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ABSTRACT
Despite the significant progress in multiagent teamwork, existing research
does not address theoptimalityof its prescriptions nor thecomplexityof the
teamwork problem. Thus, we cannot determine whether the assumptions
and approximations made by a particular theory gain enough efficiency
to justify the losses in overall performance. To provide a tool for evalu-
ating this tradeoff, we present a unified framework, theCOMmunicative
Multiagent Team Decision Problem (COM-MTDP)model, which is gen-
eral enough to subsume many existing models of multiagent systems. We
analyze use the COM-MTDP model to provide a breakdown of the compu-
tational complexity of constructing optimal teams under problem domains
divided along the dimensions of observability and communication cost. We
then exploit the COM-MTDP’s ability to encode existing teamwork theories
and models to encode two instantiations of joint intentions theory, includ-
ing STEAM. We then derive a domain-independent criterion for optimal
communication and provide a comparative analysis of the two joint inten-
tions instantiations. We have implemented a reusable, domain-independent
software package based COM-MTDPs to analyze teamwork coordination
strategies, and we demonstrate its use by encoding and evaluating the two
joint intentions strategies within an example domain.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Measurement

1. INTRODUCTION
Multiagent teamwork is critical in a range of domains, includ-

ing teams of spacecraft, unmanned air vehicles, software agents for
logistics planning, and agents for assisting humans. Research into
theories of agent teamwork, such as those based on belief-desire-
intentions (BDI) frameworks [3, 5, 13], have provided prescriptions
for agent coordination. These prescriptions have, in turn, led to
practical teamwork models [7, 10, 14, 17] that have succeeded in
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a range of complex domains. Yet, two key shortcomings limit the
scalability of these BDI-based theories and implementations. First,
there are no techniques for the quantitative evaluation of the degree
of optimality of their coordination behavior. While optimal coor-
dination may be impractical in real-world domains, such analysis
would aid us in comparison of different existing theories/models
and in identifying feasible improvements. One key reason for the
difficulty in quantitative evaluation of most existing teamwork the-
ories is that they ignore the various uncertainties and costs in real-
world environments. For instance, joint intentions theory [3] pre-
scribes that team members attain mutual beliefs in key circum-
stances, but it ignores the cost of attaining mutual belief (e.g., via
communication). On the other hand, practical systems have ad-
dressed costs and uncertainties of real-world environments. For
instance, STEAM [14, 15] extends joint-intentions with decision-
theoretic communication selectivity. Unfortunately, the very prag-
matism of such approaches often necessarily leads to a lack of the-
oretical rigor, so it remains unanswered whether STEAM’s selec-
tivity is the best an agent can do, or whether it is even necessary
at all. The second key shortcoming of existing teamwork research
is the lack of a characterization of the computational complexity of
various aspects of teamwork decisions. Understanding the compu-
tational advantages of a practical coordination prescription could
potentially justify the use of that prescription as an approximation
to optimality in particular domains.

To address these shortcomings, we propose a new framework,
the COMmunicative Multiagent Team Decision Problem (COM-
MTDP), inspired by work ineconomic team theory[8, 6]. As in
that framework, our definition of a team assumes only a common
goal (i.e., a joint utility function). Unlike typical teamwork frame-
works, we make no other assumptions about the team’s behavior
(e.g., the teammates form a joint commitment, communicate to at-
tain mutual belief, etc.). We view these more intermediate concepts
as themeansby which agents improve their overall performance,
not ends in themselves. For example, while mutual belief has no
inherent value, our COM-MTDP model can quantify the improved
performance that we would expect from a team that attains mutual
belief about important aspects of its execution. While our COM-
MTDP model borrows from a theory developed in another field, we
make several contributions in applying and extending the original
theory, most notably adding explicit models of communication and
system dynamics. With these extensions, the COM-MTDP gen-
eralizes other recently developed multiagent decision frameworks,
such as decentralized POMDPs [1].

This paper demonstrates three new types of teamwork analyses
made possible by the COM-MTDP model. First, we analyze the
computational complexity of teamwork within problem domains



classified along the dimensions of observability and communica-
tion cost. Second, the COM-MTDP model provides a powerful tool
for analyzing theoptimality of coordination prescriptions across
classes of domains. We encode existing team coordination strate-
gies, based on joint intentions [3] and STEAM [14], within a COM-
MTDP for evaluation. We also derive a novel coordination al-
gorithm that outperforms these existing these coordination strate-
gies in optimality, though not in efficiency. The end result is a
well-grounded characterization of the complexity-optimality trade-
off among various means of team coordination. Third, we can use
the COM-MTDP model to empirically analyze a specific domain of
interest. We apply our implemented reusable, domain-independent
algorithms to empirically evaluate the aforementioned coordination
strategies within an example domain represented as a COM-MTDP.
We thus characterize the optimality of each strategy as a function
of the properties of the underlying domain and, as a result, explain
previously unexplained published data.

2. THE COM-MTDP MODEL
2.1 Multiagent Team Decision Problems

Given a team of selfless agents,�, who intend to perform some
joint task, we wish to evaluate possible policies of behavior. We
represent amultiagent team decision problem(MTDP) model as a
tuple,hS;A; P;
;O;B; Ri. We have taken the underlying com-
ponents of this model from the initial team decision model [6], but
we have extended them to handle dynamic decisions over time and
to more easily represent multiagent domains.

2.1.1 World States:S
S is a set of world states (the team’s environment).

2.1.2 Domain-Level Actions:A
fAigi2� is a set of actions for each agent to perform to change

its environment, implicitly defining a set of combined actions,A �Q
i2�Ai (corresponding team theory’sdecision variables).

Extension to Dynamic Problem:P . The original team deci-
sion problem focused on a one-shot, static problem. We extend the
original concept so that each component is a time series of random
variables. The effects of domain-level actions, as well as any ex-
ogenous environmental changes, obey a probabilistic distribution,
P (si;a; sf ) = Pr(St+1 = sf jS

t = si;A
t = a).

2.1.3 Agent Observations:

f
igi2� is a set of observations that each agent,i, can expe-

rience of its world, implicitly defining a combined observation,

 �

Q
i2� 
i. 
i may include elements corresponding to indirect

evidence of the state (e.g., sensor readings) and actions of other
agents. In the original team-theoretic framework, theinformation
structurethat represented the observation process of the agents was
a set of deterministic functions,Oi : S ! 
i.

Extension of Allowable Information Structures:O. We
extend the information structure representation to allow for uncer-
tain observations. We use a general stochastic model, borrowed
from thepartially observable Markov decision processmodel [11],
with a joint observation function:O(s;a;!) = Pr(
t = !jSt =
s;At�1 = a). This function models the sensors, representing any
errors, noise, etc. In some cases, we can separate this joint distribu-
tion into individual observation functions:O �

Q
i2�Oi, where

Oi(s;a; !) = Pr(
ti = !jSt = s;At�1 = a). We can distin-
guish among different classes of information structures:

Collective Partial Observability: This is the general case, where
we make no assumptions on the observations.
Collective Observability: There is a unique world state for the
combinedobservations of the team:8! 2 
, 9s 2 S such that
8s0 6= s, Pr(
t = !jSt = s0) = 0. The set of domains that
are collectively observable is a strict subset of the domains that are
collectively partially observable.
Individual Observability: There is a unique world state for each
individual agent’s observations:8! 2 
i, 9s 2 S such that
8s0 6= s, Pr(
ti = !jSt = s0) = 0. The set of domains that
are individually observable is a strict subset of the domains that are
collectively observable.

2.1.4 Policy (Strategy) Space
�iA is a domain-levelpolicy (or strategy, in the original team

theory specification) to map an agent’s belief state to an action. In
the original formalism, the agent’s beliefs correspond directly to its
observations (i.e.,�iA : 
i ! A).

Extension to Richer Belief State Space:B. We gener-
alize the set of possible strategies to capture the more complex
mental states of the agents. Each agent,i 2 �, forms a belief
state,bti 2 Bi, based on its observations seen through timet,
whereBi circumscribes the set of possible belief states for the
agent. Thus, we define the set of possible domain-level policies
as mappings from belief states to actions,�iA : Bi ! A. We de-
fine the set of possible combined belief states over all agents to be
B �

Q
i2�Bi. The corresponding random variable,bt, represents

the agents’ combined belief state at timet. We elaborate on differ-
ent types of belief states and the mapping of observations to belief
states (i.e., thestate estimator function) in Section2.2.1.

2.1.5 Reward Function:R
A common reward function is central to the notion of teamwork

in a MTDP:R : S �A! R. This function represents the team’s
joint preferences over states and the cost of domain-level actions.

2.2 Extension for Explicit Communication: �
We make an explicit separation between domain-level actions

(A) and communicative actions. Thus, we extend our initial MTDP
model to be acommunicative multiagent team decision problem
(COM-MTDP), that we define as a tuple,hS;A;�; P;
;O;B; Ri,
with a new component,�, and an extended reward function,R

2.2.1 Communication:�
f�igi2� is a set of possible messages for each agent, implic-

itly defining a set of combined communications,� �
Q
i2� �i.

An agent,i, may communicate messagex 2 �i to its teammates,
who interpret the communication by updating their belief states
in response. Thus, the agents now update their belief states at
two distinct points within each decision epoch: once upon receiv-
ing observation
ti (producing thepre-communicationbelief state
bti��), and again upon receiving the other agents’ messages (pro-
ducing thepost-communicationbelief statebti��). The distinc-
tion allows us to differentiate between the belief state used by the
agents in selecting their communication actions and the more “up-
to-date” belief state used in selecting their domain-level actions.
We also distinguish between the separatestate-estimatorfunctions
used in each update phase:b0i = SE0

i (), b
t
i�� = SEi��(b

t�1
i�� ;


t
i),

bti�� = SEi��(b
t
i��;�

t), whereSEi�� : Bi � 
i ! Bi is
the pre-communication state estimator for agenti, andSEi�� :
Bi ��! Bi is the post-communication state estimator for agent
i. The initial state estimator,SE0

i : ; ! Bi, specifies the agent’s



prior beliefs, before any observations are made. For each of these,
we also make the obvious definitions for the corresponding estima-
tors for the combined belief states:SE��, SE��, andSE0.

In this paper, we assume that the agents haveperfect recall, so
that the agents recall all of their observations and all communica-
tion from other agents. Thus, their belief states can represent the
histories of combined observations:Bi = 
�i ��

�. The agents re-
alize perfect recall through the following state estimator functions:

SE
0
i () = hi (1)

SEi��(




0
i ;�

0
�
; : : : ;




t�1i ;�

t�1
��
;
ti)

=




0
i ;�

0�
; : : : ;




t�1i ;�

t�1�
;



ti ; �

��
(2)

SEi��(




0
i ;�

0�
; : : : ;




t�1i ;�

t�1�
;



ti; �

��
;�

t)

=




0
i ;�

0
�
; : : : ;




ti;�

t
��

(3)

Note that, although we assume perfect, instantaneous communica-
tion here, we could potentially use the post-communication state
estimator to model any noise, temporal delays, cognitive burden,
etc. present in the communication channel.

We extend our definition of a policy of behavior to include a
coordination policy, �i� : Bi ! �i, analogous to Section2.1.4’s
domain-level policy. We define the joint policies,�� and�A, as
the combined policies across all agents in�.

2.2.2 Extended Reward Function:R
We extend the team’s reward function to also represent the cost

of communicative acts (e.g., communication channels may have as-
sociated cost):R : S � � � A ! R. We assume that the cost
of communication and of domain-level actions are independent of
each other, so we can decompose the reward function into two com-
ponents: a communication-level reward,R� : S � � ! R, and
a domain-level reward,RA : S � A ! R. The total reward is
the sum of the two component values:R(s;�;a) = R�(s;�) +
RA(s;a). We assume that communication has no inherent benefit
and may instead have some cost, so that for all states,s 2 S, and
messages,� 2 �, the reward is never positive:R�(s;�) � 0.
However, although we assign communication no explicit value, it
can have significant, implicit value through its effect on agents be-
lief states, and subsequently on future actions.

As with the observability function, we parameterize the commu-
nication costs associated with message transmissions:
General Communication: no assumptions about communication
Free Communication:R�(s;�) = 0 for any� 2 �, ands 2 S

No Communication:� = ;, i.e., noexplicitcommunication
The free-communicationcase appears in the literature, when re-

searchers wish to focus on issues other than communication cost.
Although, real-world domains rarely exhibit such ideal conditions,
we may be able to model some domains as having approximately
free communication to a sufficient degree. In addition, analyzing
this extreme case gives us some understanding of the benefit of
communication, even if the results do not apply across all domains.
We also identify theno-communicationcase because such decision
problems have been of interest to researchers as well [4]. Of course,
even if� = ;, it is possible that there are domain-level actions in
A that haveimplicit communicative value by acting as signals that
convey information to the other agents. However, we still label
such agent teams as havingno communicationfor the purposes of
the work here, since many of our results exploit anexplicit separa-
tion between domain- and communication-level actions.

2.3 Model Illustration
We can view the evolving state as a Markov chain with separate

Model � O

DEC-POMDP no comm. collective partial observ.
POIPSG no comm. collective partial observ.
MMDP no comm. individual observability

Xuan-Lesser gen. comm. collective observability

Table 1: Existing models as COM-MTDP subsets.

stages for domain-level and coordination-level actions. In other
words, each agent team member,i 2 � begins in some initial state,
S0, with initial belief states,b0i = SE0

i (). Each agent receives
an observation
0

i drawn according to the probability distribution
O(S0; null;
0) (there are no actions yet). Then, each agent up-
dates its belief state,b0i�� = SEi��(b

0
i ;


0
i ).

Next, each agenti 2 � selects a message according to its co-
ordination policy,�0

i = �i�(b
0
i��), defining a combined commu-

nication,�0. Each agent interprets the communications of all of
the others by updating its belief state,b0i�� = SEi��(b

0
i��;�

0).
Each then selects an action according to its domain-level policy,
A0
i = �iA(b

0
i��), defining a combined actionA0. By the cen-

tral assumption of teamwork, all of the agents receive the same
joint reward,R0 = R(S0;�0;A0). The world then moves into
a new state,S1, according to the distribution,P (S0;A0). Again,
each agenti receives an observation
1

i drawn from
i according
to the distributionO(S1;A0;
1), and it updates its belief state,
b1i�� = SEi��(b

0
i��;


1
i ). The process continues, with agents

choosing communication- and domain-level actions, observing the
effects, and updating their beliefs. We can define thevalue, V , of
the policies,�A and��, as the expected reward received when ex-
ecuting those policies. Over a finite horizon,T , this value is equiv-
alent to the following:V T (�A;��) = E[

PT
t=0R

tj�A;��].

2.4 COM-MTDPs Subsume Existing Models
The COM-MTDP model subsumes many existing multiagent mod-

els, as presented in Table 1 (i.e., we can map any instance of these
models into a corresponding COM-MTDP). This generality en-
ables us to perform novel analyses of real-world teamwork do-
mains, as demonstrated by Section 4’s use of the COM-MTDP
model for analyzing the optimality of communication decisions.

With its model of observability and world dynamics, our COM-
MTDP model closely parallels thedecentralized partially observ-
able Markov decision process(DEC-POMDP) [1]. Following our
notational conventions, a DEC-POMDP is a tuple,hS;A; P;
;O;
Ri. There is no set of possible messages,�, so the DEC-POMDP
falls into the class of domains withno communication. The DEC-
POMDP observational model,O, is general enough to capturecol-
lectively partially observabledomains. Thepartially observable
IPSG (POIPSG) [9] is very similar to the DEC-POMDP model
(i.e., collectively partially observabledomains, withno commu-
nication). Like the DEC-POMDP, themultiagent Markov decision
process(MMDP) [2] hasno communication. However, the MMDP
is a multiagent extension to the completely observable MDP model,
so it assumes an environment that isindividually observable.

The COM-MTDP’s separation of communication from other ac-
tions is similar to previous work on multiagent decision models [16].
However, while the Xuan-Lesser model generalizes beyond indi-
vidually observable environments, it supports only a subset of col-
lectively observable environments. In particular, the Xuan-Lesser
framework cannot represent agents who receive local observations
of a common world state, where the observations of different agents
could potentially be interdependent.



3. COM-MTDP COMPLEXITY ANALYSIS
We can use the COM-MTDP model to prove some results about

the complexity of constructing optimal agent teams. The problem
facing these agents (or the designer of these agents) is how to con-
struct the joint policies,�� and�A, so as to maximize their joint
utility, as represented by the expected value,V T (�A;��).

THEOREM 1. The decision problem of whether there exist poli-
cies,�� and�A, for a given COM-MTDP, undergeneral com-
munication, that yield a total reward at leastK over some finite
horizonT is NEXP-complete ifj�j � 2 (i.e., more than one agent).

Proof: We can reduce a DEC-POMDP to a COM-MTDP with no
communication by copying all of the other model features from the
given DEC-POMDP. The decision problem for a DEC-POMDP is
known to be NEXP-complete [1].2

In the remainder of this section, we examine the effect of com-
munication on the complexity of constructing optimal team poli-
cies. We start by examining the case under the condition offree
communication, where we would expect the benefit of communi-
cation to be the greatest. To begin with, suppose that each agent
is capable of communicating its entire observation (i.e.,�i � 
i).
The following theorem tells us that the agents should then exploit
this capability and communicate their true observation, as long as
they incur no cost in doing so.

THEOREM 2. Under free communication, consider a team of
agents using a coordination policy:�i�(bti��) � 
ti. If the domain-
level policy�A maximizesV T (�A;��), then this combined pol-
icy is dominant over any other policies. In other words, for all
policies,�0A and�0�, V T (�A;��) � V T (�0A;�

0
�).

Proof: Suppose we have some other coordination policy,�0�, that
specifies something other than complete communication (e.g., keep-
ing quiet, lying). Suppose that there is some domain-level policy,
�0A, that allows the team to attain some expected reward,K, when
used in combination with�0�. Then, we can construct a domain-
level policy,�A, such that the team attains the same expected re-
ward,K, when used in conjunction with the complete communica-
tion policy,��, as defined in the statement of Theorem 2.

The coordination policy,�0�, produces a different set of belief
states (denotedb0ti�� andb0ti��) than those for�� (denotedbti��
andbti��). In particular, we use state estimator functions,SE0

i��

andSE0
i�� as defined in Equations 2 and 3 to generateb0

t
i�� and

b0
t
i��. Each belief state is a complete history of observation and

communication pairs for each agent. On the other hand, under the
complete communication of��, the state estimator functions of
Equations 2 and 3 reduce to:

SEi��(




0
; : : : ;


t�1
�
;
ti) =





0
; : : : ;


t�1
;
ti
�

(4)

SEi��(




0
; : : : ;


t�1
;
ti
�
;�

t) =




0
; : : : ;


t�1
;�

t
�

=




0
; : : : ;


t�1
;


t
�

(5)

Thus,�A is defined over a different set of belief states than�0A.
In order to determine an equivalent�A, we must first define a re-
cursive mapping,m, that translates the belief states defined by��
into those defined by�0�:

mi(b
t
i��) =mi(



b
t�1
i�� ;


t
�
) = mi(



b
t�1
i�� ;




ti;


t
��
)

=
D
mi(b

t�1
i��);

D

ti ;�

0t
EE

=

*
mi(b

t�1
i��);

*

ti;

Y
j2�

�0
t
j

++

=

*
mi(b

t�1
i��);

*

ti ;

Y
j2�

�
0
j�(SE

0
j��(mj(b

t�1
j��);


t
j))

++

(6)

Given this mapping, we then specify:�iA(bti��) = �0iA(mi(b
t
i��)).

Executing this domain-level policy, in conjunction with the coordi-
nation policy,��, results in the identical behavior as execution of
the alternate policies,�A0 and��0. Therefore, the team following
the policies,�A and�� will achieve the same expected value of
K, as under�A0 and��0. 2

Given this dominance of the complete-communication policy,
we can prove that the problem of constructing optimal teams is
simpler when communication is free.

THEOREM 3. The decision problem of determining whether there
exist policies,�� and�A, for a given COM-MTDP withfree com-
munication, that yield a total reward at leastK over some finite
horizonT is PSPACE-complete.

Proof: The detailed proof is in the appendix to this paper, available
athttp://www.isi.edu/teamcore/COM-MTDP .From The-
orem 2, we need to consider only the complete-communication pol-
icy, so that the agents will share their observations and form a co-
herent joint belief state. Therefore, we can show that the problem
is equivalent to the decision problem for a single-agent POMDP.2

THEOREM 4. The decision problem of determining whether there
exist policies,�� and�A, for a given COM-MTDP withfree com-
municationandcollective observability, that yield a total reward at
leastK over some finite horizonT is P-complete.

Proof: The proof follows that of Theorem 3, but with a reduction
to and from the MDP decision problem, rather than the POMDP.2

THEOREM 5. The decision problem of determining whether there
exist policies,�� and�A, for a given COM-MTDP withindividual
observability, that yield a total reward at leastK over some finite
horizonT (given integersK andT ) is P-complete.

Proof: The proof follows that of Theorem 4, except that we can
reduce the problem to and from an MDP regardless of what com-
munication policy the team uses.2

Thus, we have used the COM-MTDP framework to character-
ize the difficulty of problem domains in agent teamwork along the
dimensions of communication cost and observability. Table 2 sum-
marizes our results, which we can use in deciding where to concen-
trate our energies in attacking teamwork problems. The greatest
challenges lie in those domains with eithercollective observabil-
ity or partial observabilityand with nonzero communication cost.
Undercollective observabilityandpartial observability, teamwork
without communication is highly intractable, but, withfree commu-
nication, the complexity becomes on par with that of single-agent
planning problems. Furthermore, the results from Theorems 3 and
4 hold in any domain where the result from Theorem 2 holds (i.e.,
when complete communication is the dominant policy). Therefore,
while perfectly free communication may be rare, these results show
that investment in communication in teamwork can pay off with a
significant simplification of optimal teamwork. On the other hand,
when the world isindividually observable, communication makes
little difference in performance. It should be noted that even under
those conditions where the problem is P-complete, the complexity
of optimal teamwork is polynomial in the number of states of the
world, which may still be impractically high.

4. EVALUATING COORDINATION
Table 2 shows that providing optimal domain-level and coordi-

nation policies for teams is a difficult challenge. Many systems al-
leviate this difficulty by having domain experts provide the domain-
level plans [14]. Then, the problem for the agents reduces to gen-
erating the appropriate team coordination,��, to ensure that they



Individually Collectively Collectively
Observable Observable Partially Observ.

No Comm. P-complete NEXP-complete NEXP-complete
Gen. Comm. P-complete NEXP-complete NEXP-complete
Free Comm. P-complete P-complete PSPACE-complete

Table 2: Time complexity of COM-MTDPs.

properly execute the domain-level plans,�A. In this section, we
use our COM-MTDP framework to analyze joint intentions the-
ory [3], which provides a common basis for many existing ap-
proaches to team coordination. Section 4.1 models two particular
instantiations of joint intentions taken from the literature [7, 14] as
COM-MTDP coordination policies. Section 4.2 analyzes the con-
ditions under which these policies are optimal and provides a third
candidate policy that makes communication decisions that are lo-
cally optimal within the context of joint intentions. In addition to
providing the results for the particular coordination strategies inves-
tigated, this section also illustrates a general methodology by which
one can use our COM-MTDP framework to encode and evaluate
coordination strategies proposed by existing multiagent research.

4.1 Joint Intentions in a COM-MTDP
Joint-intention theory provides a prescriptive framework for mul-

tiagent coordination in a team setting. It does not make any claims
of optimality in its coordination, but it provides theoretical justifi-
cations for its prescriptions, grounded in the attainment of mutual
belief among the team members. We can use the COM-MTDP
framework to identify the domain properties under which attaining
mutual belief is optimal and to quantify precisely how suboptimal
the performance will be otherwise.

Joint intentions theory requires that team members jointly com-
mit to a joint persistent goal,G. It also requires that when any
team member privately believes thatG is achieved (or unachiev-
able or irrelevant), it must then attain mutual belief throughout the
team about this achievement (or unachievability or irrelevance). To
encode this prescription of joint intentions theory within our COM-
MTDP model, we first specify the joint goal,G, as a subset of
states,G � S, where the desired goal is achieved (or unachievable
or irrelevant). Presumably, such a prescription indicates that joint
intentions are not specifically intended forindividually observable
environments, since all of the agents would simultaneously observe
that St 2 G, thus attaining mutual belief immediately. Instead,
the joint-intention framework aims at domains with some degree
of unobservability. In such domains, the agents must signal the
other agents, either through communication or some informative
domain-level action, to attain mutual belief. However, we can also
assume that joint-intention theory does not focus on domains with
free communication, where Theorem 2 shows that we can simply
have the agents communicate everything, all the time, without the
need for more complex prescriptions.

The joint-intention framework does not specify a precise com-
munication policy for the attainment of mutual belief. One well-
known approach [7] applied joint intentions theory by having the
agents communicate the achievement of the joint goal,G, as soon
as they believeG to be true. To instantiate the behavior of Jennings’
agents within a COM-MTDP, we construct a communication pol-
icy, �J�, that specifies that an agent sends the special message,�G,
when it first believes thatG holds. Following joint intentions’ as-
sumption ofsincerity[12], we require that the agents never select
the special�G message in any belief state whereG is not believed
to be true with certainty. We can assume that all of the other agents

immediately accept the special message,�G, as true, so the team
attains mutual belief thatG is true immediately upon receiving the
message,�G. We can construct�J� in constant time.

The STEAM algorithm is another instantiation of joint inten-
tions that has had success in several real-world domains [14]. Un-
like Jennings’ instantiation, the STEAM teamwork model includes
decision-theoretic communication selectivity. A domain specifica-
tion includes two parameters for each joint commitment,G: � , the
probability of miscoordinated termination ofG; andCmt, the cost
of miscoordinated termination ofG. In this context, “miscoordi-
nated termination” means that some agents immediately observe
that the team has achievedG while the rest do not. STEAM’s do-
main specification also includes a third parameter,Cc, to represent
the cost of communication of a fact (e.g., the achievement ofG).
Using these parameters, the STEAM algorithm evaluates whether
the expected cost of miscoordination outweighs the cost of com-
munication. STEAM expresses this criterion as the following in-
equality: � � Cmt > Cc. We can define a communication policy,
�S� based on this criterion: if the inequality holds, then an agent
that has observed the achievement ofG will send the message,�G;
otherwise, it will not. We can construct�S� in constant time.

4.2 Locally Optimal Policy
Although the STEAM policy is more selective than Jennings’,

it remains unanswered whether it isoptimally selective, and re-
searchers continue to struggle with the question of when agents
should communicate [17]. The few reports of suboptimal (in partic-
ular, excessive) communication in STEAM were characterized as
an exceptional circumstance, but it is also possible that STEAM’s
optimal performance is the exception. We use the COM-MTDP
model to derive an analytical characterization of optimal commu-
nication here, while Section 5 provides an empirical one.

Both policies,�J� and�S� consider sending�G only when an
agent first believes thatG has been achieved. Once an agent has
the relevant belief, they make different choices, and we consider
here what the optimal decision is at this point. The domain is not
individually observable, so certain agents may be unaware of the
achievement ofG. When not sending the�G message, these un-
aware agents may unnecessarily continue performing actions in the
pursuit of achievingG. The performance of these extraneous ac-
tions could potentially incur costs and lead to a lower utility than
one would expect when sending the�G message.

The decision to send�G or not matters only if the team achieves
G and one agent comes to know this fact. We define the random
variable,KG, to be the earliest time at which an agent knows this
fact. We denote agentAG as the agent who knows of the achieve-
ment at timeKG. If AG = i, for some agent,i, andKG = t0, then
agenti has some pre-communication belief state,bi�� = �, that
indicates thatG has been achieved. To more precisely quantify the
difference between agenti sending the�G message at timeKG vs.
never sending it, we define the following value:

�T (t0; i; �) � E

"
T�t0X
t=0

R
t0+t

������t0i = �G; KG = t0; AG = i; b
t0
i�� = �

#

�E

"
T�t0X
t=0

R
t0+t

������t0i = null; KG = t0; AG = i; b
t0
i�� = �

#

(7)

We assume that, for all times other thanKG, the agents follow
some communication policy,��, that never specifies�G. Thus,
�T measures the difference in expected reward that hinges on agent
i’s specific decision to send or not send�G at timet0. Given this



definition, it is locally optimal for agenti to send the special mes-
sage,�G, at timet0, if and only if�T � 0.

We can use the COM-MTDP model to derive an operational ex-
pression of�T � 0. For simplicity, we define notational short-
hand for various sequences and combinations of values. We define
a partial sequence of random variables,X<t, to be the sequence of
random variables for all times beforet: X0, X1, : : : , Xt�1. We
make similar definitions for the other relational operators. The ex-
pression,(S)T , denotes the cross product over states of the world,QT

t=0 S, as distinguished from the time-indexed random variable,
ST , which denotes the value of the state at timeT . The notation,
s�t0 [t], specifies the element in slott within the vectors�t0 . To
simplify the conditioning event on the right-hand side of the two
expectations in Equation 7, we define� to represent the occur-
rence of a particular subsequence of world and agent belief states,
as follows:Pr(� (hti; tf i ; s;���)) � Pr(S�ti;�tf = s;

b��
�ti;�tf = ���

��KG = t0; AG = i; b
t0
i�� = �) . We define the

function, ���, to map a pre-communication belief state into the
post-communication belief state that arises from a communication
policy: ���(���;��) � SE��(���;��(���)).

THEOREM 6. If we assume that, upon achievement ofG, no
communication other than�G is possible, then the condition�T (t0,i,�)
� 0 holds if and only if:
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Proof: Seehttp://www.isi.edu/teamcore/COM-MTDP/ .2
Theorem 6 states, informally, that we prefer sending�G when-

ever the the cost of execution after achievingG outweighs the cost
of communication of the fact thatG has been achieved. More pre-
cisely, the outer summations on the left-hand side of the inequality
iterate over all possible past histories of world and belief states, pro-
ducing a probability distribution over the possible states the team
can be in at timet0. For each such state, the expression inside the
parentheses computes the difference in domain-level reward, over
all possiblefuture sequences of world and belief states, between
sending and not sending�G. Thus, the left-hand side captures our
intuition that, when not communicating, the team will incur a cost if
the agents other thani are unaware ofG’s achievement. The right-
hand side of the inequality is a summation of the cost of sending
the�G message over possible current states and belief states.

Underno communication, we cannot send�G. Underfree com-
munication, the right-hand side is 0, so the inequality is always true,

Individually Collectively Collectively
Observable Observable Partially Obs.

No Comm. 
(1) 
(1) 
(1)

Gen. Comm. 
(1) O((jSj � j
j)T ) O((jSj � j
j)T )
Free Comm. 
(1) 
(1) 
(1)

Table 3: Time complexity of locally optimal decision.

and we know to prefer sending�G. Under no assumptions about
communication, the determination is more complicated. When the
domain isindividually observable, the left-hand side becomes 0,
becauseall of the agents know thatG has been achieved (and thus
there is no difference in execution when sending�G). Therefore,
the inequality is always false (unless underfree communication),
and we prefer not sending�G. When the environment is not in-
dividually observable and communication is available but not free,
then, to be locally optimal at timet0, agentimust evaluate Inequal-
ity 8 in its full complexity. Since the inequality sums rewards over
all possible sequences of states and observations, the time complex-
ity of the corresponding algorithm isO((jSj � j
j)T ). While this
complexity is unacceptable for most real-world problems, it still
presents a considerable savings of a factor ofO(2T ) over search-
ing the entire policy space for the globally optimal policy, where
agentAG could potentially send�G at times other thanKG. Ta-
ble 3 provides a table of the complexity required to determine the
locally optimal policy under the various domain properties.

We can now show that although Theorem 6’s algorithm for lo-
cally optimal communication provides a significant computational
savings over finding the global optimum, it still outperforms exist-
ing teamwork models, as exemplified by our�J� and�S� policies.
First, we can use the criterion of Theorem 6 to evaluate the optimal-
ity of the policy,�J�. If �T (t0; i; �) � 0 for all possible timest0,
agentsi, and belief states� that are consistent with the achievement
of the goalG, then the locally optimal policy willalwaysspecify
sending�G. In other words,�J� will be identical to the locally op-
timal policy. However, if the inequality of Theorem 6 iseverfalse,
then�J� is not even locally, let alone globally, optimal.

Second, we can also use Theorem 6 to evaluate STEAM by view-
ing STEAM’s inequality,� � Cmt > Cc, as a crude approximation
of Inequality 8. In fact, there is a clear correspondence between
the terms in the two inequalities. The left-hand side of Inequal-
ity 8 computes an exact expected cost of miscoordination. How-
ever, unlike STEAM’s monolithic� parameter, the optimal crite-
rion evaluates a complete probability distribution over all possi-
ble states of miscoordination by considering all possible past se-
quences consistent with the agent’s current beliefs. Likewise, un-
like STEAM’s monolithicCmt parameter, the optimal criterion
looks ahead over all possible future sequences of states to deter-
mine the true expected cost of miscoordination. Furthermore, we
can view STEAM’s parameter,Cc, as an approximation of the com-
munication cost computed by the right-hand side of Inequality 8.
Again, STEAM uses a single parameter, while the optimal crite-
rion computes an expected cost over all possible states of the world.
On the other hand, the optimal criterion derived with the COM-
MTDP model provides a justification for the overall structure be-
hind STEAM’s approximate criterion. Furthermore, STEAM’s em-
phasis on on-line computation makes the computational complexity
of Inequality 8 (as presented in Table 3) unacceptable), so the ap-
proximation error may be acceptable given the gains in efficiency.
For a specific domain, we can use empirical evaluation (as demon-
strated in the next section) to quantify the error and efficiency to
precisely judge this tradeoff.



5. EMPIRICAL POLICY EVALUATION
In addition to providing these analytical results over general classes

of problem domains, the COM-MTDP framework also supports the
analysis ofspecificdomains. Given a particular problem domain,
we can construct an optimal coordination policy or, if the complex-
ity of computing an optimal policy is prohibitive, we can instead
evaluate and compare candidate approximate policies. To provide a
reusable tool for such evaluations, we have implemented the COM-
MTDP model as a Python class with domain-independent methods
for the evaluation of arbitrary policies and for the generation of
both locally optimal policies using Theorem 6 and globally opti-
mal policies through brute-force search of the policy space.

This section presents results of a COM-MTDP analysis of an ex-
ample domain involving agent-piloted helicopters, where we iso-
late a single decision, but vary the cost of communication and de-
gree of observability to generate a space of distinct domains with
different implications for the agents’ performance. By evaluating
communication policies over various configurations of this partic-
ular testbed domain, we demonstrate a methodology by which one
can use the COM-MTDP framework to modelanyproblem domain
and to evaluate candidate coordination policies for it.

Consider two helicopters that must fly across enemy territory to
their destination. The first, piloted by agentT , is a transport vehi-
cle, and the second, piloted by agentE, is an escort vehicle. An
enemy radar unit is along their path, but neither agent knows the
location a priori.E can destroy the radar unit upon encountering it,
butT cannot. Given its superior firepower,E does not worry about
detection; therefore, it will fly at its normal speed and altitude.T ,
on the other hand, must escape radar detection by traveling at a very
low altitude (nap-of-the-earthflight) and at a lower speed than at
its typical, higher altitude. OnceE has destroyed the radar, it is
then safe forT to fly at its normal altitude and speed.

The two agents form a top-level joint commitment,GD, to reach
their destination. There is no reason for the agents to communicate
the achievement of this goal. However, in the service of their top-
level goal,GD, the two agents also adopt a joint commitment,GR,
of destroying the radar unit. We consider here the problem facingE

with respect to communicating the achievement of goal,GR. If E
communicates the achievement ofGR, thenT knows that it is safe
to fly at its normal altitude (thus reaching the destination sooner). If
E doesnotcommunicate the achievement ofGR, there is still some
chance thatT will observe the event anyway. IfT does not observe
the achievement ofGR, then it must fly nap-of-the-earth the whole
distance, and the team receives a lower reward because of the later
arrival. Therefore,E must weigh the increase in expected reward
against the cost of communication.

In the COM-MTDP model of this scenario, the world state is the
position ofT ,E, and the enemy radar. The enemy is at a randomly
selected position somewhere in between the agents’ initial position
and their destination.T has no possible communication actions,
but it can choose between two domain-level actions: flying nap-of-
the-earth and flying at its normal speed and altitude.E has two
domain-level actions: flying at its normal speed and altitude, or
destroying the radar.E also has the option of communicating the
special message,�GR

, indicating that the radar has been destroyed.
If E arrives at the radar, then it observes its presence with cer-

tainty and destroys it, achievingGR. The likelihood ofT ’s ob-
serving the radar’s destruction is a function of its distance from the
radar. We can vary this function’sobservabilityparameter within
the range[0; 1] to generate distinct domain configurations (0 means
thatT will never observe the radar’s destruction; 1 meansT will al-
ways observe it). If the observability is 1, then they achieve mutual
belief of the achievement ofGR as soon as it occurs. However, for

Figure 1: Suboptimality of approximate policies.

any observability less than 1, there is a chance that the agents will
not achieve mutual belief simply by common observation. The he-
licopters receive a fixed reward for each time step spent at their des-
tination. Thus, for a fixed time horizon, the earlier the helicopters
reach there, the greater the team’s reward. Since flying nap-of-the-
earth is slower than normal speed,T will switch to its normal flying
as soon as it either observes thatGR has been achieved orE sends
the message,�GR

. Sending the message is not free, so we impose
a variable communication cost, also within the range[0; 1].

We constructed COM-MTDP models of this scenario for each
combination of observability and communication cost within the
range[0; 1] at 0.1 increments. For each combination, we applied
the Jennings and STEAM policies, as well as a completely silent
policy. For this domain, the policy,�J�, dictates thatE always
communicate�GR

upon destroying the radar. For STEAM, we fix
the cost of miscoordination,Cmt, but vary the� andCc parameters
with the observability and communication cost parameters, respec-
tively. Following the published STEAM algorithm [14],E sends
message�GR

if and only if STEAM’s inequality� � Cmt > Cc,
holds. We also constructed locally and globally optimal policies.

Figure 1 plots how much utility the team can expect to lose by
following the Jennings, silent, and STEAM policies instead of the
locally optimal communication policy (thus, higher values mean
worseperformance). We can immediately see that the Jennings
and silent policies are significantly suboptimal for many possible
domain configurations. For example, not surprisingly, the surface
for the policy,�J�, peaks (i.e., it does most poorly) when the com-
munication cost is high and when the observability is high, while
the silent policy does poorly under exactly the opposite conditions.

Figure 1 shows the expected value lost by following the STEAM
policy. We can view STEAM as trying to intelligently interpolate
between the Jennings and silent policies based on the particular do-
main properties. In fact, we see two thresholds, one along each
dimension, at which STEAM switches between following the Jen-
nings and silent policies, and its suboptimality is highest at these
thresholds. Thus, its performance generally follows the better of
those two fixed policies, so its maximum suboptimality (0.587)
is significantly lower than that of the silent (0.700) and Jennings’
(1.000) policies. Furthermore, STEAM outperforms the two poli-
cies on average, across the space of domain configurations, as evi-
denced by its mean suboptimality of 0.063, which is less than half
of the silent policy’s mean of 0.160 and the Jennings’ policy’s mean
of 0.161. Thus, we have been able to quantify the savings provided
by STEAM over less selective policies within this example domain.

However, within a given domain configuration, STEAM must
either always or never communicate, and this inflexibility leads
to significant suboptimality. We see STEAM’s limitations more
clearly in Figure 2, which plots the expected number of messages
sent using STEAM vs. the locally optimal policy, at an observabil-
ity of 0.3. STEAM’s expected number of messages is either 0 or
1, so STEAM can make at most two (instantaneous) transitions be-
tween them: one threshold value each along the observability and
communication cost dimensions. Figure 2 shows that the optimal
policy can be more flexible than STEAM by specifying communi-



Figure 2: Expected num-
ber of messages.

cation contingent onE’s beliefs
beyond simply the achievement
of GR. For example, even if the
communication cost is high, it is
still worth sending message�GR

in states whereT is still very
far from the destination. Thus,
the surface for the optimal policy,
makes a more gradual transition
from always communicating to never communicating. We can thus
view STEAM’s surface as a crude approximation to the optimal
surface, subject to STEAM’s fewer degrees of freedom.

We can also use Figure 2 to identify the domain conditions un-
der which joint-intentions theory’s prescription of attaining mutual
belief is or is not optimal. In particular, for any domain where the
observability is less than 1, the agents will not attain mutual be-
lief without communication. In Figure 2, there aremanydomain
configurations where the locally optimal policy is expected to send
fewer than 1�GR

message. Each of these configurations repre-
sents a domain where the locally optimal policy will not attain mu-
tual belief in at least one case. Therefore, attaining mutual belief is
suboptimal in those configurations!

These experiments illustrate that STEAM, despite its decision-
theoretic communication selectivity, may communicate suboptimally
under a significant class of domain configurations. Previous work
on STEAM-based, real-world, agent-team implementations infor-
mally noted suboptimality in an isolated configuration within a
more realistic helicopter transport domain [14]. Unfortunately, this
previous work treated that suboptimality (where the agents com-
municated more than necessary) as an isolated aberration, so there
was no investigation of the degree of such suboptimality, nor of the
conditions under which such suboptimality may occur in practice.
We re-created these conditions within the experimental testbed of
this section by increasing the STEAM parameter,Cmt, represent-
ing the cost of miscoordination. The resulting experiments (graphs
omitted for space) illustrated that the observed suboptimality was
not an isolated phenomenon, but, in fact, that STEAM has a general
propensity towards extraneous communication in situations involv-
ing low observability (i.e., low likelihood of mutual belief) and high
communication costs. This result matches the situation where the
“aberration” occurred in the more realistic domain.

The locally optimal policy is itself suboptimal with respect to the
globally optimal policy. Under domain configurations with high
observability, the globally optimal policy has the escort wait an
additional time step after destroying the radar and then commu-
nicate only if the transport continues flying nap-of-the-earth. This
leads to a slight advantage in expected utility over the locally opti-
mal policy, with a mean difference of 0.011, standard deviation of
0.027, and maximum of 0.120 (full graph omitted for space). On
the other hand, our domain-independent code never requires more
than 5 seconds to compute the locally optimal policy in this testbed,
while generating the globally optimal policy required more than
150 minutes. Thus, through Theorem 6, we have used the COM-
MTDP model to construct a communication policy that, for this
testbed domain, performs almost optimally and outperforms exist-
ing teamwork theories, with a substantial computational savings
over finding the globally optimal policy.

6. CONCLUSION
The COM-MTDP model is a novel framework that complements

existing teamwork research by providing the previously lacking ca-
pability to analyze the optimality and complexity of team decisions.
While grounded within economic team theory, the COM-MTDP’s

extensions to include communication and dynamism allow it to
subsume many existing multiagent models. We were able to exploit
the COM-MTDP’s ability to represent broad classes of multiagent
team domains to derive complexity results for optimal agent team-
work under arbitrary problem domains. We also used the model to
identify domain properties that can simplify that complexity.

The COM-MTDP framework provides a general methodology
for analysis across both general domain subclasses and specific do-
main instantiations. As demonstrated in Section 4, we can express
important existing teamwork theories within a COM-MTDP frame-
work and derive broadly applicable theoretical results about their
optimality. Section 5 demonstrates our methodology for the anal-
ysis of a specific domain. By encoding a teamwork problem as
a COM-MTDP, we can use the leverage of our general-purpose
software tools (available atwww.isi.edu/teamcore/COM-
MTDP) to evaluate the optimality of coordination based on poten-
tially any other existing teamwork theory, as demonstrated in this
paper using two leading teamwork theories: joint intentions and
STEAM. In combining both theory and practice, we can use the
theoretical results derived using the COM-MTDP as the basis for
new algorithms to extend our software tools, just as we did in trans-
lating Theorem 6 from Section 4 into an implemented algorithm
for locally optimal communication in Section 5. We expect that
the COM-MTDP framework, the theorems and complexity results,
and the reusable software will form a basis for further analysis of
teamwork, both by ourselves and others in the field.
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