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Abstract.   Gaining wide acceptance for the use of agents in industry
requires both relating it to the nearest antecedent technology (object-
oriented software development) and using artifacts to support the
development environment throughout the full system lifecycle. We
address both of these requirements using AUML, the Agent UML
(Unified Modeling Language)—a set of UML idioms and extensions. This
paper illustrates the approach by presenting a three-layer AUML
representation for agent interaction protocols:  templates and packages to
represent the protocol as a whole; sequence and collaboration diagrams to
capture inter-agent dynamics; and activity diagrams and state charts to
capture both intra-agent and inter-agent dynamics.

1 Introduction

Successful industrial deployment of agent technology requires techniques that reduce
the risk inherent in any new technology. Two ways that reduce risk in the eyes of
potential adopters are:

• to present the new technology as an incremental extension of known and trusted
methods, and

• to provide explicit engineering tools that support industry-accepted methods of
technology deployment.

We apply both of these risk-reduction insights to agents.

To leverage the acceptance of existing
technology, we present agents as an extension
of active objects, exhibiting both dynamic
autonomy (the ability to initiate action without
external invocation) and deterministic
autonomy (the ability to refuse or modify an
external request). Thus, our basic definition of
an agent is “an object that can say ‘go’
(dynamic autonomy) and ‘no’ (deterministic
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autonomy).” This approach leads us to focus on fairly fine-grained agents. More
sophisticated capabilities can also be added, such as mobility, BDI mechanisms, and
explicit modeling of other agents. Such capabilities are extensions to our basic
agents, that is, they can be applied where needed, but are not diagnostic of
agenthood.

Accepted methods of industrial software development depend on standard
representations for artifacts to support the analysis, specification, and design of agent
software. Three characteristics of industrial software development require the
disciplined development of artifacts throughout the software lifecycle. The scope of
industrial software projects is much larger than typical academic research efforts,
involving many more people across a longer period of time, and artifacts facilitate
communication. The skills of developers are focused more on development
methodology than on tracking the latest agent techniques, and artifacts can help
codify best practice. The success criteria for industrial projects require traceability
between initial requirements and the final deliverable—a task that artifacts directly
support.

The Unified Modeling Language (UML) is gaining wide acceptance for the
representation of engineering artifacts in object-oriented software. Our view of
agents as the next step beyond objects leads us to explore extensions to UML and
idioms within UML to accommodate the distinctive requirements of agents. The
result is Agent UML (AUML). This paper reports on one such area of
extension—the representation of agent protocols.

Section 2 provides background information on agent design methods in general,
on UML, and on the need for AUML. Section 3 introduces a layered approach to
representing agent protocols in AUML. Templates and packages provide a high-level
summary (Section 4), sequence diagrams and collaboration diagrams furnish
alternative views of the interactions among agents (Section 5), and state diagrams
and activity diagrams detail the internal behavior of individual agents in executing
protocols (Section 6). Section 7 summarizes our contribution.

2 Background

Agent UML (AUML) synthesizes a growing concern for agent-based software
methodologies with the increasing acceptance of UML for object-oriented software
development.

2.1 Agent Software Methodologies

The agent R&D community is increasingly interested in design methods and
representational tools to support the associated artifacts (see [12] for a helpful
survey). Multi-Agent System Engineering was the focus of a session at ATAL’97 [5,
10, 13, 17, 19, 23, 25, 26] and the entire MAAMAW’99 [9].

A number of groups have reported on methodologies for agent design, touching
on representational mechanisms as they support the methodology. Our own report
[23] emphasizes methodology, as does the work by Kinny and colleagues [15, 16] on



modeling techniques for BDI agents. The close parallel that we observe between
design mechanisms for agents and for objects is shared by a number of authors, for
example [5, 6].

The GAIA methodology [28] includes specific recommendations for notation
that supports the high-level summary of a protocol as an atomic unit, a notation that
is reflected in our recommendations. The extensive program underway at the Free
University of Amsterdam on compositional methodologies for requirements [11],
design [4], and verification [14] uses graphical representations with strong links to
UML’s collaboration diagrams, as well as linear (formulaic) notations better suited
to alignment with UML’s metamodel than with the graphical mechanisms that are
our focus. Our discussion of the compositionality of protocols is anticipated in the
work of Burmeister et al. [7], though our notation differs widely from hers. Dooley
graphs facilitate the identification of the “character” that results from an agent
playing a specific role (as distinct from the same agent playing a different role) [21,
27]. We capture this distinction by leveraging UML’s existing name/role:class
syntax in conjunction with collaboration diagrams.

This wide-ranging activity is a healthy sign that agent-based systems are having
an increasing impact, since the demand for methodologies and artifacts reflects the
growing commercial importance of our technology. Our objective is not to compete
with any of these efforts, but rather to extend and apply a widely accepted modeling
and representational formalism (UML)—one that harnesses insights and makes them
useful for communicating across a wide range of research groups and development
methodologies.

2.2 UML

During the seventies, structured programming was the dominant approach to
software development. Along with it, software engineering technologies were
developed in order to ease and formalize the system development lifecycle: from
planning, through analysis and design, and finally to system construction, transition,
and maintenance. In the eighties, object-oriented (OO) languages experienced a rise
in popularity, bringing with it new concepts such as data encapsulation, inheritance,
messaging, and polymorphism. By the end of the eighties and beginning of the
nineties, a jungle of modeling approaches grew to support the OO marketplace. To
make sense of and unify these various approaches, an Analysis and Design Task
Force was established on 29 June 1995 within the OMG. By November 1997, a de
jure standard was adopted by the OMG members called the Unified Modeling
Language (UML).

The UML unifies and formalizes the methods of many approaches to the object-
oriented software lifecycle, including Booch, Rumbaugh (OMT), Jacobson, and
Odell [18]. It supports the following kinds of models:
• static models- such as class and package diagrams describe the static semantics

of data and messages. Within system development, class diagrams are used in
two different ways, for two different purposes. First, they can model a problem
domain conceptually. Since they are conceptual in nature, they can be presented



to the customers. Second, class diagrams can model the implementation of
classes—guiding the developers. At a general level, the term class refers to the
encapsulated unit. The conceptual level models types and their associations; the
implementation level models implementation classes.  While both can be more
generally thought of as classes, their usage as concepts and implementation
notions is important both in purpose and semantics. Package diagrams group
classes in conceptual packages for presentation and consideration. (Physical
aggregations of classes are called components which are in the implementation
model family, mentioned below.)

•  dynamic models- including interaction diagrams (i.e., sequence and
collaboration diagrams), state charts, and activity diagrams.

•  use cases- the specification of actions that a system or class can perform by
interacting with outside actors.

•  implementation models- such as component models and deployment diagrams
describing the component distribution on different platforms.

• object constraint language (OCL)- is a simple formal language to express more
semantics within an UML specification. It can be used to define constraints on
the model, invariant, pre- and post-conditions of operations and navigation paths
within an object net.

In this paper, we are suggesting agent-based extensions to the following UML
representations: packages, templates, sequence diagrams, collaboration diagrams,
activity diagrams, and statecharts. The UML model semantics are represented by a
metamodel whose structure is also formally defined by OCL syntax. OCL and the
metamodel offer resources to capture the kinds of logical specifications anticipated
in (for example) [4, 11, 14, 15, 16, 28], but space does not permit exploring this use
of UML in this paper.

2.3 AUML

Compared to the traditional approach to objects, agents are autonomous and
interactive. Based on internal states, their activities include goals and conditions that
guide the execution of defined tasks. While objects need outside control to execute
their methods, agents know the conditions and intended effects of their actions and
hence take responsibility for their needs. Furthermore, agents act both alone and with
other agents. Multiagent systems can often resemble a social community of
interdependent members that act individually.

However, no formalism yet exists to sufficiently specify agent-based system
development. To employ agent-based programming, a specification technique must
support the whole software engineering process—from planning, through analysis
and design, and finally to system construction, transition, and maintenance.

A proposal for a full life-cycle specification of agent-based system development
is beyond the scope of this paper. Both FIPA and the OMG Agent Work Group are
exploring uses of and recommending extensions to UML [1, 20]. Depke et al [29]
discuss graph transformation and roles in an agent-baseed UML. We are working on
a comprehensive scheme for AUML [22]. In this paper, we indicate how UML can



be used to express agent interaction protocols (AIP), as well as express where
extensions to the standard UML (AUML) AIPs might be appropriate.

This subset was chosen because interaction protocols are complex enough to
illustrate the nontrivial use of AUML and are used commonly enough to make this
subset of AUML useful to other researchers. Agent interaction protocols are a good
example of software patterns which are ideas found useful in one practical context
and probably useful in others. A specification of an AIP provides an example or
analogy that we might use to solve problems in system analysis and design.

We want to suggest a specification technique for AIPs with both formal and
intuitive semantics and a user-friendly graphical notation. The semantics allows a
precise definition that is also usable in the software-engineering process. The
graphical notation provides a common language for AIP communication—
particularly with people not familiar with the agent approach.

Before proceeding, we need to establish a working definition. An agent interaction
protocol (AIP) describes a communication pattern as an allowed sequence of
messages between agents and the constraints on the content of those messages.

contract 
initiation

call-for-proposal

FIPA Contract Net Protocol

Initiator Participant

refuse

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline

x

x

Initiator, Participant
Deadline

call-for-proposal, refuse*, 
not-understood*, propose, 

reject-proposal*, accept-proposal*, 
cancel*, inform*

Fig. 1.  A generic AIP expressed as a template package.



3 A Layered Approach to Protocols

Figure 1 depicts a protocol expressed as a UML sequence diagram for the contract
net protocol. When invoked, an Initiator agent sends a call-for-proposal to an agent
that is willing to participate in providing a proposal. The Participant agent can then
choose to respond to the Initiator before a given deadline by: refusing to provide a
proposal, submitting a proposal, or indicating that it did not understand. (The
diamond symbol indicates a decision that can result in zero or more communications
being sent—depending on the conditions it contains; the “x” in the decision diamond
indicates an exclusive or decision.) If a proposal is offered, the Initiator has a choice
of either accepting or rejecting the proposal. When the Participant receives a
proposal acceptance, it will inform the Initiator about the proposal’s execution.
Additionally, the Initiator can cancel the execution of the proposal at any time.

This figure also expresses two more concepts represented at the top of the
sequence chart.  First, the protocol as a whole is treated as an entity in its own right.
The tabbed folder notation at the upper left indicates that the protocol is a package, a
conceptual aggregation of interaction sequences. Second, the packaged protocol can
be treated as a pattern that can be customized for analogous problem domains. The
dashed box at the upper right-hand corner expresses this pattern as a template
specification that identifies unbound entities within the package which need to be
bound when the package template is being instantiated.

The original sequence diagram in Fig. 1 provides a basic specification for a
contract net protocol. More processing detail is often required. For example, an
Initiator agent requests a call for proposal (CFP) from a Participant agent.
However, the diagram stipulates neither the procedure used by the Initiator to
produce the CFP request, nor the procedure employed by the Participant to respond
to the CFP. Yet, such details are important for developing detailed agent-based
system specifications.

Figure 2 illustrates how leveling can express more detail for any interaction
process. For example, the process that generated the communication act CA-1 could
be complex enough to specify its processing in more detail using an activity diagram.
The agent receiving CA-1 has a process that prepares a response. In this example, the
process being specified is depicted using a sequence diagram, though any modeling
language could be chosen to further specify an agent’s underlying process. In UML,
the choice is an interaction diagram, an activity diagram, or a statechart.
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CA-1

CA-2

CA-3

CA-4

Role-3
x

y

g z

Role-2

Fig. 2.  Interaction protocols can be specified in more detail (i.e., leveled) using a combination
of diagrams.

Finally, leveling can continue “down” until the problem has been specified
adequately to develop or generate code. So in Fig. 2, the interaction protocol at the
top of the diagram has a level of detail below, which in turn has another level of
detail. Each level can express intra-agent or inter-agent activity.

In summary, these two examples illustrate several features of our approach:

• The protocol as a whole is an entity. This top level is discussed further in Section
4.

•  The sequence diagram itself describes the inter-agent transactions needed to
implement the protocol. Section 5 further discusses this notation and an
alternative (the collaboration diagram).

In addition to inter-agent transactions, complete specification of a protocol requires
discussion of intra-agent activity and is supported by UML’s activity diagrams and
statecharts (discussed in Section 6).

4 Level 1: Representing the Overall Protocol

Patterns are ideas that have been found useful in one practical context and can
probably be useful in others. As such, they give us examples or analogies that we
might use as solutions to problems in system analysis and design. Agent interaction
protocols, then, provide us with reusable solutions that can be applied to various
kinds of message sequencing we encounter between agents. There are two UML
techniques that best express protocol solutions for reuse: packages and templates.



call-for-proposal

Purchasing

Supplying

Broker Retailer Wholesaler

request

inform

propose

•••

Fig. 3.  Using packages to express nested protocols.

4.1 Packages

Since interaction protocols are patterns, they can be treated as reusable aggregates of
processing. UML describes two ways of expressing aggregation for OO structure and
behavior: components and packages. Components are physical aggregations that
compose classes for implementation purposes. Packages aggregate modeling
elements into conceptual wholes. Here, classes can be conceptually grouped for any
arbitrary purpose, such as a subsystem grouping of classes. Since AIPs can be
viewed in conceptual terms, the package notation of a tabbed folder was employed in
Fig. 1.

Because protocols can be codified as recognizable patterns of agent interaction,
they become reusable modules of processing that can be treated as first-class notions.
For example, Fig. 3 depicts two packages. The Purchasing package expresses a
simple protocol between a Broker and a Retailer. Here, the Broker sends a call for
proposal to a Retailer and the Retailer responds with a proposal. For certain
products, the Retailer might also place a request with a Wholesaler regarding
availability and cost. Based on the return information, the Retailer can provide a
more accurate proposal. All of this could have been put into a single Purchasing
protocol package. However, many businesses or departments may not need the
additional protocol involving the Wholesaler. Therefore, two packages can be
defined: one for Purchasing and one for Supplying. When a particular scenario
requires the Wholesaler protocol, it can be nested as a separate and distinct package.
However, when a Purchasing scenario does not require it, the package is more
parsimonious.

Burmeister et al. suggest a similar construct when they describe their complex
cooperation protocols [7]. Their three primitive protocols—offering, requesting, and
proposing—“are general enough to be used in a large number of interaction
situations.” Their approach “allows for the construction of (more complex)



application or task protocols.” In addition to their three primitive protocols, we
advocate a pragmatic approach where the analyst may extend Burmeister’s general
set to include any protocols that might be reused for a nested specification—using
AUML.

4.2 Templates

Figure 1 illustrates a common kind of behavior that can serve as a solution in
analogous problem domains. In Fig. 3, the Supplying behavior is reused exactly as
defined by the Supplying package. However, to be truly a pattern—instead of just a
reusable component—package customization must be supported. For example, Fig. 4
applies the FIPA Contract Net Protocol to a particular scenario involving buyers and
sellers. Notice that the Initiator and Participant agents have become Buyer and
Seller agents, and the call-for-proposal has become the seller-rfp. Also in this
scenario are two forms of refusal by the Seller: Refuse-1 and Refuse-2. Lastly, an
actual deadline has been supplied for a response by the seller.

seller-rfp

Buyer Seller

refuse-1

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline:
8/8/99 at

12:00 hours
x

x

xrefuse-2

Fig. 4.  Applying the template in Fig. 1 to a particular scenario involving buyers and sellers.



In UML argot, the AIP package serves as a template. A template is a
parameterized model element whose parameters are bound at model time (i.e., when
the new customized model is produced). In Fig. 1, the dotted box in the upper right
indicates that the package is a template. The unbound parameters in the box are
divided by horizontal lines into three categories: role parameters, constraints, and
communication acts. Figure 5 illustrates how the new package in Fig. 4 is produced
using the template definition in Fig. 1.1  Wooldridge et al. suggest a similar form of
definition with their protocol definitions [28]. In their packaged templates “a pattern
of interaction . . . has been formally defined and abstracted away from any particular
sequence of execution steps. Viewing interactions in this way means that attention is
focussed on the essential nature and purpose of interaction rather than the precise
ordering of particular message exchanges.” Instead of the notation illustrated by
Wooldridge et al., our graphical approach more closely resembles UML, while
expressing the same semantics.

Buyer, Seller

FIPA Contract Net Protocol

8/8/99 at 12:00 

seller-rfp, refuse-1, refuse-2, not-understood, propose,
reject-proposal, accept-proposal, cancel, inform

Fig. 5.  Producing a new package using the Fig. 1 template; Fig. 4 is the resulting model.

5 Level 2: Representing Interactions among agents

UML’s dynamic models are useful for expressing interactions among agents.
Interaction diagrams capture the structural  patterns of interactions among objects.
Sequence diagrams are one member of this family; collaboration diagrams are
another. The two diagrams contain the same information. The graphical layout of the
sequence diagram emphasizes the chronological sequence of communications, while
that of the collaboration diagram emphasizes the associations among agents. Activity
diagrams and statecharts capture the flow of processing in the agent community.

5.1 Sequence Diagrams

A brief description of sequence diagrams using the example in Fig. 1 appeared
above. (For a more detailed discussion of sequence diagrams, see Rumbaugh [24]
                                                                   
1 This template format is not currently UML compliant, but is recommended for future UML

extensions.



and Booch [3].) In this section, we discuss some possible extensions to UML that
can also model agent-based interaction protocols.

Figure 6 depicts some basic elements for agent communication. The rectangle
can express individual agents or sets (i.e., roles or classes) of agents. For example, an
individual agent could be labeled Bob/Customer. Here Bob is an instance of agent
playing the role of Customer. Bob could also play the role of Supplier, Employee,
and Pet Owner . To indicate that Bob is a Person—independent of any role he
plays—Bob could be expressed as Bob:Person. The basic format for the box label
is agent-name/role:class. Therefore, we could express all the various situations for
Bob, such as Bob/Customer:Person and Bob/Employee:Person.  (Note that
when an individual agent is specifed, the label is underlined, e.g.,
Bob/Customer:Person. See Fig. 9.)

The rectangular box can also indicate a general set of agents playing a specific
role. Here, just the word Customer or Supplier would appear. To specify that the
role is to be played by a specific class of agent, the class name would be appended
(e.g., Employee:Person,  Supplier:Party). In other words, the agent-
name/role:class syntax is used without specifying an individual agent-name.

Agent-1/Role:Class

CA-1

Agent-2/Role:Class

CA-2

Fig. 6.  Basic format for agent communication.

The agent-name/role:class syntax is already part of UML (except that the UML
syntax indicates an object name instead of an agent name). Figure 6 extends UML by
labeling the arrowed line with an agent communication act (CA), instead of an OO-
style message.

•••

CA-n

CA-2

CA-1

•••

CA-n

CA-2

CA-1

•••

CA-n

CA-2

CA-1

x

(a) (b) (c)

Fig. 7.  Some recommended extensions that support concurrent threads of interaction.

Another recommended extension to UML supports concurrent threads of
interaction. While UML does support asynchronous messages, multiple concurrent



threads are directly expressed.2 Figure 7 depicts three ways of expressing multiple
threads. Figure 7(a) indicates that all threads CA-1 to CA-n are sent concurrently.
Figure 7(b) includes a decision box indicating that a decision box will decide which
CAs (zero or more) will be sent. If more than one CA is sent, the communication is
concurrent. In short, it indicates an inclusive or. Fig. 7(c) indicates an exclusive or,
so that exactly one CA will be sent. Figure 7(a) indicates an and communication.

Figure 8 illustrates one way of using the concurrent threads of interaction
depicted in Fig. 7. Figures 8(a) and (b) portray two ways of expressing concurrent
threads sent from agent-1 to agent-2. The multiple vertical, or activation, bars
indicate that the receiving agent is processing the various communication threads
concurrently. Figure 8(a) displays parallel activation bars and Fig. 8(b) activation
bars that appear on top of each other. A few things should be noted about these two
variations:

•  The semantic meaning is equivalent; the choice is based on ease and clarity of
visual appearance.

• Each activation bar can indicate either that the agent is using a different role or
that it is merely employing a different processing thread to support the
communication act. If the agent is using a different role, the activation bar can be
annotated appropriately. For example in Figs. 8(a) and (b), CA-n is handled by
the agent under its role-1 processing.

                                                                   
2 As OO implementations become more advanced, such an extension would be considered

useful in any case.



CA-1

Agent 

or[role-1]

[role-1]

Agent Agent Agent 

CA-2

CA-3

CA-1

CA-2

CA-3

(a) (b)

Agent Agent Agent Agent 

or

CA-1

CA-2

CA-3

CA-1

CA-2

CA-3

(c) (d)

Agent Agent Agent Agent 

or

CA-1

CA-2

CA-3

CA-1

CA-2

CA-3

x x

x

(e) (f)

Fig. 8.  Multiple techniques to express concurrent communication with an agent playing
multiple roles or responding to different CAs.

These figures indicate that a single agent is concurrently processing the multiple
CAs. However, the concurrent CAs could each have been sent to a different agent,
e.g.,  CA-1 to agent-2, CA-2 to agent-3, and so on.  Such protocol behavior is
already supported by UML; the notation in Fig. 7, on the other hand, is a
recommended extension to UML.

(For more detailed treatment of these extensions to the UML sequence diagram
for protocols, see [1, 2].)



12: assert +
      request
14: 

6: 
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10: refuse

5: propose
7: commit

  8: commit
11: ship

9: assert

13: ship

1.1:  request

<<role change>>

1.2:  request

1.3:  request

<<role change>>

<<role change>>
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Contractor2
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Contractor1

B /
Contractor

A 
Customer

B /
Competitor

Analyzer

C /
Competitor

D /
Contractor

D /
Debtor

A /
Negotiator

Fig. 9.  An example of a collaboration diagram depicting an interaction among agents playing
multiple roles.

5.2 Collaboration Diagrams

Figure 9 is an example of a collaboration diagram and depicts a pattern of interaction
among agents. One of the primary distinctions of the collaboration diagram is that
the agents (the rectangles) can be placed anywhere on the diagram; whereas in a
sequence diagram, the agents are placed in a horizontal row at the diagram’s top. The
sequence of interactions are numbered on the association lines in a collaboration
diagram; whereas on the interaction diagram, a timed sequence of interaction is
basically read from the top down. If the two interaction diagrams are so similar, why
have both? The answer lies primarily on the person and interaction protocol being
described—for that person, one diagram type might provide a clearer, more
understandable representation over another. Semantically, they are almost
equivalent; graphically they are similar. For example, Fig. 10 expresses basically the
same underlying meaning as Fig. 9 using the sequence diagram. Experience has
demonstrated that agent-based modelers can find both types of diagrams useful.

Dooley Graphs [21] are isomorphic to collaboration diagrams. The critical
distinction is that a single agent can appear as multiple nodes in a Dooley Graph. The
ICMAS paper calls these nodes characters. The intuition in the terminology is that a
character is a specific agent playing a specific role. The role is an abstraction over
several characters with similar patterns of interaction. Inversely, each node is an
agent in a specific role, where "role" is here defined fairly narrowly (not just
purchaser, for example, but purchaser under a renegotiated contract in contrast with
the same purchaser's role in the original contract).
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B /
Competitor

Analyzer

request

Fig. 10.  A sequence diagram version of Fig. 9.

Given our notation for an agent playing a role and having a precise enough
definition of roles, we could construct a collaboration diagram that has the same
semantic content as a Dooley Graph.

5.3 Activity diagrams

Agent interaction protocols can sometimes require specifications with very clear
processing-thread semantics. The activity diagram expresses operations and the
events that trigger them. (For a more detailed treatment, see Odell’s description of
activity diagrams in [18].) The example in Fig. 11 depicts an order processing
protocol among several agents. Here, a Customer agent places an order. This
process results in an Order placed  event that triggers the Broker to place the order,
which is then accepted by an Electronic Commerce Network (ECN) agent. The ECN
can only associate an order with a quote when both the order and the market maker’s
quote has been accepted. Once this occurs, the Market Maker and the Broker are
concurrently notified that the trade has been competed. The activity diagram differs
from interaction diagrams because it provides an explicit thread of control. This is
particularly useful for complex interaction protocols that involve concurrent
processing.

Activity diagrams are similar in nature to colored Petri nets in several ways.
First, activity diagrams provide a graphical representation that makes it possible to
visualize processes simply, thereby facilitating the design and communication of
behavioral models. Second, activity diagrams can represent concurrent,
asynchronous processing. Lastly, they can express simultaneous communications
with several correspondents. The primary difference between the two approaches is
that activity diagrams are formally based on the extended state-machine model



defined by UML [24]. Ferber’s BRIC formalism [8] extends Petri nets for agents-
based systems; this paper extends UML activity diagrams for the same purpose.

Customer Broker Market MakerECN

Place
Order

Process
Order

Create
QuoteAccept

Quote
Accept
Order

Match
Order and 

Quote

Close
OrderSettle

Order

Update
Quote

Fig. 11.  An activity diagram that depicts a stock sale protocol among several agents.

5.4 Statecharts

Another process-related UML diagram is the statechart. A statechart is a graph that
represents a state machine. States are represented as round-cornered rectangles,
while transitions are generally rendered by directed arcs that interconnect the states.
Figure 12 depicts an example of a statechart that governs an Order protocol. Here, if
a given Order is in a Requested  state, a supplier agent may commit to the
Requested negotiation—resulting in a transition to a Committed negotiation state.
Furthermore, this diagram indicates that an agent’s commit action may occur only if
the Order is in a Requested state. The Requested state has two other possible
actions besides the commit:  the supplier may refuse and the consumer may back
out. Notice that the supplier may refuse with the order in either the Proposed or the
Requested states.

The statechart is not commonly used to express interaction protocol because it is a
state-centric view, rather than an agent- or process-centered view. The agent-centric
view portrayed by interaction diagrams emphasizes the agent first and the interaction
second. The process-centric view emphasizes the process flow (by agent) first and
the resulting state change (i.e., event) second. The state-centric view emphasizes the
permissible states more prominently than the transition agent processing. The
primary strength of the statechart in agent interaction protocols is as a constraint
mechanism for the protocol. The statechart and its states are typically not
implemented directly as agents. However, an Order agent could embody the state-
transition constraints, thereby ensuring that the overall interaction protocol contraints
are met. Alternatively, the constraints could be embodied in the Supplier and
Customer roles played by the agents involved in the order process.
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Aborted
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Fig. 12.  A statechart indicating the valid states and transitions governing an Order protocol.

6 Level 3: Representing Internal Agent Processing

At the lowest level, specification of an agent protocol requires spelling out the
detailed processing that takes place within an agent in order to implement the
protocol. In a holarchic model, higher-level agents (holons) consist of aggregations
of lower-level agents. The internal behavior of a holon can thus be described using
any of the Level 2 representations recursively. In addition, state charts and activity
diagrams can also specify the internal processing of agents that are not aggregates, as
illustrated in this section.
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Fig. 13.  An activity diagram that specifies order processing behavior for an Order agent.



6.1 Activity Diagrams

Figure 13 depicts the detailed processing that takes place within an Order
Processor agent. Here, a sequence diagram indicated that the agent's process is
triggered by a Place Order  CA and ends with an order completed  event. The
internal processing by the Order Processor  is expressed as an activity diagram,
where the Order Processor  accepts, assembles, ships, and closes the order. The
dotted operation boxes represent interfaces to processes carried out by external
agents—as also illustrated in the sequence diagram. For example, the diagram
indicates that when the order has been assembled, both Assemble Order  and
Prepare/send Invoice  actions are triggered concurrently. Furthermore, when both
the payment has been accepted and the order has been shipped, the Close Order
process can only then be invoked.

6.2 Statecharts

The internal processing of a single agent can also be expressed as statecharts. Figure 14
depicts the internal states and transitions for Order Processor, Invoice Sender, and
Payment Receiver agents. As with the activity diagram above, these agents interface with
each other—as indicated by the dashed lines. This intra-agent use of UML statecharts supports
Singh’s notion of agent skeletons [27].
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Figure 14. Statechart that specifies order processing behavior for the three agents.



7 Conclusion

UML provides tools for specifying agent interaction protocols at multiple levels:

• specifying a protocol as a whole, as in [28];
•  expressing the interaction pattern among agents within a protocol, as in [1, 8,

21]; and
• the internal behavior of an agent, as in [27].

Some of these tools can be applied directly to agent-based systems by adopting
simple idioms and conventions. In other cases, we suggest several straightforward
UML extensions that support the additional functionality that agents offer over the
current UML version 1.4. Many of these proposed extensions are already being
considered by the OO community as useful extensions to OO development on UML
version 2.0. Furthermore, many of the AUML notions presented here were
developed and applied within the MoTiV-PTA projects [http://www.motiv.de/], an
agent-based realization of a personal travel assistant, supported by the German
Ministry of Technology.

Agent researchers can be gratified at the increasing attention that industrial and
business users are paying to their results. The transfer of these results to practical
application will be more rapid and accurate if the research community can
communicate its insights in forms consistent with modern industrial software
practice. AUML builds on the acknowledged success of UML in supporting
industrial-strength software engineering. The idioms and extensions proposed here
for AIP’s—as well as others that we are developing—are a contribution to this
objective.
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