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Abstract. Agent-based modeling is a powerful tool for systems modeling. In-
stantiating each domain entity with an agent captures many aspects of system 
dynamics and interactions that other modeling techniques do not. However, an 
entity’s agent can execute only one trajectory per run, and does not sample the 
alternative trajectories accessible to the entity in the evolution of a realistic sys-
tem. Averaging over multiple runs does not capture the range of individual in-
teractions involved. We address these problems with a new modeling entity, the 
polyagent, which represents each entity with a single persistent avatar sup-
ported by a swarm of transient ghosts. Each ghost interacts with the ghosts of 
other avatars through digital pheromone fields, capturing a wide range of alter-
native trajectories in a single run that can proceed faster than real time. 

1   Introduction 

The fundamental entity in an agent-based model (ABM), the agent, corresponds to a 
discrete entity in the domain. The fundamental operator is interaction among agents. 
The fundamental entity in an equation-based model (EBM) [20] is a system observ-
able, and the fundamental operator is its evolution (e.g., by a differential equation). 

ABM’s often map more naturally to a problem than do EBM’s, are easier to con-
struct and explore, and provide more realistic results [9, 19], but have a shortcoming. 
Observables in an EBM are often averages across agents, and implicitly capture the 
range of agent variation (at an aggregate level). By contrast, the agent representing an 
entity in an ABM can execute only one trajectory per run of the system, and does not 
capture the alternative trajectories that the entity might have experienced. Averaging 
over multiple runs still does not capture the range of individual interactions involved.  

A new modeling construct, the polyagent, represents each entity with a single per-
sistent avatar and multiple transient ghosts. Each ghost interacts with the ghosts of 
other avatars through digital pheromones, exploring many alternative trajectories in a 
single run that can proceed faster than real time for many reasonable domains. We 
have used this approach in several applications. This paper articulates the polyagent 
as an explicit modeling construct and provides some guidance concerning its use.  

Section 2 reviews the sampling challenge sampling in ABM. Section 3 proposes 
the polyagent as an answer to this challenge, and Section 4 compares it with other 
technology. Section 5 reports on polyagent systems we have constructed. Section 6 



discusses what these examples teach us and considers directions for research on 
polyagents. Section 7 concludes. 

2   The Challenge of Modeling Multi-Agent Interactions 

Imagine n + 1 entities in discrete time. At each step, each entity interacts with one of 
the other n. Thus at time t its interaction history h(t) is a string in nt. Its behavior is a 
function of h(t). This toy model generalizes many domains, including predator-prey 
systems, combat, innovation, diffusion of ideas, and disease propagation.  

It would be convenient if a few runs of such a system told us all we need to know, 
but this is not likely to be the case, for three reasons. 
1. We may have imperfect knowledge of the agents’ internal states or details of the 

environment (for example, in a predator-prey system, the carrying capacity of the 
environment). If we change our assumptions about these unknown details, we can 
expect the agents’ behaviors to change. 

2. The agents may behave non-deterministically, either because of noise in their 
perceptions, or because they use a stochastic decision algorithm.  

3. Even if the agents’ reasoning and interactions are deterministic and we have ac-
curate knowledge of all state variables, nonlinearities in decision mechanisms or 
interactions can result in overall dynamics that are formally chaotic, so that tiny 
differences in individual state variables can lead to arbitrarily large divergences 
in agent behavior. A nonlinearity can be as simple as a predator’s hunger thresh-
old for eating a prey or a prey’s energy threshold for mating. 

An EBM typically deals with aggregate observables across the population. In the 
predator-prey example, such observables might be predator population, prey popula-
tion, average predator energy level, or average prey energy level, all as functions of 
time. No attempt is made to model the trajectory of an individual entity.  

An ABM must explicitly describe the trajectory of each agent. In a given run of a 
predator-prey model, depending on the random number generator, predator 23 and 
prey 14 may or may not meet at time 354. If they do meet and predator 23 eats prey 
14, predator 52 cannot later encounter prey 14, but if they do not meet, predator 52 
and prey 14 might meet later. If predator 23 happens to meet prey 21 immediately af-
ter eating prey 14, it will not be hungry, and so will not eat prey 21, but if it did not 
first encounter prey 14, it will consume prey 21. And so forth. A single run of the 
model can capture only one set of many possible interactions among the agents.  

In our general model, during a run of length τ, each entity will experience one of nτ 
possible histories. (This estimate is of course worst case, since domain constraints 
may make many of these histories inaccessible.) The population of n + 1 entities will 
sample n + 1 of these possible histories. It is often the case that the length of a run is 
orders of magnitude larger than the number of modeled entities (τ >> n).  

Multiple runs with different random seeds is only a partial solution. Each run only 
samples one set of possible interactions. For large populations and scenarios that per-
mit multiple interactions on the part of each agent, the number of runs needed to sam-
ple the possible alternative interactions thoroughly can quickly become prohibitive. In 
the application described in Section 4.3, n ~ 50 and τ ~ 10,000, so the sample of the 



space of possible entity histories actually sampled by a single run is vanishingly 
small. We would need on the order of τ runs to generate a meaningful sample, and 
executing that many runs is out of the question. 

We need a way to capture the outcome of multiple possible interactions among 
agents in a few runs of a system. Polyagents are one solution to this problem. 

3   The Polyagent Modeling Construct 

A polyagent represents a single domain entity. It consists of a single avatar that man-
ages the correspondence between the domain and the polyagent, and a swarm of 
ghosts that explore alternative behaviors of the domain entity. 

The avatar corresponds to the agent representing an entity in a conventional multi-
agent model of the domain. It persists as long as its entity is active, and maintains 
state information reflecting its entity’s state. Its computational mechanisms may range 
from simple stigmergic coordination to sophisticated BDI reasoning. 

Each avatar generates a stream of ghost agents, or simply ghosts. Ghosts typically 
have limited lifetime, dying off after a fixed period of time or after some defined 
event to make room for more ghosts. The avatar controls the rate of generation of its 
ghosts, and typically has several ghosts concurrently active.  

Ghosts explore alternative possible behaviors for their avatar. They interact with 
one another stigmergically, through a digital pheromone field, a vector of scalar val-
ues (“pheromone flavors”) that is a function of both location and time. That is, each 
ghost chooses its actions stochastically based on a weighted function of the strengths 
of the various pheromone flavors in its immediate vicinity, and deposits its own 
pheromone to record its presence. A ghost’s “program” consists of the vector of 
weights defining its sensitivity to various pheromone flavors.  

Having multiple ghosts multiplies the number of interactions that a single run of 
the system can explore. Instead of one trajectory for each avatar, we now have one 
trajectory for each ghost. If each avatar has k concurrent ghosts, we explore k trajecto-
ries concurrently. But the multiplication is in fact greater than this. 

The digital pheromone field supports three functions [1, 11]: 
1. It aggregates deposits from individual agents, fusing information across multiple 

agents and through time. In some of our implementations of polyagents, avatars 
deposit pheromone; in other, ghosts do. Aggregation of pheromones enables a 
single ghost to interact with multiple other ghosts at the same time. It does not in-
teract with them directly, but only with the pheromone field that they generate, 
which is a summary of their individual behaviors. 

2. It evaporates pheromones over time. This dynamic is an innovative alternative to 
traditional truth maintenance in artificial intelligence. Traditionally, knowledge 
bases remember everything they are told unless they have a reason to forget 
something, and expend large amounts of computation in the NP-complete prob-
lem of reviewing their holdings to detect inconsistencies that result from changes 
in the domain being modeled. Ants immediately begin to forget everything they 
learn, unless it is continually reinforced. Thus inconsistencies automatically re-
move themselves within a known period.  



3. It propagates pheromones to nearby places, disseminating information.  
This third dynamic (propagation) enables each ghost to sense multiple other agents. 

If n avatars deposit pheromones, each ghost’s actions are influenced by up to n other 
agents (depending on the propagation radius), so that we are exploring in effect n*k 
interactions for each entity, or n2*k interactions overall. If individual ghosts deposit 
pheromones, the number of interactions being explored is even greater, on the order 
of kn. Of course, the interactions are not played out in the detail they would be in a 
conventional multi-agent model. But our empirical experience is that they are re-
flected with a fidelity that is entirely adequate for the problems we have addressed. 

Pheromone-based interaction not only multiplies the number of interactions that we 
are exploring, but also enables extremely efficient execution. In one application, we 
support 24,000 ghosts concurrently, faster than real time, on a 1 GHz Wintel laptop.  

The avatar can do several things with its ghosts, depending on the application. 
• It can activate its ghosts when it wants to explore alternative possible futures, 

modulating the rate at which it issues new ghosts to determine the number of alter-
natives it explores. It initializes the ghosts’ weight vectors to define the breadth of 
alternatives it wishes to explore. 

• It can evolve its ghosts to learn the best parameters for a given situation. It moni-
tors the performance of past ghosts against some fitness parameter, and then breeds 
the most successful to determine the parameters of the next generation.  

• It can review the behavior of its swarm of ghosts to produce a unified estimate of 
how its own behavior is likely to evolve and what the range of likely variability is. 

4   Comparison with Other Paradigms 

Our polyagent bears comparison with several previous multi-agent paradigms and two 
previous uses of the term (Table 1). 

Polyagents are distinct from the common use of agents to model different functions 
of a single domain entity. For example, in ARCHON [21], the domain entity is an 
electrical power distribution system, and individual agents represent different func-
tions or perspectives required to manage the system. In a polyagent, each ghost has 
the same function: 
to explore one pos-
sible behavior of the 
domain entity. The 
plurality of ghosts 
provides, not func-
tional decomposi-
tion, but a range of 
estimates of alterna-
tive behaviors.  

Many forms of 
evolutionary compu-
tation [4] allow mul-
tiple representatives 

Table 1. Comparing the 
Polyagent with Other 
Technologies 
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Polyagent X X X X 
Functional agents X    
Evolutionary computation X  X  
Fictitious play X  X  
Ant colony optimization X  X X 
Kijima’s polyagents     
Polyagent therapies     



of a single entity to execute concurrently, to compare their fitness. In these systems, 
each agent samples only one possible series of interactions with other entities. Phero-
mone-based coordination in the polyagent construct permits each ghost to adjust its 
behavior based on many possible alternative behaviors of other entities in the domain. 

Similarly, the multiple behaviors contemplated in fictitious play [7] take place 
against a static model of the rest of the world. 

Like the polyagent, ant-colony optimization [2] uses pheromones to integrate the 
experiences of parallel searchers. The polyagent’s advance is the notion of the avatar 
as a single point of contact for the searchers representing a single domain entity. 

The term “polyagent” is a neologism for several software agents that collectively 
represent a domain entity and its alternative behaviors. The term is used in two other 
contexts that should not lead to any confusion. In medicine, “polyagent therapy” uses 
multiple treatment agents (notably, multiple drugs combined in chemotherapy). 
Closer to our domain, but still distinct, is the use of the term by K. Kijima [5] to de-
scribe a game-theoretic approach to analyzing the social and organizational interac-
tions of multiple decision-makers. For Kijima, the term “poly-agent” makes sense 
only as a description of a system, and does not describe a single agent. In our ap-
proach, it makes sense to talk about a single modeling construct as “a polyagent.”  

5   Examples of Polyagents 

We discovered polyagents by reflecting on several applications that we have con-
structed and observing their common features.  

5.1   Factory Scheduling 

Our first application of polyagents was to real-time job-shop scheduling [1]. We pro-
totyped a self-organizing multi-agent system with three species of agents: processing 
resources, work-pieces, and policy agents. Avatars of processing resources with dif-
ferent capabilities and capacities and avatars of work-pieces with dynamically chang-
ing processing needs (due to re-work) jointly optimize the flow of material through a 
complex, high-volume manufacturing transport system. In this application, only the 
avatars of the work-pieces actually deploy ghosts. The policy agents and avatars of 
the processing resources (machines) are single agents in the traditional sense. 

In a job shop, work-pieces interact with one another by blocking access to the re-
sources that they occupy, and thus delaying one another. Depending on the schedule, 
different work-pieces may interact, in different orders. Polyagents explore the space 
of alternative routings and interactions concurrently in a single model. 

Work-piece avatars currently loaded into the manufacturing system continuously 
deploy ghosts that emulate their decision processes in moving through various deci-
sion points in the manufacturing process. Each of these decisions is stochastic, based 
on the relative concentration of attractive pheromones in the neighborhood of the next 
decision point. These pheromones are actually deposited by the policy agents that try 
to optimize the balance of the material flow across the transport network, but they are 



modulated by the ghosts. Thus, an avatar’s ghosts modulate the pheromone field to 
which the avatar responds, establishing an adaptive feedback loop into the future. 

The avatars continuously emit ghosts that emulate their current decision process. 
The ghosts travel into the future without the delay imposed by physical transport and 
processing of the work-pieces. These ghosts may find the next likely processing step 
and wait there until it is executed physically, or they may emulate the probabilistic 
outcome of the step and assume a new processing state for the work-piece they are 
representing. In either case, while they are active, the ghosts contribute to a phero-
mone field that reports the currently predicted relative load along the material flow 
system. When ghosts for alternative work-pieces explore the same resource, they in-
teract with one another through the pheromones that they deposit and sense.  

By making stochastic decisions, each ghost explores an alternative possible routing 
for its avatar. The pheromone field to which it responds has been modulated by all of 
the ghosts of other work-pieces, and represents multiple alternative routings of those 
work-pieces. Thus the ghosts for each work-piece explore both alternative futures for 
that work-piece, and multiple alternative interactions with other work-pieces. 

Policy agents that have been informed either by humans or by other agents of the 
desired relative load of work-pieces of specific states at a particular location in turn 
deposit attractive or repulsive pheromones. Thus, through a local adaptive process, 
multiple policy agents supported by the flow of ghost agents adapt the appropriate 
levels of pheromone deposits to shape the future flow of material as desired. 

By the time the avatar makes its next routing choice, which is delayed by the 
physical constraints of the material flow through the system, the ghosts and the policy 
agents have adjusted the appropriate pheromones so that the avatar makes the “right” 
decision. In effect, the policy agents and the ghosts control the avatar as long as they 
can converge on a low-entropy pheromone concentration that the avatar can sample. 

5.2   Path Planning for Robotic Vehicles 

Two pressures require that path planning for robotic vehicles be an ongoing activity. 
1) The agent typically has only partial knowledge of its environment, and must adapt 
its behavior as it learns by observation. 2) The environment is dynamic: even if an 
agent has complete knowledge at one moment, a plan based on that knowledge be-
comes less useful as the conditions on which it was based change. These problems are 
particularly challenging in military applications, where both targets and threats are 
constantly appearing and disappearing. 

In the DARPA JFACC program, we approached this problem by imitating the dy-
namics that ants use in forming paths between their nests and food sources [8]. The 
ants search stochastically, but share their discoveries by depositing and sensing nest 
and food pheromone. Ants that are searching for food deposit nest pheromone while 
climbing the food pheromone gradient left by successful foragers. Ants carrying food 
deposit food pheromone while climbing the nest pheromone gradient. The initial 
pheromone trails form a random field, but quickly collapse into an optimal path as the 
ants interact with one another’s trails. 

The challenge in applying this algorithm to a robotic vehicle is that the algorithm 
depends on interactions among many ants, while a vehicle is a single entity that only 



traverses its path once. We use a polyagent to represent the vehicle (in our case, an 
aircraft) whose route needs to be computed [12, 17]. As the avatar moves through the 
battlespace, it continuously emits a swarm of ghosts, whose interactions mimic the ant 
dynamics and continuously (re)form the path in front of the avatar. These ghosts seek 
targets and then return to the avatar. They respond to several digital pheromones:  
• RTarget is emitted by a target. 
• GNest is emitted by a ghost that has left the avatar and is seeking a target. 
• GTarget is emitted by a ghost that has found a target and is returning to the avatar. 
• RThreat is emitted by a threat (e.g., a missile battery). 

Ideally, the digital pheromones are maintained in a distributed network of unat-
tended ground sensors dispersed throughout the vehicle’s environment, but they can 
also reside on a central processor, or even on multiple vehicles. In addition, we pro-
vide each ghost with Dist, an estimate of how far away the target is. 

In general, ghosts are attracted to RTarget pheromone and repelled from RThreat 
pheromone. In addition, before they find a target, they are attracted to GTarget 
pheromone. Once they find a target, they are attracted to GNest pheromone. A ghost’s 
movements are guided by the relative strengths of these quantities in its current cell 
and each neighboring cell in a hexagonal lattice. It computes a weighted combination 
of these factors for each adjacent cell and selects stochastically among the cells, with 
probability proportionate to the computed value. 

Each ghost explores one possible route for the vehicle. The avatar performs two 
functions in overseeing its swarm of ghosts. 
1. It integrates the information from the several ghosts in their explorations of alter-

native routes. It observes the GTarget pheromone strength in its immediate vicin-
ity, and guides the robot up the GTarget gradient. GTarget pheromone is depos-
ited only by ghosts that have found the target, and its strength in a given cell re-
flects the number of ghosts that traversed that cell on their way home from the 
target. So the aggregate pheromone strength estimates the likelihood that a given 
cell is on a reasonable path to the target. 

2. It modulates its ghosts’ behaviors by adjusting the weights that the ghosts use to 
combine the pheromones they sense. Initially, all ghosts used the same hand-
tuned weights, and differences in their paths were due only to the stochastic 
choices they made in selecting successive steps. When the avatar randomly var-
ied the weights around the hand-tuned values, system performance improved by 
more than 50%, because the 
ghosts explored a wider range of 
routes. We then allowed the avatar 
to evolve the weight vector as the 
system operates, yielding an im-
provement nearly an order of 
magnitude over hand-tuned ghosts 
[16]. 

We tested this system’s ability to 
route an aircraft in simulated combat 
[12]. In one example, it found a path to 
a target through a gauntlet of threats 
(Fig. 1). A centralized route planner 

 
Fig. 1. Gauntlet Routing Problem 



seeking an optimal path by integrating 
a loss function and climbing the result-
ing gradient was unable to solve this 
problem without manually introducing 
a waypoint at the gauntlet’s entrance. 
The polyagent succeeded because some 
of the ghosts, moving stochastically, 
wandered into the gauntlet, found their 
way to the target, and then returned, 
laying pheromones that other ghosts 
could reinforce.  

Another experiment flew multiple 
missions through a changing landscape 
of threats and targets. The figure of 
merit was the total surviving strength 
of the Red and Blue forces. In two sce-
narios, the aircraft’s avatar flew a static 
route planned on the basis of complete 
knowledge of the location of threats 
and targets, without ghosts. The routes differed based on how closely the route was 
allowed to approach threats. A third case used ghosts, but some threats were invisible 
until they took action during the simulation. Fig. 2 compares these three cases. The 
polyagent’s ability to deal with partial but up-to-date knowledge both inflicted more 
damage on the adversary and offered higher survivability than preplanned scripts 
based on complete information.  

Route planning shows how a polyagent’s ghosts can explore alternative behaviors 
concurrently, and integrate that experience to form a single course of action. Since 
only one polyagent is active at a time, this work does not draw on the ability of 
polyagents to manage the space of possible interactions among multiple entities. 

5.3   Characterizing and Predicting Agent Behavior 

The DARPA RAID program [6] focuses on the problem of characterizing an adver-
sary in real-time and predicting its future behavior. Our contribution to this effort [15] 
uses polyagents to evolve a model of each real-world entity (a group of soldiers 
known as a fire team) and extrapolate its behavior into the future. Thus we call the 
system “the BEE” (Behavior Evolution and Extrapolation). 

Fig. 3 is an overview of the BEE process. Ghosts live on a timeline indexed by τ 
that begins in the past at the insertion horizon and runs into the future to the predic-
tion horizon. τ is offset with respect to the current time t. The timeline is divided into 
discrete “pages,” each representing a successive value of τ. The avatar inserts the 
ghosts at the insertion horizon. In our current system, the insertion horizon is at τ - t = 
-30, meaning that ghosts are inserted into a page representing the state of the world 30 
minutes ago. At the insertion horizon, the avatar samples each ghost’s rational and 
emotional parameters (desires and dispositions) from distributions to explore alterna-
tive personalities of the entity it represents. The avatar is also responsible for estimat-

 
Fig. 2. Real-Time vs. Advance Planning.—
“Script” is a conservative advance route based 
on complete knowledge. “Script narrow” is a 
more aggressive advance route. “Ghost” is the 
result when the route is planned in real time 
based on partial knowledge 



ing its entity’s goals (using a belief network) and instantiating them in the environ-
ment as pheromone sources that constrain and guide the ghosts’ behavior. In estimat-
ing its entity’s goals and deliberately modulating the distribution of ghosts, the avatar 
reasons at a higher cognitive level than do the pheromone-driven ghosts. 

Each page between the insertion horizon and τ = t (“now”) records the historical 
state of the world at its point in the past, represented as a pheromone field generated 
by the avatars (which at each page know the actual state of the entity they are model-
ing). As ghosts move from page to page, they interact with this past state, based on 
their behavioral parameters. These interactions mean that their fitness depends not 
just on their own actions, but also on the behaviors of the rest of the population, 
which is also evolving. Because τ advances faster than real time, eventually τ = t (ac-
tual time). At this point, the avatar evaluates each of its ghosts based on its location 
compared with the actual location of its corresponding real-world entity.  

The fittest ghosts have three functions.  
1. The avatar reports personality of the fittest ghost for each entity to the rest of the 

system as the likely personality of the corresponding entity. This information en-
ables us to characterize individual warriors as unusually cowardly or brave. 

2. The avatar breeds the fittest ghosts genetically and reintroduces their offspring at 
the insertion horizon to continue the fitting process. 

3. The fittest ghosts for each entity run past the avatar's present into the future. Each 
ghost that runs into the future explores a different possible future of the battle, 
analogous to how some people plan ahead by mentally simulating different ways 
that a situation might unfold. The avatar analyzes the behaviors of these different 
possible futures to produce predictions of enemy behavior and recommendations 
for friendly behavior. In the future, the pheromone field with which the ghosts in-
teract is generated not by the avatars, but by the ghosts themselves. Thus it inte-
grates the various possible futures that the system is considering, and each ghost 
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Fig. 3. Behavioral Emulation and Extrapolation. Each avatar generates a stream of ghosts that 
sample the personality space of its entity. They evolve against the entity’s recent observed 
behavior, and the fittest ghosts run into the future to generate predictions 



is interacting with this composite view of what other entities may be doing. 
The first and third functions are analogous to the integrating function of the avatars 

in route planning, while the second is analogous to the modulation function. 
This model has proven successful both in characterizing the internal state of enti-

ties that we can only observe externally, and in predicting their future behavior. [15] 
details the results of experiments based on multiple wargames with human partici-
pants. We can detect emotional state of entities as well as a human observer, but 
faster. Our prediction of the future of the battle is also comparable with that of a hu-
man, and much better than a “guessing” baseline based on a random walk. 

6   Discussion 

These projects reflect several common features that deserve recognition as a new and 
useful modeling construct, and that we now articulate as a “polyagent.” 
• Multiple agents (the ghosts) concurrently explore alternative possible behaviors of 

the domain entity being modeled. 
• The ghosts interact through a digital pheromone field that permits simultaneous 

reasoning about the multiple possible interactions among the domain entities. 
• A single, possibly more complex agent (the avatar), modulates the swarm of 

ghosts, controlling the number of ghosts, the rate at which they are introduced, and 
the settings and diversity of their behavior. In our most sophisticated cases (route 
planning and agent fitting), the avatar evolves the ghosts.  

• The avatar also integrates the behaviors of its several ghosts (either directly or by 
observing the pheromones they deposit) to produce a single higher-level report on 
the domain entity’s likely behavior. 
Our use of polyagents involves a fair amount of art, and is motivated by their suc-

cessful application in multiple applications. Theoretical work is needed to make the 
technique more rigorous. One challenging question is the legitimacy of merging 
pheromones of multiple ghosts representing alternative futures for agent A of one 
type into a single field that then guides the behavior of agent B of a different type. 
This process is qualitatively distinct from the merger of pheromone deposits from 
multiple agents living in the same world to form an optimized path guiding other 
agents of the same type (the heart of conventional ant optimization). The multiple-
worlds version enables B to explore concurrently its possible interactions with multi-
ple alternative realizations of A, but we need to justify this process more formally.  

The strength of a pheromone field depends, inter alia, on the frequency with which 
agents visit various locations. Thus it may be viewed as a probability field describing 
the likelihood of finding an agent of a given type at a given location. If those agents 
are ghosts representing alternative futures of an entity’s trajectory, the probability 
field may be interpreted in terms of the likelihood of different future states. Table 2 
suggests several parallels between this perspective on polyagents and quantum phys-
ics [3]. In the spirit of our earlier work applying metaphors from theoretical physics to 
understanding multi-agent systems [10, 13, 14, 18], we will use concepts from quan-
tum mechanics to provide an intellectual and formal model for engineering polyagent 
systems and interpreting their behavior. 



Like quantum wave 
models, polyagents explore 
multiple possible behaviors 
and interactions. Unlike 
wave functions, they can do 
so predictively. We can 
configure polyagents to 
model what will happen in 
the future based on current 
policies, then use the ava-
tars’ summary of what will 
happen to guide changes to 
those policies. 

7   CONCLUSION 

One strength of ABM’s 
over EBM’s is that they capture the idiosyncracies of each entity’s trajectory. In com-
plex domains, this strength is also a weakness, because any single set of trajectories is 
only a sample from a large space of possible trajectories. Possible interactions among 
the agents explode combinatorially, making this space much too large to explore thor-
oughly by repeated experiments. 

Polyagents can sample multiple interactions in a single run. An avatar mediates be-
tween the real-world entity being modeled and a swarm of ghosts that sample its al-
ternative possible trajectories. The avatar may employ sophisticated cognitive reason-
ing, but the ghosts are tropistic, interacting through digital pheromone fields that they 
deposit and sense in their shared environment. The avatar modulates the generation of 
ghosts, and interprets their aggregate behavior to estimate its entity’s likely behavior. 

We have applied this system to scheduling and controlling manufacturing jobs, 
planning paths for unpiloted air vehicles through a complex adversarial environment, 
and characterizing the internal state of fighting units from observations of their out-
ward behavior, and then projecting their likely behavior into the future to form predic-
tions. Empirically, the polyagent functions well, but invites theoretical work on the 
interpretation of multiple ghosts interacting with a pheromone field that represents 
multiple alternative realizations of other entities. Several parallels with quantum phys-
ics suggest the latter discipline may be a guide in developing a more formal model. 
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Table 2. Quantum Physics and Polyagents 

Quantum Physics Polyagents 
Duality between (single, 
localized) particle and 
(distributed) wave func-
tion 

Duality between (single, local-
ized) avatar and (distributed) 
swarm of ghosts 

Interactions among 
wave functions’ ampli-
tude fields model inter-
actions among particles  

Ghosts’ pheromone fields can 
be interpreted as probability 
densities that model interac-
tions of agents 

Wave function captures 
a range of possible be-
haviors 

Swarm of ghosts captures a 
range of possible behaviors 

Observation collapses 
the wave function to a 
single behavior 

Avatar interprets the aggre-
gate behavior of the ghosts 
and yields a single prediction 
of behavior 
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