
ODPOP: An Algorithm For Open/Distributed Constraint Optimization

Adrian Petcu and Boi Faltings ∗

{adrian.petcu, boi.faltings}@epfl.ch
Artificial Intelligence Laboratory (http://liawww.epfl.ch/)

Ecole Polytechnique F́ed́erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Abstract

We propose ODPOP, a new distributed algorithm for
open multiagent combinatorial optimizationthat feature un-
bounded domains (Faltings & Macho-Gonzalez 2005). The
ODPOP algorithm explores the same search space as the
dynamic programming algorithm DPOP (Petcu & Faltings
2005b) or ADOPT (Modiet al. 2005), but does so in an in-
cremental, best-first fashion suitable for open problems.
ODPOP has several advantages over DPOP. First, it uses mes-
sages whose size only grows linearly with the treewidth of the
problem. Second, by letting agents explore values in a best-
first order, it avoids incurring always the worst case complex-
ity as DPOP, and on average it saves a significant amount of
computation and information exchange.
To show the merits of our approach, we report on experi-
ments with practically sized distributed meeting scheduling
problems in a multiagent system.

Introduction
Constraint satisfaction and optimization is a powerful
paradigm for solving numerous tasks in distributed AI, like
planning, scheduling, resource allocation, etc. Many real
problems are naturally distributed among a set of agents,
each one holding its own subproblem. The agents have to
communicate with each other to find an optimal solution to
the overall problem (unknown to any one of them). In such
settings, centralized optimization algorithms are often un-
suitable because it may be unpractical or even impossible to
gather the whole problem into a single place. Distributed
Constraint Satisfaction (DisCSP) has been formalized by
Dechter (Collin, Dechter, & Katz 1991), Meisels (Solo-
torevsky, Gudes, & Meisels 1996) and Yokoo (Yokooet al.
1998) to address such problems.

Complete algorithms for distributed constraint optimiza-
tion fall in two main categories: search (see (Collin, Dechter,
& Katz 1991; Yokooet al. 1998; Silaghi, Sam-Haroud,
& Faltings 2000; Modiet al. 2005; Hamadi, Bessière, &
Quinqueton 1998)), and dynamic programming (see (Petcu
& Faltings 2005b; Kask, Dechter, & Larrosa 2005)).

∗This work has been funded by the Swiss National Science
Foundation under contract No. 200020-103421/1.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Search algorithms require linear memory and message
size, and the worst case complexity can sometimes be
avoided if effective pruning is possible. However, they pro-
duce an exponential number of small messages, which typi-
cally entails large networking overheads.

Dynamic programming algorithms have the important ad-
vantage that they produce fewer messages, therefore less
overhead. DPOP (Petcu & Faltings 2005b) for example re-
quires a linear number of messages. The disadvantage is that
the maximal message size and memory requirements grows
exponentially in the induced width of the constraint graph.
Furthermore, the worst case complexity is always incurred.

This paper presents ODPOP, which combines some ad-
vantages of both worlds: it does not always incur the worst
case complexity, it always uses linear size messages (as with
search), and typically generates few messages (as DPOP).

Although its worst case complexity is the same as for
DPOP, ODPOP typically exhibits significant savings in com-
putation and information exchange. This is because the
agents in ODPOP use a best-first order for value exploration,
and an optimality criterion that allows them to prove opti-
mality even without exploring all the values of their parents.

This makes ODPOP applicable also to open constraint op-
timization problems, where variables may have unbounded
domains (Faltings & Macho-Gonzalez 2005).

We introduce the DCOP problem, definitions and nota-
tions, and the basic DPOP algorithm. We then describe the
ODPOP algorithm, show examples, and evaluate its com-
plexity, both theoretically and experimentally. We present
experimental results on meeting scheduling problems, and
then conclude.

Definitions and Notation
Definition 1 A discretedistributed constraint optimization
problem(DCOP) is a tuple< X ,D,R > such that:

• X = {x1, ..., xn} is a set of variables
• D = {d1, ..., dn} is a set of finite domains of the variables
• R = {r1, ..., rm} is a set of relations, where a re-

lation ri is any function with the scope(xi1 , · · · , xik
),

ri : di1 × .. × dik
→ R, which denotes how much utility

is assigned to each possible combination of values of the
involved variables. Negative amounts mean costs.1

1Hard constraints (that explicitly forbid/enforce certain value

Figure 1:A problem graph and a rooted DFS tree. ASK mes-
sages go top-down, and GOOD messages (valued goods) go
bottom-up. All messages are of linear size.

In a DCOP, each variable and constraint is owned by an
agent. A simplifying assumption (Yokooet al. 1998) is that
each agent controls a virtual agent for each one of the vari-
ablesxi that it owns. To simplify the notation, we usexi to
denote either the variable itself, or its (virtual) agent.

This is a multiagent instance of thevalued CSPframe-
work as defined by Schiex et al (Schiex, Fargier, & Verfail-
lie 1995). The goal is to find a complete instantiationX ∗ for
the variablesxi thatmaximizesthe aggregate utility, i.e. the
sum of utilities of individual relations. We assume here only
unary and binary constraints/relations. DPOP and ODPOP
extend however easily to non-binary constraints (see (Petcu,
Faltings, & Parkes 2006)).

Depth-First Search Trees (DFS)
ODPOP works on a DFS traversal of the problem graph.

Definition 2 A DFS arrangement of a graph G is a rooted
tree with the same nodes and edges as G and the property
that adjacent nodes from the original graph fall in the same
branch of the tree (e.g.x0 andx11 in Figure 1).

DFS trees have already been investigated as a means to
boost search (Freuder 1985; Dechter 2003). Due to the rela-
tive independence of nodes lying in different branches of the
DFS tree, it is possible to perform search in parallel on these
independent branches.

Figure 1 shows an example of a DFS tree that we shall
refer to in the rest of this paper. We distinguish betweentree
edges, shown as solid lines (e.g.8 − 3), andback edges,
shown as dashed lines (e.g.8− 1, 12− 2).

Definition 3 (DFS concepts)Given a nodexi, we define:

• theparent Pi / children Ci: these are the obvious defini-
tions (e.g.P4 = x1, C1 = {x3, x4}).

• Thepseudo-parentsPPi arexi’s ancestors that are con-
nected toxi directly through back-edges (PP8 = {x1}).
• Thepseudo-childrenPCi are xi’s descendents directly

connected toxi through back-edges (e.g.PC0 = {x11}).
• Sepi is theseparator of xi: ancestors ofxi which are

directly connected withxi or with descendants ofxi (e.g.
Sep4 = {x1}, Sep5 = {x0, x2} andSep8 = {x1, x3}).

combinations) can be simulated with soft constraints by assigning
−∞ to disallowed tuples, and 0 to allowed tuples. Maximizing
utility thus avoids assigning such value combinations to variables.

Sepi is the set of ancestors ofxi whose removal com-
pletely disconnects the subtree rooted atxi from the rest of
the problem. In case the problem is a tree, thenSepi =
{Pi},∀xi ∈ X . In the general case,Sepi containsPi,
all PPi and all the pseudoparents of all descendants ofxi,
which are ancestors ofxi.

DPOP: dynamic programming optimization
DPOP is a distributed version of the bucket elimination
scheme from (Dechter 2003), which works on a DFS.DPOP
has 3 phases:

Phase 1 - aDFS traversalof the graph is done using a dis-
tributed DFS algorithm. To save space, we refer the reader
to an algorithm like (Petcu, Faltings, & Parkes 2006). The
outcome of this protocol is that all nodes consistently label
each other as parent/child or pseudoparent/pseudochild, and
edges are identified as tree/back edges.

Phase 2 -UTIL propagation is a bottom-up process,
which starts from the leaves and propagates upwards only
through tree edges. The agents sendUTIL messages to their
parents. The subtree of a nodeXi can influence the rest of
the problem only throughXi’s separator,Sepi. Therefore, a
message contains the optimal utility obtained in the subtree
for each instantiation ofSepi. Thus, messages are exponen-
tial in the separator size (bounded by the induced width).

Phase 3 -VALUE propagation top-down, initiated by the
root, when phase 2 has finished. Each node determines its
optimal value based on the computation from phase 2 and
theVALUEmessage it has received from its parent. Then, it
sends this value to its children throughVALUEmessages.

ODPOP: an optimization algorithm for DCOP
ODPOPis described in Algorithm 1. It also has 3 phases:

Phase 1 - aDFS traversalas in DPOP
Phase 2 - (ASK/GOOD) this is where ODPOP is differ-

ent from DPOP. This is an iterative, bottom-up utility propa-
gation process, where each node repeatedly asks (viaASK
messages) its children for valuations (goods) until it can
compute suggested optimal values for its ancestors included
in its separator. It then sends these goods to its parent. This
phase finishes when the root received enough valuations to
determine its optimal value.

Phase 3 -VALUE propagation as in DPOP

ODPOP Phase 2:ASK/GOOD Phase
In backtracking algorithms, the control strategy is top-down:
starting from the root, the nodes perform assignments and
inform their children about these assignments. In return, the
children determine their best assignments given these deci-
sions, and inform their parents of the utility or bounds on
this utility.

This top-down exploration of the search space has the dis-
advantage that the parents make decisions about their values
blindly, and need to determine the utility for every one of
their values before deciding on the optimal one. This can be
a very costly process, especially when domains are large.

Additionally, if memory is bounded, many utilities have
to be derived over and over again (Modiet al. 2005). This,

Algorithm 1 ODPOP - Open/Distributed Optimization

ODPOP(X ,D,R): each agentxi does:

DFS arrangement: run token passing mechanism as
in (Petcu, Faltings, & Parkes 2006)

1 At completion,xi knowsPi, PPi, Ci, PCi, Sepi

Main process
2 sent goods← ∅
3 if xi is root then

ASK/GOOD until valuation sufficiency
4 else
5 while !received VALUE messagedo
6 Process incoming ASK and GOOD messages

Process ASK
7 while !sufficiency conditional onsent goods do
8 selectCask

i amongCi

9 send ASK message to allCask
i

10 wait for GOOD messages
11 find best good ∈ Sepi s.t. best good /∈ sent goods
12 addbest good to sent goods, and send it toPi

ProcessGOOD(gd,xk)
13 addgd to goodstore(xk)
14 check for conditional sufficiency

coupled with the asynchrony of these algorithms makes for a
large amount of effort to be duplicated unnecessarily (Zivan
& Meisels 2004).

Propagating GOODs In contrast, we propose a bottom-
up strategy in ODPOP, similar to the one of DPOP. In this
setting, higher nodes do not assign themselves values, but
instead ask their children what values would be best. Chil-
dren answer by proposing values for the parents’ variables.
Each such proposal is called agood, and has an associated
utility that can be achieved by the subtree rooted at the child,
in the context of the proposal.

Definition 4 (Good) Given a nodexi, its parentPi and
its separatorSepi, a good messageGOODPi

i sent from
xi to Pi is a tuple 〈assignments, utility〉 as follows:
GOODPi

i = 〈{xj = vk
j |xj ∈ Sepi, v

k
j ∈ Dj}, v ∈ R〉.

In words, a goodGOODPi

i sent by a nodexi to its parent
Pi has exactly one assignment for each variable inSepi, plus
the associated utility generated by this assignment for the
subtree rooted atxi. In the example of Figure 1, a good sent
from x5 to x2 might have this form:GOOD2

5
= 〈x2 =

a, x0 = c, 15〉, which means that ifx2 = a andx0 = c, then
the subtree rooted atx5 gets 15 units of utility.

Definition 5 (Compatibility: ≡) Two good messages
GOOD1 and GOOD2 are compatible (we write this
GOOD1 ≡ GOOD2) if they do not differ in any assignment
of the shared variables. Otherwise,GOOD1 6≡ GOOD2.

Example:〈x2 = a, x0 = c, 15〉 ≡ 〈x2 = a, 7〉, but 〈x2 =
a, x0 = c, 15〉 6≡ 〈x2 = b, 7〉.

Definition 6 (Join: ⊕) Thejoin ⊕ of twocompatiblegood
messagesGOODi

j = 〈assigj , valj〉 and GOODi
k =

〈assigk, valk〉 is a new goodGOODi
j,k = 〈assigj ∪

assigk, valj + valk〉

Example in Figure 1: letGOOD5

11
= 〈x5 = a, x0 = c, 15〉

andGOOD5

12
= 〈x5 = a, x2 = b, 7〉. ThenGOOD5

11
⊕

GOOD5

12
= 〈x2 = b, x0 = c, x5 = a, 22〉.

Value ordering and bound computation Any child xj of
a nodexi delivers to its parentxi a sequence ofGOODi

j

messages that explore different combinations of values for
the variables inSepj , together with the corresponding utili-
ties. We introduce the following important assumption:

Best-first Assumption: leaf nodes (without children)
report theirGOODs in order of non-increasing utility.

This assumption is easy to satisfy in most problems: it cor-
responds to ordering entries in a relation according to their
utilities. Similarly, agents usually find it easy to report what
their most preferred outcomes are.

We now show a method for propagatingGOODs so that
all nodes always reportGOODs in order of non-increasing
utility provided that their children follow this order. To-
gether with the assumption above, this will give an algorithm
where the firstGOOD generated at the root node is the op-
timal solution. Furthermore, the algorithm will be able to
generate this solution without having to consider all value
combinations.

Consider thus a nodexi that receives from each of its chil-
drenxj a stream ofGOODs in an asynchronous fashion, but
in non-increasing order of utility.

Notation: let LAST i
j be the last good sent byxj to xi.

Let 〈Sepi〉 be the set of all possible instantiations of vari-
ables inSepi. A tuple s ∈ 〈Sepi〉 is such an instantiation.
Let GOODi

j(t) be a good sent byxj to xi that is compatible
with the assignments in the tuplet.

Based on the goods thatxj has already sent toxi, one can
define lower (LB) and upper (UB) bounds for each instanti-
ations ∈ 〈Sepi〉:

LB
i
j(s) =



val(GOOD
i
j(t)) if xj sentGOOD

i
j(t) s.t. t ≡ s

−∞ otherwise

UB
i
j(s) =

8

<

:

val(GOOD
i
j(t)) if xj sentGOOD

i
j(t) s.t. t ≡ s

val(LAST
i
j) if xj has sent anyGOOD

i
j

+∞ if xj has not sent anyGOOD
i
j

The influence of all children ofxi is combined in upper
and lower bounds for eachs ∈ 〈Sepi〉 as follows:

• UBi(s) =
∑

xj∈Ci
UBi

j(s); if any of xj ∈ Ci has not

yet sent any good, thenUBi
j(s) = +∞, andUBi(s) =

+∞. UBi(s) is the maximal utility that the instantiation
s could possibly have for the subproblem rooted atxi, no
matter what other goods will be subsequently received by
xi. Note that it is possible to infer an upper bound on
the utility of any instantiations ∈ 〈Sepi〉 as soon as even
a singleGOOD message has been received from each
child. This is the result of the assumption thatGOODs
are reported in order of non-increasing utility.

• LBi(s) =
∑

xj∈Ci
LBi

j(s); if any of xj ∈ Ci has not yet

sent any good compatible withs, thenLBi
j(s) = −∞,

andLBi(s) = −∞. LBi(s) is the minimal utility that
the tuples ∈ 〈Sepi〉 could possibly have for the subprob-
lem rooted atxi, no matter what other goods will be sub-
sequently received byxi.

Examplesbased on Table 2:

• GOOD4

10
(x4 = c) = 〈[x4 = c], 4〉.

• LAST 4

10
= 〈[x4 = a], 3〉.

• LB4

10
(x4 = c) = 4 andLB4

9
(x4 = c) = −∞ , because

x4 has received aGOOD4

10
(x4 = c) from x10, but not a

GOOD4

9
(x4 = c) from x9.

• Similarly, UB4

10
(x4 = c) = 4 and UB4

9
(x4 = c) =

val(LAST 4

9
) = val(GOOD4

9
(x4 = f)) = 1 , because

x4 has received aGOOD(x4 = c) from x10, but not from
x9, so the latter is replaced by the latest received good.

Valuation-Sufficiency
In DPOP, agents receive allGOODs grouped in single mes-
sages. Here,GOODs can be sent individually and asyn-
chronously as long as the order assumption is satisfied.
Therefore,xi can determine when it has receivedenough
goods from its children in order to be able to determine the
next best combination of values of variables inSepi (Falt-
ings & Macho-Gonzalez 2005). In other words,xi can deter-
mine when any additional goods received from its children
xj will not matter w.r.t. the choice of optimal tuple forSepi.
xi can then send its parentPi a valued goodt∗ ∈ Sepi sug-
gesting this next best value combination.

Definition 7 Given a subsetS of tuples from〈Sepi〉, a tuple
t∗ ∈ {〈Sepi〉 \ S} is dominant conditional on the subsetS,
when∀t ∈ {〈Sepi〉 \ S|t 6= t∗}, LB(t∗) > UB(t).

In words, t∗ is the next best choice forSepi, after the
tuples inS. This can be determined once there have been
received enough goods from children to allow the finding
that one tuple’s lower bound is greater than all other’s upper
bound. Then the respective tuple is conditional-dominant.

Definition 8 A variable isvaluation-sufficient conditional
on a subsetS ⊂ 〈Sepi〉 of instantiations of the separator
when it has a tuplet∗ which is dominant conditional onS.

Properties of the Algorithm The algorithm used for
propagatingGOODs in ODPOP is given by process ASK in
Algorithm 1. Whenever a newGOOD is asked by the par-
ent,xi repeatedly asks its children forGOODs. In response,
it receivesGOOD messages that are used to update the
bounds. These bounds are initially set toLBi(∀t) = −∞
and UBi(∀t) = +∞. As soon as at least one message
has been received from all children for a tuplet, its upper
bound is updated with the sum of the utilities received. As
more and more messages are received, the bounds become
tighter and tighter, until the lower bound of a tuplet∗ be-
comes higher than the upper bound of any other tuple.

At that point, we callt∗ dominant. xi assembles a good
messageGOODPi

i = 〈t∗, val = LBi(t∗) = UBi(t∗)〉,
and sends it to its parentPi. The tuplet∗ is added to the
sent goods list.

x1/x4 = a b c d e f
x1 = a 1 2 6 2 1 2
x1 = b 5 1 2 1 2 1
x1 = c 2 1 1 1 2 1

Table 1: RelationR(x4, x1).

x9 x10 x1

〈x4 = a,6〉 〈x4 = b, 5〉 〈x4 = c, x1 = a, 6〉
〈x4 = d, 5〉 〈x4 = c, 4〉 〈x4 = a,x1 = b,5〉
〈x4 = f, 1〉 〈x4 = a,3〉 〈x4 = b, x1 = a, 2〉

...
...

...

Table 2: Goods received byx4. The relationr1

4
is present in

the last column, sorted best-first.

SubsequentASK messages fromPi will be answered
using the same principle: gather goods, recompute up-
per/lower bounds, and determine when another tuple is dom-
inant. However, the dominance decision is made while ig-
noring the tuples fromsent goods, so the ”next-best” tuple
will be chosen. This is how it is ensured that each node in
the problem will receive utilities for tuplesin decreasing or-
der of utility i.e. in a best-first order, and thus we have the
following Theorem:

Theorem 1 (Best-first order) Provided that the leaf nodes
order their relations in non-increasing order of utility, each
node in the problem sendsGOODs in the non-increasing
order of utility i.e. in a best-first order.

PROOF. By assumption, the leaf nodes sendGOODs
in best-first order. Assume that all children ofxi satisfy
the Theorem. Then the algorithm correctly infers the upper
bounds on the various tuples, and correctly decides condi-
tional valuation-sufficiency. If it sends aGOOD, it is con-
ditionally dominant given allGOODs that were sent earlier,
and so it cannot have a lower utility than anyGOOD that
might be sent later. 2

Conditional valuation-sufficiency: an example Let us
consider a possible execution of ODPOP on the example
problem from Figure 1. Let us consider the nodex4, and
let the relationr1

4
be as described in Table 1.

As a result to its parentx1 askingx4 for goods, let us
assume thatx4 has repeatedly requested goods from its chil-
drenx9 andx10. x9 andx10 have replied each with goods;
the current status is as described in Table 2.

In addition to the goods obtained from its children,x4 has
access to the relationr1

4
with its parent,x1. This relation will

also be explored in a best-first fashion, exactly as the tuples
received fromx4’s children (see Table 2, last column).

Let us assume that this is the first timex1 has askedx4

for goods, so thesent goods list is empty.
We compute the lower and upper bounds as described in

the previous section. We obtain thatLBi(〈x4 = a, x1 =
b〉) = 14. We also obtain that∀t 6= 〈x4 = a, x1 = b〉,

UBi(t) < LBi(〈x4 = a, x1 = b〉) = 14. Therefore,
〈x4 = a, x1 = b〉 satisfies the condition from Definition 8
and is thus dominant conditional on the currentsent goods
set (which is empty). Thus,x4 records〈x4 = a, x1 = b, 14〉
in sent goods and sendsGOOD(x1 = b, 14) to x1.

Shouldx1 subsequently ask for another good,x4 would
repeat the process, this time ignoring the previously sent tu-
pleGOOD(x1 = b, 14).

Comparison with the UTIL phase ofDPOP In DPOP,
the separatorSepi of a nodexi gives the set of dimen-
sions of theUTIL message fromxi to its parent:Sepi =
dims(UTILPi

i) Therefore, the size of aUTIL message in
DPOP isd|Sepi|, whered is the domain size. This results
in memory problems in case the induced width of the con-
straint graph is high.

In ODPOP, theASK/GOODphase is the analogue of the
UTIL phase fromDPOP. A GOODPi

i message corresponds
exactly to a single utility from aUTILPi

i message from
DPOP, and has the same semantics: it informsPi how much
utility the whole subtree rooted atxi obtains when the vari-
ables fromSepi take that particular assignment.

The difference is that the utilities are sent on demand, in
an incremental fashion. A parentPi of a nodexi sends to
xi an ASK message that instructsxi to find the next best
combination of values for the variables inSepi, and com-
pute its associated utility.xi then performs a series of the
same kind of queries to its children, until it gathers enough
goods to be able to determine this next best combination
t∗ ∈ 〈Sepi〉 to send toPi. At this point, xi assembles a
messageGOODPi

i (t∗, val) and sends it toPi.

ODPOP Phase 3: VALUE assignment phase
TheVALUE phase is similar to the one fromDPOP. Even-
tually, the root of the DFS tree becomesvaluation-sufficient,
and can therefore determine its optimal value. It initiatesthe
top-downVALUE propagation phase by sending aVALUE
message to its children, informing them about its chosen
value. Subsequently, each nodexi receives theV ALUEi

Pi

message from its parent, and determines its optimal value as
follows:

1. xi searches through itssent list for the first good
GOODi∗ (highest utility) compatible with the assign-
ments received in theVALUEmessage.

2. xi assigns itself its value fromGOODi∗: xi ← v∗
i

3. ∀xj ∈ Ci, xi builds and sends aVALUE message that
containsxi = v∗

i and the assignments shared between
V ALUEi

Pi
and Sepj . Thus,xj can in turn choose its

own optimal value, and so on recursively to the leaves.

ODPOP: soundness, termination, complexity
Theorem 2 (Soundness)ODPOP is sound.

PROOF. ODPOP combines goods coming from indepen-
dent parts of the problem (subtrees in DFS are independent).
Theorem 1 shows that the goods arrive in the best-first or-
der, so when we have valuation-sufficiency, we are certain

to choose the optimal tuple, provided the tuple fromSepi is
optimal.

The top-downVALUE propagation ensures (through in-
duction) that the tuples selected to be parts of the overall
optimal assignment, are indeed optimal, thus making also
all assignments for allSepi optimal. 2

Theorem 3 (Termination) ODPOP terminates in at most
(h− 1)× dw synchronous ASK/GOOD steps, whereh is the
depth of the DFS tree,d bounds the domain size, andw is
the width of the chosen DFS. Synchronous here means that
all siblings send their messages at the same time.

PROOF. The longest branch in the DFS tree is of length
h − 1 (and h is at mostn, when the DFS is a chain).
Along a branch, there are at mostdSepi ASK/GOODmes-
sage pairs exchanged between any nodexi and its parent.
SinceSepi ≤ w, it follows that at most(h − 1) × dw syn-
chronousASK/GOODmessage pairs will be exchanged.2

Theorem 4 (Complexity) The number of messages and
memory required by ODPOP isO(dw).

PROOF. By construction, all messages in ODPOP are linear
in size. Regarding the number of messages:

1. the DFS construction phase produces a linear number of
messages:2×m messages (m is the number of edges);

2. theASK/GOODphase is the analogue of theUTIL phase
in DPOP. The worst case behavior of ODPOP is to send
sequentially the contents of theUTIL messages from
DPOP, thus generating at mostdw ASK/GOODmessage
pairs between any parent/child node (d is the maximal
domain size, andw is the induced width of the problem
graph). Overall, the number of messages isO((n − 1) ×
dw). Since all these messages have to be stored by their
recipients, the memory consumption is also at mostdw.

3. the VALUE phase generatesn − 1 messages, (n is the
number of nodes) - one through each tree-edge.

2

Notice that thedw complexity is incurred only in the worst
case. Consider an example: a nodeXi receives first from all
its children the same tuple as their most preferred one. Then
this is simply chosen as the best and sent forward, andXi

needs only linear memory and computation!

Experimental Evaluation
We experimented with distributed meeting scheduling in an
organization with a hierarchical structure (a tree with de-
partments as nodes, and a set of agents working in each de-
partment). The CSP model is the PEAV model from (Ma-
heswaranet al. 2004). Each agent has multiple variables:
one for the start time of each meeting it participates in, with
10 timeslots as values. Mutual exclusion constraints are im-
posed on the variables of an agent, and equality constraints
are imposed on the corresponding variables of all agents

Agents 10 20 30 50 100
Meetings 3 9 11 19 39
Variables 10 31 38 66 136

Constraints 10 38 40 76 161
of messages 35 / 9 778 / 30 448 / 37 3390 / 65 9886 / 135

Max message size 1 / 100 1 / 1000 1 / 100 1 / 1000 1 / 1000
Total Goods 35 / 360 778 / 2550 448/1360 3390 / 10100 9886 / 16920

Table 3: ODPOP vs DPOP tests on meeting scheduling (values are stated as ODPOP / DPOP)

involved in the same meeting. Private, unary constraints
placed by an agent on its own variables show how much it
values each meeting/start time. Random meetings are gener-
ated, each with a certain utility for each agent. The objective
is to find the schedule that maximizes the overall utility.

Table 3 shows how our algorithm scales up with the size
of the problems. All experiments are run on the FRODO
multiagent simulation platform. The values are depicted as
ODPOP / DPOP, and do not include the DFS and VALUE
messages (identical). The number of messages refers to
ASK/GOODmessage pairs inODPOP andUTIL messages
in DPOP . The maximal message size shows how many
utilities are sent in the largest message inDPOP, and is al-
ways 1 in ODPOP (a single good sent at a time). The last
row of the table shows significant savings in the number of
utilities sent by ODPOP (GOODmessages) as compared to
DPOP (total size of theUTIL messages).

Concluding Remarks
We proposed a new algorithm, ODPOP, which uses linear
size messages by sending the utility of each tuple separately.
Based on the best-first assumption, we use the principle of
open optimization (Faltings & Macho-Gonzalez 2005) to in-
crementally propagate these messages even before the util-
ities of all input tuples have been received. This can be
exploited to significantly reduce the amount of information
that must be propagated. In fact, the optimal solution may
be found without even examining all values of the variables,
thus being possible to deal with unbounded domains.

Preliminary experiments on distributed meeting schedul-
ing problems show that our approach gives good results
when the problems have low induced width.

As the new algorithm is a variation of DPOP, we can ap-
ply to it the techniques for self-stabilization (Petcu & Falt-
ings 2005c), approximations and anytime solutions (Petcu &
Faltings 2005a), distributed implementation and incentive-
compatibility (Petcu, Faltings, & Parkes 2006) that have
been proposed for DPOP.

References
Collin, Z.; Dechter, R.; and Katz, S. 1991. Self-stabilizing dis-
tributed constraint satisfaction.Chicago Journal of Theoretical
Computer Science.

Dechter, R. 2003.Constraint Processing. Morgan Kaufmann.

Faltings, B., and Macho-Gonzalez, S. 2005. Open constraint
programming.Artificial Intelligence161(1-2):181–208.

Freuder, E. C. 1985. A sufficient condition for backtrack-bounded
search.Journal of the ACM32(14):755–761.

Hamadi, Y.; Bessìere, C.; and Quinqueton, J. 1998. Backtracking
in distributed constraint networks. InECAI-98, 219–223.

Kask, K.; Dechter, R.; and Larrosa, J. 2005. Unifying cluster-
tree decompositions for automated reasoning in graphical models.
Artificial Intelligence.

Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.; and
Varakantham, P. 2004. Taking DCOP to the realworld: Effi-
cient complete solutions for distributed multi-event scheduling.
In AAMAS-04.

Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization with
quality guarantees.AI Journal161:149–180.

Petcu, A., and Faltings, B. 2005a. Approximations in distributed
optimization. InProceedings of the Ninth International Con-
ference on Principles and Practice of Constraint Programming
(CP’05).

Petcu, A., and Faltings, B. 2005b. A scalable method for multia-
gent constraint optimization. InProceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-05.

Petcu, A., and Faltings, B. 2005c. Superstabilizing, fault-
containing multiagent combinatorial optimization. InProceed-
ings of the National Conference on Artificial Intelligence, AAAI-
05.

Petcu, A.; Faltings, B.; and Parkes, D. 2006. MDPOP: Faith-
ful Distributed Implementation of Efficient Social Choice Prob-
lems. InProceedings of the International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-06).

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: Hard and easy problems. InProceedings of
the 15th International Joint Conference on Artificial Intelligence,
IJCAI-95.

Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000. Dis-
tributed asynchronous search with private constraints. InProc. of
AA2000, 177–178.

Solotorevsky, G.; Gudes, E.; and Meisels, A. 1996. Modeling and
Solving Distributed Constraint Satisfaction Problems (DCSPs).
In Proceedings of the Second International Conference on Princi-
ples and Practice of Constraint Programming (CP’96), 561–562.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K. 1998. The
distributed constraint satisfaction problem - formalization and al-
gorithms. IEEE Transactions on Knowledge and Data Engineer-
ing 10(5):673–685.

Zivan, R., and Meisels, A. 2004. Concurrent Dynamic Backtrack-
ing for Distributed CSPs. InLecture Notes in Computer Science,
volume 3258. Springer Verlag. 782 – 787.

