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ABSTRACT 
 

A manned Mars habitat will require a significant amount of infrastructure that can be deployed using robotic precursor missions.  
This infrastructure deployment will probably include the use of multiple, heterogeneous, mobile robotic platforms.  Delays due to 
the long communication path to Mars limit the amount of teleoperation that is possible.  A control architecture called 
CAMPOUT (Control Architecture for Multirobot Planetary Outposts) is currently under development at the Jet Propulsion Lab 
in Pasadena, CA.  It is a three layer behavior-based system  that incorporates the low level control routines currently used on the 
JPL SRR/FIDO/LEMUR rovers. The middle behavior layer uses either the BISMARC (Biologically Inspired System for Map-
based Autonomous Rover Control) or MOBC (Multi-Objective Behavior Control) action selection mechanisms.  CAMPOUT 
includes the necessary group behaviors and communication mechanisms for coordinated/cooperative control of heterogeneous 
robotic platforms.  We report the results of some ongoing work at the Jet Propulsion Lab in Pasadena, CA on the transport phase 
of a photovoltaic (PV) tent deployment mission.   
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1. INTRODUCTION 
 
A control architecture provides a structured approach to design, specification, and hopefully implementation and validation of a 
complex control system and its subsystems.  It usually defines a paradigm or philosophy for structuring the problem and imposes 
constraints that guide the way the control problem can be solved. We define a control architecture as the abstract design of a 
class of agents: the set of structural components in which perception, reasoning, and action occur; the specific functionality and 
interface of each component, and the interconnection topology between components.  This definition identifies a number of 
architectural issues (such as perception action components, interfaces and topology between components etc.) that are useful in 
specifying and describing a particular architecture. 
 
Robot control architectures can be broadly characterized as deliberative (based on planning), reactive (direct link between 
sensing and actuation), or a hybrid blend of the two.  This hierarchy is shown in Figure 1 with some representative examples of 
each type.  CAMPOUT is a distributed, hybrid, behavior-based system in that it couples reactive and local deliberative behaviors 
without the need for a centralized planner.  The control architectures that are closest to CAMPOUT in design are ALLIANCE 
[Parker (1994)], DAMN,13 BISMARC,4 and MOBC.10 We have previously examined the use of behavior-based control for 
autonomous robotic outposts.5,6 
 
There are numerous paradigms that can be followed for a control architecture design.  CAMPOUT is characterized as hybrid 
within the realm of the behavior-based approach.  Hybrid architectures provide the most general type of control due to combining 
low-level reactive components with high-level deliberative planners. Due to its generality, significant amount of demonstrated 
success, and available expertise within our group we select to realize CAMPOUT using the behavior-based paradigm.  The 
behavior-based approach is mostly suited for the low-level reactive control aspects of an architecture. However, having planning 
behaviors is gaining more and more acceptance within behavior-based systems and will be included in the next generation of 
CAMPOUT. The approach used in CAMPOUT is highly distributed.  First, behaviors within a single robot operate in a 
distributed manner thus allowing for concurrent and/or parallel execution of several tasks.  Second, each robot can operate on its 



 

  

own, independently of other robots, based on its faculty of perception and action facilities.  Cooperation between multiple robots 
occurs through active collaboration and with no centralized planning or decision-making component to dictate explicit 
commands. 

The advantages of distributed control and coordination are: efficient use of system resources, parallel execution of multiple tasks, 
reliability and fault-tolerance to failure of individual components (including failure of single robots).   
 
The following list constitutes the main characteristics that CAMPOUT includes as guidelines for design: 
 
1. Cognizant of failure:  components are designed so that they can determine success or failure of their task 
2. Fault tolerant: no single point of failure, graceful degradation 
3. Distribute control: to avoid single-point-of-failure and support scalability  
4. Scalable: easily scale to more complex problems and larger number of components, robots etc. 
5. Ease of integration: robotics is a highly multidisciplinary field, and requires efficient integration of many components (e.g., 

perception, mapping, localization, control, learning, etc.) that use different techniques, frameworks, and paradigms (e.g., 
classical control theory, AI planners, estimation theory, data fusion, computer vision, utility theory, decision theory, fuzzy 
logic, multiple objective decision making etc.).  The architecture should provide the infrastructure, tools, and guidelines that 
allow the efficient use and integration of these components for meaningful interaction and operation. 

6. Rational decision making: Satisficing vs. Optimal decisions, being realistic about resource limitations, multiple objective 
nature of the problem 

7. Explicit knowledge: knowledge, formal, heuristic or otherwise, should have explicit representation to support easy 
maintenance, documentation, etc. 

8. Uncertainty handling: its components should be able to operate reliably in face of uncertain and/or incomplete information, 
noisy sensors, and imperfect actuators 

9. Adaptivity: stable and insensitive to perturbations in environment 
10. Learning. The architecture should allow incorporation of learning capabilities. Learning enables the system and its 

capabilities to improve and evolve.  
11. Reactive and deliberative: provide tight perception-action feedback loops to react promptly to unexpected situations and 

plan ahead of time for efficient use of resources.  Plans should guide not control reactive components.   

Plannin
(Deliberative) 

Deliberative 
reactio

Coordinate
deliberation & 

Reactive 
deliberatio

Hybrid Reactive 

Robot Control Schemes 

 Representative examples 
•Stanford Cart, Moravec 1977  
•NASREM, NASA/NIST, Albus et 
al 1987 
•VINAV, Christensen et al 1992 

Representative examples

• Subsumption Arch, MIT, Brooks 
`86 
• Motor schemas, GeorgiaTech, 
Arkin `87  
•Activation nets, MIT, Maes `89 
• Dynamical sys., Schoner `92 
• MOBC, Pirjanian `97 

Representative examples
•RAPs, Firby `87  
•AuRA, GeorgiaTech, Arkin `87 
•Atlantis, JPL/NASA, Gat `92 
•Saphira, SRI, Saffiotti et al, `93 
•TCA, CMU, Simmons `94 
•AMOR, Pirjanian et al. `94 
•ALLIANCE, Parker `94 
•DAMN, CMU, Rosenblatt & Payton 
96 
•3T, NASA, Kortenkamp et al `96 
 

Figure 1.  Robot control scheme hierarchy with representative examples. 



 

  

12. Formal framework: to enable the design of systems according to requirements, specifications, etc. 
13. Framework, tools, guideline, methods: for supporting the design and implementation of all the above and evaluation of 

same.  Given system task, mission requirements, resources, limitations etc. the framework should guide one to efficiently 
design, implement, and evaluate a system. 

14. Small overhead:  many “general architectures” introduce a prohibitive amount of overhead cost to a system.  A key feature 
of the CAMPOUT architecture implementation is low overhead.  This implementation may not be as general as desired but 
will be efficient.  In particular, an architecture should find the right balance between generality and efficiency. 

The next section discusses the overall organization of CAMPOUT, followed by implementation details and some preliminary 
experimental studies. 
 

2. CAMPOUT 
 

A high-level overview of CAMPOUT is shown in Figure 2.  It is basically a three-layer architecture, which may be a derived 
from the types of environments in which planetary rover systems are expected to operate and survive.3 A long duration mission 
such as a robot outpost on a planetary surface has a wide range of needs from the low level reactive components for local 
navigation and manipulator control to the higher level planning for large-scale construction tasks.  The three-layer architecture 
spans these requirements through drivers directly tied to the actuators receiving commands from a behavior-based control 
hierarchy that is driven by a higher task planning layer. 

 

Figure 2. A logical block diagram of the Control Architecture for Multi-Robot Planetary Outposts, its components, interaction 
between components, interfaces, and tools. 

The middle layer in CAMPOUT has a number of behaviors that are specifically tailored for not only cooperative but also tightly 
coordinated tasks. 
 



 

  

2.1 Primitive Behavior Library 
The main architectural substrate in CAMPOUT consists of a behavior producing module (commonly known as a behavior).  A 
behavior is a perception to action mapping module that based on selective sensory information produces (recommendations for) 
actions in order to maintain or achieve a given, well specified task objective.  For example, for safe navigation the system will 
often require a minimum of two behaviors: AvoidObstacle for safety and GotoTarget for navigation.  Note that the 
AvoidObstacle behavior is only concerned with obstacle avoidance and obstacle avoidance only.  Similarly, the GotoTarget 
behavior is only concerned with controlling the robot towards a target and is not concerned with obstacle avoidance at all, nor is 
it aware of the existence of the obstacle avoidance behavior.  This limited-responsibility approach enables a remarkably efficient 
implementation of the behaviors. However, the behaviors can have conflicting objectives and hence an efficient behavior 
coordination mechanism (BCM) is required to resolve such conflicts and produce a useful combination of the behaviors into 
higher level behaviors, also know as composite behaviors (c-behaviors). 
 
2.2 Composite Behaviors 
Composite behaviors are constructed by careful combination of lower-level behaviors.  At the lowest level of such a behavioral 
hierarchy we find the primitive behaviors (p-behaviors), which constitute a library of core capabilities for a robot.  By 
coordinating the activities of the primitive behaviors we can construct a composite behavior that enhances the skill set of the 
robot.  Composite behaviors can however also be constructed from other (lower-level) composite behaviors or a mix of primitive 
and composite behaviors. For instance a composite behavior, SafeNavigation can be constructed from the primitive behaviors 
AvoidObstacle and GotoTarget by a simple fixed priority-based coordination of the two that enables the AvoidObstacle behavior 
when the robot is close to obstacles and the GotoTarget behavior when the path of the robot is obstacle free.   
 
2.3 Behavior Coordination Mechanisms 
A central issue in many architectures is how to integrate its components in a well-understood way.  Behavior coordination 
mechanisms (BCMs) provide tools for integration of behaviors to achieve higher-level goals. Priority-based behavior 
coordination represents a very primitive (but some times useful) type of coordination.  CAMPOUT is an open architecture in the 
sense that any other behavior coordination mechanism can easily be integrated.  Basically a BCM will be implemented as an 
operator (analogous to the logical AND or OR operators) and used to compose behaviors.   These operators will also be provided 
in the Behavior Composition Language, in one form or another, to allow a high-level description language for behavior 
composition.  We have done a detailed and extensive study of behavior coordination mechanisms.11 
 
2.4 Communication Behaviors 
The primitive and the composite behaviors constitute the skill set that enable a robot to interact with and accomplish tasks in its 
environment.  The skill set of the robot can be augmented by adding new primitive and/or composite behaviors.  For cooperation 
and interaction with each other the robots are required to communicate thus they must have a set of basic behaviors for 
communication.  Communication is not necessarily limited to explicit exchange of information via some soft of a data link but 
can also include visual, auditory, tactile, and other types of communication.  For instance a robot can determine the relative 
position of another robot using cameras.  Alternatively, the other robot could explicitly transmit its position within a global 
coordinate system.  Each approach might render appropriate for a specific task, system, or environment.  CAMPOUT provides 
the methodology and infrastructure that support all such approaches. 
 
2.5 Shadow Behaviors 
The communication behaviors provide the information necessary to facilitate cooperation between a team of robots.  This 
information is encoded in form of shadow behaviors (s-behaviors) that basically represent a remote behavior, including state 
information etc, running on a separate robot.  Thus s-behaviors enable the behaviors to span a network of distributed behaviors 
over the robots.  This will allow the behaviors to have access to remote sensing and actuation capabilities.  Thus s-behavior need 
not be treated any different than the robot’s own p-behaviors and c-behaviors.  
 
2.6 Cooperation/Coordination Behaviors 
In order to cooperate and collectively contribute to a common task the robots will have to cooperate and coordinate their 
activities.  S-behaviors facilitate the composition of high-level behaviors that can achieve such coordination.  As mentioned 
earlier, s-behaviors need not be treated any different than p- or c-behaviors (indeed their interfaces are exactly the same) thus 
coordination among several robots can be achieved by coordination of the activities of (a subset of) s-behaviors and the robot’s 
behaviors using suitable behavior coordination mechanisms.   



 

  

 
3. SYSTEM IMPLEMENTATION 

 
In this section, we describe the current implementation of the CAMPOUT architectural components and infrastructure and 
showcase the use of its facilities and power of capabilities within the scope of a cooperative transport task.  The challenging task 
of coordinated transport, as we will see, is particularly interesting because it involves the full use of CAMPOUT’s facilities.  In 
its current implementation, CAMPOUT supports no high-level planning capabilities, although planning components could be 
incorporated into the system but there are no specific capabilities that provide the infrastructure to support such a development.  
The following section will hence focus on the middle layers (the behavior-based layers) of the architecture. 
 
3.1 CAMPOUT Architectural Components 
 
Currently, CAMPOUT provides the following facilities for behavior representation, behavior generation, behavior coordination, 
and communications infrastructure for distributed robot coordination: 
 

• Behavior representation: a set of abstract data types (known as objective functions) and related operations to describe 
the output of a general behavior as a multivalued preference. 

• Behavior prototyping toolkit: provides a set of tools for rapid-prototyping of primitive as well as composite behaviors, 
i.e., facilities that can be used to easily develop behaviors. 

• Behavior coordination mechanisms: that provide a repertoire of mechanisms that can be used to coordinate the 
activities of lower-level behaviors to form higher-level composite behaviors. 

• Communications infrastructure: provides a set of tools and functions for interconnecting a set of robots and/or 
behaviors for sharing resources (e.g., sensors or actuators), exchanging information (e.g., state, percepts), 
synchronization, rendezvous etc. 

 
3.1.1 Behavior representation 
 
In our architectural methodology we formalize a behavior, b, as a mapping, b: P × X →  [0; 1], that relates each percept p and 

action x pair to a preference value that reflects the action’s desirability.  The percept describes possible (processed or raw) sensory 
input and the N-dimensional action space is defined to be a finite set of alternative actions.  The described mapping assigns to 
each action x ∈  X a preference, where the most desired actions are assigned 1 and undesired actions are assigned 0, from that 
behaviors point of view.  Note that this definition of a behavior does not dictate how the mapping is to be implemented but 
provides a general recipe for a behavior with a well-defined interface (useful when composing behaviors regardless of their roles 
or positioning in a behavior hierarchy).  This representation does not exclude implementation using a look-up-table, a finite state 
machine, a neural network, an expert system, control laws (such as PID etc.), or any other approach for that matter.  Note also 
that this representation does not restrict us to reactive behaviors since it could have internal state.  In that sense, each behavior 
can be implemented using whichever approach is appropriate.   Finally, traditional, single-valued behaviors fall within this 
representation because, b: P →   X  can be represented by a multivalued output where all x are associated with 0 but the single x 
which is selected by the behavior.  In CAMPOUT this representation is implemented using an N-dimensional array, which will 
contain the desirability values recommended by a behavior. 
 
3.1.2 Behavior prototyping toolkit 
 
The general behavior representation used in CAMPOUT does not suggest or prohibit any particular style or approach of 
implementation, but it does however provide a set of tools for developing behaviors, currently using rule-based and state-
machine representations. CAMPOUT features a toolkit for synthesizing behaviors using fuzzy control.  In fuzzy behavior-based 
control, each behavior is synthesized by a rule-base controlled by an inference engine to produce a multivalued output.  E.g., an 
obstacle avoidance behavior can be encoded using to simple IF-THEN rules.  One rule recommends (expresses the desire) 
turning away from a close obstacle and the other suggests moving straight forward if the obstacle is at a safe distance.  Using 
standard fuzzy inference, e.g., max-prod in this example, the rules are combined into a multivalued output that encodes the 
(grade of) desirability of each action from the behavior's point of view. Finite state machines, have been shown to be very 
efficient for synthesizing behaviors with fixed action patterns and provide a formal approach to behavior encoding.1,8  This 
scheme of behavior development is used extensively in CAMPOUT. 



 

  

 
3.1.3 Behavior coordination mechanisms 
 
In order to compose higher-level behaviors, CAMPOUT provides a complementary set of coordination mechanisms that can be 
used for action sequencing, conflict resolution, priority-based behavior invocation, and context-dependant behavior invocation.  
Specifically, CAMPOUT provides behavior arbitration mechanisms including finite-state machines, and subsumption-style 
arbitration. Further, it provides command fusion mechanisms using multivalued logic and multiple objective decision making 
approaches.   
 
Behaviors that compete for the control of the robot must be coordinated to resolve potential conflicts.  Fuzzy behavior 
coordination is performed by combining the fuzzy outputs of the behaviors using an appropriate operator such as a triangular 
conorm (which corresponds to the fuzzy set union), e.g., the max operator. Then defuzzification (e.g., center of gravity, COG) is 
used to select a final crisp action ultimately used for control.14 This scheme should lead to the selection of an action that 
somehow represents the consensus among the behaviors and thus comprises the action that best satisfies the decision objectives 
that they encode.  However, in situations where there is conflict between the active behaviors, this approach leads to 
inappropriate results. One approach to dealing with conflicts is based on context-dependent blending,14 where context 
dependence is encoded using a number of fuzzy meta rules such as:  
 

IF obstacle is close THEN avoid collisions 
IF NOT (obstacle is close) THEN follow target 

 
If the robot is close to an obstacle, then the contribution from the collision avoidance will be higher than the contribution from 
target following.  This corresponds to weighted decision making, where the weight values are determined by the truth values of 
the rule antecedents and is used to scale the behaviors' fuzzy outputs accordingly.  Another approach, used in the Saphira 
architecture,7 is to resolve conflicts by allowing higher priority behaviors to suppress/dominate behaviors with lower priorities. 
These approaches provide partial solutions to resolving conflict between behaviors in specific situations and systems. 
 
Defuzzification can also produce inappropriate results since it selects an action that does not have support from any of the 
behaviors.15  In summary, due to the unclear semantics and unpredictable characteristics of fuzzy behavior coordination, 
alternative approaches should be considered.  One alternative approach, that avoids the common pitfalls of fuzzy behavior 
coordination, is multiple objective behavior coordination (MOBC) which fits well into the framework of fuzzy behavior 
coordination and can easily replace standard fuzzy inference and defuzzification techniques. 
 
3.1.4 Communication infrastructure  
 

In order to facilitate a group of robots to coordinate their activities and cooperate towards the accomplishment of a common task 
they may be required to communicate to share resources (e.g., sensors or actuators), exchange information (e.g., state, percepts), 
synchronize their activities etc.  CAMPOUT provides a broad set of facilities to foster such collaborative effort by offering a 
communications infrastructure.  The current implementation of communications in CAMPOUT are provided using UNIX-style 
sockets.  Another approach would be to base the communications on some general-purpose message-passing package such as 
MPI. However, such generality comes at significant overhead cost in efficiency which we intend to avoid for the types of 
applications that CAMPOUT is designed for.  The communications facilities consist of the following core functions: 

 

• Synchronization: two main functions Signal (destination, sig) and Wait (source, sig) can be used to send and wait for a 
signal to and from a given robot.  This pair constitutes the facilities for synchronizing the activities of robots and/or 
behaviors.   

• Data exchange: SendEvent (destination, event) and GetEvent (source, event) can be used to send and receive an event 
structure to and from a particular robot.  The event structure can contain arbitrary data packages as contracted between 
the sender (source) and receiver (destination).  For instance, it can be used to transmit a percept or raw sensor data from 
one robot to the other etc.  E.g., robot 2 will be able to have a behavior that is being fed by the position of robot 1 (to, 
e.g., follow it). 



 

  

• Behavior exchange:  SendObjective (destination, objective) and GetObjective (source, objective) can be used to send 
and receive objective functions (multivalued behavior outputs) to and from a robot.  Using these set of functions one can 
form a network of behaviors across a distributed group of robots.  

 

These core set of communications facilities (and other convenience functions) support distributed sharing of resources such as 
sensors and state as well as provide the necessary tools to form a network of behaviors spanning a group of physically distributed 
(but informationally connected) robots.  State of one robot (e.g., sensor readings or output from a behavior) can be used to 
affect/determine the behavior of another robot.  All these facilities are showcased in the following coordinated transport task. 

 

4. EXPERIMENTAL STUDIES 
 
We have selected a photovoltaic (PV) tent deployment scenario as our experimental testbed for CAMPOUT.  A study was done 
on the viability of a PV tent array for the power needs of a human habitat on Mars.2 Each PV tent is capable of generating 4 kW 
under Martian conditions, so an array of 25 tents will produce enough to meet the requirement of 100 kW.  The individual 

containers of the PV tent elements are 5 m in length, so it would be difficult for a single mobile platform to manipulate and 
transport to a deployment site.  A four step process for the deployment of a single PV tent by two rovers is shown in Figure 3. 
Our studies this year have concentrated on Step 2, the traverse to the deployment site.  We have retrofitted two of our Sample 
Return Rovers (SRR&SRR2K) with a gimbal mounted on a cross-brace between the shoulders.  The gimbal is not actuated but is 

1. Unload container from Container 
Storage Unit (CSU) 

2. Traverse to deployment site 

3. Position and open container 4. Deploy PV tent 

Figure 2.  Four step process for deploying a PV container.  The storage container is 
5 m in length and is initially stored at a centralized cache site about 50-100 m from 
the deployment zone. 



 

  

fully instrumented with 3DOF force sensors and pots.  The gimbal arrangement and two of the coordinated transport formations 
are shown in Figure 4. 
 

We have developed a finite state machine (FSM) 
description of the transport phase to emulate the 
planning level in CAMPOUT, since our first year task 
is not developing a planner.  The four phase sequence 
for transport is shown in Figure 5.  The four phases 
are: clear the container storage unit and assume the 
column transport formation, traverse to the staging 
area, survey the deployment area for a clear site, and 
traverse to the deployment site and align the 
container.   
 

Figure 4.  Transport of an extended container by two rovers in the arroyo at JPL.  Left:  Rovers in a column (offset) 
transport formation; Middle: Closeup of instrumented gimbal on one of the rovers; Right: Rovers in a row (side-by-side) 
formation. 

Figure 5.  Four phase sequence for 
transport step in the PV tent 
deployment scenario.  See text for 
details of steps. 

Figure 6.  Assume Transport Formation and Coordinated Transport 
group behaviors used under CAMPOUT for the execution of the 
sequence shown in Figure 5. 



 

  

There are two main group behaviors used in CAMPOUT for control: Assume Transport Formation and Coordinated Transport. 
The Assume Transport Formation group behavior is used in Phases 1 and 4, and the Coordinated Transport group behavior is 
used in Phases 2 and 4.  These two behaviors are implemented under CAMPOUT using the behavior fusion framework described 
in Section 3.  They are shown in Figure 6, where the main group behavior is shown at the root of the hierarchy.  Key to 
coordinated transport is the notion of compliance by implicit communication through the shared container. The Comply group 
behavior is designed to minimize the amount of explicit communication and only uses point-to-point communication for syncing 
before movement.  We use a target finding algorithm based on color to localize the rovers for heading adjustments during the 
traverse step in the sequence.  The algorithm extracts the corner features of a target and returns the pose and orientation of the 
target relative to the rovers.  This algorithm is used in the Find Target group behavior, which then is fused with the Face Target 
group behavior in order to Maintain Heading.  
 
We are currently running trials in the arroyo at JPL in order to verify the repeatability, accuracy, and suitability of the 
CAMPOUT approach to the coordination of multiple rovers for transport of an extended container. 
 

5. DISCUSSION 
 
We have presented a control architecture called CAMPOUT for the system level coordination of multiple mobile robots.  The 
design is three-layer, with a behavior-based middle layer.  The behavior hierarchy is built on earlier work by Pirjanian.11,12 It 
uses a multiple objective decision making paradigm in order to select actions that are satisficing in the Pareto optimal sense.  
The lowest level in CAMPOUT is built using legacy device drivers from previous rover tasks such as SRR and FIDO.  During 
the next fiscal year we will concentrate on the development of the grasp and manipulate behaviors that are necessary for the first, 
third and fourth steps in the PV tent deployment scenario.  
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