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Terraforming
Cyberspace

D
uring the 1940s, Jack Williamson published a
series of fictional stories under the pseudonym
of Will Stewart. The series described a process
for attaching atmospheres to planets to make
them capable of sustaining life. Terraforming—

the term Williamson coined for this activity—first found
favor with other science fiction writers, then captured
the imagination of a zealous core of scientists, space
advocacy groups, and other interested parties. These
groups focused on Mars as the
most likely target for transfor-
mation and eventual coloniza-
tion. Today, many articles,
books, and Web sites continue
to develop the terraforming
theme.

Like preterraformed Mars,
cyberspace currently offers a
lonely, dangerous, and rela-
tively impoverished environ-
ment for software agents. Al-
though promoted as collabo-
rative, agents do not easily sus-
tain rich, long-term, peer-to-
peer relationships, let alone
any semblance of meaningful community involvement.
Their vendors tout features that promote secure reli-
able interaction, but no social safety net helps agents
when they get stuck or prevents them from setting the
network on fire when they go off the deep end. 

Despite their designers’ desire to have them commu-
nicate at an almost human level, agents remain cut off
from most of the world in which humans operate.
Although agents are capable of self-directed mobility,
severe practical restrictions limit when and where they
can go. Agents are ostensibly endowed with autonomy,
but the first passerby who finds the power switch can
unceremoniously terminate an agent’s very existence. 

As a consequence of these and other limitations,
most of today’s agents are designed for “solitary, poor,
nasty, brutish, and short” lives of narrow purpose in a

relatively bounded and static computational world—
their lives on the wire are just as precarious as those of
Brooklyn Bridge workers a hundred years ago. With
rare exception, people do not deploy today’s agents in
critical, long-lived, secure, or high-risk tasks, or send
them on missions that require widespread agent migra-
tion or the collaboration of large numbers of agents
interacting in complex, unpredictable ways.

Progress on these fronts awaits the results of ongo-
ing research in traditional ap-
proaches to agent autonomy,
collaborativity, adaptivity, and
mobility. Yet we argue that
focusing greater attention not
only on making agents smarter
and stronger but also on mak-
ing the environment in which
they operate more capable of
sustaining various forms of
agent life and civilization
would simplify some of these
problems. A modest terra-
forming effort would enable
not only intelligent agents but
also the agent-equivalents of

dogs, insects, and chickens to survive and thrive in
cyberspace.

AGENTS AND THE GRID
Fortunately, the basic infrastructure for beginning

a terraforming effort is becoming more available.
Designed specifically to exploit next-generation
Internet capabilities, grid-based approaches provide a
universal source of dynamically pluggable, pervasive,
and dependable computing power, while guarantee-
ing levels of security and quality of service that will
make new kinds of applications possible.1 In contrast
to today’s static, single-purpose, and stove-piped appli-
cations, these future applications will require coordi-
nated resource sharing and problem solving in
dynamic, multi-institutional, virtual organizations. By

Rather than just building smarter and stronger agents, researchers 
must transform the wasteland of cyberspace itself, making it a safe 
and habitable environment for both agents and humans.
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Terraforming Mars. Courtesy NASA.



the time grid approaches become mainstream for
large-scale applications, they will surely have migrated
to ad hoc local networks of very small devices as well. 

The Control of Agent-Based Systems (CoABS) agent
grid (http://coabs.globalinfotek.com/) is based on Sun’s
Jini services. Developed at Global InfoTek with fund-
ing from the Defense Advanced Research Projects
Agency, the CoABS grid provides a successful and
widely used infrastructure for the large-scale integra-
tion of heterogeneous agent frameworks with object-
based applications and legacy systems. Over the next
few years, we expect a confluence of this effort with
the efforts of the larger computational grid community
(http://www.gridforum.org). The Java Agent Services
Expert Group, under the auspices of Sun’s Java
Community Process (http://java.sun.com/aboutJava/
communityprocess/jsr/jsr_087_jas.html), the OMG
Agent Platform Special Interest Group (http://www.
objs.com/agent/), the Foundation for Intelligent Physi-
cal Agents (http://www.fipa.org), and the FIPA Abstract
Architecture Working Group (http://www.fipa.org/
activities/architecture.html) are all working on essen-
tial contributions to interoperable agent infrastructure.

As Figure 1 shows, however, realizing the vision of
terraforming cyberspace re-
quires going far beyond these
current efforts. Current infra-
structures typically provide few
safety guarantees and no incen-
tives for agents and other com-
ponents to look beyond their
own selfish interests. 

At a minimum, future infra-
structures must go beyond the
bare essentials to provide per-
vasive life-support services,
which rely on mechanisms
such as orthogonal persistence
and strong mobility. Such ser-
vices help ensure the survival
of agents designed to live for many years.

Beyond the basics of individual agent protection,
long-lived agent communities will depend on legal ser-
vices, based on explicit policies, to ensure their rights
and help them fulfill their obligations. Ultimately,
benevolent social services will offer proactive help
when needed. 

Although some of these terraforming elements for
agents exist in embryonic form within specific agent
systems, the lack of underlying support at the plat-
form level has limited their scope and effectiveness.

NOMADS LIFE-SUPPORT SERVICES
We have adopted a two-pronged approach for life-

support services: enabling as much protection as pos-
sible in a standard Java virtual machine while also

providing Nomads and the enhanced Aroma VM for
those agent applications that require it.

For agents running in a standard JVM, we create
software-based guards, which enforce policies by rely-
ing on the Java 2 security model’s capabilities, includ-
ing permissions and privileged code wrappers, and the
Java Authentication and Authorization Service. 

In contrast to other implementations of Java security,
our enhanced JAAS-based approach allows revocation
of access permissions under many circumstances, as well
as granting different permissions to different instances

of agents from the same code
base. For policies that go be-
yond simple access-based per-
missions—for example, obli-
gation policies, registration
policies, conversation poli-
cies—guards implement addi-
tional auxiliary Knowledgeable
Agent-oriented System (KAoS)
management and enforcement
capabilities as required.

Unfortunately, merely bolt-
ing new services on top of a
standard JVM cannot provide
some kinds of protection. Al-
though currently the most pop-

ular and arguably the most mobility-minded and
security-conscious mainstream language for agent devel-
opment, Java in its current form fails to address many
of the unique challenges that agent software poses.
While few if any requirements for Java mobility, secu-
rity, and resource management are entirely unique to
agent software, nonagent software typically uses hard-
coded approaches that do not allow the degree of on-
demand responsiveness, configurability, extensibility,
and fine-grained control that agent-based systems
require. 

To provide these basic life-support services, we devel-
oped Nomads, which combines Aroma—an enhanced
Java-compatible virtual machine—and the Oasis agent-
execution environment.2 Nomads’ current version
ensures two kinds of agent environmental protection:
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Figure 1. Elements of terraforming for software agents.
Future infrastructures must go beyond the bare essentials to
provide life-support services and legal services to ensure
agents’ rights and help them fulfill their obligations as well
as benevolent social services that offer proactive help when
needed.
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• assurance of system resources availability,
even in the face of buggy agents or denial-
of-service attacks; and

• protection of agent-execution state, even in
the face of unanticipated system failure.

For agents running in the Aroma VM, we can
create a considerably more powerful guarded
environment that provides not only the stan-
dard Java and KAoS enforcement capabilities,
but also supports access revocation under all
circumstances, as well as dynamic resource con-
trol and full-state capture on demand for any
Java agent or service.

Protecting agent and system resources
Full appreciation of Aroma and Nomads resource-

control features requires some understanding of the
current Java security model. Early versions of Java
relied on the sandbox model to protect mobile code
from accessing dangerous methods. In contrast, Java
2 uses a permission-based security model. Unlike the
previous all-or-nothing approach, Java applets and
applications can now have varying degrees of access
to system resources.

Unfortunately, current Java mechanisms do not
address the problem of resource control. While it may
be possible to prevent a Java program from writing to
any directory except /tmp, once the program is given
permission to write to the /tmp directory, it places no
further restrictions on the program’s I/O. In the cur-
rent Java implementation, there is no way to limit the
amount of disk space the program can use or to con-
trol the rate at which the program reads and writes
from the network.

Resource control is important for several reasons:

• Without it, systems and networks are open 
to denial-of-service attacks through resource
overuse.

• It lays the foundation for quality-of-service guar-
antees. To make any such guarantees about the
availability of resources for a given task, the sys-
tem must be able to limit resource usage by other
tasks—a capability the current Java environment
lacks.

• Resource control presupposes resource account-
ing, which allows measuring the resources the
overall system or some component of it consumes
for either billing or monitoring purposes.
Monitoring resource utilization over time allows
the system to detect abnormal behavior.

• The availability of resource control mechanisms
in the environment simplifies the task of devel-
oping systems for resource-constrained situa-
tions.

Aroma currently provides a comprehensive set 
of CPU, disk, and network resource controls. These
mechanisms allow the system to place limits on both
the rate and quantity of resources the Java threads use.
Rate limits include CPU usage, disk read rate, disk
write rate, network read rate, and network write rate.
The system specifies I/O rate limits in bytes per mil-
lisecond. Quantity limits include disk space, total bytes
written to disk, total bytes read from the disk, total
bytes written to the network, and total bytes read from
the network. Because the system provides resource
controls at the computing environment level, the con-
trols are completely transparent to the executing pro-
grams, requiring no modification to the Java code.

In agent environments, several uses of the Nomads-
based resource control mechanisms are possible. First,
the KAoS domain manager and the VM-level guard
use the resource control mechanism to place limits on
the resources that services and components running
within the Aroma VM consume. The guard can vary
the resource limits to accommodate changes in policy
affecting level-of-service guarantees. The guard also
takes advantage of the resource accounting capabili-
ties to measure and report on the resources that ser-
vices and components consume and, if policy permits,
to look for patterns of resource abuse that might sig-
nal denial-of-service attacks, taking autonomous
action to reduce the resources available to the attacker
accordingly.

Protecting agent state
Protecting agent state requires saving the running

agent or component’s entire state, including its exe-
cution stack, so that it can be fully restored in case of
system failure or a need to temporarily suspend its
execution. The standard term for this process is check-
pointing. Over the past few years, researchers at Sun
Microsystems and elsewhere have also developed the
more general concept of transparent persistence,
sometimes called orthogonal persistence. This research
seeks to define language-independent principles and
language-specific mechanisms for making persistence
available for all data, irrespective of type. Ideally, the
approach would not require any special work by the
programmer—for example, implementing serializa-
tion methods in Java or using transaction interfaces
in conjunction with object databases—and there
would be no distinction between short-lived and long-
lived data.

We have used the Nomads state capture features
extensively for agents that require anytime mobility,
whether to perform a task or to allow immediate
escape from a host under attack or about to go down,
a scenario we call “scram.” For example, as part of
the DARPA UltraLog program, we are using mobile
state to improve the survivability of agent systems in
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the face of information warfare and kinetic attacks.
We are also using this feature for transparent load-
balancing and forced-code migration on demand in
distributed computing applications.3 To support trans-
parent persistence for agents and other distributed-
system components, we are implementing scheduled
and on-demand checkpointing services that will pre-
serve agent execution state, even in the face of unan-
ticipated system failure.

While others have implemented many of these life-
support features in limited ways for specific applica-
tions, we are working with academic and industrial
research partners to make their use more routine and
pervasive so that developers can rely on them as a mat-
ter of course. As our understanding of requirements
for basic agent life-support services increases, we are
beginning to anticipate what additional layers of legal
and social services might begin to look like.

KAOS LEGAL AND SOCIAL SERVICES
Terraforming cyberspace involves more than regu-

lating computing resources and protecting agent state.
As the scale and sophistication of agents grow and
their lifespan increases, agent developers and users
will want the ability to express complex high-level
constraints on agent behavior within a given envi-
ronment. It seems inevitable that productive interac-
tion between agents in long-lived communities will
also require some kind of legal services, based on
explicit enforceable policies, to ensure their rights and
help them fulfill their obligations. Over time, it seems
likely that benevolent social services will also eventu-
ally evolve to offer help with individual agent or sys-
temic problems.

In both legal and social service arenas, it is clear that
preventive initiatives are usually superior to after-the-
fact remedies. As in the well-known poem by Joseph
Malins, we liken the former to a “fence at the top of
the cliff” and the latter to an “ambulance down in the
valley.”

We base our approach on the assumption that pre-
ventive policy-based fences can complement and
enhance after-the-fact remedial ambulance-in-the-val-
ley mechanisms. The policies governing some set of
agents should describe expected behavior in sufficient
detail to allow easily anticipating or detecting devia-
tions. At the same time, related policy support services
help make compliance as easy as possible. 

Complementing these policy support services, var-
ious enforcement mechanisms operate as a sort of
“cop at the top of the cliff” to warn of potential prob-
lems before they occur. When—despite all precau-
tions—an accident happens, the system dispatches
remedial services to help repair the damage. In this
manner, the policy-based fences and after-the-fact
ambulances work together to ensure a safer environ-

ment for individual agents and the communi-
ties in which they operate. 

Policy-based agent management
Policy-based management approaches have

become popular in the past few years. For
example, unlike previous versions, the Java 2
security model defines security policies as dis-
tinct from the implementation mechanism. A
security manager controls access to resources,
relying on a security policy object to dictate
whether class X has permission to access sys-
tem resource Y. The policies are expressed in a
persistent format so any tools that support the
policy syntax specification can view and edit
them. This approach allows policies to be con-
figurable, relatively more flexible, fine-grained,
and extensible. Applications developers no longer
need to subclass the security manager and hard-code
the application’s policies into the subclass. Programs
can use the policy file and the extensible permission
object to build an application with a security policy
that can change without requiring changes in source
code.

As with most policy-based management approaches,
Java 2 is concerned only with authorization, encryp-
tion, and access control. KAoS policy-based agent
management includes these features while adding the
ability to control Nomads resources. But because of
our focus on agent systems, KAoS goes beyond these
typical security concerns in significant ways. For exam-
ple, the KAoS architecture introduced the concept of
agent conversation policies.4,5 The agent-to-agent com-
munication process uses appropriate semantics to
form, maintain, and disband teams of agents.6

Conversation policies assure coherence in the team
commitments that heterogeneous agents of different
sophistication levels adopt and discharge. These poli-
cies also assure robust behavior and minimize com-
putational overhead for team maintenance.4,7 In
addition to conversation policies, we are developing
representations and enforcement mechanisms for
mobility policies,8,9 domain registration policies, and
various forms of obligation policies.

Our approach differs significantly from the approach
of others who are developing security, robustness, and
cooperativity constraints for agent communities. First,
unlike most multiagent coordination environments, we
do not assume that we are dealing with a homogeneous
set of agents written within the same agent framework.
With respect to environmental protection, legal, and
social-services functions, our system requires little or
no modification to put various kinds of agents on the
same footing. For this reason, policy-management
mechanisms can protect against the negative effects of
buggy or malicious agents.
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Second, the framework must support dy-
namic runtime policy changes, not merely sta-
tic configurations determined in advance.
Third, the framework must be extensible to a
variety of execution platforms with different
enforcement mechanisms—initially Java and
Aroma—but also to any platform for which a
guard can be written. Fourth, the framework
must be robust in continuing to manage and
enforce policies in the face of attack or the fail-
ure of any combination of components.

Finally, we recognize the need for easy-to-use
policy-based administration tools capable of
containing domain knowledge and conceptual
abstractions that let applications designers focus

their attention more on high-level policy intent than
on implementation details. Such tools require power-
ful graphical user interfaces for monitoring, visualizing,
and dynamically modifying policies at runtime.

In short, the policy management framework must
ensure maximum freedom and heterogeneity of the
agents and the nonintrusiveness of the enforcement
mechanisms, while respecting the bounds of human-
determined policy constraints designed to ensure selec-
tive conformity of behavior.

DAML-based policy representation
In principle, developers could use a variety of lan-

guages to express policies. At one extreme, they might
write these languages in a propositional or constraint
language. At the other extreme lie a wide variety of
simpler schemes, each of which gives up some types of
expressivity. Several considerations affect the choice
of language for a particular application, including
composability, computability, efficiency, expressivity,
and amenability to detecting equivalence and discov-
ering conflicts. 

With funding from the DARPA CoABS program,
we have begun developing the implementation-neu-
tral KAoS policy representation (KPR), expressed in
DARPA Agent Markup Language (http://www.daml.
org). For our current applications, we use a very sim-
ple XML representation; however, we have recently
drafted an initial KPR specification and DAML encod-
ing, and the implementation is under way.

Designed to support the emerging semantic Web,
DAML is the latest in a succession of Web markup
languages. HTML, the first Web markup language,
allowed users to mark up documents with a fixed set
of formatting tags for human use and readability.
XML lets users add arbitrary structures to their doc-
uments but directly expresses very little about what
the structures mean. Resource description format
(RDF) encodes meaning in sets of subject-verb-object
triples, where a universal resource identifier, typically
a URL, can identify the elements of each triple.

DAML extends RDF with new constructs that let
users specify ontologies—machine-interpretable rep-
resentations of terms and their relationships—com-
posed of taxonomies of classes, relationships, and—in
the near future—inference rules. These ontologies
have a variety of uses, such as enabling more accurate
or complex Web searches. Agents can also use seman-
tic markup languages to understand and manipulate
Web content in significant ways; to discover, commu-
nicate, and cooperate with other agents and services;
or, as we describe here, to interact with policy-based
management and control mechanisms.

The current KPR specification defines basic ontolo-
gies for things such as actors, actions, targets, policies,
and policy conditions. It then extends these ontologies
to represent simple atomic Java permissions as well as
more complex Nomads and KAoS policy constructs.
For a given application, developers and users will fur-
ther extend these ontologies and put instances of pol-
icy objects into force as required. Through various
property restrictions, an ontology can scope a given
policy instance to individual agent instances, agents of
a given class, agents running in a given instance of a
computational environment such as a VM, or agents
that are members of a given domain or subdomain.

The actor ontology distinguishes between agents,
which generally can only perform ordinary actions,
and domain managers, guards, and authorized human
users that it can permit or obligate to perform certain
policy actions, such as approval and enforcement. The
policy ontology distinguishes between authorizations,
which are constraints that permit or forbid some
action, and obligations, which are constraints that can
either require performing some action or waive such
a requirement.10

The KPR ontologies serve a variety of purposes.
The obvious primary application is during inference
relating to policy conflict resolution. Changes or
additions to policies in force, or a change in an actor’s
status—for example, an agent joining a new domain
or moving to a new host—require logical inference to
determine which policies are in conflict and how to
resolve these conflicts. The ontologies are also useful
in policy disclosure management, reasoning about
future actions based on knowledge of policies in
force, and in assisting policy specification tool users
in defining new policies consistent with previous
ones.

KAoS policy management architecture
Figure 2 shows the major components of the KAoS

policy management architecture.
The KAoS policy administration tool (KPAT), a

graphical user interface to domain management func-
tionality, makes it easier for administrators to develop
policy specifications, revisions, and applications with-
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out undergoing extended training. With KPAT, an
authorized user can make changes to policies using a
secure Web browser. Alternatively, trusted authenti-
cated components such as guards can, if authorized,
propose policy changes autonomously based on their
observation of system events.

Structuring groups of agents into agent domains
and subdomains facilitates policy administration. A
given domain can extend across host boundaries, and
multiple domains can exist concurrently on the same
host. Depending on policy restrictions, agents can
become members of more than one domain at a time.

The KAoS domain manager serves as a policy deci-
sion point to determine whether agents can join a
domain and for policy conflict resolution. The domain
manager ensures policy consistency at all levels of a
domain hierarchy, notifies guards in the event of a pol-
icy change, and stores policies in the repository.

The domain manager stores policies in an imple-
mentation-neutral format, currently very simple but
soon to be based on our DAML policy representation.
We intend to allow authorized entities to access these
policies, which are available in a secure library repos-
itory such as an LDAP directory, in accordance with
policy disclosure strategies.11 For example, agents may
need to understand domain policies in advance of sub-
mitting a registration request to a new domain.
Because the library expresses the policies declaratively,
authorized entities can analyze and verify them in
advance and offline, maximizing the efficiency of exe-
cution mechanisms.

Guards interpret policies that the domain manager
has approved and enforce them with appropriate
native mechanisms. While KPAT and the domain
manager work identically across different execution
environments, we design guards for a specific execu-
tion environment. Our approach enables policy uni-
formity in domains across multiple VMs and hosts as
long as they provide semantically equivalent moni-
toring and enforcement mechanisms to the guards.
Under these conditions, these policy-based mecha-
nisms can maintain consistency among agents writ-
ten in different languages and frameworks and
running on different platforms and hosts. 

The KPR-based models and tools will take into
account differences in available enforcement mecha-
nisms in different computing environments. Because
policy analysis and policy conflict resolution normally
take place before the system gives the policy to the
guard for enforcement, the operation of the guards
and enforcement mechanisms can be lightweight and
efficient.

Sun’s JAAS provides methods that tie access control
to authentication. In KAoS, we have developed meth-
ods based on JAAS that will allow scoping policies to
individual agent instances rather than just to Java

classes. Currently, JAAS can be used with Java VMs;
in the future, it should be possible to use JAAS with
the Aroma VM as well. For policies that go beyond
simple access-based permissions—such as obligation
policies, registration policies, or conversation poli-
cies—guards implement additional auxiliary KAoS
management and enforcement capabilities as required.

The Aroma VM’s resource-control mechanisms
allow limits to be placed on both the rate and quan-
tity of resources used by Java threads. Guards run-
ning on the Aroma VM can use these mechanisms to
provide enhanced security, maintain quality of ser-
vice for given agents, or give priority to important
tasks.

Applications and benefits 
of a policy-based approach

The DARPA CoABS-sponsored Coalition Opera-
tions Experiment (http://www.aiai.ed.ac.uk/project/
coax/)12 provides an example of applying KAoS,
Nomads, and Java security policies and mechanisms.
CoAX models military coalition operations and
implements agent-based systems to mirror coalition
structures, policies, and doctrines. The project offers
a promising new approach for using the agent-based
computing paradigm to deal with issues such as

• the interoperability of new and legacy systems;
• the implicit nature of current coalition policies;
• security in dynamic organizational structures with

varying levels of trust and access; and
• prevention and recovery from attack, system 

failure, or service withdrawal.
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Figure 2. KAoS policy management architecture. The domain manager serves as a pol-
icy decision point to determine whether agents can join a domain and for policy conflict
resolution. Guards interpret policies that the domain manager has approved and enforce
them with appropriate native mechanisms. The KAoS policy administration tool, a
graphical user interface to domain management functionality, makes it easier for admin-
istrators to develop policy specifications without undergoing extended training.
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All these issues have analogs in commercial
and industrial settings of the future.

KAoS provides mechanisms for overall man-
agement of coalition organizational structures
represented as domains and policies, while
Nomads provides strong mobility, resource
management, and protection from denial-of-
service attacks for untrusted agents that run in
its environment.

Combining preanalyzed policy libraries, sep-
arate policy decision and conflict resolution
mechanisms, and efficient policy enforcement
methods makes using policy-based administra-
tion tools maximally effective. A policy-based
approach has the additional advantages of
reusability, efficiency, context sensitivity, and
verifiability.

Reusability. Policies encode sets of useful con-
straints on agent or component behavior, packaging
them for easy reuse as the occasion requires. Reusing
policies when they apply reaps the lessons learned
from previous analysis and experience while saving
the time it would take to reinvent them.

Efficiency. In addition to lightening the application
developers’ workload, explicit policies can sometimes
increase runtime efficiency. For example, to the extent
that it can take place in advance, policy conflict res-
olution and conversion of policy for use by appro-
priate enforcement mechanisms can increase overall
performance.

Context sensitivity. Explicit policy representation
improves the ability of agents, components, and plat-
forms to respond to changing conditions and, if nec-
essary, reason about the implications of the policies
that govern their behavior.

Verifiability. Representing policies in an explicitly
declarative form instead of burying them in the imple-
mentation code provides better support for policy
analysis. First—and this is absolutely critical for secu-
rity policies—we can externally validate that the poli-
cies are sufficient for the application’s tasks and bring
both automated theorem-provers and human exper-
tise to this task. Second, certain methods ensure that
program behavior that follows the policy will also
satisfy many of the important properties of reactive
systems such as liveness, recurrence, safety invariants,
and so forth. Finally, with this approach we can pre-
dict how explicit policies governing different types of
agent behavior can compose.

CYBERFORMING TERRASPACE
Clearly, creating a robust and policy-governed envi-

ronment where societies of heterogeneous agents can
flourish is just a first step. The next step would be to
cyberform terraspace, giving agents a permanent
foothold in the material world.

Tomorrow’s world will be filled with agents embed-
ded everywhere in the places and things around us.
Providing a pervasive web of sensors and effectors,
these agents will function as cognitive prostheses—
computational systems that leverage and extend
human intellectual, perceptual, and collaborative
capacities, just as a steam shovel is a sort of muscu-
lar prosthesis or eyeglasses are a sort of visual pros-
thesis. Thus, the focus of AI research is destined to
shift from artificial intelligence to augmented intelli-
gence. We anticipate that this augmentation will not
simply result in a quantitative boost in human intel-
ligence, but also in a qualitative change in the way we
live and work in tandem with artificial agents perva-
sively embedded in our physical and personal envi-
ronments.

While simple software or robotic assistants of var-
ious kinds capture our attention today, the future
surely includes much more interesting and amazing
agent-powered devices than we can currently imag-
ine. A key requirement for such devices is real-time
cooperation with people and other autonomous sys-
tems. Although heterogeneous cooperating entities
can operate at different levels of sophistication and
with varying degrees of autonomy, they will require
some common means of representation and partici-
pation in joint tasks. Just as important, developers of
such systems will need tools and methodologies to
assure that their systems will work together reliably
even when designed independently. 

A key requirement for designing cooperative
autonomous systems is a thorough understanding of
the kinds of interactive contexts in which humans and
autonomous systems will cooperate. With our col-
leagues at the Research Institute for Advanced
Computer Science (RIACS), we are investigating the
use of Brahms13 as an agent-based design toolkit to
model and simulate realistic work situations in space.
The agent-based simulation in Brahms will eventually
become the basis for the design of functions for space
operations. Meanwhile, we are enhancing the KAoS
agent framework to incorporate an explicit general
model of teamwork and adjustable autonomy appro-
priate for space operations scenarios.6

By using a combination of Brahms and KAoS capa-
bilities, we will be able to incorporate realistic mod-
els of astronaut work environments and practices in a
theory of human-agent teamwork and adjustable
autonomy. This approach seeks to balance previous
top-down theoretical agent teamwork formulations
with an understanding derived from empirical analy-
sis and simulation. Various team members, from
humans to sophisticated autonomous systems to sim-
ple devices and sensors, will rely on empirically
derived, policy-based capabilities to assure coherence
in the adoption, delegation, and discharge of team
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commitments and to keep overhead for team mainte-
nance to an absolute minimum.

MAKING CYBERSPACE A BETTER 
PLACE FOR HUMAN AGENTS

Thus far, our central metaphor has been ter-
raforming cyberspace for the benefit of software
agents, but cyberspace itself is increasingly being per-
ceived in spatial terms for human users. We speak and
think of visiting Web sites and of getting lost while
trying to navigate through the hyperlink tangle, rather
than of the information packets being trucked to our
computers on the information superhighway. In any
case, few people live and work on superhighways. As
researchers couple virtual reality technologies with
high-bandwidth connectivity, the perception of cyber-
space as space will become a reality. Cyberspace will
be built to fit the human sense
of space.

To this end, IHMC is col-
laborating with the developers
of Seaside, Florida, a small,
sophisticated Gulf Coast town
that is the birthplace of New
Urbanism. The New Urbanism
movement includes urban
designers, environmentalists,
transportation experts, social
justice advocates, and others
who are working together to
change American land use
from highway-oriented sprawl. The movement pro-
poses reviving and updating traditional town-building
principles to produce human-scaled settlements in
which numerous pathways connect a variety of build-
ings internally and to the surrounding landscape.
IHMC and the Seaside Institute are hosting a series of
workshops, study groups, and visiting scholar pro-
grams exploring the application of well-evolved urban
design principles to the newly burgeoning and chaotic
world of electronic space design.

A s a new kind of environment for human beings,
cyberspace is now woefully primitive. Most of
our electronically built space is a rat’s nest of

bewildering pathways of indeterminate destination,
much like medieval Rome. The humanist Popes of the
Renaissance used the cittá ideale concepts to produce
connectivity and impart legibility to the layout of their
city. In the process, they produced some of the world’s
most memorable, elegant, and comfortable streets
and squares, which continue to provide an environ-
ment for the lives of a rich variety of people engaged
in all manner of activities.

Civilization begins when human beings find places
to be, make these places their homes, then create ways

to communicate and work together in their chosen
locations. Those who are designing and building
cyberspace might benefit from lessons learned over
thousands of years by those who have been engaged
in designing humanity’s best physical environments. ✸
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