performing tasks and revenue earned by agents. This
gives self-interested agents an incentive to complete tasks,
increasing their revenue and at the same time benefiting the
system. Wellman (1998) also emphasizes the necessity of
market-aware agents in a multi-agent world and explains
how price systems facilitate decentralized decision making.
Huberman and Hogg (1995) present a model of interactions
among agents and their dynamical effects on the structure
and performance of the community.

Stable Teams. There has been some work on long-term
teams in the computational organization theory literature.
Axtell (Axtell 1999) presents a microeconomic model in
which heterogeneous agents—with different preferences for
effort and leisure—form firms. Agents can leave these firms
or start one of their own when they think it is beneficial for
them to do so. The incentive for agents to be in a firm and

to contribute to the firm is the production of output, which
is divided equally among agents, no matter how much ef-
fort the individual group members apply. However, as firm
sizes grow, agents have little incentive to apply effort as
their share in the output becomes relatively insensitive to
their input. This gives rise to free-riding agents who do not
contribute any effort, which in turn induces hard-working
agents to leave the firm. The dynamics and distribution of
firm sizes, productivity, and income are studied empirically.

However, in Axtell’s framework, there is no model of
tasks to be performed and it uses a very simple method for
distribution of pay-off to firm members. By contrast, our
contract-based model allocates profit share to agents based
on both membership and contribution to tasks, balancing the
need for stability with a recognition that some agents are
more valuable to the team than others. Additionally, our
model provides a richer environment in which the aim is
to complete tasks introduced into the system at regular in-
tervals and where team leaders must compete for member
agents. We present different strategies for team formation
with different inclinations for taking risks while bidding for
tasks. We also study systems that include agents following
different strategies and compare the performance of the dif-
ferent types of agents in the competitive scenario.

System Architecture
Our multi-agent system is set up with the aim of understand-
ing and analyzing the performance of the system and its con-
stituent agents as a result of simple team formation activities.
In particular, our goal is to study the effect of forming stable
or dynamic teams, and not the process of team formation it-
self. Therefore, our environment employs very elementary
agent and task models, that are simple enough so that they
do not become a digression and at the same time are generic
enough to be practical and applicable to a wide range of do-
mains.

The environment consists of a set of N agents, Ai(i =
1, . . . , N). The number of agents in the system is fixed:
agents cannot leave the system, and no new agents enter the
system over the course of an experiment. The skill set is
defined by a set of capabilities, Cj(j = 1, . . . ,M). Every
agent has exactly one of the capabilities, and can partici-
pate in any task that requires that capability. Capability as-
signment is random, with uniform distribution, and is also
permanent: i.e., agents can not discard their capability or
learn new capabilities in their lifetime. At any given time,
an agent is in one of three modes: Unemployed, Team-leader
or Team-member.

Tasks are introduced into the system at a regular interval,
tarr. Each task has a required skill set associated with it.
Only a set of agents with the required skills can perform the
task. Each task has an associated size (number of agents re-
quired), ts, which is selected from a uniform distribution
over the range 1, . . . , tsmax

. Tasks have expiration times
(texp, which is fixed for each experiment), and have differ-
ent lengths tl (in terms of time), again uniformly selected
from 1, . . . , tlmax

. Team members must work on (be solely
committed to) the task for its entire duration in order for it
to be successfully completed. Each task has a fixed pay-off



tpay , which is awarded to the agent or team that completes
the task. If a team fails to complete a task that has been
assigned to it before the task expires, it must pay a non-
completion penalty to the controller.

The pay-off is distributed to the agents in the form of
shares of the team which can be “cashed in” when the team
is dissolved or the agent leaves the team. The agents are
bound by an agreement when they join a team. The agree-
ment delineates the pay-off the agent receives while it is a
member of the team and the penalty to be paid to the team if
it ever decides to leave. Specifically, it contains the follow-
ing information:

1. Joining Shares (Sjoin) – This is the “sign-on bonus” for
joining the team.

2. Commission (Scomm) – This is the payout for each task
completed by the team, when the agent directly partici-
pates in the task.

3. Dividend (Sdiv) – This is what sets the stable teams apart
from dynamic teams. The dividend is the number of
shares that the agent receives for each task completed by
the team, when the agent does not actually participate in
that task. Its value is set lower than Scomm in order to
differentially reward the agents who actually work on a
given task.

4. Current Share Price (Ps) – The share price represents the
current total value of a team; it is calculated by dividing
the total revenue earned by the number of currently out-
standing shares of the team.

5. Penalty (p) – This is the amount that the agent has to pay
to the team if it decides to break the contract and leave the
team.

The result of this simple scheme is that agents have an
incentive to be on a stable team, since they can earn a pay-
off even if they do not actually perform any task. However,
since Scomm > Sdiv , hard-working and rare-skilled agents
are appropriately rewarded compared to others. As the team
grows, however, this gap starts to diminish, and the agents
may start leaving for greener pastures.

The system has a central controller agent whose job is to
introduce tasks into the system. The controller models the
interface of the multi-agent system with the external world.
When a task is created, the controller broadcasts the avail-
ability of the task to the agents in the system, puts the task in
a queue of active tasks, and waits for bids. Only team lead-
ers can bid on tasks. If more than one team leader bids on a
task, the controller assigns the task randomly to one of the
teams. When a task expires, it is discarded from the queue
if it has not been assigned.

There are many extensions that could be made to the
model, including allowing agents to leave and join the envi-
ronment, allocating multiple capabilities to agents, allowing
agents to acquire new capabilities over time, having a non-
uniform distribution of capabilities among the agents and in
the task generator. However, this basic model captures the
fundamental dynamics of the agent community that we are
interested in, and allows us to perform experiments that are
focused only on the stability of agent teams.

Communication

Agents need to communicate in order to be able to form
teams and to keep the system updated about changes. How-
ever, they must abide by the following constraints:

1. A team leader can communicate with everyone: its own
team members, any other team leader, any unemployed
agent or agents that are members of other teams. This
is analogous to a real-world organization, in which the
leader of the organization can typically communicate with
its own employees as well as other leaders, and can also
learn about other organizations’ employees, so that a
skilled employee can be enticed into joining his own or-
ganization.

2. An unemployed agent can communicate with any team
leader, allowing leaders to proactively recruit for their
teams and unemployed agents to apply for job positions.

3. A team member who is not a leader can communicate
with any team leader. This interaction can result in self-
interested, non-stable behaviors where agents put their
own interests ahead of their teams’ and are willing to
change teams if another team offers them a better deal.

4. All agents can communicate with the controller agent.

Strategies
In this section, we describe several strategies for forming
teams; the strategies differ in how teams are formed and in
how tasks are bid for.

Dynamic Team Strategy

The first strategy is the base case, in which agents form
short-term teams for the duration of the task. Initially, all
agents are unemployed. When a task is introduced to the
system, it is broadcast to all agents; the agents who possess
one of the necessary capabilities bid for the task. The task is
then awarded to one of the bidders randomly.

Once the task is awarded to an agent, it has to form a team
by recruiting all the required agents and start working on the
task before it expires. On successful completion of the task,
the task pay-off is awarded to the team, which is then equally
distributed among the members. The team is dissolved and
all the agents become unemployed again, ready to bid for
tasks and join other teams. In the event that the task ex-
pires before it is started, the team is not awarded any pay-off,
the leader is made to pay a non-completion penalty, and the
team is dissolved. The agents can be either risk-taking (bid
for every task) or risk-averse (bid only for tasks that can be
completed with the agents available in the system).

Stable Team Strategies

We have developed a number of alternative strategies for
stable team leaders to recruit teams and bid on tasks. The
strategies are summarized in this section. In our prelimi-
nary results, we found that the strategy used did not have a
significant impact on team performance in the environments
we were studying. Therefore, for the experiments described



later in the paper, we selected the moderate risk-taking strat-
egy. In future work, we plan to investigate alternative strate-
gies in more depth.

In all of the stable team strategies, the agents try to form
teams to complete tasks, with the goal of maximizing team
profit. They can recruit agents from the pool of unemployed
agents or from other teams (except in Naive, Cautious Strat-
egy).

Each joining member is given shares of the team for be-
coming a part of the team, and is awarded a commission
and dividend for every task completed by the team. When
the team is dissolved, every member is paid its share of the
team revenue.

Unemployed agents wait for some period of time to be
recruited by teams, simultaneously monitoring the system’s
performance. When an agent has not been recruited for a
predefined length of time and the system performance falls
below a threshold, it starts a team and becomes a team
leader.

Unemployed agents always act to maximize their pay-off,
following a simple heuristic for doing so. If they are offered
memberships from multiple teams, they choose the one that
offers the maximum average utility. This utility is calculated
based on the commission (Scomm) and dividend (Sdiv) be-
ing offered and the current share price (Ps) of that team.

average utility = (
Scomm + Sdiv

2
)Ps

A more sophisticated method would take into considera-
tion the growing size of the team, predicting the future value
of the shares of the team.

Naive, Cautious Strategy In this strategy, team leaders
are very cautious when it comes to bidding for tasks, bidding
only on those tasks for which there are agents free in the
team at that particular moment. This obviates the possibility
of the team having to pay any non-completion penalties. The
team is dissolved when the performance of the team relative
to other teams falls below threshold.

When agents start a team, they start recruiting proactively
for as many different capabilities as possible. Then they stop
recruiting, and start bidding for and performing tasks, moni-
toring their performance regularly. If their performance falls
below a threshold and there are unemployed agents avail-
able to be recruited, they start recruiting again. In this case,
they try to recruit agents with capabilities that their team is
lacking. If the team already has all the capabilities, it ran-
domly selects a capability and tries to recruit an agent with
that capability.

Team leaders are not allowed to recruit agents that already
belong to another team. Also, team members are loyal to
their teams and will stay with the team through “good times
and bad.” Once they join a team, the only way they will
become unemployed again is if the team is dissolved by the
leader.

Intelligent Recruiting Strategy Team leaders, when re-
cruiting reactively, select the agents to be recruited more in-
telligently. They first try to recruit an agent with the capabil-
ity the team does not possess. If all capabilities are present

in the team, a capability is selected randomly and agents try
to recruit an agent with that capability, using the following
method:

1. If there are unemployed agents, try to recruit a skill that
the team does not possess.

2. Otherwise, if there are employed agents, try to recruit a
new skill from employed agents.

3. Otherwise, try to recruit a random skill from the pool of
unemployed agents.

4. Otherwise, try to recruit a random skill from the employed
agents.

To avoid trying to recruit forever, teams try to recruit agents
a fixed number of times (five in this case) and on failure stop
recruiting. On success, the count is reset to 0.

Moderate Risk-Taking Bidding Team Strategy The
only difference between this and the previous strategy is that
the team leaders are more risk-taking as far as bidding is
concerned. They bid for a task if the team has the agents to
perform the task, regardless of whether the agents are free or
performing some other task. This leads to the possibility of
the team being unable to complete the task in time, risking a
non-completion penalty.

Risk-Taking Bidding Team Strategy The difference be-
tween this and the Moderate Risk-Taking Strategy is that
agents following this strategy bid for tasks even if they
don’t have all the necessary team members to complete
them. They recruit the required agents once the task has
been awarded to them, further increasing the possibility of
the team not being able to complete the task and paying a
penalty. In some ways this strategy is a mix of stable long-
term strategy and dynamic short-term strategy.

Specialized Team Strategy In our experiments, the per-
formance of the previous strategies seems to indicate that
good teams usually end up having a diverse set of capabili-
ties. As a result, some of the tasks that require many agents
with the same skill are never completed. Although the num-
ber of such tasks was small, we developed a “specialized-
team” strategy in order to test whether there is any advan-
tage in having some team leaders form teams of agents who
all have the same skill, only hiring other agents as and when
needed.

1. Recruit as many same-skill agents as possible.

2. Bid for all tasks. The bid is awarded to the team that
fulfills the maximum number of requirements (i.e., that
already has the most agents matching the necessary capa-
bilities).

3. Temporarily hire the remaining agents from other teams,
paying each agent’s team a “consulting fee” f , equal to
the task payoff, divided by the total number of agents
needed. The consulting fee is allocated as follows:

• f/2 to the team’s “bank account.”
• f/4 directly to the agent that was hired.
• f/4 directly to the team leader.

4. When the task is completed, free the agent.
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Figure 1: Tasks Completed by Dynamic Teams for texp =
5 . . . 100

5. If the team fails to complete the task, the bidding team has
to pay a non-completion penalty, but the hired agent team
still receives the consulting fee.

Experiments and Results
We ran a series of experiments with a simulated multi-agent
system consisting of a mixture of dynamic and stable agents.
Only when acting as team leaders do the agents behave dif-
ferently: that is, dynamic agents will only form dynamic
teams, and stable agents will only form stable teams, but
each agent is free to join either type of team.

Tests were run varying the size of the system in ten incre-
ments, starting with four agents and going up to 40 agents,
each time increasing the size by four agents. The set of ca-
pabilities (Cj=5), maximum task size (tsmax

=4), maximum
task length (tlmax

=4) and task frequency (tarr=1) were fixed
for all sets of experiments. All the tasks carry the same pay-
off (tpay=10) and non-completion penalty(same as tpay) ir-
respective of their size or length.

In the first set of experiments, we studied the effect of
varying task expiration times (texp) on the performance of
agents. The intuition behind this was that as the time needed
for agents to recruit members decreases, more tasks assigned
to dynamic agents would fail to be completed, and they
would end up losing revenue in the form of non-completion
penalties. The setup consisted of equal numbers of agents of
each type in the same environment, competing for tasks.

Figures 1 and 2 show the number of tasks completed by
dynamic and stable agents respectively for different task ex-
piration times in a typical setup. One can see that stable
teams are able to complete far more tasks than dynamic
teams (almost ten times as many). The two dominant fac-
tors responsible for this are the scarcity of recruitable agents
and the failure of dynamic team leaders to form teams be-
fore the tasks expire. We can also see that as texp decreases,
the performance of dynamic teams starts to degrade but at
the same time, increasing the task expiration time beyond
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Figure 2: Tasks Completed by Stable Teams for texp =
5 . . . 100
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Figure 3: Revenue Earned vs. Tasks Completed
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Figure 4: Revenue Earned vs. Team Leading Initiative

a limit (texp=20) does not have much effect on the perfor-
mance. On the other hand, stable teams are not affected
much by the change, since they do not generally need to
recruit new agents to perform a task.

Figure 3 compares the revenue earned by the two differ-
ent types of agents against the number of tasks completed
(as a team leader or a team member). There is no difference
in agent earnings because agents are not restricted to join-
ing one of the two types of teams —i.e., a short-term team
forming agent can join a stable team and earn revenue.

This result prompted us to investigate further to find out
whether agents who take the initiative to lead a team are
rewarded accordingly. As shown in Figure 4, the dynamic
agents that were highly entrepreneurial (i.e., initiated many
teams) had the lowest earnings. In fact, there were only a
handful of such agents. Most of the agents were content
with leading teams for a short period of time and mostly
joining other teams to earn revenue. By contrast, stable team
leaders are uniformly rewarded irrespective of the length of
time spent as team leaders.

We also compared the performance of the system for dif-
ferent proportions of agent types. In this case, the task ex-
piration time was fixed and the system was run for differ-
ent proportions of stable team forming (Ns) and dynamic
team forming agents (Nd). The dynamic teams are able to
complete more tasks as their proportion in the population
increases but the difference is not really significant among
cases where there are some stable agents present in the sys-
tem (Figure 5). But when all of the stable team forming
agents are removed, there is a noticeable improvement in
the performance of dynamic agents. From this we can con-
clude that dynamic teams are not able to compete with sta-
ble teams, even if there are a very few stable team forming
agents. Therefore, in environments that contain any stable
agents, other team leaders will be predisposed to form sta-
ble, rather than dynamic teams.

On the other hand, there is no significant difference in
the performance of stable team forming agents when their
proportion in the population is changed (Figure 6). The
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Figure 5: Tasks Completed by Dynamic Teams for Different
Agent Proportions
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Agent Proportions
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Figure 7: Tasks Completed in Environments with All Dy-
namic Team Agents vs. All Stable Team Agents

small decrease in their performance when the proportion is
increased is due to the decrease in the size of the pool of free
dynamic agents that can be hired by stable teams. Despite
this effect, Figure 7 clearly shows that if the population con-
tains only one of these two types of agents, stable teams are
able to complete many more tasks than dynamic teams.

Future Work
We have used a very simple model of team formation in
our framework, with relatively straightforward strategies for
joining teams and bidding for tasks. We would like to simu-
late the behavior of the system with a more sophisticated set
of strategies. In particular, we are interested in studying how
models of trust and reputation would affect the stability and
performance of the system. Agents can be allowed to enter
or leave the system, adding uncertainty to the environment.

In the current set of strategies, team recruitment offers are
evaluated by potential team members based on the current
value of the pay-off. Agents could potentially use learning
strategies to predict the future value of a team share when
selecting from among multiple offers, or in deciding whether
to start or leave a team.

One could study a system with a richer capability model
with non-uniform distribution of skills. Agents could have
more than one capability, which would make the task bid-
ding strategy for team leaders more interesting. In the cur-
rent model, agents are assigned to a task by performing a
simple capability match. We could make this process more
realistic by incorporating factors like experience and profi-
ciency. We could take this one step further and create ontolo-
gies of tasks and capabilities. When coupled with a measure
of the quality of task performance and a proportionate re-
ward, such models would result in a complex but realistic
environment.

We would also like to investigate the effect on system per-
formance of varying task features such as:

• Task Structure. In the current environment, a small task

requiring only one skill is as likely to occur as a large task
requiring several different capabilities. If this restriction
is removed, agents may adapt to the actual task distribu-
tion, or find a niche and specialize in it.

• Pay-off. What happens if rather than all tasks carrying the
same pay-off, the pay-off depended on the size of the task
or the rarity of the skills required by the task?

• Task dependencies. How would the system be affected if
tasks were dependent on each other, i.e., if completion of
one task was a prerequisite for beginning another?

In our multi-agent system, we haven’t experimented with
different parameters of the share model. Changing the val-
ues of the commission, dividend and penalty could induce
interesting agent reactions.

Finally, our long-term goal is to let the agents determine
their optimal strategy dynamically, based upon the current
situation. A lack of competition may trigger risk-averse be-
havior, whereas an abundance of agents of a particular type
may encourage an agent to form a specialized team. To
adapt successfully would require the agents to have a lot of
knowledge about the system and a sophisticated algorithm
to analyze the effects of not only their own actions but also
the actions of other agents’ opportunistic actions.

Conclusions
We have presented a multi-agent environment in which self-
interested agents can form stable or dynamic teams to com-
plete tasks. From our experiments in simulated multi-agent
environments, we conclude that stable teams are able to
complete significantly more tasks than dynamic teams, es-
pecially in time-critical domains in which the tasks must be
performed quickly. Such a competitive environment does
not favor entrepreneurial dynamic agents: in fact, they end
up being among the lowest-earning agents. The addition of
even a small number of stable team forming agents dras-
tically reduces the performance of dynamic teams. Finally,
even in the absence of competition from other type of agents,
stable teams are more beneficial to the society, since they are
more productive.
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