

Swarm Intelligent Systems
Nadia Nedjah, Luiza de Macedo Mourelle (Eds.)

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 10. Andrzej P. Wierzbicki, Yoshiteru
Nakamori
Creative Space, 2005
ISBN 3-540-28458-3

Vol. 11. Antoni Ligęza
Logical Foundations for Rule-Based
Systems, 2006
ISBN 3-540-29117-2

Vol. 12. Jonathan Lawry
Modelling and Reasoning with Vague Con-
cepts, 2006
ISBN 0-387-29056-7

Vol. 13. Nadia Nedjah, Ajith Abraham,
Luiza de Macedo Mourelle (Eds.)
Genetic Systems Programming, 2006
ISBN 3-540-29849-5

Vol. 14. Spiros Sirmakessis (Ed.)

ISBN 3-540-30605-6

Vol. 15. Lei Zhi Chen, Sing Kiong Nguang,
Xiao Dong Chen
Modelling and Optimization of
Biotechnological Processes, 2006
ISBN 3-540-30634-X

Vol. 16. Yaochu Jin (Ed.)
Multi-Objective Machine Learning, 2006
ISBN 3-540-30676-5

Vol. 17. Te-Ming Huang, Vojislav Kecman,
Ivica Kopriva
Kernel Based Algorithms for Mining Huge

Data Sets, 2006
ISBN 3-540-31681-7

Vol. 18. Chang Wook Ahn
Advances in Evolutionary Algorithms, 2006
ISBN 3-540-31758-9

Vol. 19. Ajita Ichalkaranje, Nikhil
Ichalkaranje, Lakhmi C. Jain (Eds.)
Intelligent Paradigms for Assistive and

ISBN 3-540-31762-7

Vol. 20. Wojciech Penczek, Agata Półrola
Advances in Verification of Time Petri Nets
and Timed Automata, 2006
ISBN 3-540-32869-6

Adaptive and Personalized Semantic Web, 2006

�

Vol. 21. C ndida Ferreira

Preventive Healthcare, 2006

Modeling by an Artificial Intelligence, 2006
ISBN 3-540-32796-7

Vol. 22. N. Nedjah, E. Alba, L. de Macedo
Mourelle (Eds.)
Parallel Evolutionary Computations, 2006
ISBN 3-540-32837-8

Vol. 23. M. Last, Z. Volkovich, A. Kandel (Eds.)
Algorithmic Techniques for Data Mining, 2006
ISBN 3-540-33880-2

Vol. 24. Alakananda Bhattacharya, Amit Konar,
Ajit K. Mandal

2006

Victor Mitrana (Eds.)
Recent Advances in Formal Languages
and Applications, 2006
ISBN 3-540-33460-2

2006
(Eds.)

Vol. 25. Zolt n sik, Carlos Mart n-Vide,

â

á É

Gene Expression on Programming: Mathematical

Parallel and Distributed Logic Programming,

Vol. 26. Nadia Nedjah, Luiza de Macedo Mourelle

Swarm Intelligent Systems,
ISBN 3-540-33868-3

ISBN 3-540-33458-0

í

Vol. 9. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu (Eds.)
Foundations and Novel Approaches in Data
Mining, 2005
ISBN 3-540-28315-3

Studies in Computational Intelligence, Volume 26

123

Swarm Intelligent Systems

Nadia Nedjah

With 65 Figures and 34 Tables

 Luiza de Macedo Mourelle

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

 5 4 3 2 1 0 89/SPI
Typesetting by the authors and SPI Publisher Services
Cover design: deblik, Berlin

 Dr. Nadia Nedjah

Faculty of Engineering - FEN
State University of Rio de Janeiro - UERJ

Maracan , CEP 20559-900
Rio de Janeiro, RJ
Brazil

ã

Faculty of Engineering - FEN
State University of Rio de Janeiro - UERJ

Maracan , CEP 20559-900
Rio de Janeiro, RJ
Brazil

ã

Library of Congress Control Number: 2006925434

ISBN-13 978-3-540-33868-0 Springer Berlin Heidelberg New York
ISBN-10 3-540-33868-3 Springer Berlin Heidelberg New York

Printed on acid-free paper SPIN: 11612803

 Dr. Luiza de Macedo Mourelle

E-mail: ldmm@eng.uerj.br

E-mail: nadia@eng.uerj.br

Rua Sã o Franci s c o X a v i e r , 5 2 4 , 5 o. andar

Department of System Engineering and Computation - DESC

Rua Sã o Franci s c o X a v i e r , 5 2 4 , 5 o. andar

Department of Electronics Engineering and Telecommunications - DETEL

Preface

Swarm intelligence is an innovative computational way to solving hard prob-
lems. This discipline is inspired by the behavior of social insects such as fish
schools and bird flocks and colonies of ants, termites, bees and wasps. In gen-
eral, this is done by mimicking the behavior of the biological creatures within
their swarms and colonies.

Particle swarm optimization, also commonly known as PSO, mimics the
behavior of a swarm of insects or a school of fish. If one of the particle discovers
a good path to food the rest of the swarm will be able to follow instantly even
if they are far away in the swarm. Swarm behavior is modeled by particles in
multidimensional space that have two characteristics: a position and a velocity.
These particles wander around the hyperspace and remember the best position
that they have discovered. They communicate good positions to each other
and adjust their own position and velocity based on these good positions.

The ant colony optimization, commonly known as ACO, is a probabilistic
technique for solving computational hard problems which can be reduced to
finding optimal paths. ACO is inspired by the behavior of ants in finding short
paths from the colony nest to the food place. Ants have small brains and bad
vision yet they use great search strategy. Initially, real ants wander randomly
to find food. They return to their colony while laying down pheromone trails.
If other ants find such a path, they are likely to follow the trail with some
pheromone and deposit more pheromone if they eventually find food.

Instead of designing complex and centralized systems, nowadays designers
rather prefer to work with many small and autonomous agents. Each agent
may prescribe to a global strategy. An agent acts on the simplest of rules. The
many agents co-operating within the system can solve very complex problems
with a minimal design effort. In General, multi-agent systems that use some
swarm intelligence are said to be swarm intelligent systems. They are mostly
used as search engines and optimization tools.

VI Preface

The goal of this volume has been to offer a wide spectrum of sample works
developed in leading research throughout the world about innovative method-
ologies of swarm intelligence and foundations of engineering swarm intelligent
systems as well as application and interesting experiences using the particle
swarm optimisation, which is at the heart of computational intelligence. The
book should be useful both for beginners and experienced researchers in the
field of computational intelligence.

Part I: Methodologies Based on Particle Swarm
Intelligence

In Chapter 1, which is entitled Swarm Intelligence: Foundations, Perspectives
and Applications, the authors introduce some of the theoretical foundations
of swarm intelligence. They focus on the design and implementation of the
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)
algorithms for various types of function optimization problems, real world
applications and data mining.

In Chapter 2, which is entitled Waves of Swarm Particles (WoSP), the
author introduce an adaption of the conventional particle swarm algorithm
that converts the behaviour from the conventional search and converge to an
endless cycle of search, converge and then diverge to carry on searching. After
introducing this new waves of swarm particles (WoSP) algorithm, The author
present its behaviour on a number of problem spaces is presented. The simpler
of these problem spaces have been chosen to explore the parameters of the
new algorithm, but the last problem spaces have been chosen to show the re-
markable performance of the algorithm on highly deceptive multi dimensional
problem spaces with extreme numbers of local optima.

In Chapter 3, which is entitled Grammatical Swarm: A variable-length
Particle Swarm Algorithm, the authors examine a variable-length Particle
Swarm Algorithm for Social Programming. The Grammatical Swarm algo-
rithm is a form of Social Programming as it uses Particle Swarm Optimi-
sation, a social swarm algorithm, for the automatic generation of programs.
The authors extend earlier work on a fixed-length incarnation of Grammati-
cal Swarm, where each individual particle represents choices of program con-
struction rules, where these rules are specified using a Backus-Naur Form
grammar. The authors select benchmark problems from the field of Genetic
Programming and compare their performance to that of fixed-length Gram-
matical Swarm and of Grammatical Evolution. They claim that it is possible
to successfully generate programs using a variable-length Particle Swarm Al-
gorithm, however, based on the problems analysed they recommend to exploit
the simpler bounded Grammatical Swarm.

In Chapter 4, which is entitled SWARMs of Self-Organizing Polymorphic
Agents, the authors describe a SWARM simulation of a distributed approach
to fault mitigation within a large-scale data acquisition system for BTeV,

Preface VII

a particle accelerator-based High Energy Physics experiment currently un-
der development at Fermi National Accelerator Laboratory. Incoming data
is expected to arrive at a rate of over 1 terabyte every second, distributed
across 2500 digital signal processors. Through simulation results, the authors
show how lightweight polymorphic agents embedded within the individual
processors use game theory to adapt roles based on the changing needs of
the environment. They also provide details about SWARM architecture and
implementation methodologies.

Part II: Experiences Using Particle Swarm Intelligence

In Chapter 5, which is entitled Swarm Intelligence — Searchers, Cleaners
and Hunters, the authors examine the concept of swarm intelligence through
three examples of complex problems which are solved by a decentralized swarm
of simple agents. The protocols employed by these agents are presented, as
well as various analytic results for their performance and for the problems in
general. The problems examined are the problem of finding patterns within
physical graphs (e.g. k-cliques), the dynamic cooperative cleaners problem,
and a problem concerning a swarm of UAVs (unmanned air vehicles), hunting
an evading target (or targets).

In Chapter 6, which is entitled Ant Colony Optimisation for Fast Mod-
ular Exponentiation using the Sliding Window Method, the authors exploit
the ant colony strategy to finding optimal addition sequences that allow one
to perform the pre-computations in window-based methods with a minimal
number of modular multiplications. The authors claim that this improves
the efficiency of modular exponentiation. The author compare the addition
sequences obtained by the ant colony optimisation to those obtained using
Brun’s algorithm.

In Chapter 7, which is entitled Particle Swarm for Fuzzy Models Identi-
fication, the authors present the use of Particle Swarm Optimization (PSO)
algorithm for building optimal fuzzy models from the available data. The
authors also present the results based on selection based PSO variant with
lifetime parameter that has been used for identification of fuzzy models. The
fuzzy model identification procedure using PSO as an optimization engine has
been implemented as a Matlab toolbox and is presented in the next chapter.
The simulation results presented in this chapter have been obtained through
this toolbox. The toolbox has been hosted on SourceForge.net, which is the
world’s largest development and download repository of open-source code and
applications.

In Chapter 8, which is entitled A Matlab Implementation of Swarm Intel-
ligence based Methodology for Identification of Optimized Fuzzy Models, the
authors describe the implementation of the fuzzy model identification pro-
cedure (see Chapter 7) using PSO as an optimization engine. This toolbox
provides the features to generate Mamdani and Singleton fuzzy models from

VIII Preface

the available data. The authors claim that this toolbox can serve as a valuable
reference to the swarm intelligence community and others and help them in
designing fuzzy models for their respective applications quickly.

We are very much grateful to the authors of this volume and to the review-
ers for their tremendous service by critically reviewing the chapters. The edi-
tors would also like to thank Prof. Janusz Kacprzyk, the editor-in-chief of the
Studies in Computational Intelligence Book Series and Dr. Thomas Ditzinger
from Springer-Verlag, Germany for their editorial assistance and excellent col-
laboration to produce this scientific work. We hope that the reader will share
our excitement on this volume and will find it useful.

March 2006

Nadia Nedjah
Luiza M. Mourelle

State University of Rio de Janeiro
Brazil

Contents

Part I Methodologies Based on Particle Swarm Intelligence

1 Swarm Intelligence: Foundations, Perspectives and
Applications
Ajith Abraham, He Guo, Hongbo Liu . 3
1.1 Introduction . 3
1.2 Canonical Particle Swarm Optimization . 4

1.2.1 Canonical Model . 4
1.2.2 The Parameters of PSO. 5
1.2.3 Performance Comparison with Some Global Optimization

Algorithms . 8
1.3 Extended Models of PSO for Discrete Problems 10

1.3.1 Fuzzy PSO . 10
1.3.2 Binary PSO . 12

1.4 Applications of Particle Swarm Optimization 13
1.4.1 Job Scheduling on Computational Grids 13
1.4.2 PSO for Data Mining . 14

1.5 Ant Colony Optimization . 16
1.6 Ant Colony Algorithms for Optimization Problems 18

1.6.1 Travelling Salesman Problem (TSP) . 18
1.6.2 Quadratic Assignment Problem (QAP) 19

1.7 Ant Colony Algorithms for Data Mining . 21
1.7.1 Web Usage Mining . 22

1.8 Summary . 23
References . 23

2 Waves of Swarm Particles (WoSP)
Tim Hendtlass . 27
2.1 The Conventional Particle Swarm Algorithm 27
2.2 The WoSP Algorithm . 32

2.2.1 Adding a Short-Range Force . 32

X Contents

2.2.2 The Effect of Discrete Evaluation . 34
2.2.3 Organising Ejected Particles into Waves 35
2.2.4 When is a Particle Ejection a Promotion? 37
2.2.5 Adding a Local Search . 37

2.3 The WoSP Algorithm in Detail . 38
2.3.1 The Computation Cost of the WoSP Algorithm 38
2.3.2 Interactions between the WoSP Parameters 40

2.4 The Performance of the WoSP Algorithm . 41
2.4.1 A Two Minimum Problem . 41
2.4.2 A Three Maximum Problem . 43
2.4.3 A Dual Cluster Problem . 46
2.4.4 A Problem with 830 Maxima . 49
2.4.5 A Problem with 8100 Maxima . 55

2.5 Comparison to Other Approaches . 55
2.6 Constraint Handling . 56
2.7 Concluding Remarks . 56
References . 57
Bibliography . 57

3 Grammatical Swarm: A Variable-Length Particle Swarm
Algorithm
Michael O’Neill, Finbar Leahy, Anthony Brabazon . 59
3.1 Introduction . 59
3.2 Particle Swarm Optimization. 60
3.3 Grammatical Evolution . 62
3.4 Grammatical Swarm . 64

3.4.1 Variable-Length Particle Strategies . 64
3.5 Proof of Concept Experiments and Results . 66

3.5.1 Santa Fe Ant trail . 66
3.5.2 Quartic Symbolic Regression . 67
3.5.3 Three Multiplexer . 67
3.5.4 Mastermind . 67
3.5.5 Results . 68
3.5.6 Summary . 68

3.6 Conclusions and Future Work . 71
References . 72

4 SWARMs of Self-Organizing Polymorphic Agents
Derek Messie, Jae C. Oh . 75
4.1 Introduction . 75
4.2 Background and Motivation . 76

4.2.1 Polymorphism and Stigmergy. 76
4.2.2 RTES/BTeV . 78
4.2.3 Very Lightweight Agents (VLAs) . 79
4.2.4 Challenges . 80

Contents XI

4.3 SWARM Simulation of RTES/BTeV . 81
4.3.1 Overview . 81
4.3.2 SWARM Development Kit . 81
4.3.3 Polymorphic Agents . 82

4.4 Results . 85
4.4.1 Summary . 85
4.4.2 Utility Value Drives Real-Time Scheduling 86
4.4.3 Self-* Emergent Behavior . 86

4.5 Lessons Learned . 87
4.6 Next Steps . 88
4.7 Summary . 88
References . 89

Part II Experiences Using Particle Swarm Intelligence

5 Swarm Intelligence — Searchers, Cleaners and Hunters
Yaniv Altshuler, Vladimir Yanovsky, Israel A. Wagner,, Alfred M.
Bruckstein . 93
5.1 Introduction . 93

5.1.1 Swarm Intelligence — Overview . 95
5.1.2 Swarm Intelligence — Motivation . 96
5.1.3 Swarm Intelligence — Simplicity . 98

5.2 The Dynamic Cooperative Cleaners (DCC) Problem 100
5.2.1 The Problem’s Definition . 100
5.2.2 Solving the Problem — Cleaning Protocol 100
5.2.3 Cleaning Protocol - Definitions and Requirements 101
5.2.4 Dynamic Cooperative Cleaners — Results 102
5.2.5 Dynamic Cooperative Cleaners — Convex Transformation . . 105

5.3 Cooperative Hunters . 106
5.3.1 Problem . 107
5.3.2 Motivation . 107
5.3.3 General Principle . 108
5.3.4 Search Protocol . 109
5.3.5 Results . 110

5.4 Physical k-Clique . 110
5.4.1 Physical Graphs . 110
5.4.2 The Problem — Pattern Matching by a Swarm of Mobile

Agents . 111
5.4.3 Motivation . 113
5.4.4 Physical Clique Finding Protocol . 113
5.4.5 Results . 116
5.4.6 Exploration in Physical Environments . 117
5.4.7 Swarm Intelligence for Physical Environments — Related

Work . 119

XII Contents

5.5 Discussion and Conclusion . 121
5.5.1 Cooperative Cleaners . 121
5.5.2 Cooperative Hunters . 123
5.5.3 Physical k-Clique . 124

References . 125

6 Ant Colony Optimisation for Fast Modular Exponentiation
using the Sliding Window Method
Nadia Nedjah, Luiza de Macedo Mourelle . 133
6.1 Introduction . 133
6.2 Window-Based Methods . 135

6.2.1 M -ary Methods . 135
6.2.2 Sliding Window Methods . 136

6.3 Addition Chains and Addition Sequences . 137
6.3.1 Addition Sequences . 137
6.3.2 Brun’s Algorithm . 138

6.4 Ant Systems and Algorithms . 138
6.5 Chain Sequence Minimisation Using Ant System. 140

6.5.1 The Ant System Shared Memory . 140
6.5.2 The Ant Local Memory . 141
6.5.3 Addition Sequence Characteristics . 142
6.5.4 Pheromone Trail and State Transition Function 144

6.6 Performance Comparison . 144
6.7 Summary . 145
References . 147

7 Particle Swarm for Fuzzy Models Identification
Arun Khosla, Shakti Kumar, K.K. Aggarwal, Jagatpreet Singh 149
7.1 Introduction . 150
7.2 PSO Algorithm . 150
7.3 Fuzzy Models . 152

7.3.1 Overview of Fuzzy Models . 152
7.3.2 Fuzzy Model Identification Problem . 153

7.4 A Methodology for Fuzzy Models Identification through PSO 153
7.4.1 Case I - Parameters Modified: MF parameters, rules

consequents. Parameters not Modified: MF type, rule-set 155
7.4.2 Case II - Parameters Modified: MF parameters, MFs type,

rules consequents. Parameters not Modified: rule-set 158
7.4.3 Case III - Parameters Modified: MF parameters, MFs type,

rules consequents, rule-set . 160
7.5 Simulation Results . 161
7.6 Selection-based PSO with Lifetime Parameter 164
7.7 Conclusions and Future Work . 171
References . 172

Contents XIII

8 A Matlab Implementation of Swarm Intelligence based
Methodology for Identification of Optimized Fuzzy Models
Arun Khosla, Shakti Kumar, K.K. Aggarwal,, Jagatpreet Singh 175
8.1 Introduction . 175
8.2 PSO Fuzzy Modeler for Matlab . 176
8.3 Conclusions and Future Work Directions . 181
References . 184

List of Figures

1.1 Some neighborhood topologies adapted from [15] 7
1.2 Griewank function performance . 9
1.3 Schwefel function performance . 10
1.4 Quadric function performance . 10
1.5 Performance for job scheduling (3,13) . 14
1.6 An ACO solution for the TSP (20 cities) . 19
1.7 An ACO solution for the TSP (198 cities) 20
1.8 Clustering of Web server visitors using ant colony algorithm

(adapted from [3]) . 22
2.1 The variation of vij in equation 2.2 for various values of

SRFpower . 33
2.2 The aliasing effect introduced by discrete evaluation 34
2.3 finding a small region of better performance in one dimension . . 36
2.4 A two dimensional fitness surface in which two minima are

separated by a poor fitness hill . 41
2.5 All the points evaluated during a run of the WoSP algorithm

on the surface shown in 2.4 . 44
2.6 The two-dimensional three maxima fitness surface 45
2.7 The 14 minima, two cluster problem space 47
2.8 Schwefel’s function in 1 dimension . 50
2.9 The performance of 100 independent trials of the basic swarm

algorithm on Schwefel’s function in 30 dimensions 51
2.10 A history of the number of particles in each wave during the

first 8000 WoSP iterations (Schwefel’s function in 30 dimensions) 52
2.11 A history the best fitness discovered by each wave during the

first 8000 WoSP iterations (Schwefel’s function in 30 dimensions) 53
2.12 The best fitness achieved by each wave during a typical run

(Schwefel’s function in 30 dimensions) . 54
3.1 An example GE individuals’ genome represented as integers

for ease of reading. 61

XVI List of Figures

3.2 Plot of the mean fitness on the Santa Fe Ant trail problem
instance and the cumulative frequency of success 68

3.3 Plot of the mean fitness on the 3 multiplexer problem instance
and the cumulative frequency of success . 69

3.4 Plot of the mean fitness on the Quartic Symbolic Regression
problem instance and the cumulative frequency of success 70

3.5 Plot of the mean fitness on the Mastermind problem instance
and the cumulative frequency of success . 71

4.1 Termite mound commonly found in subsaharan Africa 77
4.2 Aerial view of the Fermilab Tevatron, the world’s

highest-energy particle collider . 79
4.3 The BTeV triggering and data acquisition system 80
4.4 Utility based on the sigmoid value for the frequency of FVLA

checks (p(q)) on a given DSP . 84
5.1 A creation of a new hole around an agent 101
5.2 The SWEEP cleaning protocol. 103
5.3 Improvement in cleaning time of Convex-hull. 106
5.4 The PCF search algorithm for the centralized shared memory

model. 115
5.5 Results of the Physical 10-Clique problem. 116
5.6 A comparison between the results of the Physical 10-Clique

problem. 117
5.7 Results of the Physical 10-Clique problem. 118
5.8 Random walk exploration . 119
5.9 Random walk exploration . 120
5.10 Comparison of sub optimal and optimal algorithms 122
5.11 Comparison of sub optimal and optimal algorithms (cont.) 123
6.1 Multi-agent system architecture . 139
6.2 Example of shared memory content for Vp = 17 141
6.3 Example of an ant local memory . 143
6.4 Performance Comparison . 146
7.1 Depiction of position updates in particle swarm optimization

for 2-D parameter space . 152
7.2 Optimal fuzzy model identification using PSO as an

optimization engine . 154
7.3 Representation of optimization process . 154
7.4 Characteristics of a triangular membership function. 156
7.5 Representation of a variable with 3 membership functions 157
7.6 Representation of a fuzzy model by a particle 159
7.7 Particle representing Mamdani fuzzy model corresponding to

Case II . 159
7.8 Particle representing Mamdani fuzzy model corresponding to

Case III . 160
7.9 Methodology for fuzzy models identification through PSO 162
7.10 Illustration of the Proposed Approach . 165

List of Figures XVII

7.11 Methodology for fuzzy models identification through PSO
with Angeline approach . 168

7.12 Convergence Plots for experiments E1 and E3-E6 169
7.13 Methodology for fuzzy models identification through PSO

with Lifetime parameter . 170
7.14 Convergence Plots for experiments E7-E9 171
8.1 Matlab toolbox modules . 177
8.2 Limiting Mechanism . 178
8.3 The FIS Structure . 179
8.4 Organization of toolbox modules . 180
8.5 PSO Fuzzy Modeler for Matlab GUI . 181
8.6 PSO Fuzzy Modeler for Matlab GUI implementing PSO with

lifetime parameter . 182
8.7 Graphical representation . 183

List of Tables

1.1 Parameter settings for the algorithms. 8
1.2 Comparing the performance of the considered algorithms. 15
1.3 Results of PSO-miner . 16
1.4 A TSP (20 cities) . 19
2.1 The fixed test parameters . 42
2.2 Performance results . 43
2.3 Maximum values and distances from the centre of the start

circle for the problem surface shown in Fig. 2.6 44
2.4 The constant values that when used in equation 2.5 produce

the surface shown in Fig. 2.6 . 44
2.5 The key SRF and wave parameter values used 46
2.6 The relative performance of the basic PSO and WoSP algorithms 46
2.7 The position and floor values of each of the 14 minima 48
2.8 The times each minimum, or selected combinations of minima,

were found in 100 WoSP runs . 48
2.9 The eight maxima per dimension of Schwefel’s function, values

rounded to the nearest integer . 50
2.10 The parameter values used for Schwefel’s function in 30

dimensions . 52
3.1 A comparison of the results obtained for the Santa Fe Ant trail 69
3.2 A comparison of the results obtained for the Multiplexer

problem instance . 69
3.3 A comparison of the results obtained for the quartic symbolic

regression problem instance . 70
3.4 A comparison of the results obtained for the Mastermind

problem . 70
3.5 A comparison of the results obtained for Grammatical Swarm

and Grammatical Evolution . 72
6.1 The addition sequences yield for S(5, 9, 23), S(9, 27, 55) and

S(5, 7, 95) respectively . 145

XX List of Tables

6.2 Average length of addition sequence for Brun’s algorithm,
genetic algorithms (GA) and ant system (AS) based methods . . 146

7.1 Different Cases for Fuzzy Models Identification 155
7.2 Particle size for three different cases defined in Table 7.1 161
7.3 Input and output variables alongwith their universes of discourse163
7.4 Strategy parameters of PSO algorithm for fuzzy models

identification . 163
7.5 Simulation Results . 163
7.6 Parameters for Experiments . 165
7.7 Asymmetric Initialization Ranges . 165
7.8 Mean Fitness Values for the Rosenbrock function 166
7.9 Mean Fitness Values for the Rastrigrin function 166
7.10 Mean Fitness Values for the Griewank function 167
7.11 Experiment details and results (E3-E6) . 167
7.12 Experiment details and results (E7-E9) . 167
8.1 List of Matlab functions . 176

1

Swarm Intelligence: Foundations, Perspectives
and Applications

Ajith Abraham1, He Guo2, and Hongbo Liu2

1 IITA Professorship Program, School of Computer Science and Engineering,
Chung-Ang University, Seoul, 156-756, Korea. ajith.abraham@ieee.org,
http://www.softcomputing.net

2 Department of Computer Science, Dalian University of Technology, Dalian,
116023, China. {guohe,lhb}@dlut.edu.cn

This chapter introduces some of the theoretical foundations of swarm intel-
ligence. We focus on the design and implementation of the Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) algorithms for var-
ious types of function optimization problems, real world applications and data
mining. Results are analyzed, discussed and their potentials are illustrated.

1.1 Introduction

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for
solving optimization problems that originally took its inspiration from the
biological examples by swarming, flocking and herding phenomena in verte-
brates.

Particle Swarm Optimization (PSO) incorporates swarming behaviors ob-
served in flocks of birds, schools of fish, or swarms of bees, and even hu-
man social behavior, from which the idea is emerged [14, 7, 22]. PSO is a
population-based optimization tool, which could be implemented and applied
easily to solve various function optimization problems, or the problems that
can be transformed to function optimization problems. As an algorithm, the
main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms like Genetic Algorithms (GA) [13], Sim-
ulated Annealing (SA) [20, 27] and other global optimization algorithms. For
applying PSO successfully, one of the key issues is finding how to map the
problem solution into the PSO particle, which directly affects its feasibility
and performance.

Ant Colony Optimization (ACO) deals with artificial systems that is in-
spired from the foraging behavior of real ants, which are used to solve discrete

A. Abraham et al.: Swarm Intelligence: Foundations, Perspectives and Applications, Studies in

Computational Intelligence (SCI) 26, 3–25 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

4 Ajith Abraham, He Guo, and Hongbo Liu

optimization problems [9]. The main idea is the indirect communication be-
tween the ants by means of chemical pheromone trials, which enables them
to find short paths between their nest and food.

This Chapter is organized as follows. Section 1.2 presents the canonical
PSO algorithm and its performance is compared with some global optimiza-
tion algorithms. Further some extended versions of PSO is presented in Sec-
tion 1.3 followed by some illustrations/applications in Section 1.4. Section
1.5 presents the ACO algorithm followed by some illustrations/applications
of ACO in Section 1.6 and Section 1.7. Some conclusions are also provided
towards the end, in Section 1.8.

1.2 Canonical Particle Swarm Optimization

1.2.1 Canonical Model

The canonical PSO model consists of a swarm of particles, which are initial-
ized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where the
fitness, f , can be calculated as the certain qualities measure. Each particle has
a position represented by a position-vector xi (i is the index of the particle),
and a velocity represented by a velocity-vector vi. Each particle remembers
its own best position so far in a vector x#

i , and its j-th dimensional value
is x#

ij . The best position-vector among the swarm so far is then stored in a
vector x∗, and its j-th dimensional value is x∗

j . During the iteration time t,
the update of the velocity from the previous velocity to the new velocity is
determined by Eq.(1.1). The new position is then determined by the sum of
the previous position and the new velocity by Eq.(1.2).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗

j (t) − xij(t)). (1.1)

xij(t + 1) = xij(t) + vij(t + 1). (1.2)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1

is a positive constant, called as coefficient of the self-recognition component,
c2 is a positive constant, called as coefficient of the social component. From
Eq.(1.1), a particle decides where to move next, considering its own experience,
which is the memory of its best past position, and the experience of its most
successful particle in the swarm. In the particle swarm model, the particle
searches the solutions in the problem space with a range [−s, s] (If the range
is not symmetrical, it can be translated to the corresponding symmetrical
range.) In order to guide the particles effectively in the search space, the
maximum moving distance during one iteration must be clamped in between
the maximum velocity [−vmax, vmax] given in Eq.(1.3):

1 Swarm Intelligence: Foundations, Perspectives and Applications 5

vij = sign(vij)min(|vij | , vmax). (1.3)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be
s, i.e. p = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 1.

Algorithm 1 Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(1.1), (1.2), (1.3);
12. Next j
13. Next i
14. End While.

The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated
after a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is
terminated after some fixed number of iterations without any improve-
ment.

• Minimum objective function error: the error between the obtained ob-
jective function value and the best fitness value is less than a pre-fixed
anticipated threshold.

1.2.2 The Parameters of PSO

The role of inertia weight w, in Eq.(1.1), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact
of the previous history of velocities on the current one. Accordingly, the pa-
rameter w regulates the trade-off between the global (wide-ranging) and local
(nearby) exploration abilities of the swarm. A large inertia weight facilitates
global exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e. fine-tuning the current search area. A suitable value
for the inertia weight w usually provides balance between global and local
exploration abilities and consequently results in a reduction of the number

6 Ajith Abraham, He Guo, and Hongbo Liu

of iterations required to locate the optimum solution. Initially, the inertia
weight is set as a constant. However, some experiment results indicates that
it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more
refined solutions [11]. Thus, an initial value around 1.2 and gradually reduc-
ing towards 0 can be considered as a good choice for w. A better method
is to use some adaptive approaches (example: fuzzy controller), in which the
parameters can be adaptively fine tuned according to the problems under
consideration [24, 16].

The parameters c1 and c2, in Eq.(1.1), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. As default values, usually, c1 = c2 = 2 are used,
but some experiment results indicate that c1 = c2 = 1.49 might provide even
better results. Recent work reports that it might be even better to choose a
larger cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤
4 [7].

The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by
each individual’s previous best success and the success of some other particle.
Various methods have been used to identify some other particle to influence
the individual. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [14]. In the lbest model, particles have information
only of their own and their nearest array neighbors’ best (lbest), rather than
that of the entire group. Namely, in Eq.(1.4), gbest is replaced by lbest in the
model. So a new neighborhood relation is defined for the swarm:

vid(t+1) = w∗vid(t)+c1∗r1∗(pid(t)−xid(t))+c2∗r2∗(pld(t)−xid(t)). (1.4)

xid(t + 1) = xid(t) + vid(t + 1). (1.5)

In the gbest model, the trajectory for each particle’s search is influenced by
the best point found by any member of the entire population. The best particle
acts as an attractor, pulling all the particles towards it. Eventually all particles
will converge to this position. The lbest model allows each individual to be
influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood. Typically lbest
neighborhoods comprise exactly two neighbors. When the number of neighbors
increases to all but itself in the lbest model, the case is equivalent to the
gbest model. Some experiment results testified that gbest model converges
quickly on problem solutions but has a weakness for becoming trapped in
local optima, while lbest model converges slowly on problem solutions but is
able to “flow around” local optima, as the individuals explore different regions.
The gbest model is recommended strongly for unimodal objective functions,
while a variable neighborhood model is recommended for multimodal objective
functions.

1 Swarm Intelligence: Foundations, Perspectives and Applications 7

Kennedy and Mendes [15] studied the various population topologies on
the PSO performance. Different concepts for neighborhoods could be envis-
aged. It can be observed as a spatial neighborhood when it is determined
by the Euclidean distance between the positions of two particles, or as a so-
ciometric neighborhood (e.g. the index position in the storing array). The
different concepts for neighborhood leads to different neighborhood topolo-
gies. Different neighborhood topologies primarily affect the communication
abilities and thus the group’s performance. Different topologies are illustrated
in Fig. 1.1. In the case of a global neighborhood, the structure is a fully con-
nected network where every particle has access to the others’ best position
(Refer Fig. 1.1(a)). But in local neighborhoods there are more possible vari-
ants. In the von Neumann topology (Fig. 1.1(b)), neighbors above, below, and
each side on a two dimensional lattice are connected. Fig. 1.1(e) illustrates the
von Neumann topology with one section flattened out. In a pyramid topol-
ogy, three dimensional wire frame triangles are formulated as illustrated in
Fig. 1.1(c). As shown in Fig. 1.1(d), one common structure for a local neigh-
borhood is the circle topology where individuals are far away from others (in
terms of graph structure, not necessarily distance) and are independent of
each other but neighbors are closely connected. Another structure is called
wheel (star) topology and has a more hierarchical structure, because all mem-
bers of the neighborhood are connected to a ‘leader’ individual as shown in
Fig. 1.1(f). So all information has to be communicated though this ‘leader’,
which then compares the performances of all others.

Fig. 1.1. Some neighborhood topologies adapted from [15]

8 Ajith Abraham, He Guo, and Hongbo Liu

1.2.3 Performance Comparison with Some Global Optimization
Algorithms

We compare the performance of PSO with Genetic Algorithm (GA) [6, 13]
and Simulated Annealing (SA)[20, 27]. GA and SA are powerful stochastic
search and optimization methods, which are also inspired from biological and
thermodynamic processes.

Genetic algorithms mimic an evolutionary natural selection process. Gen-
erations of solutions are evaluated according to a fitness value and only those
candidates with high fitness values are used to create further solutions via
crossover and mutation procedures.

Simulated annealing is based on the manner in which liquids freeze or
metals re-crystalize in the process of annealing. In an annealing process, a
melt, initially at high temperature and disordered, is slowly cooled so that
the system at any time is approximately in thermodynamic equilibrium. In
terms of computational simulation, a global minimum would correspond to
such a ”frozen” (steady) ground state at the temperature T=0.

The specific parameter settings for PSO, GA and SA used in the experi-
ments are described in Table 1.1.

Table 1.1. Parameter settings for the algorithms.

Algorithm Parameter name Parameter value

Size of the population 20
Probability of crossover 0.8

GA Probability of mutation 0.02
Scale for mutations 0.1
Tournament probability 0.7

Number operations before temperature adjustment 20
Number of cycles 10

SA Temperature reduction factor 0.85
Vector for control step of length adjustment 2
Initial temperature 50

Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

Benchmark functions:

• Griewank function:
f1 = 1

4000

∑n
i=1(xi)2 −

∏n
i=1 cos(xi√

i
) + 1

x ∈ [−300, 300]n, min(f1(x∗)) = f1(0) = 0.

1 Swarm Intelligence: Foundations, Perspectives and Applications 9

• Schwefel 2.26 function:
f2 = 418.9829n −

∑n
i=1(xisin(

√
|xi|))

x ∈ [−500, 500]n, min(f2(x∗)) = f2(0) = 0.
• Quadric function:

f3 =
∑n

i=1(
∑i

j=1 xj)2

x ∈ [−100, 100]n, min(f3(x∗)) = f3(0) = 0.

Three continuous benchmark functions, i.e. Griewank function, Schwefel
2.26 function and Quadric function, are used to test PSO, GA and SA. Quadric
function has a single minimum, while the other two functions are highly multi-
modal with multiple local minima. For all the test functions, the goal is to find
the global minima. Each algorithm (for each function) was repeated 10 times
with different random seeds. Each trial had a fixed number of 18,000 iterations.
The objective functions were evaluated 360,000 times in each trial. The swarm
size in PSO was 20, population size in GA was 20, the number operations
before temperature adjustment in SA was set to 20. Figures 1.2, 1.3 and 1.4
illustrate the mean best function values for the three functions. It is observed
that for GA and SA, the solutions get trapped in a local minimum even
before 2000 iterations, for high dimensional, multi-modal functions, especially
for Schwefel 2.26 function, while PSO performance is much better. For the
Quadric function, SA performed well and PSO performance was comparatively
poor, as depicted in Fig. 1.4.

0 0.5 1 1.5 2

x 10
4

10
1

10
0

10
1

10
2

10
3

Iteration

F
it

n
es

s

PSO

GA
SA

Fig. 1.2. Griewank function performance

10 Ajith Abraham, He Guo, and Hongbo Liu

0 0.5 1 1.5 2

x 10
4

10
−2

10
0

10
2

10
4

10
6

Iteration

F
it

n
es

s PSO
GA
SA

Fig. 1.3. Schwefel function performance

0 0.5 1 1.5 2

x 10
4

10
2

10
3

10
4

10
5

10
6

Iteration

F
it

n
es

s

PSO
GA
SA

Fig. 1.4. Quadric function performance

1.3 Extended Models of PSO for Discrete Problems

1.3.1 Fuzzy PSO

In the fuzzy PSO model, the representations of the position and velocity of
the particles in PSO are extended from real vectors to fuzzy matrices [21].
This is illustrated using the well known job scheduling problem. For a job
scheduling problem: the jobs J = {J1, J2, · · · , Jn} are to be scheduled on the
machines M = {M1,M2, · · · ,Mm}, and the fuzzy scheduling relation from M
to J can be expressed as follows:

1 Swarm Intelligence: Foundations, Perspectives and Applications 11

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦

where xij represents the degree of membership of the i-th element Mi in
domain M and the j-th element Jj in domain J to relation X. The fuzzy
relation X between M and J has the following meaning: for each element in
the matrix X, the element

xij = µR(Mi, Jj), i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.6)

µR is the membership function, the value of xij means the degree of member-
ship that Mj would process Ji in the feasible schedule solution. The elements
of the matrix X should satisfy the following conditions:

xij ∈ [0, 1], i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.7)

m∑

i=1

xij = 1, i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.8)

Similarly the velocity of the particle is defined as:

V =

⎡

⎢
⎢
⎢
⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤

⎥
⎥
⎥
⎦

The operators of Eqs.(1.1) and (1.2) should be re-defined because the posi-
tion and velocity have been transformed to the form of matrices. The symbol
“⊗” is used to denote the modified multiplication. Let α be a real number,
α⊗V or α⊗X means all the elements in the matrix V or X are multiplied by
α. The symbols “⊕” and “�” denote the addition and subtraction between
matrices respectively. Suppose A and B are two matrices which denote posi-
tion or velocity, then A ⊕ B and A � B are regular addition and subtraction
operation between matrices.

Then we obtain Eqs.(1.9) and (1.10) for updating the positions and veloc-
ities of the particles in the fuzzy discrete PSO:

V (t+1) = w⊗V (t)⊕(c1∗r1)⊗(X#(t)�X(t))⊕(c2∗r2)⊗(X∗(t)�X(t)). (1.9)

X(t + 1) = X(t) ⊕ V (t + 1)). (1.10)

The position matrix may violate the constraints of Eqs.(1.7) and (1.8)
after some iterations, so it is necessary to normalize the position matrix. First
we make all the negative elements in the matrix become zero. If all elements

12 Ajith Abraham, He Guo, and Hongbo Liu

in a column of the matrix are zero, they need be re-evaluated using a series of
random numbers with the interval [0,1]. And then the matrix undergoes the
following transformation without violating the constraints:

Xnormal =

⎡

⎢
⎢
⎢
⎣

x11/
∑m

i=1 xi1 x12/
∑m

i=1 xi2 · · · x1n/
∑m

i=1 xin

x21/
∑m

i=1 xi1 x22/
∑m

i=1 xi2 · · · x2n/
∑m

i=1 xin

...
...

. . .
...

xm1/
∑m

i=1 xi1 xm2/
∑m

i=1 xi2 · · · xmn/
∑m

i=1 xin

⎤

⎥
⎥
⎥
⎦

Since the position matrix indicates the potential scheduling solution, we
should “decode” the fuzzy matrix and get the feasible solution. A flag array
could be used to record whether we have selected the columns of the matrix
and a array to record the solution. First all the columns are not selected, then
for each columns of the matrix, we choose the element which has the max
value, then mark the column of the max element “selected”, and the column
number are recorded to the solution array. After all the columns have been
processed, we get the feasible solution from the solution array and measure
the fitness of the particles.

1.3.2 Binary PSO

The canonical PSO is basically developed for continuous optimization prob-
lems. However, lots of practical engineering problems are formulated as com-
binatorial optimization problems. The binary PSO model was presented by
Kennedy and Eberhart, and is based on a very simple modification of the real-
valued PSO. Faced with a problem-domain where we cannot fit into some
sub-space of the real-valued n-dimensional space, which is required by the
PSO, odds are that we can use a binary PSO instead. All we must provide,
is a mapping from this given problem-domain to the set of bit strings. As
with the canonical PSO, a fitness function f must be defined. In the binary
PSO, we can define a particle’s position and velocity in terms of changes of
probabilities that will be in one state or the other, i.e. yes or no, true or false,
or making some other decision. When the particle moves in a state space re-
stricted to zero and one on each dimension, the change of probability with
time steps is defined as follows:

P (xij(t + 1) = 1) = f(xij(t), vij(t), x
#
ij(t), x

∗
j (t)). (1.11)

where the probability function is usually

sign(vij(t + 1) = 1) =
1

1 + e−vij(t)
. (1.12)

At each time step, each particle updates its velocity and moves to a new
position according to Eqs.(1.13) and (1.14):

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗

j (t) − xij(t)). (1.13)

1 Swarm Intelligence: Foundations, Perspectives and Applications 13

xi(t + 1) =
1 if ρ ≤ s(vi(t)),
0 otherwise. (1.14)

where c1, c2 are learning factors; w is inertia factor; r1, r2, ρ are random func-
tions in the closed interval [0, 1].

1.4 Applications of Particle Swarm Optimization

1.4.1 Job Scheduling on Computational Grids

Grid computing is a computing framework to meet the growing computational
demands. Essential grid services contain more intelligent functions for resource
management, security, grid service marketing, collaboration and so on. The
load sharing of computational jobs is the major task of computational grids [2].

To formulate our objective, define Ci,j (i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n})
as the completion time that the grid node Gi finishes the job Jj ,

∑
Ci rep-

resents the time that the grid node Gi finishes all the scheduled jobs. Define
Cmax = max{

∑
Ci} as the makespan, and

∑m
i=1(
∑

Ci) as the flowtime. An
optimal schedule will be the one that optimizes the flowtime and makespan.
The conceptually obvious rule to minimize

∑m
i=1(
∑

Ci) is to schedule Short-
est Job on the Fastest Node (SJFN). The simplest rule to minimize Cmax

is to schedule the Longest Job on the Fastest Node (LJFN). Minimizing∑m
i=1(
∑

Ci) asks the average job finishes quickly, at the expense of the largest
job taking a long time, whereas minimizing Cmax, asks that no job takes too
long, at the expense of most jobs taking a long time. Minimization of Cmax

will result in the maximization of
∑m

i=1(
∑

Ci).
To illustrate the performance of the algorithms, we considered a finite num-

ber of grid nodes and assumed that the processing speeds of the grid nodes
(cput) and the job lengths (processing requirements in cycles) are known.
Specific parameter settings of the three considered algorithms (PSO, GA and
SA) are described in Table 1.1. The parameters used for the ACO algorithm
are as follows:

Number of ants = 5
Weight of pheromone trail α = 1
Weight of heuristic information β = 5
Pheromone evaporation parameter ρ = 0.8
Constant for pheromone updating Q = 10

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50 ∗m ∗n iterations (m is the
number of the grid nodes, n is the number of the jobs). The makespan values
of the best solutions throughout the optimization run were recorded. And the
averages and the standard deviations were calculated from the 10 different

14 Ajith Abraham, He Guo, and Hongbo Liu

trials. The standard deviation indicates the differences in the results during
the 10 different trials. In a grid environment, the main emphasis will be to
generate the schedules at a minimal amount of time. So the completion time
for 10 trials were used as one of the criteria to improve their performance.

We tested a small scale job scheduling problem involving 3 machines and
13 jobs (3,13) and 5 machines and 100 jobs (5,100). Fig. 1.5 illustrates the
performance of the four algorithms for (3,13). The results for 10 GA runs
were {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49}, with an average value
of 47.1167. The results of 10 SA runs were {46.5, 46.5, 46, 46,46, 46.6667, 47,
47.3333, 47, 47}with an average value of 46.6. The results of 10 PSO runs were
{46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667}, with an average value of
46.2667. The results of 10 ACO runs were {46, 46, 46, 46, 46.5, 46.5, 46.5, 46,
46, 46.5}, with an average value of 46.2667. The optimal result is supposed
to be 46. While GA provided the best results twice, SA, PSO, ACO provided
the best results three, five and six times respectively. Empirical results are
summarized in Table 1.2 for (3,13) and (5,100).

0 500 1000 1500 2000
46

47

48

49

50

51

52

53

54

55

56

Iteration

M
ak

es
p

an

GA
SA
PSO
ACO

Fig. 1.5. Performance for job scheduling (3,13)

1.4.2 PSO for Data Mining

Data mining and particle swarm optimization may seem that they do not have
many properties in common. However, they can be used together to form
a method which often leads to the result, even when other methods would
be too expensive or difficult to implement. Ujjinn and Bentley [28] provided
internet-based recommender system, which employs a particle swarm opti-
mization algorithm to learn personal preferences of users and provide tailored

1 Swarm Intelligence: Foundations, Perspectives and Applications 15

Table 1.2. Comparing the performance of the considered algorithms.

InstanceAlgorithm Item
(3,13) (5,100)

Average makespan 47.1167 85.7431
GA Standard Deviation ±0.7700 ±0.6217

Time 302.9210 2415.9

Average makespan 46.6000 90.7338
SA Standard Deviation ±0.4856 ±6.3833

Time 332.5000 6567.8

Average makespan 46.2667 84.0544
PSO Standard Deviation ±0.2854 ±0.5030

Time 106.2030 1485.6

Average makespan 46.2667 88.1575
ACO Standard Deviation ±0.2854 ±0.6423

Time 340.3750 6758.3

suggestions. Omran et al. [19] used particle swarm to implement image clus-
tering. When compared with K-means, Fuzzy C-means, K-Harmonic means
and genetic algorithm approaches, in general, the PSO algorithm produced
better results with reference to inter- and intra-cluster distances, while having
quantization errors comparable to the other algorithms. Sousa et al. [25] pro-
posed the use of the particle swarm optimizer for data mining. Tested against
genetic algorithm and Tree Induction Algorithm (J48), the obtained results
indicates that particle swarm optimizer is a suitable and competitive candi-
date for classification tasks and can be successfully applied to more demanding
problem domains. The basic idea of combining particle swarm optimization
with data mining is quite simple. To extract this knowledge, a database may
be considered as a large search space, and a mining algorithm as a search strat-
egy. PSO makes use of particles moving in an n-dimensional space to search
for solutions for an n-variable function (that is fitness function) optimization
problem. The datasets are the sample space to search and each attribute is
a dimension for the PSO-miner. During the search procedure, each particle
is evaluated using the fitness function which is a central instrument in the
algorithm. Their values decide the swarm’s performance. The fitness function
measures the predictive accuracy of the rule for data mining, and it is given
by Eq.(1.15):

predictive accuracy =
|A ∧ C| − 1/2

|A| (1.15)

where |A ∧ C| is the number of examples that satisfy both the rule an-
tecedent and the consequent, and |A| is the number of cases that satisfy only
the rule antecedent. The term 1/2 is subtracted in the numerator of Eq.(1.15)
to penalize rules covering few training examples. PSO usually search the min-

16 Ajith Abraham, He Guo, and Hongbo Liu

imum for the problem space considered. So we use predictive accuracy to the
power minus one as fitness function in PSO-miner.

Rule pruning is a common technique in data mining. The main goal of rule
pruning is to remove irrelevant terms that might have been unduly included
in the rules. Rule pruning potentially increases the predictive power of the
rule, helping to avoid its over-fitting to the training data. Another motivation
for rule pruning is that it improves the simplicity of the rule, since a shorter
rule is usually easier to be understood by the user than a longer one. As soon
as the current particle completes the construction of its rule, the rule pruning
procedure is called. The quality of a rule, denoted by Q, is computed by the
formula: Q = sensitivity · specificity [17]. Just after the covering algorithm
returns a rule set, another post-processing routine is used: rule set cleaning,
where rules that will never be applied are removed from the rule set. The
purpose of the validation algorithm is to statistically evaluate the accuracy of
the rule set obtained by the covering algorithm. This is done using a method
known as tenfold cross validation [29]. Rule set accuracy is evaluated and
presented as the percentage of instances in the test set correctly classified. In
order to classify a new test case, unseen during training, the discovered rules
are applied in the order they were discovered.

The performance of PSO-miner was evaluated using four public-domain
data sets from the UCI repository [4]. The used parameters’ settings are as
following: swarm size=30; c1 = c2 = 2; maximum position=5; maximum
velocity=0.1∼0.5; maximum uncovered cases = 10 and maximum number of
iterations=4000. The results are reported in Table 1.3. The algorithm is not
only simple than many other methods, but also is a good alternative method
for data mining.

Table 1.3. Results of PSO-miner

Predictive Number of terms
Data set

accuracy
Number of rules

/ Number of rules

Wisconsin breast cancer 92.65 ± 0.61 5.70 ± 0.20 1.63
Dermatology 92.65 ± 2.37 7.40 ± 0.19 2.99
Hepatitis 83.65 ± 3.13 3.30 ± 0.15 1.58
Cleveland heart disease 53.50 ± 0.61 9.20 ± 0.25 1.71

1.5 Ant Colony Optimization

In nature, ants usually wander randomly, and upon finding food return to
their nest while laying down pheromone trails. If other ants find such a path
(pheromone trail), they are likely not to keep travelling at random, but to
instead follow the trail, returning and reinforcing it if they eventually find

1 Swarm Intelligence: Foundations, Perspectives and Applications 17

food. However, as time passes, the pheromone starts to evaporate. The more
time it takes for an ant to travel down the path and back again, the more time
the pheromone has to evaporate (and the path to become less prominent). A
shorter path, in comparison will be visited by more ants (can be described as
a loop of positive feedback) and thus the pheromone density remains high for
a longer time.

ACO is implemented as a team of intelligent agents which simulate the
ants behavior, walking around the graph representing the problem to solve
using mechanisms of cooperation and adaptation. ACO algorithm requires to
define the following [5, 10]:

• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilis-
tic transition rules, based on the amount of pheromone in the trail and
other problem specific knowledge. It is also important to enforce a strategy
to construct only valid solutions corresponding to the problem definition.

• A problem-dependent heuristic function η that measures the quality of
components that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the
pheromone value τ .

• A probabilistic transition rule based on the value of the heuristic function η
and the pheromone value τ that is used to iteratively construct a solution.

ACO was first introduced using the Travelling Salesman Problem (TSP).
Starting from its start node, an ant iteratively moves from one node to an-
other. When being at a node, an ant chooses to go to a unvisited node at time
t with a probability given by

pk
i,j(t) =

[τi,j(t)]α[ηi,j(t)]β∑
l∈Nk

i
[τi,j(t)]α[ηi,j(t)]β

j ∈ Nk
i (1.16)

where Nk
i is the feasible neighborhood of the antk, that is, the set of cities

which antk has not yet visited; τi,j(t) is the pheromone value on the edge
(i, j) at the time t, α is the weight of pheromone; ηi,j(t) is a priori available
heuristic information on the edge (i, j) at the time t, β is the weight of heuris-
tic information. Two parameters α and β determine the relative influence of
pheromone trail and heuristic information. τi,j(t) is determined by

τi,j(t) = ρτi,j(t − 1) +
n∑

k=1

∆τk
i,j(t) ∀(i, j) (1.17)

∆τk
i,j(t) =

Q
Lk(t) if the edge (i, j) chosen by the antk
0 otherwise

(1.18)

where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the
number of ants, Q is a constant for pheromone updating.

18 Ajith Abraham, He Guo, and Hongbo Liu

More recent work has seen the application of ACO to other problems
[12, 26]. A generalized version of the pseudo-code for the ACO algorithm with
reference to the TSP is illustrated in Algorithm 2.

Algorithm 2 Ant Colony Optimization Algorithm
01. Initialize the number of ants n, and other parameters.
02. While (the end criterion is not met) do
03. t = t + 1;
04. For k= 1 to n
05. antk is positioned on a starting node;
06. For m= 2 to problem size
07. Choose the state to move into
08. according to the probabilistic transition rules;
09. Append the chosen move into tabuk(t) for the antk;
10. Next m
11. Compute the length Lk(t) of the tour Tk(t) chosen by the antk;
12. Compute ∆τi,j(t) for every edge (i, j) in Tk(t) according to Eq.(1.18);
13. Next k
14. Update the trail pheromone intensity for every edge (i, j) according to
Eq.(1.17);
15. Compare and update the best solution;
16. End While.

1.6 Ant Colony Algorithms for Optimization Problems

1.6.1 Travelling Salesman Problem (TSP)

Given a collection of cities and the cost of travel between each pair of them,
the travelling salesman problem is to find the cheapest way of visiting all of
the cities and returning to the starting point. It is assumed that the travel
costs are symmetric in the sense that travelling from city X to city Y costs
just as much as travelling from Y to X. The parameter settings used for ACO
algorithm are as follows:

Number of ants = 5
Maximum number of iterations = 1000
α = 2
β = 2
ρ = 0.9
Q = 10

A TSP with 20 cities (Table 1.4) is used to illustrate the ACO algorithm.

1 Swarm Intelligence: Foundations, Perspectives and Applications 19

The best route obtained is depicted as 1 → 14 → 11 → 4 → 8 → 10 → 15 →
19 → 7 → 18 → 16 → 5 → 13 → 20 → 6 → 17 → 9 → 2 → 12 → 3 → 1, and
is illustrated in Fig. 1.6 with a cost of 24.5222. The search result for a TSP
for 198 cities is illustrated in Figure 1.7 with a total cost of 19961.3045.

Table 1.4. A TSP (20 cities)

Cities 1 2 3 4 5 6 7 8 9 10

x 5.2940 4.2860 4.7190 4.1850 0.9150 4.7710 1.5240 3.4470 3.7180 2.6490
y 1.5580 3.6220 2.7740 2.2300 3.8210 6.0410 2.8710 2.1110 3.6650 2.5560

Cities 11 12 13 14 15 16 17 18 19 20

x 4.3990 4.6600 1.2320 5.0360 2.7100 1.0720 5.8550 0.1940 1.7620 2.6820
y 1.1940 2.9490 6.4400 0.2440 3.1400 3.4540 6.2030 1.8620 2.6930 6.0970

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Fig. 1.6. An ACO solution for the TSP (20 cities)

1.6.2 Quadratic Assignment Problem (QAP)

Quadratic assignment problems model many applications in diverse areas such
as operations research, parallel and distributed computing, and combinatorial
data analysis. There are a set of n facilities and a set of n locations. For each
pair of locations a distance is specified and for each pair of facilities a weight
or flow is specified (e.g., the amount of supplies transported between the two
facilities). The problem is to assign all facilities to different locations with the
goal of minimizing the sum of the distances multiplied by the corresponding

20 Ajith Abraham, He Guo, and Hongbo Liu

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fig. 1.7. An ACO solution for the TSP (198 cities)

flows. A QAP is used to demonstrate the validity of ACO and its distance/flow
matrix for 9 ∗ 9 assignment is illustrated below:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8 9
1 * 1 2 3 1 2 3 4 5
2 5 * 1 2 2 1 2 3 4
3 2 3 * 1 3 2 1 2 3
4 4 0 0 * 4 3 2 1 2
5 1 2 0 5 * 1 2 3 2
6 0 2 0 2 10 * 1 2 1
7 0 2 0 2 0 5 * 1 2
8 6 0 5 10 0 1 10 * 1
9 0 4 0 2 5 0 3 8 *

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The parameter settings used for ACO algorithm are as follows:

Number of ants = 5
Maximum number of iterations = 100,000
α = 1
β= 5
ρ = 0.8
Q = 10

Using ACO, the cheapest cost obtained = 144 and iteration time = 22445.
Assignment results are depicted below:

Dept 1 → Site 5; Dept 2 → Site 2; Dept 3 → Site 1; Dept 4 → Site 9;
Dept 5 → Site 4; Dept 6 → Site 8; Dept 7 → Site 7; Dept 8 → Site 6; Dept
9 → Site 3.

1 Swarm Intelligence: Foundations, Perspectives and Applications 21

1.7 Ant Colony Algorithms for Data Mining

The study of ant colonies behavior and their self-organizing capabilities is of
interest to knowledge retrieval/management and decision support systems sci-
ences, because it provides models of distributed adaptive organization, which
are useful to solve difficult classification, clustering and distributed control
problems.

Ant colony based clustering algorithms have been first introduced by
Deneubourg et al. [8] by mimicking different types of naturally-occurring
emergent phenomena. Ants gather items to form heaps (clustering of dead
corpses or cemeteries) observed in the species of Pheidole Pallidula and La-
sius Niger. If sufficiently large parts of corpses are randomly distributed in
space, the workers form cemetery clusters within a few hours, following a
behavior similar to segregation. If the experimental arena is not sufficiently
large, or if it contains spatial heterogeneities, the clusters will be formed along
the edges of the arena or, more generally, following the heterogeneities. The
basic mechanism underlying this type of aggregation phenomenon is an at-
traction between dead items mediated by the ant workers: small clusters of
items grow by attracting workers to deposit more items. It is this positive
and auto-catalytic feedback that leads to the formation of larger and larger
clusters.

A sorting approach could be also formulated by mimicking ants that dis-
criminate between different kinds of items and spatially arrange them accord-
ing to their properties. This is observed in the Leptothorax unifasciatus species
where larvae are arranged according to their size.

The general idea for data clustering is that isolated items should be picked
up and dropped at some other location where more items of that type are
present. Ramos et al. [23] proposed ACLUSTER algorithm to follow real ant-
like behaviors as much as possible. In that sense, bio-inspired spatial transi-
tion probabilities are incorporated into the system, avoiding randomly moving
agents, which encourage the distributed algorithm to explore regions mani-
festly without interest. The strategy allows guiding ants to find clusters of
objects in an adaptive way.

In order to model the behavior of ants associated with different tasks
(dropping and picking up objects), the use of combinations of different re-
sponse thresholds was proposed. There are two major factors that should in-
fluence any local action taken by the ant-like agent: the number of objects in
its neighborhood, and their similarity. Lumer and Faieta [18] used an average
similarity, mixing distances between objects with their number, incorporating
it simultaneously into a response threshold function like the algorithm pro-
posed by Deneubourg et al. [8]. ACLUSTER [23] uses combinations of two
independent response threshold functions, each associated with a different en-
vironmental factor depending on the number of objects in the area, and their
similarity. Reader may consult [23] for the technical details of ACLUSTER.

22 Ajith Abraham, He Guo, and Hongbo Liu

Fig. 1.8. Clustering of Web server visitors using ant colony algorithm (adapted
from [3])

1.7.1 Web Usage Mining

Web usage mining has become very critical for effective Web site management,
creating adaptive Web sites, business and support services, personalization,
network traffic flow analysis etc. [3]. Accurate Web usage information could
help to attract new customers, retain current customers, improve cross mar-
keting/sales, effectiveness of promotional campaigns, track leaving customers
and find the most effective logical structure for their Web space. User profiles
could be built by combining users’ navigation paths with other data features,
such as page viewing time, hyperlink structure, and page content.

Abraham and Ramos [3] used an ant colony clustering algorithm to dis-
cover Web usage patterns (data clusters). The task is to cluster similar visitors
accessing the web server based on geographical location, type of information
requested, time of access and so on. Web log data of a University server from
January 01, 2002 to July 0, 2002 was used in the experiments. The log data
was categorized into daily and hourly and for each data set the ACLUSTER
was run twice for 10,00,000 iterations. A 2D classification space is used which
is non-parametric and toroidal.

1 Swarm Intelligence: Foundations, Perspectives and Applications 23

Experiment results for the daily and hourly Web traffic data are illustrated
in Fig. 1.8. Fig. 1.8, at the top, represent the spatial distribution of daily Web
traffic data on a 25×25 non-parametric toroidal grid. At t=1, data items are
randomly allocated and 14 ants were deployed and as time evolved, several
homogenous clusters emerged. Figure 1.8, at the bottom, represent the spatial
distribution of hourly Web traffic data on a 45×45 non-parametric toroidal
grid. At t=1, data items are randomly allocated and 48 ants were deployed and
as time evolved, several homogenous clusters emerged. Reader may consult [3]
for detailed results of the different clustering methods.

Clustering results clearly show that ant colony clustering performs well
when compared to other clustering methods namely self-organizing maps and
evolutionary-fuzzy clustering approach [1].

1.8 Summary

This chapter introduced the theoretical foundations of swarm intelligence with
a focus on the implementation and illustration of particle swarm optimiza-
tion and ant colony optimization algorithms. We provided the design and im-
plementation methods for some applications involving function optimization
problems, real world applications and data mining. Results were analyzed,
discussed and their potentials were illustrated.

Acknowledgements

First author was supported by the International Joint Research Grant of the
IITA (Institute of Information Technology Assessment) foreign professor in-
vitation program of the MIC (Ministry of Information and Communication),
South Korea.

References

1. Abraham A (2003) Business intelligence from web usage mining, Journal of
Information and Knowledge Management (JIKM), World Scientific Publishing
Co., Singapore, 2(4)375-390.

2. Abraham A, Buyya R and Nath B (2000) Nature’s heuristics for scheduling jobs
on computational grids. Proceedings of the 8th IEEE International Conference
on Advanced Computing and Communications, 45-52.

3. Abraham A and Ramos V (2003) Web usage mining using artificial ant colony
clustering and genetic programming. Proceesings of IEEE Congress on Evolu-
tionary Computation, Australia, 1384-1391.

4. Blake C, Keogh E and Merz C J (2003) UCI repository of machine learning
databases. http://ww.ic.uci.edu/ mlearn/MLRepository.htm.

24 Ajith Abraham, He Guo, and Hongbo Liu

5. Bonabeau E, Dorigo M and Theraulaz G (1999) Swarm Intelligence: From Nat-
ural to Artificial Systems. New York, NY: Oxford University Press.

6. Cantu-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic publishers.

7. Clerc M and Kennedy J (2002) The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on Evo-
lutionary Computation, 6(1):58-73.

8. Deneubourg J-L, Goss S, Franks N, at el. (1991) The dynamics of collective sort-
ing: Robot-like ants and ant-like robots. Proceedings of the First International
Conference on Simulation of Adaptive Behaviour: From Animals to Animats,
Cambridge, MA: MIT Press, 1, 356-365.

9. Dorigo M, Maniezzo V and Colorni A (1996). Ant system: optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26(1):29-41.

10. Dorigo M and Stützle T (2004), Ant Colony Optimization, MIT Press, 2004.
11. Eberhart R C and Shi Y (2002) Comparing inertia weights and constriction fac-

tors in particle swarm optimization. Proceedings of IEEE International Congress
on Evolutionary Computation, 84-88.

12. Gambardella L M and Dorigo M (1995) Ant-Q: A reinforcement learning ap-
proach to the traveling salesman problem. Proceedings of the 11th International
Conference on Machine Learning, 252-260.

13. Goldberg D E (1989) Genetic Algorithms in search, optimization, and machine
learning. Addison-Wesley Publishing Corporation, Inc.

14. Kennedy J and Eberhart R (2001) Swarm intelligence. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA.

15. Kennedy J and Mendes R (2002) Population structure and particle swarm per-
formance. Proceeding of IEEE conference on Evolutionary Computation, 1671-
1676.

16. Liu H and Abraham A (2005) Fuzzy Turbulent Particle Swarm Optimization.
Proceeding of the 5th International Conference on Hybrid Intelligent Systems,
Brazil, IEEE CS Press, USA.

17. Lopes H S, Coutinho M S and Lima W C (1998) An evolutionary approach to
simulate cognitive feedback learning in medical domain. Genetic Algorithms and
Fuzzy Logic Systems: Soft Computing Perspectives, World Scientific, 193-207.

18. Lumer E D and Faieta B (1994) Diversity and Adaptation in Populations of
Clustering Ants. Cli D, Husbands P, Meyer J and Wilson S (Eds.), Proceedings
of the Third International Conference on Simulation of Adaptive Behaviour:
From Animals to Animats 3, Cambridge, MA: MIT Press, 501-508.

19. Omran M, Engelbrecht P A and Salman A (2005) Particle swarm optimization
for image clustering. International Journal of Pattern Recognition and Artificial
Intelligence, 19(3):297-321.

20. Orosz J E and Jacobson S H (2002) Analysis of static simulated annealing
algorithms. Journal of Optimzation theory and Applications, 115(1):165-182.

21. Pang W, Wang K P, Zhou C G, at el. (2004) Fuzzy discrete particle swarm
optimization for solving traveling salesman problem. Proceedings of the 4th
International Conference on Computer and Information Technology, IEEE CS
Press.

22. Parsopoulos K E and Vrahatis M N (2004) On the computation of all global
minimizers through particle swarm optimization. IEEE Transactions on Evolu-
tionary Computation, 8(3):211-224.

1 Swarm Intelligence: Foundations, Perspectives and Applications 25

23. Ramos V, Muge F, Pina P (2002) Self-organized data and image retrieval as a
consequence of inter-dynamic synergistic relationships in artificial ant colonies.
Soft Computing Systems - Design, Management and Applications, Proceedings
of the 2nd International Conference on Hybrid Intelligent Systems, IOS Press,
500-509.

24. Shi Y H and Eberhart R C (2001) Fuzzy adaptive particle swarm optimization.
Proceedings of IEEE International Conference on Evolutionary Computation,
101-106.

25. Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms
for classification tasks. Parallel Computing, 30:767-783.

26. Stützle T and Hoo H H (2000) MAX-MIN ant system. Future Generation Com-
puter Systems, 16:889-914.

27. Triki E, Collette Y and Siarry P (2005) A theoretical study on the behavior
of simulated annealing leading to a new cooling schedule. European Journal of
Operational Research, 166:77-92.

28. Ujjin S and Bentley J P (2003) Particle swarm optimization recommender sys-
tem. Proceeding of IEEE International conference on Evolutionary Computa-
tion, 124-131.

29. Witten Ian H and Frank E (1999) Data mining - Practical Machine Learning
Tools and Techniques with Java Implementations. CA: Morgan Kauffmann.

2

Waves of Swarm Particles (WoSP)

Tim Hendtlass

Faculty of Information and Communication Technologies,
Swinburne University of Technology, Hawthorn, Australia.
thendtlass@swin.edu.au

The conventional particle swarm optimisation algorithm has proved very
sucessful at finding a good optimum in problem spaces of low to medium
complexity. However problem spaces with many optima can prove difficult,
especially if the dimensionality of the problem space is high. The probability
that the conventional particle swarm algorithm will converge to a sub-optimal
position is unacceptably high. In this chapter an adaption of the conventional
particle swarm algorithm is introduced that converts the behaviour from the
conventional search and converge to an endless cycle of search, converge and
then diverge to carry on searching. After introducing this new waves of swarm
particles (WoSP) algorithm, its behaviour on a number of problem spaces is
presented. The simpler of these problem spaces have been chosen to explore
the parameters of the new algorithm, but the last problem spaces have been
chosen to show the remarkable performance of the algorithm on highly decep-
tive multi dimensional problem spaces with extreme numbers of local optima.

2.1 The Conventional Particle Swarm Algorithm

Many algorithms are the result of biological inspiration and particle swarm
optimisation (PSO) is no exception. However, the PSO algorithm has slightly
different end goals to the biological behaviour that provides its inspiration
and so needs to differ from nature in some, perhaps un-biological, ways. PSO
takes its inspiration from the flocking of birds and fish, which in the real
world flock for the purposes of protection and efficient searching for food. In
the real world, the swarm needs to be compact for protection; once food is
found the flock should settle to feed. In artificial particle swarm optimisation
the algorithm seeks to find an optimum position, rather than the protection
or food sought in the natural environment. For PSO the correct behaviour
once an optimum is found is not for all the particles in the swarm to converge

T. Hendtlass: Waves of Swarm Particles (WoSP), Studies in Computational Intelligence (SCI)

26, 27–58 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

28 Tim Hendtlass

on this, possibly local, optimum as the goal is to check many optima in the
hope of finding the global optimum. Instead of converging, once an optimum
has been found, the particles should immediately disperse to look for another,
perhaps better, optimum.

If we model our algorithm too closely on the behaviour of birds and fish
we run the risk that we will achieve those aspects of the natural behaviour
that we don’t want at the expense of the artificial behaviour that we do want.
While retaining the components that give the natural swarm its efficient search
capability, we should add such un-biological components as necessary so as
to modify the natural behaviour into the type of behaviour we desire. This
chapter describes adding two such additional components and the modified
behaviour (compared to the biological) that we achieve by adding them. It will
be seen that this new behaviour is particularly suited to searching through a
problem space with multiple optima.

In the particle swarm algorithm the position of a particular particle in some
way encodes a possible solution to the problem for which we seek, ideally an
optimal, but at least a very good solution. Particles move under the influence
of a number of factors in such a way that they tend to converge to an optimum.
A number of variants of the particle swarm algorithm have been proposed
since the original algorithm was introduced by [6]. All of these try to balance
several aspects of the behaviour. See, for example, [2, 7, 3]

Firstly all particles are assumed to have momentum so that they cannot
change direction instantaneously and each time their velocity is updated it
must contain a component that is in the same direction as their previously
calculated velocity. This effectively provides a low pass filter to any change in
their velocity and smooths the track the particle follows through the problem
space.

Secondly, all particles try to exploit at least one good position already
found by some particle in the swarm. Often the position that is exploited is the
best position yet found by any member of the swarm. In this case all the swarm
members know the currently best position found by any swarm member and
are attracted to (will have a component toward) this position. This obviously
requires communication between the members of the swarm and some sort of
collective memory as to the current global best (gbest) position. Alternatively
each particle can experience an attraction back to the best place yet found by
this particle. This uses a set of personal best (Pbest) positions, one for each
particle and on its own would result them exploring independently without
any input for the other swarm members. When combined with the momentum
it can produce particles that explore around the vicinity of the best place they
themselves have yet found. Another option is discussed below.

With only the use of momentum and gbest, particles would engage in a
headlong rush toward the first reasonable position found, only changing this
if some particle happens upon a better position during this rush. Eventually
all particles would reach the same best-known position and exploration would
stop. The particles would in time come to rest as, once a particle over shot

2 Waves of Swarm Particles 29

a position, it would be attracted back to it and, with the momentum term
being less than one, the velocity would drop with each reversal. This behaviour
would mimic real life birds settling at the best-known food source.

Particles are usually started at random positions and the use of pbest
rather than gbest can result in each particle finally settling on the best position
that it itself has discovered. This would give a parallel search and allow a choice
to be made from the optima found. However some, if not many, particles may
effectively waste their time exploring in regions of poor fitness and the local
optimum they find is unlikely to be of real interest. What is needed is some
attraction, if not to the absolutely best position known, at least toward a
position close to this particle where the fitness is known and better than the
fitness it is currently experiencing.

One way to achieve this is to define a local neighbourhood around each
particle and for every particle in a neighbourhood to share its fitness with
all other particles in its neighbourhood. Particles experiemce an attraction to
the best performing particle in its neighbourhood lbest. Using all the particles
within an actual physical distance would result in the neighbourhood being
defined as consisting of this particle and its closest N others. This approach
has the advantage of being intuitively obvious but in practice choosing a
suitable value for this distance is not always easy. Alternatively, assuming
that the particles are identified by some index, the neighbourhood could be
defined as consisting of this particle and its all particles whose index is with
N/2 of this particle’s index. The problem with neighbourhoods is that they
need to be calculated frequently and so the computational cost of this has
to be considered. One way of calculating a unique neighbourhood point for
each particle to be attracted toward that uses the performance of all particles
but is of modest computational cost is given in [4]. Here the position is found
as a centre of attraction, where each particle contributes an amount that is
proportional to its fitness and inversely proportional to the distance it is away.

However the neighbourhood is defined, this extra attraction toward a place
of at least equal and probably better fitness has the effect of causing local
exploration around this point. As, in general, no two particles have the same
neighbourhoods and neighbourhoods vary with time, this has the result of
some exploitation of the good findings of others but without such a strong
drive of all particles to a common point as when using gbest. Commonly both
gbest and lbest are used together, with some weighting factor being introduced
to set the relative influences of each.

Other variations to a particle’s velocity are, of course, possible. For exam-
ple, the addition of a simple random velocity (of modest magnitude) has the
advantage of perturbing a particle’s path so that it explores around the direct
path it is taking, which may result in the discovery of a good region that would
otherwise have been missed. However, unlike the use of lbest described above,
there is no bias toward better fitness in the random changes made as they
have an equal probability of causing a movement toward a region of worse
fitness as toward a region of better fitness. On the grounds of computational

30 Tim Hendtlass

efficiency the use of a random addition may not be such a good idea as lbest.
However, adding an element of randomness effectively adds noise to the search
process, which has been found to be advantageous in evolution [9]. There are
other ways to add randomness, such as using random relative weightings for
gbest and lbest as will be used below.

The continual movement bias toward a position of better fitness in the local
based approach is very reminiscent of the way that evolution biases selection
to individuals with better fitness. The power of evolution is well known so it
should come as no surprise that the use of local attraction also dramatically
improves the average fitness of the positions explored. Of course, just like
evolution, this may result in exploration stopping at a local optimum, but
with a number of different local neighbourhoods in use there is a very good
probability that the whole swarm will not get so trapped and that any trapped
particle will escape, especially if a gbest attraction force is also simultaneously
in use.

Equation 2.1 shows one possible update formula that uses momentum as
well as an attraction to gbest and lbest In this equation the velocity V̄T+t of a
particle at time T + t is derived from its position CT and velocity VT at time
T.

VT+t = χ

(

M · Vt +
rand · B

(
B − CT

)

t
+

rand · L
(
LT − CT

)

t

)

(2.1)

In equation 2.1, B is a vector to the best position (gbest) found by the
swarm so far and LT is a vector to the best position in the local neighbourhood
of the particle at time T (lbest). M (0≤ M ≤1) sets the momentum of the
particle and B and L are parameters that set the relative importance of the
attraction to the gbest and lbest positions respectively although these values
are moderated by the random numbers rand (0≤rand≤1). The time interval
t between velocity updates is often taken to be unity and omitted: it is shown
explicitly here as the equation is dimensionally inconsistent without it and
because it will be of great importance later in this chapter. The constriction
factor χ is not defined here, as it will not be used further. A discussion of it
will be found in [3].

The use of the two random numbers introduces randomness not as an offset
but as a weighting to the influence of gbest and lbest. These influences are not
constant but vary around one half of B andL respectively, unlike momentum
that is always uniformly applied.

Note that the magnitude of the attraction toward B and LT is a function
of how far away these points are from the particle (albeit moderated by a
weighting factor and a random number). Thus particle far from, say, the best
position B will experience a large attraction toward B, an attraction that
will diminish as the particle approaches B. As a consequence of this strong
attraction, the momentum of the particle as it arrives at B may be very

2 Waves of Swarm Particles 31

large and as a result the particle may overfly B by a significant distance. The
continual attraction toward B will finally bring the particle to a stop and then
attract it back. Eventually after as series of overshoots and returns the particle
will come (almost) to a stop at B, always assuming a better global position
was not found by some swarm member during the time that the particle was
traveling to and fro.

Unlike real swarms, where velocities continually change, velocity updates
in PSO occur at regular intervals, each separated from the next by a discrete
time interval t. During these intervals the velocity is assumed to be unchang-
ing. Thus, when the velocity of the particle is high, the distance traveled
between velocity updates will be large. As fitness evaluations are only con-
ducted at these times of velocity update, it is quite possible that the particle
could overfly some better position but be unaware of the fact as the transit
did not coincide with a fitness evaluation. To minimise the chance of this oc-
curring an upper bound to the velocity a particle might be introduced, and /
or a constriction factor χ might be applied that steadily reduces the velocity
of particles as time passes.

The classical particle swarm algorithm consists of using equation 1 to
track a number of particles as they travel through a multi-dimensional space
(called feature or problem space) for which a mapping must exist between any
position in this space and a solution to the problem we are trying to optimise.
The dimensionality of the feature space need not be (but often is) the same as
the number of variables in the problem we wish to solve. All that is required
is that the fitness of a particle can be derived by mapping its position to a
particular solution and then evaluating that solution. A pseudo code version
of a generic classical PSO algorithm is as follows.

Algorithm 3 A generic classical PSO algorithm
1. Position all the particles that make up the swarm randomly through feature
space and evaluate the fitness of each particle. Assign the position in feature space
that corresponds to the best fitness as gbest. Assign random velocities to each
particle.
2. Assuming that these velocities remain unchanged though the time interval t,
calculate the new position of each particle at the end of this period.
3. Evaluate the fitness of each particle, updating gbest if necessary.
4. If the best performance is adequate or enough time has passed without any
change to gbest exit, else go on to step 5.
5. For each particle in turn, calculate lbest and then use equation 1 to calculate
the new velocity.
6. Return to step 2.

This algorithm has proved to be highly successful at finding the optima of
a range of problems in which one clear optimum exists, but less successfully
for problems with a larger number of optima. Less successful in the sense

32 Tim Hendtlass

that, while it will always find an optimum, the probability that it will find the
global optimum decreases as the number of optima to be explored increases,
especially if a significant number of the optima have comparable fitness. For
this latter type of problem the PSO algorithm needs to be modified in one of
two ways.

The first possibility is to inhibit any tendency of the swarm to converge on
one position until sufficient exploration has been undertaken so that one has
a reasonably expectation that the point on which the swarm is converging is
a very good (hopefully optimal) one. Sharply reducing, if not eliminating, the
influence of gbest encourages such exploration, but at the very best the number
of members in the swarm limits the number of optima that will be explored.
Increasing the size of the swarm increases the computational load, particularly
when calculating the fitness of a position is computationally expensive.

The second possibility is to stop attempting to find the final answer in a
single convergence, but to change the behaviour of the swarm to a series of
explore, converge and record cycles, with later cycles involving as little re-
exploration of previously discovered optima as possible. The final answer can
then be chosen by some external agent from the sequence of optima explored.
To achieve this behavioural change, we need to add an attraction that only
becomes significant when a swarm has settled on an optimum and which has
the effect of dispersing the swarm members to search further. This differs from
just reinitialising the swarm and running the algorithm over and over, as the
particles will carry information about previous optima with them. The WoSP
algorithm adds this extra attraction to the conventional PSO.

2.2 The WoSP Algorithm

There are two extra parts to the WoSP (Waves of Swarm particles) algo-
rithm compared to the conventional swarm algorithm; the first adds a short
range force as an extra term to the update equation presented as equation 1
(and a few other detail changes). This has the effect of some particles being
vigorously ejected from their current position, especially when the swarm is
settling on an optimum. On its own, this is of only occasional use as long as
the ejected particle retains knowledge of the optimum to which it was being
attracted before the ejection occurred. So additional changes have to be made
so that ejected particles get a fair chance to explore. These changes will now
be considered in detail.

2.2.1 Adding a Short-Range Force

A short-range force of attraction between particles will only alter the be-
haviour of particles (as compared to the conventional PSO algorithm) when
they are close together. While the probability that this could happen as two

2 Waves of Swarm Particles 33

particles happen to pass close to each other during their voyages through fea-
ture space is not (quite) zero, it is far most likely to occur as the particles
converge when the swarm is settling on an optimum. One possibility is to
introduce a gravitational style attraction that produces a force of attraction
of particle i toward particle j whose magnitude is inversely proportional to
some power p of the distance between them. This short-range force (SRF) will
produce a velocity component vij of one particle toward the other that can
be represented by:

vij =
SRFfactor

d
SRFpower

ij

(2.2)

where dij is the distance between the particles i and j, and SRFfactor is a con-
stant that includes, amongst other things, the assumed mass of the particles.

0 2 4 6 8 10
Inter p article d istance

0.1

1

10

100

1000

10000

100000

1000000

10000000

S
h

o
rt

R
a

n
g

e
F

o
rc

e
In

d
u

c
e

d
V

e
lo

c
it
y
V

ij

4.5
4.0

3.5
3.0

2.5

2.0

SRFpower

Fig. 2.1. The variation of vij in equation 2.2 for various values of SRFpower

Fig. 2.1 shows the variation of vij for various values of SRFpower. Note
that the magnitude of the induced velocity can change by several orders of
magnitude for a small variation in the inter particle separation.

34 Tim Hendtlass

This force on its own would cause the particles to tend to enter limit cycles
around each other, but when combined with the non-continuous evaluation
inherent in all swarm algorithms, the effect is very different.

2.2.2 The Effect of Discrete Evaluation

The short-range force just introduced will have little effect while the swarm
is dispersed for either continuous1 or discrete evaluation. However, as parti-
cles approach each other the magnitude of the short-range force will increase
significantly, producing a substantial increase in the velocity of the particles
toward each other. For discrete evaluation, by the time of the next evaluation,
particles may have passed each other and be at such a distance apart that the
short-range attraction that might bring them back together is far too weak
to do this. As a result, the particles will continue to move rapidly apart with
almost undiminished velocity, exploring beyond their previous positions. This
process is shown in Fig. 2.2.

Time=T

Time=T+t

Time=T+2t

Fig. 2.2. The aliasing effect introduced by discrete evaluation

At time T, the separation between the particles is decreased to a value at
which the magnitude of the short-range attraction (shown by broad arrows)
is becoming significant. This augments the effect of their velocities (shown by

1 Truly continuous evaluation is obviously impossible for any computer based PSO
algorithm. Here the practical meaning of the word ‘continuous’ implies that the
interval between evaluations is sufficiently short so that no particle can have
moved a significant distance between evaluations

2 Waves of Swarm Particles 35

thin arrows) so that the particles move closer together at an increased rate.
Remember that this force is considered to act unchanged for the next t time
units. By time T +t the particles are close and the short-range effect calculated
now is large. As a result, the velocity of the particles increases substantially,
almost entirely as a consequence of the short-range attraction. Again this force
is considered to act unchanged for the next t time units. By time T +2t, when
the next evaluation is made, the particles have passed each other and are so
far apart that the short-range force calculated, which has changed direction,
is weak. Consequently, the particles continue to diverge, retaining at T + 2t
much of the velocity obtained as a result of the short-range forces calculated
at time T + t. The short-range forces will continue to decrease as the particles
move apart, leaving only the normal swarm factors to influence their future
movement (in the absence of other close encounters).

If continuous evaluation could be used, the direction of the short-range
force would reverse as soon as the particles passed each other and the still
high values of short-range attraction would rapidly nullify the effects of the
acceleration experienced as the particles converged. After the particles have
passed they would slow as they separated, then come to rest before once again
converging and repassing. Eventually the particles would enter into a stable
limit cycle.

Using discrete evaluation the effect described might occur if two particles
happen to pass closely in a region of indifferent fitness but is most likely
to happen as particles converge on a single optimum. In this latter case the
short-range force will have the desirable effect that some of the neighbourhood
so engaged will be ejected with significant velocities, and thus reduce the
number of those left to converge and therefore reduce the probability of further
ejections.

Hence the effect of the short-range force on the normal settling behaviour
of the PSO is self-limiting with some swarm particles being left to continue
exploration in the local vicinity. Further discussion of such a short-range force
can be found in [5].

2.2.3 Organising Ejected Particles into Waves

When the ejected particles still have knowledge of the fitness at their point of
ejection, simply ejecting particles from the locations of a known optimum will
only result in another optimum being found under very favourable circum-
stances. This is because this retained knowledge will tend to draw them back
to that promotion point unless they happen upon an area with even better
fitness before the effect of the global attraction cancels their short range force
induced velocity. This problem is shown diagrammatically for one dimension
in Fig. 2.3. Here a particle has been ejected from the right minimum but
it is not assured that it will have sufficient momentum to reach the limited
region in which the left minimum has a value less than the right minimum.
As least, in one dimension the particle has a 50:50 chance of heading in the

36 Tim Hendtlass

right direction. As the number of dimensions increases the probability that
the particle will head exactly toward any small potentially useful good fitness
region rapidly decreases toward zero. In practice, even for a small number of
dimensions, the probability that an ejected particle will fall back to the last
promotion point is virtually unity.

The first minimum found and
recorded.Only values in this restricted

region of thesecond
minimum are less than the

first minimum.

V

Component towards
best-knownpoint

Particles settling in
vicinity of minimum

Short-range force influenced
velocity

Position

Fitness

Fig. 2.3. The problem of finding a small region of better performance in one di-
mension when knowledge about the previous best performance point is retained

One solution is for ejected particles to ‘forget’ all about the optimum from
which they were ejected. Assigning each particle to a wave, and treating each
wave as a “sub swarm”, can achieve this. Particles in a particular wave are
only allowed to respond to the values of B reported by particles in that wave.

Initially all particles belong to wave zero. Every time a particle is ejected
it is promoted by having its wave number increased to that of the highest
numbered wave (creating a new wave if it is already in the highest numbered
wave) and it starts to respond to the other particles in its new wave (if any).
Since particles are commonly (but not always) ejected in pairs a wave will
typically have an initial size of two. When two particles start a new wave (say
wave N), the initial value of B will be the best position occupied by one of
these particles. To reduce the probability that this will be a point associated
with the optimum the particles are just leaving, every particle is required

2 Waves of Swarm Particles 37

to move a user specified minimum distance (the search scale) away from its
promotion position before it is allowed to inform other members of its wave
on its current situation. This, together with the high ejection velocity, and
an active repulsion from this particle’s promotion points until it is at least a
distance of search scale from all of its promotion points, sharply reduces the
probability that particles will fall back to the optimum region associated with
the wave they just left.

As most particles are promoted to successively higher waves, it is possible
for some particles to get ‘left behind’ still circling an optimum found long ago
but not getting close enough to other particles be ejected so as to join a new
wave. As such these particles represent a wasted resource.

Cleaning up left over wave remnants can be achieved in two ways. Firstly,
when a promotion event takes place that would leave only one particle in a
wave, this last particle is also recruited to the wave this last promoted particle
has just joined (but does not record this on its list of promotion points).
Secondly, another inter-wave interaction is introduced. Once the value of B
for wave N is better than the value of B for some earlier (lower numbered)
wave, all remaining members of the earlier wave are promoted to wave N
(but do not record this on their list of promotion points) and start to respond
to wave N ′s B value. Assuming that these just promoted particles do not
uncover any region of interest while in transit (or move close enough to another
particle so as to cause another promotion event), they will finally arrive in
the region being explored by wave N .

This absorption of earlier (lesser performing) waves into later (higher per-
forming) waves is more than just a remnant cleanup. The key is that this
absorption only occurs into better performing later waves. This introduces an
evolutionary pressure into the wave behaviour, with the result that quality of
the maxima explored tends to increase with time, although not in a monotonic
way.

2.2.4 When is a Particle Ejection a Promotion?

Ideally particles should be considered as ejected (and therefore promoted)
when they come close while the wave is settling on an optimum. As a swarm
settles the speed of the particles naturally deceases. The ratio of the velocity
component introduced by the effect of the short-range force to the particle’s
other velocity components is a suitable measure with which an ejection can be
detected. Promotion is deemed to have occurred any time this ratio exceeds
a user specified value, called the promotion factor

2.2.5 Adding a Local Search

As each wave died (by losing its last particle or by having all its remaining
members compulsorily promoted to a later wave that was outperforming it) a

38 Tim Hendtlass

simple hill climbing2 local search agent can be used to find the local optimum
in the vicinity of the best position known to this wave. Directed random search
was used as the local search agent for all results described later in this chapter.

Many optimisation heuristics combine an algorithm with coarse global
search capabilities together with a suitable local search heuristic. While local
search can play an important part in refining the optima found, it should
be used sparingly lest the computational cost becomes too high. This extra
expenditure of computing resource is ideally only warranted in the vicinity of
an optimum, a condition that precludes its application to the basic particle
swarm algorithm. The high probability that the best position known to a
WoSP wave is, by its death, in the vicinity of an optimum makes its use only
in the relatively few occasions when a wave dies both highly rewarding and
computationally reasonable.

2.3 The WoSP Algorithm in Detail

At any time, each particle is in one of two different modes of behaviour as
determined by its distance from the closest of all of the particle’s previous
promotion points. Only if this distance is more than the scale search parameter
is the particle able to report its fitness and position to its wave. Only reporting
particles are allowed to respond to their waves B value.

The algorithm proceeds as shown in pseudo code in algorithm 4.
Note that in equation 2.3 the attraction to the points B̄ and S̄ are now

independent of the distance from these points. This encourages exploration
by moderating the tendency to rush toward these positions. The constriction
factor χ from equation 2.1 is not required here and so is omitted: however,
the speed of any particle was clipped if necessary to a user specified maximum
allowed speed.

Without the component P̂t in step 7, experience shows that exploration
tends to be concentrated on a hyper plane defined by the positions of the first
few of the particle’s promotion points. Adding the extra component P̂t is one
way to discourage this and encourages exploration throughout the problem
space.

2.3.1 The Computation Cost of the WoSP Algorithm

The extra computational cost introduced to the basic swarm algorithm by the
short range force alone and by the full WoSP algorithm can be calculated by
timing a series of repeats with a fitness function that return a constant value.
No swarm coalescing takes place under these conditions and the number of
2 Hill climbing when maxima are being sort, hill descending when the object is to

locate minima

2 Waves of Swarm Particles 39

Algorithm 4 The WoSP algorithm
1. Particles are randomly positioned in problem space and given random velocities.
2. The new position of each particle is first calculated, based on the position
and velocity calculated in the previous iteration and assuming that the velocity
remained unchanged for the time t between the iterations. The net short range
force (NSRF) acting on each particle is calcuated.
3. A check is made of the closest distance of each particle to any of its promotion
points and its report status is updated as required.
4. The fitness of each particle is calculated.
5. Starting from the particle with the best fitness, and in descending order of
fitness, those particles allowed to report do so to their wave, updating that waves
best-known point as required.
6. Each time a wave updates its best position a check is made to see if this in now
fitter than the best position of some other lower numbered (earlier) wave. When
this occurs, all members of earlier wave immediately join that latter wave without
recording their current position as a promotion point.
7. The velocity of every particle is now updated. Particles that are allowed to
report update their velocity as:

V̄T+t = (MV̄T + rand · G(
X̄ − B̄∣
∣X − B

∣
∣ t

) + rand · L(
X̄ − S̄∣
∣X − S

∣
∣ t

) + NSRF) (2.3)

Particles that are not allowed to report, as they are too close to one or more of
their promotion points, update their velocity as:

V̄T+t = (V̄T − GP̂c − LP̂t + NSRF) (2.4)

where P̂C is the unit vector toward the closest previous promotion point and P̂t is
the unit vector in the direction of the smallest absolute component of V̂T .
8. Every particle whose velocity component caused by the short-range force is
more than promote factor times the vector sum of the other velocity components
is promoted. It either joins the highest current number wave or, if it is already a
member of the highest number wave, starts a new wave with a wave number of
one higher. The position it was in when promoted is added to the particle’s list of
promotion points. If this promotion leaves a wave with only one member, this is
also promoted as part of the process of cleaning up old waves. This compulsory
recruited particle does not record its position as a new promotion point.
9. If the best performance is adequate or enough time has passed without any
change to gbest exit, else return to step 2.

40 Tim Hendtlass

promotions (when these are allowed to occur) is a function of the starting con-
ditions. The average extra computation observed from 100 repeats, compared
to the basic swarm algorithm, was about 55% for the short-range force only
and just over 60% for the full WoSP algorithm. These values refer to the basic
algorithms excluding the time for fitness evaluation. Since fitness assessment
is often the dominant computational cost in real life problems, this means that
for such problems the overhead introduced by the WoSP algorithm would be
very small compared to the overall time for a conventional swarm algorithm.

2.3.2 Interactions between the WoSP Parameters

The promotion process require only one parameter, the promotion factor
which is the minimum ratio of the SRF induced velocity component to the
velocity excluding the SRF component needed to cause a promotion event.
However, the short range force itself involves two parameters, the SRF power

and the constant K.
The values for these three parameters should be chosen so that a sufficient

number of promotion events occur to permit exploration away from known
optima, without so many occurring that the normal convergence of a swarm
on optima is excessively impeded. Experimentation with numerous combina-
tions of values shows that none of the values for these three parameters is
critical. Choosing a high value for SRF power so that the effect of the short-
range force falls off very fast with distance alters the velocity spectrum of
promoted particles so that, while the frequency of promotions decreases, the
ejection velocity is typically higher encouraging aggressive exploration. How-
ever, experiments show that using a lower value of SRF power, while taking
longer, achieves substantially the same results.

Two parameters are involved when a particle is within search scale of its
closest promotion point. These are search scale itself, which effectively sets
the minimum inter optimum separation that the waves can be expected to
readily identify as separate optima, and the extra repulsion weighting RW to
apply to the particle to encourage it to aggressively explore.

All of these five parameters, except for promote factor, are functions of
the dimensions of the problem space. A Cartesian distance of x

√
n separates

two particles a distance of x apart in each of n dimensions. As the dimensions
of the problem increase, the average spacing between particles also increases.
Thus, when changing from a problem in d1 dimensions to the same problem in
d2 dimensions, the values of SRF factor and of search scale should be altered

by
√

d2
d1

. As the number of dimensions increases, the increase in the average
inter-particle separation suggests it may be advantageous to decrease the value
of SRF power. For the same reason it may be advantageous to increase the
repulsion weighting RW

2 Waves of Swarm Particles 41

2.4 The Performance of the WoSP Algorithm

2.4.1 A Two Minimum Problem

Before considering the performance of the full WoSP algorithm, it is instruc-
tive to look at the results of adding the short-range force alone, that is without
the addition of waves.

Fig. 2.4. A two dimensional fitness surface in which two minima are separated by
a poor fitness hill

As a first example consider the two-dimensional two minimum test fitness
surface shown in Fig. 2.4. This surface, which was explicitly defined point by
point rather than being generated from a function, contains two local minima,
A and B, separated by a high, poor fitness, ridge. Minimum B (value zero) is
marginally better than minimum A (value 0.1) while on the intervening ridge
the value climbs to a value of two. Points off the drawn map were assigned
a value equal to that of the closest on-map point. All swarm members were
initialised around the edge of the drawn map in the region in which -105
<X<-95 and 105 < Y < 95. Particles therefore were closer to minimum A
than to minimum B. The directions of the initial velocities were randomly
chosen with the magnitudes being assign a random value between specified
minimum and maximum values.

42 Tim Hendtlass

Swarm size 50

Global weighting G 0.5

Local weighting L 0.5

Momentum 0.9

Initial X position range -95..-90

Initial Y position range 95..100

Minimum found if an evaluation is made within a distance of 1 unit

Test terminated if minimum B was not found after 2000 iterations

Table 2.1. The fixed test parameters

A number of tests were each repeated 1000 times, each test only differing
in the values of some parameters. The maximum velocity that a particle could
have was bounded to a value of Max times the maximum initial velocity, where
Max is a user chosen parameter. This set the maximum distance that a particle
could travel in an iteration, and therefore the maximum possible distance
between fitness evaluations. The parameter values held constant across all
tests are shown in Table 2.1 and the results from a chosen sample of these
tests are shown in Table 2.2.

The surface and initial particle release region were specifically designed
to make it difficult for a conventional swarm to find the better minimum,
minimum B. As expected, without a short-range force, the swarm quickly
found and settled on minimum A 100% of the time, taking an average of 21.5
iterations with a standard deviation of 8. This result was obtained with a
maximum initial speed of 30.

The number of iterations taken when a short-range force was operational
are shown in Table 2.2. It will be noticed that the shortest time occurs with
the smallest maximum. As the maximum initial speed was increased, the
probability that the particle would over fly the minimum in the period between
evaluations also increased. As a result particles had to reverse and recross the
minimum (possible several times) before it was observed, thus increasing the
detection time. As the probability of a significant short-range force was low
until the particles were congregating around the minimum, there was little
chance for the speed to be accelerated beyond the initial velocity range. As a
result the speed-limiting factor Max had no effect.

Finding the second minimum required that at least one (and probably
many) significant short-range force events took place. Now the maximum dis-
tance that a particle can travel in one iteration (max times the maximum
initial speed) sets the lowest resolution of the search. The distance between
the two minima is just under 130 units. As the maximum distance per iteration
rises significantly above this there is an increase in the number of iterations
taken to find the minimum as more particles ‘over fly’ it.

Fig. 2.5 shows all the points evaluated in 400 iterations – the second min-
imum was found after 320 iterations. Note the curved paths at the top where

2 Waves of Swarm Particles 43

Table 2.2. The number of times the two minima were found and how long this
took. Results derived from 1000 repeats for each set of parameter values for random
initial particle positions

Maximum: First minimum: Second minimum:
Max Initial

speed
Distance
/ itera-
tion

%
times
found

Average
iterations

SD %
times
found

Average
itera-
tions

SD

5 15 75 99.7 18.9 4.9 99.4 441.7 327.4

5 15 75 99.7 19 4.9 99.9 375.6 269.4

5 15 75 99.4 18.7 4.9 100 311.7 218.3

5 30 150 100 21.3 8.2 99 482.7 306.5

5 30 150 99.8 21.2 8.1 99.7 411.4 269

5 30 150 99.9 21.1 8.1 100 351.9 235.3

5 60 300 90.4 30.4 10.8 99 474.1 369.8

5 60 300 90.3 30.4 10.6 99.5 420 309.9

5 60 300 90.4 30.4 10.8 99.9 350.8 265.7

10 15 150 99.9 18.9 4.8 99.5 467.4 347

10 15 150 99.7 19 4.9 99.9 394.8 289.1

10 15 150 99.7 18.7 4.8 100 331.2 237.1

10 30 300 99.8 21.3 8 99.2 491.2 337.2

10 30 300 99.9 21.4 8.3 99.6 428 298.1

10 30 300 100 21.1 8 100 367.6 251

10 60 600 92.9 30.9 11.2 99.5 491.2 366.1

10 60 600 92.5 30.1 11.1 99.9 438.7 336.6

10 60 600 92.6 30.3 11.1 99.7 383 290.4

particles ejected into an ‘unprofitable’ region curved round and returned to
the best known minimum, the one they had just left. Compare this with the
paths left as particles divert from their path as they are attracted to the just
discovered second minimum. The heavy concentration of points between the
two minima results from all the particles in the vicinity of the first minimum
being attracted to the new, better, minimum when it is found.

2.4.2 A Three Maximum Problem

The fitness surface shown in Fig. 2.6 has three maxima, labeled A, B and C
whose fitness values and distances from the centre of the particle start region
are shown in Table 2.3. This fitness surface is defined by the function in
equation 2.5. The values of the constants that, when used with (2.5), produce
the fitness surface shown in Fig. 2.6 are given in Table 2.4.

fit(x, y) =
2∑

i=0

Hi
(
1 +
√

(x − xi)2 + (y − yi)2
)Si

(2.5)

44 Tim Hendtlass

Map of all evaluations

200150100500

200

180

160

140

120

100

80

60

40

20

0

Fig. 2.5. All the points evaluated during a run of the WoSP algorithm on the
surface shown in 2.4

Table 2.3. Maximum values and distances from the centre of the start circle for
the problem surface shown in Fig. 2.6

Maximum A B C

Value 8.176 8.732 8.518

Dist from average start position 272.8 428.7 513.4

Table 2.4. The constant values that when used in equation 2.5 produce the surface
shown in Fig. 2.6

Peak Index i xi yi Hi Si

A 0 -40 -40 4.5 0.15

B 1 50 50 5 0.15

C 2 120 75 4 0.2

2 Waves of Swarm Particles 45

S tart

A

B
C

Fig. 2.6. The two-dimensional three maxima fitness surface

The swarm particles were initialised from random positions within a re-
stricted region as indicated by the region labeled ‘Start’ (at the front of the
figure). This point was chosen to be far from any maximum. The closest local
maximum to this start region (maximum A) is the poorest of the three. The
second closest maximum (maximum B) is the highest. This test was designed
not only to see if particles would move from maximum A to maximum B (a
better maximum) but also to examine how well they would explore beyond
maximum A and investigate maximum C which was of intermediate fitness3.

This problem was designed so that the performance of the algorithm with
just the short-range force was essentially the same as for the basic PSO. This
is because the probability of a particle ejected from maximum A encountering
the limited region round maximum B that has a higher fitness than maximum
A before the global component returns it to maximum A is very small.

The key parameters used are listed in Table 2.5 and the results from
1000 independent trials of both basic PSO and for WoSP are presented
in Table 2.6. Note that, as far as finding the first maximum is concerned,
the basic swarm and WoSP have the same results. However, the basic
3 Although, knowing the maxima in this problem, it is clear that exploring from

maximum B to maximum C is of no practical purpose as C is a lesser maximum,
this information would not be available a priori for a real problem. Then the
ability to leave a fit point and go on to explore a point of lower fitness could be
an important step on the way to finding a further point with a fitness better than
any yet explored

46 Tim Hendtlass

swarm does not explore further, with the result that just over 87% of the
time it settles for the poorest of the three maxima. The one case in which the
basic swarm found two maxima appears to be the result of the swarm hap-
pening to split into two and starting to coalesce on both maxima at almost
the same time. The particles converging on maximum A met the criterion for
‘found’ just before the particles converging on maximum B. The WoSP algo-
rithm, on the other hand, while again overwhelmingly identifying maximum
A first continues to explore and finds the global maximum B every time, often
exploring further and finding maximum C as well.

Table 2.5. The key SRF and wave parameter values used

SRF coefficient 0.01 Search scale 50

SRF power 2 Promotion factor 10

While it finds at least two maxima on every occasion, it only found all
three maxima 78.8% of the time before the run was terminated after 1000
iterations. The basic PSO took just over 50 iterations (on average) to find the
first (and, apart from one case, only) maximum. The WoSP algorithm took
almost the same time to find the first maximum, but took some 800 iterations
on average to find all three maxima (when it did in fact find all three).

Table 2.6. The relative performance of the basic PSO and WoSP algorithms

Basic Swarm WoSP

Maximum A B C A B C

Found first 783 217 0 783 217 0

Found second 0 1 0 3 781 216

Found third 0 0 0 21 2 765

Total found 783 218 0 807 1000 981

2.4.3 A Dual Cluster Problem

The dual cluster problem space was designed to investigate the effect of the
search scale parameter on the performance of the WoSP algorithm. The space
consists of two clusters of minima, each cluster consisting of six lesser minima
surrounding a central better minimum as shown in Fig. 2.7.

In this space the fitness of a particle at some position is the minimum of
the score values from that position to each of the 14 defined points. The score

2 Waves of Swarm Particles 47

Fig. 2.7. The 14 minima, two cluster problem space

value of point X is the cartesian distance from the particle to X plus the floor
value of point X: the position and floor values of the minima are given in
Table 2.7.

This produces two equal global minima with values of zero at points A- and
A+, together with twelve other local minima (one at each of the other defined
points) each with a value of five. Each of these local minima is a distance of
exactly 50 units from one of the global minima, pairs of local minima within
a cluster are separated by either just under 71 or by exactly 100 units. The
two global maxima were approximately 700 units apart.

The results obtained from 100 independent runs at each of five search
scales are shown in Table 2.8. The figures are number of times this maximum
(or group of maxima) was found in 100 independent trials. The first search
scale was chosen to be less than the closest spacing while the rest were chosen
to be at approximately one of the spacings between minima.

Examination of these result for the dual cluster problem space reveals the
following:

• No wave ever converges at a point that is not in the near vicinity of a
minimum.

• Although a particle was prohibited from reporting when within search scale
of any of it’s promotion points, minima can be re-explored by different

48 Tim Hendtlass

Table 2.7. The position and floor values of each of the 14 minima

x y z Floor

A- -200 -200 -200 0

B- -150 -200 -200 5

C- -250 -200 -200 5

D- -200 -150 -200 5

E- -200 -250 -200 5

F- -200 -200 -150 5

G- -200 -200 -250 5

A+ 200 200 200 0

B+ 150 200 200 5

C+ 250 200 200 5

D+ 200 150 200 5

E+ 200 250 200 5

F+ 200 200 150 5

G+ 200 200 250 5

Table 2.8. The times each minimum, or selected combinations of minima, were
found in 100 WoSP runs

Search scale

Minimum 30 50 70 100 700

A- 77 61 56 97 65

B- 145 31 16 22 5

C- 190 15 29 33 17

D- 147 25 23 19 14

E- 214 19 27 36 30

F- 147 38 18 19 8

G- 198 18 35 34 23

A+ 66 50 61 95 49

B+ 127 11 13 19 16

C+ 163 38 33 21 35

D+ 143 12 21 13 16

E+ 194 36 23 27 34

F+ 126 12 22 21 15

G+ 182 33 17 42 34

Any other point 0 0 0 0 0

A- or A+ found 100 100 98 100 99

A- and A+ found 28 8 12 60 15

A- found > once 8 0 1 12 0

A+ found > once 5 2 3 13 0

2 Waves of Swarm Particles 49

waves. This can occur since the particles in a particular wave may have
reached that wave with different wave membership histories. This occurs
as a promoted particle joins the highest number wave existing at the time
of promotion, creating this wave if necessary. Thus particles in a wave
can have quite different promotion histories. Once a particle that has not
previously explored in the region of some optimum A reaches this region
it can report to the wave, other particles that have already explored this
region are none the less now attracted to it and, although they cannot
report on it, will again converge on it and be promoted from it. This is an
important feature of the algorithm: without it an optimum could only be
used as a base for further exploration once.

• With a search scale less than the smallest inter-minimum spacing, there is
substantial re-exploration, especially of the ‘lesser’ minima. As the search
scale increases, this decreases but does not totally cease for the reason
given above.

• The algorithm is effective at finding at least one or the two equal global
minima for all values of search scale, but the probability of finding both
increases as the search scale is itself increased as this prevents so much
effort being spent on examining the ‘lesser’ minima. However, once the
search scale approaches the separation between the two global minima,
finding one will tend to preclude finding the second unless this is the very
next minimum found after the first global one.

• Note how the two global minima A− and A+ may be found more than
once: if the search scale is small there is much exploration of all minima
and so the particles of a particular wave may have many different wave
membership histories. This, of course, can allow re-exploration of ‘lesser’
minima too, but as the search scale is increased the number of lesser min-
ima available to be found is decreased.

2.4.4 A Problem with 830 Maxima

The results for a simple problem presented in Table 2.8 do not illustrate the
full potential of the WoSP algorithm. This becomes more obvious from consid-
eration of the results obtained seeking the maximum for Schwefel’s function
in 30 dimensions:

f =
30∑

i=1

xi sin(
√

|xi|) (2.6)

where |xi| ≤ 500.

This function is suitable for exploring behaviour of algorithms in multi-
maxima situations as not only does it have multiple maxima, but also the

50 Tim Hendtlass

highest and second highest maxima are separated by a number of lesser max-
ima. Each individual dimension’s contribution to the overall value as shown in
Fig. 2.8. Table 2.9 shows the positions and values of each maximum, rounded
to the nearest integer.

-400 -200 0 200 400

X

-600

-400

-200

0

200

400

600

F(
x)

Each dimension of Schwefel's function

Fig. 2.8. Schwefel’s function in 1 dimension

Table 2.9. The eight maxima per dimension of Schwefel’s function, values rounded
to the nearest integer

Maximum X f(X)

A 421 419

B -303 301

C 204 202

D -500 181

E -125 123

F 66 64

G -26 24

H 5 4

Each dimension is identical as shown in Fig. 2.8, thus allowing the ab-
solute maximum to be readily calculated for any number of dimensions. This,

2 Waves of Swarm Particles 51

together with the significant separation between the maximum and second
highest peaks, makes this function suitable for exploratory work to find the
maximum in any number of dimensions.

In 30 dimensions, Schwefel’s function has 830 maxima, with one global
maximum of 12569.5 when xi=420.9687 for all 30 values of i. The constraint
that |xi| ≤ 500 for all values of i was hard coded; any particle reaching this
limit underwent a fully elastic rebound.

The performance of a basic swarm algorithm on this problem from 100
trials (using the same basic values as shown in Table 2.10 except for the
maximum number of iterations which was set to 100,000) is shown in Fig. 2.9.
Note that the best value found in any trial was still less than 10,000.

Basic swarm, Schwefel's functionin 30
dimensions

0

20000

40000

60000

80000

100000

120000

5000 6000 8000 9000 10000

Best fitness

W
h

en
 b

es
t

fi
tn

es
s

fo
u

n
d

7000

Fig. 2.9. The performance of 100 independent trials of the basic swarm algorithm
on Schwefel’s function in 30 dimensions

Using the parameter values shown in Table 2.10, in a series of 100 trials
each for 200,000 iterations (an iteration consists of all particles making one
velocity update), the global maximum was found 41 times by the WoSP algo-
rithm. On average this best position was one of more than 100 explored during
the run and was found after about 118,000 iterations. A second set of runs,
identical except for the duration, which was set to 2,000,000 iterations, showed
a slight performance change, but one that was insignificant when compared
with the order of magnitude increase in computing cost.

As each wave died (lost its last particle or had all its members compulsorily
promoted to a later wave that was outperforming it) a simple directed random
search hill climbing local search agent was used to find the local optimum in
the vicinity of the best position known to this wave as described before.

52 Tim Hendtlass

Table 2.10. The parameter values used for Schwefel’s function in 30 dimensions

Parameter Value

Number of particles 30

Maximum number of iterations 200,000

Total number of evaluations 6,000,000

Momentum 0.95

B global best factor 0.9

NormalL local best factor 0.5

Lif within search scale of a promotion point 20

Search scale 500

Promote factor 2

Fig. 2.10. A history of the number of particles in each wave during the first 8000
WoSP iterations (Schwefel’s function in 30 dimensions)

2 Waves of Swarm Particles 53

Fig. 2.11. A history the best fitness discovered by each wave during the first 8000
WoSP iterations (Schwefel’s function in 30 dimensions)

This extra expenditure of computing resource is ideally only warranted in
the vicinity of an optimum, a condition that precludes its application to the
basic particle swarm algorithm. The high probability that each wave has by
its death investigated in the vicinity of an optimum makes its use in these few
positions both highly rewarding and computationally reasonable. Fig. 2.10
shows the number of particles in each wave, and Fig. 2.11 the best fitness yet
found by each wave, for each of the first 8000 iterations of a run in which
the WoSP algorithm was finding the maxima of Schwefel’s function in 30
dimensions. Note that waves 8 to 10 have not yet died by the time the plots
finish. Note how later waves (e.g. wave 8) absorb the particles from earlier
waves whose fitness they exceed. Also note that waves exploring poorer regions
tend persist for shorter times than waves exploring better regions.

Fig. 2.12 shows the best fitness achieved by each wave as it died (or by
200,000 iterations when the run was terminated) for a typical run. In each case,
at death or termination, a local search agent used directed random search to
explore the local optimum. It is the fitness found by this local search agent
that is assigned to the wave and shown. As waves are numbered sequentially
as they are created, the wave number is an approximate guide to the position
in the run when this wave was created. In this particular run 98 different

54 Tim Hendtlass

Fitness v Wave number

13000

12000

11000

10000

9000

8000

7000

6000

0 80 120 140

Wavenum b er

F
it

n
es

s

100604020

Fig. 2.12. The best fitness achieved by each wave during a typical run (Schwefel’s
function in 30 dimensions)

waves reported on the maxima they explored. Three maxima, one of which
was the global maximum, were explored three times while nine others were
explored twice. All other 86 maxima were only explored once.

The absorption by a later wave of the particles of any earlier wave that it
is outperforming is the reason for the fairly steady improvement leading up
to the first exploration of the global maximum by wave twenty-eight. This
absorption process is effectively a survival of the fittest with the absorbed
particles moving to join the particles already in the absorbing wave. Once there
they can explore the immediate vicinity but they, like all particles there, may
also be promoted again thus using this as a springboard for further exploration
seeking even better maxima. Thus an evolution process is taking place with
these waves, which provides the early sharp improvement in the fitness of
maxima explored. Once the global maximum has been found evolution can
only operate beneficially on waves that are exploring sub-global maxima.

Particles are actively rejected if they again approach a position from which
they have been promoted and are prohibited from providing feedback to their
wave if within search scale of such a position. The particles of wave 28 are,
in time, promoted into later waves but cannot notify their wave of any fitness
in the vicinity of the global maximum. The limited re-exploration that occurs
must be initiated by some particle that has not been promoted from a position
close to the global maximum and is thus able to report from the vicinity of
the global maximum: the other particles in its wave can still respond to its
reports even though they themselves cannot report.

2 Waves of Swarm Particles 55

Re-exploration could be totally prohibited if each particle, instead of main-
taining a list of its own promotion points, had access to a global list of all
promotion points. However, this would likely be of disadvantage as it would
make the progress of waves in the problem space a series of linear steps from
maximum to maximum without (as now) allowing for forking to occur and
one maximum to be used as a base for exploring two or more other maxima.

2.4.5 A Problem with 8100 Maxima

A further series of experiments was undertaken involving Schwefel’s function
in 100 dimensions. This problem has a total of 8100 maxima with a single
global maximum when each of the 100 dimensions is set to approximately 421
(A in Table 2.9).

The parameters SRF factor and search scale were adjusted as described in
Section 2.3.2 from the values that had proved best in 30 dimensions to 913
and 9130 respectively. Tests using values of SRF power of 2.5, 3 and 3.5 were
performed.

The global maximum was not found during any of the 30 repeats with
each of these values, but for SRF power=3 the best result each run had on
average 97 dimensions correct (A in Table 2.9), with value of the remaining
three being either B or C. The non-optimal dimension values were not the
same, nor in the same position, each time.

Unlike the function in 30 dimensions, for which the best value of SRF power

was 3.5, in 100 dimensions the best value was 3. The average best fitness was
40390 for SRF power =2.5, 41046 for SRF power =3 and 35768 for SRF power

=3.5. The best possible fitness is 41898. These results were obtained from
runs limited by practical considerations to 500,000 iterations. Altering the
SRF power also changed the average time at which the best result was found.
Lower values of SRF power resulted in the best result being found earlier.

2.5 Comparison to Other Approaches

A number of variations to the basic PSO algorithm have been proposed that
are intended to either promote convergence to a number of sub-swarms so that
a range of optima may be explored in parallel and / or permit the tracking of
optima of a problem domain with a temporal component. [7] and [8] discuss
two such methods and contain a review of a number of other approaches.

These PSO versions use techniques already proven in niching genetic algo-
rithms, such as fitness sharing, speciation and fitness function modification.
These techniques aim to explore several optima simultaneously, with the num-
ber exploring a particular optimum being approximately proportional to the
relative fitness of the optimum.

While it is true that the WoSP algorithm may result in several optima
being explored in parallel, the main emphasis in WoSP is on the sequential

56 Tim Hendtlass

exploration of optima. Given that the size of a practical swarm must always
be limited, and that the absolutely maximum number of optima that can
be concurrently explored can never exceed the swarm size, it follows that a
niching PSO must always be limited in the number of optima that it can
explore. The WoSP algorithm has, in principle, no such constraint.

2.6 Constraint Handling

All the trial fitness functions described in this chapter share one common fea-
ture - all points on the surface have a valid fitness. In real life this is not always
so, consider optimising a complex process, some combinations of parameters
may result in invalid solutions. The classical PSO algorithm has a capacity
to handle such situations. As long as neither gbest nor lbest are allowed to
be updated with a position that corresponds to an invalid solution, search
will automatically tend to concentrate on regions in which solutions are valid.
The provision of momentum will encourage particles to traverse regions that
correspond to invalid fitnesses. The WoSP algorithm shares all these charac-
teristics with the PSO algorithm. In addition, since the short range force is
valid everywhere, the rapid ejection mechanism has the ability to result in a
rapid traversal of regions. All that is required is that the algorithm is amended
so that the conditions that must be met in order for a particle to be allowed
to report to their wave be expanded to include the condition that the fitness
obtained corresponds to a valid solution. Positions that correspond to invalid
solutions can be added to the rejection list of a particle, although this may
result in the list becoming excessively long. Preliminary work has shown that
such an approach works well for fitness surfaces with a minority of regions
of non-validity, be these regions bounded or unbounded. The performance on
fitness surfaces for which the majority of positions correspond to invalid solu-
tions is less successful. Further work currently underway aims to investigate
and hopefully improve the constraint handling capabilities of WoSP.

2.7 Concluding Remarks

This chapter introduces a version of the particle swarm optimisation algorithm
intended to be efficient when exploring problem spaces with multiple optima.
As no additional fitness evaluations are required for the WoSP algorithm
compared to basic PSO, the additional computational cost of the behaviour
modification is likely to be relatively small when compared to the overall
computation involved, especially for problems with complex fitness functions.

The results obtained on a simple contrived three-maximum problem clearly
show that the WoSP algorithm is able to escape from local sub-optima and
continue to search for other optima.

2 Waves of Swarm Particles 57

The dual cluster problem space results are instructive in showing both
the effect of the choice of search scale on this simple problem but also how
re-exploration of previously explored optima is important in preventing the al-
gorithm from being too greedy by allowing more than one wave of exploration
to be initiated from one place.

Results obtained from the more challenging Schwefel’s function are most
instructive. When one considers that in the 30 dimension case, 6x106 evalua-
tions were done during the 200,000 iterations for a 41% chance of finding the
best of approximately 1.2x1027 maxima, the performance of this technique on
this problem is quite remarkable and a testament to the power of combining
swarm exploration of each maximum with an evolutionary driven search for
further maxima. In 100 dimensions, the absolute best of the 2*1090 maxima
were never able to be found within the 15*106evaluations performed, but the
best fitness found each run was reliably in the top 2*10−82%. The reports
on the locations and fitness’s of other maxima obtained for these problems
are a bonus that may be of considerable use in practical problems, such as
scheduling.

The regular spacing of the maxima in Schwefel’s function may have partic-
ularly suited the WoSP algorithm, but the results are sufficiently encouraging
to augur well for other problem domains.

References

1. R. Brits, A.P. Engelbrecht, F. van den Bergh, A Niching Particle Swarm Opti-
mizer, Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning 2002 (SEAL 2002), Singapore. pp. 692-696, 2002

2. R.C. Eberhart,P. Dobbins and P. Simpson, Computational Intelligence PC Tools,
Academic Press, Boston, USA 1996

3. R. Eberhart and Y. Shi, Comparing Inertia Weights and Constriction Factors in
Particle Swarm Optimisation, Proceedings of the 2000 Congress on Evolutionary
Computation, pp. 84-88, 2000

4. T. Hendtlass, A Combined Swarm Differential Evolution Algorithm for Optimiza-
tion Problems. Lecture Notes in Artificial Intelligence, Vol 2070, pp. 374-382,
Springer, Berlin. 2001

5. T. Hendtlass and T. Rodgers, Discrete Evaluation and the Particle Swarm Algo-
rithm, Proceedings of Complex04, Cairns, Australia, pp. 14-22, 2004

6. J. Kennedy and R.C. Eberhart, Particle Swarm Optimization, Proc. IEEE Inter-
national Conference on Neural Networks, Perth Australia, IEEE Service Centre,
Piscataway NJ USA IV:pp. 1942-1948. 1995

7. J. Kennedy and R.C. Eberhart, The Particle Swarm: Social Adaptation in
Information-Processing Systems, Chapter 25 in New Ideas in Optimization. Corne
D., Dorigo M., and Glover F. (Editors) McGraw-Hill Publishing Company, Eng-
land, ISBN 007 709506 5, 1999

8. D. Parrot and X. Li, A Particle Swarm Model for Tracking Multiple Peaks in
a Dynamic Environment using Speciation, Proceeding of the 2004 Congress on
Evolutionary Computation (CEC’04), p.98 - 103, 2004

58 Tim Hendtlass

9. S. Rana, L.D. Whitley and R. Cogswell, Searching in the presence of noise, in
Parallel Problem Solving from Nature (PPSN IV), Lecture Notes on Computer
Science 1141, Springer-Verlag, Berlin pp 198-207, 1996

3

Grammatical Swarm: A Variable-Length
Particle Swarm Algorithm

Michael O’Neill1, Finbar Leahy2, and Anthony Brabazon1

1 University College Dublin, Belfield, Dublin 4, Ireland.
m.oneill@ucd.ie, anthony.brabazon@ucd.ie

2 University of Limerick, Limerick, Ireland.
finbarleahy@gmail.com

This chapter examines a variable-length Particle Swarm Algorithm for Social
Programming. The Grammatical Swarm algorithm is a form of Social Pro-
gramming as it uses Particle Swarm Optimisation, a social swarm algorithm,
for the automatic generation of programs. This study extends earlier work
on a fixed-length incarnation of Grammatical Swarm, where each individual
particle represents choices of program construction rules, where these rules
are specified using a Backus-Naur Form grammar. A selection of benchmark
problems from the field of Genetic Programming are tackled and performance
is compared to that of fixed-length Grammatical Swarm and of Grammatical
Evolution. The results demonstrate that it is possible to successfully generate
programs using a variable-length Particle Swarm Algorithm, however, based
on the problems analysed it is recommended that the simpler bounded Gram-
matical Swarm be adopted.

3.1 Introduction

One model of social learning that has attracted interest in recent years is
drawn from a swarm metaphor. Two popular variants of swarm models ex-
ist, those inspired by studies of social insects such as ant colonies, and those
inspired by studies of the flocking behavior of birds and fish. This study fo-
cuses on the latter. The essence of these systems is that they exhibit flexibility,
robustness and self-organization [2]. Although the systems can exhibit remark-
able coordination of activities between individuals, this coordination does not
stem from a ‘center of control’ or a ‘directed’ intelligence, rather it is self-
organizing and emergent. Social ‘swarm’ researchers have emphasized the role
of social learning processes in these models [6, 7]. In essence, social behavior

M. O’Neill et al.: Grammatical Swarm: A Variable-Length Particle Swarm Algorithm, Studies

in Computational Intelligence (SCI) 26, 59–74 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

60 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

helps individuals to adapt to their environment, as it ensures that they obtain
access to more information than that captured by their own senses.

This paper details an investigation examining a variable-length Particle
Swarm Algorithm for the automated construction of a program using a So-
cial Programming model. The performance of this variable-length Particle
Swarm approach is compared to its fixed-length counterpart [15, 17] and to
Grammatical Evolution on a number of benchmark problems. In the Gram-
matical Swarm (GS) methodology developed in this paper, each particle or
real-valued vector, represents choices of program construction rules specified
as production rules of a Backus-Naur Form grammar.

This approach is grounded in the linear Genetic Programming represen-
tation adopted in Grammatical Evolution (GE) [18], which uses grammars to
guide the construction of syntactically correct programs, specified by variable-
length genotypic binary or integer strings. The search heuristic adopted with
GE is a variable-length Genetic Algorithm. A variable-length representation
is adopted as the size of the program is not known a-priori and must itself
be determined automatically. In the GS technique presented here, a particle’s
real-valued vector is used in the same manner as the genotypic binary string
in GE. This results in a new form of automatic programming based on social
learning, which we dub Social Programming, or Swarm Programming. It is
interesting to note that this approach is completely devoid of any crossover
operator characteristic of Genetic Programming.

The remainder of the paper is structured as follows. Before describing the
Grammatical Swarm algorithm in Section 3.4, introductions to the salient
features of Particle Swarm Optimization (PSO) and Grammatical Evolution
(GE) are provided in Section 3.2 and Section 3.3 respectively. Section 3.5
details the experimental approach adopted and results, and finally Section
3.6 details conclusions and future work.

3.2 Particle Swarm Optimization

In the context of PSO, a swarm can be defined as ‘a population of interacting
elements that is able to optimize some global objective through collabora-
tive search of a space.’ [6](p. xxvii). The nature of the interacting elements
(particles) depends on the problem domain, in this study they represent pro-
gram construction rules. These particles move (fly) in an n-dimensional search
space, in an attempt to uncover ever-better solutions to the problem of in-
terest. Each of the particles has two associated properties, a current position
and a velocity. Each particle has a memory of the best location in the search
space that it has found so far (pbest), and knows the best location found to
date by all the particles in the population (or in an alternative version of
the algorithm, a neighborhood around each particle) (gbest). At each step of
the algorithm, particles are displaced from their current position by applying
a velocity vector to them. The velocity size / direction is influenced by the

3 Grammatical Swarm 61

velocity in the previous iteration of the algorithm (simulates ‘momentum’),
and the location of a particle relative to its pbest and gbest. Therefore, at each
step, the size and direction of each particle’s move is a function of its own
history (experience), and the social influence of its peer group.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 3.1. An example GE individuals’ genome represented as integers for ease of
reading.

A number of variants of the particle swarm algorithm (PSA) exist. The
following paragraphs provide a description of a basic continuous version of the
algorithm.

i. Initialize each particle in the population by randomly selecting values for
its location and velocity vectors.

ii. Calculate the fitness value of each particle. If the current fitness value for
a particle is greater than the best fitness value found for the particle so
far, then revise pbest.

iii. Determine the location of the particle with the highest fitness and revise
gbest if necessary.

iv. For each particle, calculate its velocity according to equation 3.1.
v. Update the location of each particle according to equation 3.3.
vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for particle i’s velocity vector vi is:

vi(t + 1) = (w ∗ vi(t)) + (c1 ∗R1 ∗ (pbest − xi)) + (c2 ∗R2 ∗ (gbest − xi)) (3.1)

where
w = wmax − ((wmax − wmin)/itermax) ∗ iter (3.2)

In equation 3.1, pbest is the location of the best solution found to-date by par-
ticle i, gbest is the location of the global-best solution found by all particles to
date, c1 and c2 are the weights associated with the pbest and the gbest terms
in the velocity update equation, xi is particle i’s current location, and R1 and
R2 are randomly drawn from U(0,1). The term w represents a momentum
coefficient which is reduced according to equation 3.2 as the algorithm iter-
ates. In equation 3.2, itermax and iter are the total number of iterations the
algorithm will run for, and the current iteration value respectively, and wmax
and wmin set the upper and lower boundaries on the value of the momentum

62 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

coefficient. The velocity update on any dimension is constrained to a maxi-
mum value of vmax. Once the velocity update for particle i is determined, its
position is updated (equation 3.3), and pbest is updated if necessary (equations
3.4 & 3.5).

xi(t + 1) = xi(t) + vi(t + 1) (3.3)

yi(t + 1) = yi(t) if, f(xi(t)) ≤ f(yi(t)) (3.4)

yi(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (3.5)

After the location of all particles have been updated, a check is made to
determine whether gbest needs to be updated (equation 3.6).

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn)) (3.6)

3.3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve
computer programs in any language [18, 19, 20, 21, 22], and can be consid-
ered a form of grammar-based genetic programming. GE has enjoyed particu-
lar success in the domain of Financial Modelling [3] amongst numerous other
applications including Bioinformatics, Systems Biology, Combinatorial Opti-
misation and Design [16, 13, 5, 4]. Rather than representing the programs as
parse trees, as in GP [8, 9, 1, 10, 11], a linear genome representation is used. A
genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information
to select production rules from a Backus Naur Form (BNF) grammar. The
grammar allows the generation of programs in an arbitrary language that are
guaranteed to be syntactically correct, and as such it is used as a generative
grammar, as opposed to the classical use of grammars in compilers to check
syntactic correctness of sentences. The user can tailor the grammar to pro-
duce solutions that are purely syntactically constrained, and can incorporate
domain knowledge by biasing the grammar to produce very specific forms of
sentences. BNF is a notation that represents a language in the form of pro-
duction rules. It is comprised of a set of non-terminals that can be mapped
to elements of the set of terminals (the primitive symbols that can be used
to construct the output program or sentence(s)), according to the production
rules. A simple example BNF grammar is given below, where <expr> is the
start symbol from which all programs are generated. These productions state
that <expr> can be replaced with either one of <expr><op><expr> or <var>.
An <op> can become either +, -, or *, and a <var> can become either x, or y.

3 Grammatical Swarm 63

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = c % r

where % represents the modulus operator, c is the codon integer value, and r
is the number of rules for the current non-terminal of interest.

Given the example individual’s genome (where each 8-bit codon is rep-
resented as an integer for ease of reading) in Fig.3.1, the first codon integer
value is 220, and given that we have 2 rules to select from for <expr> as in
the above example, we get 220 % 2 = 0. <expr> will therefore be replaced
with <expr><op><expr>.

Beginning from the the left hand side of the genome, codon integer val-
ues are generated and used to select appropriate rules for the left-most non-
terminal in the developing program from the BNF grammar, until one of the
following situations arise: (a) A complete program is generated. This occurs
when all the non-terminals in the expression being mapped are transformed
into elements from the terminal set of the BNF grammar. (b) The end of
the genome is reached, in which case the wrapping operator is invoked. This
results in the return of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue unless an upper
threshold representing the maximum number of wrapping events has occurred
during this individuals mapping process. (c) In the event that a threshold on
the number of wrapping events has occurred and the individual is still incom-
pletely mapped, the mapping process is halted, and the individual assigned
the lowest possible fitness value. Returning to the example individual, the
left-most <expr> in <expr><op><expr> is mapped by reading the next codon
integer value 240. This codon is then used as follows: 240 % 2 = 0 to
become another <expr><op><expr>. The developing program now looks like
<expr><op><expr><op><expr>. Continuing to read subsequent codons and
always mapping the left-most non-terminal the individual finally generates
the expression y*x-x-x+x, leaving a number of unused codons at the end of
the individual, which are deemed to be introns and simply ignored. A full
description of GE can be found in [18], and some more recent developments
are covered in [3, 14].

64 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

3.4 Grammatical Swarm

Grammatical Swarm (GS) adopts a Particle Swarm learning algorithm cou-
pled to a Grammatical Evolution (GE) genotype-phenotype mapping to gen-
erate programs in an arbitrary language [15]. The update equations for the
swarm algorithm are as described earlier, with additional constraints placed
on the velocity and particle location dimension values, such that maximum
velocities vmax are bound to ±255, and each dimension is bound to the range
[0,255] (denoted as cmin and cmax respectively). Note that this is a contin-
uous swarm algorithm with real-valued particle vectors. The standard GE
mapping function is adopted, with the real-values in the particle vectors be-
ing rounded up or down to the nearest integer value for the mapping process.
In contrast to earlier studies on GS this study adopts variable-length vectors.
A vector’s elements (values) may be used more than once if wrapping occurs,
and it is also possible that not all dimensions will be used during the map-
ping process if a complete program comprised only of terminal symbols, is
generated before reaching the end of the vector. In this latter case, the ex-
tra dimension values are simply ignored and considered introns that may be
switched on in subsequent iterations. Although the vectors were bounded in
length in earlier studies not all elements were necessarily used to construct
a program during the mapping process, and as such the programs generated
were variable in size.

3.4.1 Variable-Length Particle Strategies

Four different approaches to a variable-length particle swarm algorithm were
investigated in this study.

Strategy I

Each particle in the swarm is compared to the global best particle (gbest) to
determine if there is a difference between the length of the particle’s vector
and the length of the gbest vector. If there is no difference between the vector
sizes then a length update is not required and the algorithm simply moves on
and compares the next particle to gbest. However, when there is a difference
between the vector lengths, the particle is either extended or truncated. If the
current particles, pi vector length is shorter than the length of gbest, elements
are added to the particle’s vector extending it so that it is now equivalent in
length to that of gbest. The particle’s new elements contain values which are
copied directly from gbest. For example, if gbest is a vector containing fifty
elements and the current particle has been extended from forty five to fifty
elements then the values contained in the last 5 elements (46-50) of gbest are
copied into the five new elements of the current particle. If the particle has a
greater number of elements than the gbest particle, then the extra elements are
simply truncated so that both gbest and the current particle have equivalent
vector lengths.

3 Grammatical Swarm 65

Strategy II

This strategy is similar to the first strategy, the only difference is the method
in which the new elements are copied. In the first strategy, when the current
particle, pi is extended the particle’s new elements are populated by values
which are copied directly from gbest. In Strategy II, values are not copied
from gbest instead random numbers are generated in the range [cmin, cmax]
and these values are copied into each of pi’s new elements.

Strategy III

The third strategy involves the use of probabilities. Given a specified proba-
bility, the length of the particle is either increased or decreased. A maximum
of one elements can only be changed at a time i.e. either an element is added
or removed from the current particle, pi. If pi is longer than gbest then the
last element of pi is discarded. If pi is shorter than gbest then pi is increased
by adding an extra element to its vector. In this situation the new element
takes the value of a random number in the range [cmin, cmax].

Strategy IV

The fourth strategy involves the generation of a random number to determine
the number of elements that will be added to or removed from the current
particle, pi. If the length of pi is shorter than the length of gbest the dif-
ference, dif between the length of gbest and the length of pi is calculated.
Then a random integer is generated in the range [0, dif]. The result of this
calculation is then used to determine how many elements will be truncated
from pi. A similar strategy is applied when the length of pi is smaller than the
length of gbest. However, in this case the random number generated is used
to determine the number of elements that pi will be extended by. After pi is
extended, each of these extended elements are then populated with random
numbers generated in the range [cmin, cmax].

A strategy is not applied every time it was possible to modify the current
particle (pi), instead applying a strategy is determined by the outcome of
a certain probability function i.e. the outcome of this function is used to
determine if a strategy is to be applied to pi. In our current implementation,
a probability of 0.5 was selected. Therefore 50% of the time a length-modifying
strategy is applied and 50% of the time the length of pi is not modified.

For each particle in the swarm, a random number in the range [1,100]
is generated, which determines its initial length in terms of the number of
codons.

66 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

3.5 Proof of Concept Experiments and Results

A diverse selection of benchmark programs from the literature on Genetic
Programming are tackled using Grammatical Swarm to demonstrate proof
of concept for the variable-length GS methodology. The parameters adopted
across the following experiments are c1 = c2 = 1.0, wmax = 0.9, wmin = 0.4,
cmin = 0 (minimum value a coordinate may take), cmax = 255 (maximum
value a coordinate may take). In addition, a swarm size of 30 running for
1000 iterations is used, and 100 independent runs are performed for each
experimental setup with average results being reported.

The same problems are also tackled with GS’s fixed-length counterpart
(using 100 dimensions) and GE in order to determine how well the variable-
length GS algorithm is performing at program generation in relation to the
more traditional variable-length Genetic Algorithm search engine of standard
GE. In an attempt to achieve a relatively fair comparison of results given the
differences between the search engines of Grammatical Swarm and Grammat-
ical Evolution, we have restricted each algorithm in the number of individuals
they process. Grammatical Swarm running for 1000 iterations with a swarm
size of 30 processes 30,000 individuals, therefore, a standard population size of
500 running for 60 generations is adopted for Grammatical Evolution. The re-
maining parameters for Grammatical Evolution are roulette selection, steady
state replacement, one-point crossover with probability of 0.9, and a bit mu-
tation with probability of 0.01.

3.5.1 Santa Fe Ant trail

The Santa Fe ant trail is a standard problem in the area of GP and can be
considered a deceptive planning problem with many local and global optima
[12]. The objective is to find a computer program to control an artificial ant so
that it can find all 89 pieces of food located on a non-continuous trail within a
specified number of time steps, the trail being located on a 32 by 32 toroidal
grid. The ant can only turn left, right, move one square forward, and may also
look ahead one square in the direction it is facing to determine if that square
contains a piece of food. All actions, with the exception of looking ahead for
food, take one time step to execute. The ant starts in the top left-hand corner
of the grid facing the first piece of food on the trail. The grammar used in
this problem is different to the ones used later for symbolic regression and the
multiplexer problem in that we wish to produce a multi-line function in this
case, as opposed to a single line expression. The grammar for the Santa Fe
ant trail problem is given below.

<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if(food_ahead()) { <line> } else { <line> }
<op> ::= left(); | right(); | move();

3 Grammatical Swarm 67

3.5.2 Quartic Symbolic Regression

The target function is f(a) = a + a2 + a3 + a4, and 100 randomly generated
input-output vectors are created for each call to the target function, with
values for the input variable drawn from the range [0,1]. The fitness for this
problem is given by the reciprocal of the sum, taken over the 100 fitness cases,
of the absolute error between the evolved and target functions. The grammar
adopted for this problem is as follows:

<expr> ::= <expr> <op> <expr> | <var>
<op> ::= + | - | * | /
<var> ::= a

3.5.3 Three Multiplexer

An instance of a multiplexer problem is tackled in order to further verify
that it is possible to generate programs using Grammatical Swarm. The aim
with this problem is to discover a boolean expression that behaves as a 3
Multiplexer. There are 8 fitness cases for this instance, representing all possible
input-output pairs. Fitness is the number of input cases for which the evolved
expression returns the correct output. The grammar adopted for this problem
is as follows:

<mult> ::= guess = <bexpr> ;
<bexpr> ::= (<bexpr> <bilop> <bexpr>)

| <ulop> (<bexpr>)
| <input>

<bilop> ::= and | or
<ulop> ::= not
<input> ::= input0 | input1 | input2

3.5.4 Mastermind

In this problem the code breaker attempts to guess the correct combination
of colored pins in a solution. When an evolved solution to this problem (i.e. a
combination of pins) is to be evaluated, it receives one point for each pin that
has the correct color, regardless of its position. If all pins are in the correct
order then an additional point is awarded to that solution. This means that
ordering information is only presented when the correct order has been found
for the whole string of pins.

A solution therefore, is in a local optimum if it has all the correct colors,
but in the wrong positions. The difficulty of this problem is controlled by
the number of pins and the number of colors in the target combination. The
instance tackled here uses 4 colors and 8 pins with the following target values
3 2 1 3 1 3 2 0.

The grammar adopted is as follows.

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

68 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

3.5.5 Results

Results averaged over 100 runs showing the best fitness, and the cumulative
frequency of success for the four variable length grammatical swarm (VGS)
variants are presented in Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig. 3.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(1

00
 R

un
s)

Iteration

VGS - Santa Fe Ant Trail

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

F
re

qu
en

cy
 o

f S
uc

ce
ss

(1
00

 R
un

s)

Iteration

VGS - Santa Fe Ant Trail

VGS I
VGS II
VGS III
VGS IV

Fig. 3.2. Plot of the mean fitness on the Santa Fe Ant trail problem instance (left),
and the cumulative frequency of success (right).

Table 3.1, Table 3.2, Table 3.3 and Table 3.4 outline a comparison of the
results across the four variable-length particle swarm strategies analysed in
this study. While there is no clear winner across all four problems strategies,
III and IV were the most successful overall, with strategy IV producing best
performance on the Santa Fe ant and Multiplexer problems, while strategy
III had the better performance on the Symbolic Regression and Mastermind
instances. It is interesting to note that the mean length of the gbest particle
never grows beyond 65 codons at the last iteration across all four problems,
demonstrating that bloat does not appear to have impacted on these results.

3.5.6 Summary

Table 3.5 provides a summary and comparison of the performance of the fixed
and variable-length forms of GS and GE on each of the problem domains tack-
led. The best variable-length strategy outperforms GE on the Mastermind in-
stance and has a similar performance to the fixed-length form of GS. On the

3 Grammatical Swarm 69

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
e
a
n
 F

itn
e
ss

 (
1
0
0
 R

u
n
s)

Iteration

VGS - 3 Multiplexer

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900 1000
C

u
m

u
la

tiv
e
 F

re
q
u
e
n
cy

 o
f
S

u
cc

e
ss

(1
0
0
 R

u
n
s)

Iteration

VGS - 3 Multiplexer

VGS I
VGS II
VGS III
VGS IV

Fig. 3.3. Plot of the mean fitness on the 3 multiplexer problem instance (left), and
the cumulative frequency of success (right).

Table 3.1. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Santa Fe Ant trail.

Mean Best Successful Mean gbest
Fitness Runs Codon Length

Strategy
I .77 27 50
II .76 24 51
III .78 27 51
IV .8 31 61

Table 3.2. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Multiplexer problem instance.

Mean Best Successful Mean gbest
Fitness Runs Codon Length

Strategy
I .93 54 49
II .94 55 52
III .94 54 57
IV .94 57 53

70 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

M
e
a
n
 F

itn
e
ss

 (
1
0
0
 R

u
n
s)

Iteration

VGS - Quartic Symbolic Regression

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000

C
u
m

u
la

tiv
e
 F

re
q
u
e
n
cy

 o
f
S

u
cc

e
ss

(1
0
0
 R

u
n
s)

Iteration

VGS - Quartic Symbolic Regression

VGS I
VGS II

VGS III
VGS IV

Fig. 3.4. Plot of the mean fitness on the Quartic Symbolic Regression problem
instance (left), and the cumulative frequency of success (right).

Table 3.3. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the quartic symbolic regression problem
instance.

Mean Best Successful Mean gbest
Fitness Runs Codon Length

Strategy
I .2 12 45
II .19 10 49
III .23 13 55
IV .15 5 54

Table 3.4. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Mastermind problem.

Mean Best Successful Mean gbest
Fitness Runs Codon Length

Strategy
I .89 10 61
II .9 12 57
III .9 14 65
IV .9 12 60

3 Grammatical Swarm 71

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
e
a
n
 F

itn
e
ss

 (
1
0
0
 R

u
n
s)

Iteration

VGS - Mastermind

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000

C
u
m

u
la

tiv
e
 F

re
q
u
e
n
cy

 o
f
S

u
cc

e
ss

(1
0
0
 R

u
n
s)

Iteration

VGS - Mastermind

VGS I
VGS II

VGS III
VGS IV

Fig. 3.5. Plot of the mean fitness on the Mastermind problem instance (left), and
the cumulative frequency of success (right).

other three problems the fixed-length form of GS outperforms variable-length
GS in terms of the number of successful runs finding the target solution. On
both the Santa Fe ant and Symbolic Regression problems, GE outperforms
GS. The key finding is that the results demonstrate proof of concept that a
variable-length particle swarm algorithm can successfully generate solutions
to problems of interest. In this initial study, we have not attempted parameter
optimization for the various variable-length strategies and this may lead to
further improvements of the variable-length particle swarm algorithm. Given
the relative simplicity of the Swarm algorithm, the small population sizes in-
volved, and the complete absence of a crossover operator synonymous with
program evolution in GP, it is impressive that solutions to each of the bench-
mark problems have been obtained. Based on the findings in this study there is
no clear winner between the bounded and variable-length forms of GS, and as
such the recommendation at present would be to adopt the simpler bounded
GS, although future investigations may find in the variable-length algorithm’s
favour.

3.6 Conclusions and Future Work

This study demonstrates the feasibility of successfully generating computer
programs using a variable-length form of Grammatical Swarm, and demon-

72 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

Table 3.5. A comparison of the results obtained for Grammatical Swarm and Gram-
matical Evolution across all the problems analyzed.

Successful Runs

Santa Fe ant
GS (variable) 31
GS (bounded) 38

GE 58

Multiplexer
GS (variable) 57
GS (bounded) 87

GE 56

Symbolic Regression
GS (variable) 13
GS (bounded) 28

GE 85

Mastermind
GS (variable) 14
GS (bounded) 13

GE 10

strates its application to a diverse set of benchmark program-generation prob-
lems. A performance comparison to Grammatical Evolution has shown that
Grammatical Swarm is on a par with Grammatical Evolution, and is capable
of generating solutions with much smaller populations, with a fixed-length
vector representation, an absence of any crossover, and no concept of selec-
tion or replacement. A performance comparison of the variable-length and
fixed-length forms of Grammatical Swarm reveal that the simpler fixed-length
version is superior for the experimental setups and problems examined here.

The results presented are very encouraging for future development of the
relatively simple Grammatical Swarm algorithm, and other potential Social
or Swarm Programming variants.

References

1. Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D. (1998). Genetic Pro-
gramming – An Introduction; On the Automatic Evolution of Computer Pro-
grams and its Applications. Morgan Kaufmann.

2. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From
natural to artificial systems, Oxford: Oxford University Press.

3. Brabazon, A. and O’Neill, M. 2006. Biologically Inspired Algorithms for Finan-
cial Modelling. Springer.

4. Cleary, R. and O’Neill, M. 2005. An Attribute Grammar Decoder for the 01 Mul-
tiConstrained Knapsack Problem. In LNCS 3448 Pr oc. of Evolutionary Com-
putation in Combinatorial Optimization EvoCOP 2005, pp.34-45, Lausanne,
Switzerland. Springer.

3 Grammatical Swarm 73

5. Hemberg, M. and O’Reilly, U-M. 2002. GENR8 - Using Grammatical Evolu-
tion In A Surface Design Tool. In Proc. of the First Gra mmatical Evolution
Workshop GEWS2002, pp.120-123. New York City, New York, US. ISGEC.

6. Kennedy, J., Eberhart, R. and Shi, Y. (2001). Swarm Intelligence, San Mateo,
California: Morgan Kauffman.

7. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceed-
ings of the IEEE International Conference on Neural Networks, December 1995,
pp.1942-1948.

8. Koza, J.R. (1992). Genetic Programming. MIT Press.
9. Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press.
10. Koza, J.R., Andre, D., Bennett III and F.H., Keane, M. (1999). Genetic Pro-

gramming 3: Darwinian Invention and Problem So lving. Morgan Kaufmann.
11. Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003).

Genetic Programming IV: Routine Human-Co mpetitive Machine Intelligence.
Kluwer Academic Publishers.

12. Langdon, W.B. and Poli, R. (1998). Why Ants are Hard. In Genetic Program-
ming 1998: Proceedings of the Th ird Annual Conference, University of Wiscon-
sin, Madison, Wisconsin, USA, pp. 193-201, Morgan Kaufmann.

13. Moore, J.H. and Hahn, L.W. (2004). Systems Biology Modeling in Human Ge-
netics Using Petri Nets and Grammatical Evolution . In LNCS 3102 Proc. of
the Genetic and Evolutionary Computation Conference GECCO 2004, Seattle,
WA, USA, pp.392-401. Springer.

14. O’Neill, M. and Brabazon, A. (2005). Recent Adventures in Grammatical Evolu-
tion. In Computer Methods and Systems CMS’05, Krakow, Poland, pp.245-252.
Oprogramowanie Naukowo-Techniczne.

15. O’Neill, M. and Brabazon, A. (2004). Grammatical Swarm. In LNCS 3102 Proc.
of the Genetic and Evolutionary Computation Conferen ce GECCO 2004, Seat-
tle, WA, USA, pp.163-174. Springer.

16. O’Neill, M., Adley, C. and Brabazon, A. (2005). A Grammatical Evolution Ap-
proach to Eukaryotic Promoter Recognition. In Proc. of Bioinformatics IN-
FORM 2005, Dublin City University, Dublin, Ireland.

17. O’Neill, M., Brabazon, A. and Adley, C. (2004). The automatic generation of
programs for Classification using Grammatical Swarm. In Proc. of the Congress
on Evolutionary Computation CEC 2004, Portland, OR, USA, pp.104-110.
IEEE.

18. O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Kluwer Academic Publishers.

19. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

20. O’Neill, M. and Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolu-
tionary Computation. 2001.

21. O’Neill, M., Ryan, C., Keijzer M. and Cattolico M. (2003). Crossover in Gram-
matical Evolution. Genetic Programming and E volvable Machines, Vol. 4 No.
1. Kluwer Academic Publishers, 2003.

22. Ryan, C., Collins, J.J. and O’Neill, M. (1998). Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Proc. of the First European Workshop on
GP, 83-95, Springer-Verlag.

74 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

23. Silva, A., Neves, A. and Costa, E. (2002). An Empirical Comparison of Particle
Swarm and Predator Prey Optimisation. In LN AI 2464, Artificial Intelligence
and Cognitive Science, the 13th Irish Conference AICS 2002, pp. 103-110, Lim-
erick, Ireland, Springer.

4

SWARMs of Self-Organizing Polymorphic
Agents

Derek Messie1 and Jae C. Oh2

1 Department of Electrical Engineering and Computer Science, Syracuse
University, Syracuse, NY USA.
dsmessie@syr.edu, http://messie.syr.edu

2 Department of Electrical Engineering and Computer Science, Syracuse
University, Syracuse, NY USA.
jcoh@ecs.syr.edu, http://web.syr.edu/~jcoh

The field of Swarm Intelligence is increasingly being seen as providing a frame-
work for solving a wide range of large-scale, distributed, complex problems. Of
particular interest are architectures and methodologies that address organiza-
tion and coordination of a large number of relatively simple agents distributed
across the system in a way that encourages some desirable global emergent
behavior. This chapter describes a SWARM simulation of a distributed ap-
proach to fault mitigation within a large-scale data acquisition system for
BTeV, a particle accelerator-based High Energy Physics experiment currently
under development at Fermi National Accelerator Laboratory. Incoming data
is expected to arrive at a rate of over 1 terabyte every second, distributed
across 2500 digital signal processors. Simulation results show how lightweight
polymorphic agents embedded within the individual processors use game the-
ory to adapt roles based on the changing needs of the environment. SWARM
architecture and implementation methodologies are detailed.

4.1 Introduction

In the field of Swarm Intelligence, a lot of attention has been focused lately
on developing large-scale distributed systems that are capable of coordinat-
ing individual actors in a system competing for resources such as bandwidth,
computing power, and data. Agent methodologies that exhibit self-* (self-
organizing, self-managing, self-optimizing, self-protecting) attributes are of
particular value [5, 12]. SWARM (http://www.swarm.org), is a software de-
velopment kit that allows for large-scale simulations of complex multi-agent
systems. The SWARM experiments conducted demonstrate polymorphic self-*

D. Messie and J.C. Oh: SWARMs of Self-Organizing Polymorphic Agents, Studies in

Computational Intelligence (SCI) 26, 75–90 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

76 Derek Messie and Jae C. Oh

agents that are capable of multiple roles as directed strictly by the environ-
ment. These agents evolve an optimum core set of roles for which they are
responsible, while still possessing the ability to take on alternate roles as en-
vironmental demands change.

SWARM is used to simulate the RTES/BTeV environment, a data ac-
quisition system for a particle accelerator-based High Energy Physics experi-
ment currently under development at Fermi National Accelerator Laboratory.
Multiple layers of polymorphic, very lightweight agents (VLAs) are embed-
ded within 2500 Digital Signal Processors (DSPs) to handle fault mitigation
across the system.

This chapter is divided into six sections. First, some background on poly-
morphism and stigmergy, along with the RTES/BTeV environment itself is
provided. A description of VLAs embedded within Level 1 of the RTES/BTeV
environment is provided, followed by an explanation of current challenges and
other motivating factors. Details of the SWARM development kit components
and configuration used in the experiments are provided Section 4.3, as well as
an introduction to polymorphic self-* agents design. Results of the SWARM
simulation are evaluated in Section 4.5, followed by lessons learned, next steps,
and conclusions.

4.2 Background and Motivation

4.2.1 Polymorphism and Stigmergy

Polymorphism and stigmergy are founded in biology and the study of self-
organization within social insects. The term polymorphism is often used in
describing characteristics of ants and other social biological systems, and is
defined as the occurrence of different forms, stages, or types in individual or-
ganisms, or organisms of the same species, independent of sexual variations
[19, 11]. Within individual colonies consisting of ants with the same genetic
wiring, two or more castes belonging to the same sex can be found. The func-
tion or role that any one ant takes on is dictated by cues from the environment
[18].

The agents described in this chapter adhere to this definition of polymor-
phism in that they are genetically identical, yet each evolve distinct roles that
they play as demanded of them through changes in the environment.

The concept of polymorphic agents presented in this chapter is different
from other definitions of polymorphism that have surfaced in computer sci-
ence. In object-oriented programming, polymorphism is usually associated
with the ability of objects to override inherited class method implementations
[8]. The term has also arisen in other subareas of computer science, including
some agent designs [1], but generally describes a templating based system or
similar variation of the object-oriented model.

4 SWARMs of Self-Organizing Polymorphic Agents 77

(a) Large termite mound (b) Mound as respiratory device

Fig. 4.1. (a) Large termite mound commonly found in subsaharan Africa. (b) The
mounds act as respiratory devices, built from the surrounding soil by the termites
in a colony. The mound powers ventilation of the subterranean nest by capturing
energy from the wind. (c) Air shafts lead to underground spaces where larvae, food,
and fungus is stored.

Stigmergy was introduced by biologist Pierre-Paul Grasse to describe in-
direct communication that takes place between individuals in social insect
societies [6]. The theory explains how organization and coordination of the
building of termite nests is mainly controlled by the nest itself, and not the
individual termite workers involved. It views the process of emergent coop-
eration as a result of participants altering the environment and reacting to
the environment as they pass through it. The canonical example of stigmergy
is ants leaving pheromones in ways that help them find the shortest, safest
distance to food or to build nests.

A stigmergic approach to fault mitigation is introduced in this chapter.
Individual agents communicate indirectly through errors that they find (or
do not find) in the environment. This indirect communication is manifested
through actions that each agent takes as cued by the environment. Results
show how the local actions of polymorphic agents within the system allow
self-* global behavior to emerge.

78 Derek Messie and Jae C. Oh

Polymorphism and stigmergy are two of the core elements that produce
complex organization and coordination within social insect societies. Although
individual participants rely on local information only to act on a small set
of basic rules, very complex behavior and structure can emerge. Fig. 4.1(a)
shows a large complex termite mound commonly found in subsaharan Africa.
As detailed in 4.1(b), the mounds are respiratory devices, built from the sur-
rounding soil by the termites in a colony. The mound powers ventilation of the
subterranean nest by capturing energy from wind. They are organs of colony
physiology, shaped to accommodate and regulate the exchanges of respira-
tory gases between the nest and atmosphere. As labeled in Fig. 4.1(c), the air
shafts within the mounds also lead underground to the cellar, where larvae,
food, and fungus is stored.

4.2.2 RTES/BTeV

BTeV is a proposed particle accelerator-based HEP experiment currently un-
der development at Fermi National Accelerator Laboratory in Chicago, IL.
The goal is to study charge-parity violation, mixing, and rare decays of par-
ticles known as beauty and charm hadrons, in order to learn more about
matter-antimatter asymmetries that exist in the universe today [10].

An aerial view of the Fermilab Tevatron is shown in Fig. 4.2. The experi-
ment uses approximately 30 planar silicon pixel detectors that are connected
to specialized field-programmable gate arrays (FPGAs). The FPGAs are con-
nected to approximately 2500 digital signal processors (DSPs) that filter in-
coming data at the extremely high rate of approximately 1.5 Terabytes per
second from a total of 20x106 data channels. A three tier hierarchical trigger
architecture will be used to handle this high rate [10]. An overview of the
BTeV triggering and data acquisition system is shown in Fig. 4.3, including
a magnified view of the L1 Vertex Trigger responsible for Level 1 filtering
consisting of 2500 Worker nodes (2000 Track Farms and 500 Vertex Farms).

There are many Worker level tasks that the Farmlet VLA (FVLA) is re-
sponsible for monitoring. A traditional hierarchical approach would assign one
(or more) distinct DSPs the role of the FVLA, with the responsibility of mon-
itoring the state of other Worker DSPs on the node [3]. However, this leaves
the system with only very few possible points of failure before critical tasks
are left unattended.

Another approach would be to assign a single redundant DSP (or more)
to each and every Worker DSP, to act as the FVLA [7]. However, since 2500
Worker DSPs are projected, this would prove very expensive and may still
not fully protect all DSPs given even a low number of system failures.

The events that pass the full set of physics algorithm filters occur very
infrequently, and the cost of operating this environment is high. The extremely
large streams of data resulting from the BTeV environment must be processed
real-time with highly resilient adaptive fault tolerant systems.

4 SWARMs of Self-Organizing Polymorphic Agents 79

Fig. 4.2. Aerial view of the Fermilab Tevatron, the world’s highest-energy particle
collider. Beams of protons and antiprotons are collided to examine the basic building
blocks of matter.

4.2.3 Very Lightweight Agents (VLAs)

Multiple levels of very lightweight agents (VLAs) [16] are one of the primary
components responsible for fault mitigation across the BTeV data acquisition
system.

The primary objective of the VLA is to provide the BTeV environment
with a lightweight, adaptive layer of fault mitigation. One of the latest phases
of work at Syracuse University has involved implementing embedded proactive
and reactive rules to handle specific system failure scenarios.

VLAs have been implemented in two separate scaled prototypes of the
RTES/BTeV environment. The first was presented at the SuperComputing
2003 (SC2003) conference [13], and the other at the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS2005). Reactive
and proactive VLA rules were integrated within these Level 1 and Level 2
prototypes and served a primary role in demonstrating the embedded fault
tolerant capabilities of the system.

80 Derek Messie and Jae C. Oh

Fig. 4.3. The BTeV triggering and data acquisition system showing (left side)
detector, buffer memories, L1, L2, L3 clusters and their interconnects and (right
side) a magnified figure of the L1 Vertex trigger.

4.2.4 Challenges

While these prototypes were effective for demonstrating the real-time fault
mitigation capabilities of VLAs on limited hardware utilizing 16 DSPs, one of
the major challenges is to find out how the behavior of the various levels of
VLAs will scale when implemented across the 2500 DSPs projected for BTeV
[9]. In particular, how frequently should these monitoring tasks be performed
to optimize available processing time, and what affect does this have on other
components and the overall behavior of a large-scale real-time embedded sys-
tem such as BTeV.

Given the number of components and countless fault scenarios involved,
it is infeasible to design an ‘expert system’ that applies mitigative actions
triggered from a central processing unit acting on rules capturing every pos-
sible system state. Instead, Section 4.4 describes a distributed approach that
uses self-organizing VLAs to accomplish fault mitigation within the large-scale
real-time RTES/BTeV environment.

4 SWARMs of Self-Organizing Polymorphic Agents 81

4.3 SWARM Simulation of RTES/BTeV

4.3.1 Overview

The goal of the implementation is to evaluate the behavior of the VLAs and
other components using a high volume of rules across 2500 DSPs. This requires
a simulation environment that will allow abstract representation of some of
the complex integration within BTeV.

SWARM (http://www.swarm.org), distributed under the GNU General
Public License, is software available as a Java or Objective-C development
kit that allows for the multi-agent simulation of complex systems [2, 4]. It
consists of a set of libraries that facilitate implementation of agent-based
models. SWARM has previously been used by the RTES team in simulations
that model the RTES/BTeV environment [15].

The basic architecture of SWARM provides for the simulation of collections
of concurrently interacting agents. It provides an environment that can model
various components of the BTeV system, assigning dynamic states to each
agent, which can then be altered in time steps following various user-specified
rules. Both proactive and reactive rules are triggered after the current state of
a given agent (or component) is evaluated against the state of other connected
agents (or components).

4.3.2 SWARM Development Kit

The SWARM development kit consists of a core set of libraries, each of which
are described completely in the SWARM Documentation Set 3. The top ap-
plication layer (known as the ‘observer swarm’) creates screen displays, along
with all lower levels. The next level down (‘model swarm’) then creates indi-
vidual agents, schedules their activities, collects information about them, and
relays that information when requested to do so by the ‘observer swarm’.

The SWARM libraries also provide numerous additional objects for design-
ing the agent-based model, including tools that facilitate the management of
memory, the maintenance of lists, and the scheduling of actions.

The state of each worker is represented with distinct error flags that rep-
resent the unique error code(s) that each worker is experiencing at any point
in time. Each VLA has an error log which tracks the error messages that it
receives at each time step.

Since scalability issues are a primary concern, the results must detect the
degree to which any exhibited behavior is tied to specific system configura-
tions. The SWARM model includes dynamic variables that can be modified to
reflect various hardware layout configurations, including the number of PAs
per Farmlet, the number of Farmlets, the number of Farmlets per Region, the
number of Regions, and the frequency rate of individual failure scenarios.
3 SWARM Documentation Set is found at http://www.swarm.org/swarmdocs/set/

set.html

82 Derek Messie and Jae C. Oh

4.3.3 Polymorphic Agents

Some initial supporting terminology from the field of multi-agent systems
should first be presented before a definition for polymorphic agents is shown.
To begin with, finding a single universally accepted definition of an agent
has been as difficult for the agent-based computing community, as defining
intelligence has been for the mainstream AI community [20]. However, a few
of the core properties of agents that have been widely accepted include :

• autonomy : agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal state;

• social ability : agents interact with other agents;
• reactivity : agents respond to changes in their environment;
• pro-activeness: agents exhibit goal-directed behavior.

Likewise, robust definitions of environments in multi-agent systems can
be even more challenging to find than those for agents. In very general terms,
environments ‘provide the conditions under which an entity (agent or object)
exists’ [17].

In multi-agent systems, roles are viewed as ‘an abstract representation of
an agents function, service, or identification within a group’ [14]. As described
earlier, polymorphism is defined in biology as:

‘the occurrence of different forms, stages, or types in individual organisms or
in organisms of the same species, independent of sexual variations’ [19, 11].

For the definition of polymorphic agents in multi-agent systems proposed
in this chapter, organisms are replaced by agents, and agent roles (function,
service, or identification) are used in place of forms, stages, and types of or-
ganisms. The environment in this new definition in many ways remains un-
changed.

This leads to the following working definition for polymorphic agents
within the field of multi-agent systems:

Polymorphic Agents -

‘Individual agents within groups of similar or identical agents that are capable
of adapting roles based on their perceived environment.’

SWARM is used to evaluate a stigmergic multi-agent systems approach
using polymorphic agents to address the weaknesses inherent in traditional hi-
erarchical fault mitigation designs. In this model, rather than hard-wiring the
assignment of FVLA roles to specialized FVLAs on dedicated DSPs, Worker
VLAs are made polymorphic so that every VLA is equipped to play the role
of FVLA for any DSP on the same node.

4 SWARMs of Self-Organizing Polymorphic Agents 83

Since the FVLA is responsible for a wide range of monitoring tasks, this
means that we must build the capability of performing each task into every
Worker Level VLA. The classic problem this presents in traditional hierarchi-
cal approaches is how to process all of the data necessary for all of these tasks
in time for a useful response [20]. However, since these agents are polymor-
phic and evolve roles gradually over time, there is only a small set of tasks for
which each agent is responsible for at any given point in time.

Stigmergy is used to determine which set of tasks any given VLA performs.
Errors found (or not found) in the environment by an individual VLA increase
(decrease) the sensitivity of that VLA to that particular type of error. Agents
start out by monitoring each type of error at a fixed rate. Then, based entirely
on what is encountered in the environment, each develops a core set of roles
for which it takes responsibility.

Game theory is used to facilitate self-organization within the SWARM
of agents. Each DSP calculates a utility value to determine locally precisely
when the PA or VLA should have control of the DSP. The utility value used
in this implementation is based on the processing cost of performing FVLA
monitoring tasks, and the estimated benefit of performing the tasks. The
utility of a single DSP (i) performing an FVLA monitoring task on another
DSP (j) is :

uij = −cij + bij ∗ p(t), (4.1)

where cij is the cost of DSP i performing the FVLA monitoring task on DSP
j, bij is the estimated benefit received by DSP i finding an error on DSP j,
and p(t) = 2∗ ((1/(1+e−dt))− .5), an adjusted sigmoid value for the amount
of time elapsed (t) since DSP i last performed the monitoring task on DSP j.

It is important to note here that the value assigned to d in the sigmoid
value for the amount of time elapsed, determines the steepness of the sigmoid
function, and hence the sensitivity of the agent to a given error. In other
words, the higher the value of d, the higher the adjusted sigmoid value of
t, and the higher the sensitivity (the frequency of checks) of the VLA to a
particular error.

This is where the polymorphic behavior of the VLA is demonstrated. Any
time that an individual VLA finds a specific error while performing FVLA
monitoring tasks, the d value for that error on that particular node is in-
creased. Any time that an individual VLA performs a monitoring task and
does not find an error, the d value is slightly decreased. A high value for
d means that FVLA tasks are performed more frequently (high sensitivity),
whereas a low value for d means they are performed less often (low sensitivity).

A low d value means low steepness (sensitivity), which means the utility
of performing FVLA checks increases slowly over time. A high d value on the
other hand, means high steepness (sensitivity), and utility increases sharply
over time.

84 Derek Messie and Jae C. Oh

0

8

8

8

0 p(q)

error rate

utility

Fig. 4.4. Utility based on the sigmoid value for the frequency of FVLA checks
(p(q)) on a given DSP. The optimum value for the frequency of checks changes as
the error rate fluctuates. A higher error rate calls for a higher rate of checking to
reach optimum utility, whereas a lower error rate requires less frequent checks.

The total utility of a single DSP (i) performing FVLA monitoring tasks
across all n DSPs is thus :

Ui =
n∑

j=1

((−cij + bij ∗ p(t)) ∗ α) , i �= j, (4.2)

where cij is the cost of DSP i performing the FVLA monitoring task on DSP
j, bij is the estimated benefit received by DSP i finding an error on DSP j,
p(t) = 2 ∗ ((1/(1 + e−dt)) − .5), an adjusted sigmoid value for the amount of
time elapsed (t) since DSP i last performed the monitoring task on DSP j,
and α is a flag set to 1 if the monitoring task is performed, and 0 if it is not.

Next, a utility function is defined that takes into account the quantity of
FVLA monitoring tasks performed by a single DSP (i) on another DSP (j)
over a fixed time period. The following equation calculates the utility of a
DSP performing FVLA monitoring tasks based on the frequency of checks
over a given time period, along with the cost of performing the checks :

uij = −cij ∗ qij + bij ∗ p(qij), (4.3)

4 SWARMs of Self-Organizing Polymorphic Agents 85

where cij is the cost of DSP i performing the FVLA monitoring task on DSP
j, qij is the number of times DSP i performed the monitoring task on DSP
j over a fixed time interval, bij is the estimated benefit received by DSP i
finding an error on DSP j, and p(qij) = 2∗ ((1/(1+e−dqij))− .5), an adjusted
sigmoid value for the number of times DSP i performed the monitoring task
on DSP j over a fixed time period.

This utility value allows us to calculate the optimum number of FVLA
checks that should be performed by a given DSP over a set time period.
As described earlier, if checks are performed too frequently or not freqently
enough, then DSP clock cycles are wasted (utility decreases). Fig. 4.4 demon-
strates this by showing the effect that the frequency of checks has on utility.
It also shows how the optimum value for the frequency of checks is affected
as the error rate fluctuates.

The following equation is used to represent the total utility of a single DSP
performing FVLA monitoring tasks across all n DSPs.

Ui =
n∑

j=1

(−cij ∗ qij + bij ∗ p(qij)) , i �= j, (4.4)

where cij is the cost of DSP i performing the FVLA monitoring task on DSP
j, qij is the number of times DSP i performed the monitoring task on DSP
j over a fixed time interval, bij is the estimated benefit received by DSP i
finding an error on DSP j, and p(qij) = 2∗ ((1/(1+e−dqij))− .5), an adjusted
sigmoid value for the number of times DSP i performed the monitoring task
on DSP j over a fixed time period.

4.4 Results

4.4.1 Summary

SWARM simulates Farmlet data buffer queues that are populated at a rate
consistent with the actual incoming physics crossing data. Each DSP within
a given Farmlet processes a fixed amount of data at each discrete time step.
Three distinct types of errors are introduced randomly within each Worker
DSP at a variable rate using a Multiply With Carry (RWC8gen) random
number generator with a fixed seed. Any time a software or hardware error is
encountered within the simulation, the processing rate for that DSP decreases
a set amount depending on the type of error. The error is cleared when any
DSP within the same Farmlet performs FVLA checks against the DSP for
the error type present. However, there is a time cost associated with per-
forming these checks. As detailed in the section above, the DSP must decide
whether or not it is worth taking time to perform FVLA monitoring tasks
against neighboring DSPs. If checks are performed too frequently, then the
time available for data crossing processing is limited. On the other hand, if

86 Derek Messie and Jae C. Oh

they are not performed frequently enough, then the chance that other DSPs
within the same Farmlet are experiencing errors is high. As described, a high
error rate will also lead to slow processing rates.

4.4.2 Utility Value Drives Real-Time Scheduling

The utility value formed in equation 4.1 is used to determine when to perform
FVLA monitoring tasks, where

cij = 1 unit of data processing (20 microseconds), the fixed cost of DSP i
performing FVLA monitoring tasks on DSP j,

bij = 10 units of data processing (200 microseconds), the fixed estimated
benefit received by DSP i finding an error on DSP j, and

p(t) = the adjusted sigmoid value for the number of time steps elapsed (t)
since DSP i last performed the monitoring task on DSP j.

The utility value is calculated at each time step to determine whether the
VLA or PA should have control of the DSP.

4.4.3 Self-* Emergent Behavior

Currently, a relatively rudimentary method is used to adapt the d-value (sen-
sitivity) of each agent to a particular type of error. The approach relies only
on a very limited amount of local information gathered when FVLA monitor-
ing tasks are performed. As described in detail earlier, the d-value is modified
when errors are found (not found) at each time step. In these experiments,
the d-value is increased .005 when an error is found, and decreased .00001 if
no error is found.

The DSPs self-organize as different DSPs within the Farmlet take on the
necessary monitoring tasks at different points in time as required by the en-
vironment. In this way, the monitoring tasks required by the environment are
always met, but not necessarily by one (or a few) designated DSPs. Instead,
these tasks are performed by any polymorphic DSP within the Farmlet as
dictated by the changing needs of the environment.

The results obtained show polymorphic VLAs evolving responsibility for
a core set of fault monitoring tasks. Over the 100000 time steps for which
the SWARM simulation is run, the 5 VLAs (1 per DSP) can be seen taking
on distinct roles that lead to an efficient global fault mitigation strategy for
monitoring errors on DSP1.

The simulation fluctuates the error rate at various intervals in order to
demonstrate the affect changes in error rate can have on polymorphic behav-
ior. A moderate error rate (5 x 10−4) is used for the first 35000 time steps, a
low error rate (5 x 10 −6) for the next 35000 time steps (35001-70000), and the

4 SWARMs of Self-Organizing Polymorphic Agents 87

last 30000 time steps (70001-100000) use a high rate (5 x 10 −3). The VLAs
are able to adjust sensitivity to errors on DSP1 based on these fluctuating
error rates over time. For example, the d-value (sensitivity) to individual er-
rors on DSP1 for all 5 VLAs (embedded within DSP2 - DSP6) can be seen
dropping beginning around time step 35000, and then increasing dramatically
again at time step 70000 in reaction to the significant increase in error rate.

The VLA d-value (sensitivity) for 3 distinct error types was monitored on
DSP1 within a single 6 DSP Farmlet. The d-values evolved by each of the
VLAs within the 5 DSPs (DSP2-DSP6) monitoring DSP1 within the same
Farmlet were evaluated. When the error rate is high (from time steps 70000-
100000), the VLAs embedded within DSP3 and DSP6 develop a high sensi-
tivity for error type 1 (e1), while the sensitivity for e1 of the VLAs in the
remaining DSPs remains low. Similarly, the VLAs on DSP2 and DSP5 have
a high sensitivity for error type 2 (e2), and VLAs for DSP2 and DSP3 are
highly sensitive to e3.

The moderate error rate used for the first 35000 time steps reveals ad-
ditional polymorphic behavior. Here, the error rate is not quite high enough
for any single VLA to evolve long term responsibility for an individual error
type on DSP1. Instead, 1 or 2 VLAs can be seen monitoring a single error
type at one moment, and then a separate VLA (or group of VLAs) can be
seen monitoring the same error type a short time later. This is due to the fact
that the error rate is too low to stimulate high sensitivity in a single VLA.
Sensitivity for the error type drops to a level comparable with other available
VLAs on the Farmlet. For example, the VLAs on DSP 3 and DSP 4 develop
a modest level of sensitivity for e1 early on (time steps 0-15000), but the role
is then taken over by VLAs on DSP 5 and DSP 6 (time steps 15000-28000),
and finally (time steps 28000-35000) taken back by VLAs on DSP 3 with a
little help from VLAs on DSP2 and DSP 4.

4.5 Lessons Learned

There were a number of lessons learned while using the SWARM software
development kit to simulate the RTES/BTeV environment. Many of these
have to do with the way in which SWARM represents the concept of time.
Simulations are run in discrete time steps, with every agent acting on all
corresponding rules at each time step.

One of the first issues that we encountered is that the agents are by default
evaluated in the exact same order at each time step. The problem that this
causes is that since the set of errors are introduced at the initiation of each time
step, the agents that are evaluated first each time will always be the first to
encounter errors. Essentially this means that the same set of agents are always
doing all of the work, while others sit idle. A DefaultOrder option was then
found that could be set to ‘randomized’ so that the order of agent evaluation
is random at each time step. Another challenge due to the constraint of time

88 Derek Messie and Jae C. Oh

steps is how to accurately simulate a real-time environment, particulary one
as large-scale as BTeV. A lot of work went into deciding how to accurately
simulate processing and error rates as described above.

It was also found that simulation performance varries greatly between
the software platforms that SWARM is designed to run on. Although the
available GUI packages are far more robust with the Java version of SWARM,
the Objective C version was used for these experiments due to the far better
performance received during runtime. This was critical given the large number
of agents, time steps, and hardware configurations that were simulated for
the results obtained. SWARM also offers a batch mode which records system
states directly to output files at each time step.

4.6 Next Steps

The next phase of this project will expand the SWARM simulation by increas-
ing the number of different types of errors handled, along with the amount
of fluctuation in error rates. Another important area of investigation for the
next phase is to focus further on how sensitivity (d-value) to individual errors
is adapted by each VLA. As described, a rudimentary method is currently
used that slightly increases (or decreases) sensitivity based on the presence
(or absense) of an error. Other variables could be considered in determin-
ing the amount of change to apply, such as factoring in the severity level of
the error, or looking at the consequences of other recently taken actions. An
enhanced evaluation methodology to better demonstrate the performance ad-
vantage of this approach as compared to other traditional methodologies is
also necessary.

4.7 Summary

This chapter has described the details of a SWARM simulation of a fully
distributed stigmergic approach to fault mitigation in large-scale real-time
systems using light-weight, polymorphic, self-* agents embedded within 2500
individual DSPs. Stigmergy facilitates indirect communication and coordina-
tion between agents using cues from the environment, and concepts from game
theory and social insect polymorphism allow individual agents to evolve a core
set of roles for which it is responsible. Agents adapt these roles as environmen-
tal demands change. The approach is implemented on a SWARM simulation of
RTES/BTeV, a data acquisition system for a High Energy Physics experiment
consisting of 2500 DSPs.

The research conducted was sponsored by the National Science Foundation
in conjunction with Fermi National Laboratories, under the BTeV Project,
and in association with RTES, the Real-time, Embedded Systems Group.
This work has been performed under NSF grant # ACI-0121658.

4 SWARMs of Self-Organizing Polymorphic Agents 89

References

1. B. Barbat and C. Zamrescu. Polymorphic Agents for Modelling E-Business
Users. International NAISO Congress on Information Science Innovations, Sym-
posium on E-Business and Beyond (EBB), Dubai, 2000.

2. R. Burkhart. Schedules of Activity in the SWARM Simulation System. Position
Paper for OOPSLA Workshop on OO Behavioral Semantics, 1997.

3. F. Cristian. Abstractions for fault-tolerance. In K. Duncan and K. Krueger, edi-
tors, Proceedings of the IFIP 13th World Computer Congress. Volume 3 : Link-
age and Developing Countries, pages 278-286, Amsterdam, The Netherlands,
1994. Elsevier Science Publishers.

4. M. Daniels. An Open Framework for Agent-based Modeling. Applications of
Multi-Agent Systems in Defense Analysis, a workshop held at Los Alamos Labs,
April 2000.

5. J. Dowling, R. Cunningham, E. Curran, and V. Cahill. Component and system-
wide self-* properties in decentralized distributed systems. Self-Star: Interna-
tional Workshop on Self-* Properties in Complex Information Systems, Univer-
sity of Bologna, Italy, May 31 - June 2 2004.

6. P. P. Grasse. La reconstruction du nid et les coordinations inter-individuelles
chez Bellicosi-termes natalensis et Cubitermes sp. La theorie de la stigmergie:
Essai d’interpretation des termites constructeurs. Insectes Sociaux, 6:pages 41-
83, 1959.

7. W. Heimerdinger and C. Weinstock. A conceptual framework for system fault
tolerance. Software engineering institute, carnegie mellon university, cmu/sei-
92-tr-33, esc-tr-92-033, October, 1992.

8. N. M. Josuttis. Object Oriented Programming in C++. John Wiley & Sons; 1st
edition, 2002.

9. J. Kowalkowski. Understanding and Coping with Hardware and Software Fail-
ures in a Very Large Trigger Farm. Conference for Computing in High Energy
and Nuclear Physics (CHEP), March 2003.

10. S. Kwan. The BTeV Pixel Detector and Trigger System. FERMILAB-Conf-
02/313, December 2002.

11. J. H. Law, W. O. Wilson, and J. McCloskey. Biochemical Polymorphism in
Ants. Science, 149:pages 544-6, July 1965.

12. Z. Li, H. Liu, and M. Parashar. Enabling autonomic, self-managing grid appli-
cations.

13. D. Messie, M. Jung, J. Oh, S. Shetty, S. Nordstrom, and M. Haney. Prototype
of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems. 2nd
Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual
IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS), Washington, DC USA, April 2005.

14. J. Odell, H.V.D. Parunak, M. Fleischer, S. Breuckner. Modeling Agents and
their Environment. Agent-Oriented Software Engineering III. Lecture Notes in
Computer Science. volume 2585. Springer-Verlag. Berlin Heidelberg New York,
2002.

15. D. Messie and J. Oh. SWARM Simulation of Multi-Agent Fault Mitigation in
Large-Scale, Real-Time Embedded Systems. High Performance Computing and
Simulation (HPC&S) Conference, Magdeburg, Germany, June 2004.

90 Derek Messie and Jae C. Oh

16. J. Oh, D. Mosse, and S. Tamhankar. Design of Very Lightweight Agents for
Reactive Embedded Systems. IEEE Conference on the Engineering of Computer
Based Systems (ECBS), Huntsville, Alabama, April 2003.

17. D. Weyns, H. Parunak, F. Michel, T. Holvoet, and Jacques Ferber. Environ-
ments for Multiagent Systems, State-of-the-art and Research Challenges. Post-
proceedings of the First International Workshop on Environments for Multia-
gent Systems, Lecture Notes in Artificial Intelligence, volume 3374, 2005.

18. D. E. Wheeler. Developmental and Physiological Determinants of Caste in Social
Hymenoptera: Evolutionary Implications. American Naturalist, 128:pages13-34,
1986.

19. E. O. Wilson. The Origin and Evolution of Polymorphism in Ants. Quarterly
Review of Biology, 28:pages 136-156, 1953.

20. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and Practice.
Knowledge Engineering Review. volume 10 number 2 pages 115-152. cite-
seer.ist.psu.edu/article/wooldridge95intelligent.html. 1995.

5

Swarm Intelligence — Searchers, Cleaners and
Hunters � ��

Yaniv Altshuler1, Vladimir Yanovsky1, Israel A. Wagner1,2, and Alfred M.
Bruckstein1

1 Computer Science Department, Technion, Haifa 32000 Israel.
{yanival, volodyan, wagner, freddy}@cs.technion.ac.il

2 IBM Haifa Labs, MATAM, Haifa 31905 Israel.
wagner@il.ibm.com

This chapter examines the concept of swarm intelligence through three exam-
ples of complex problems which are solved by a decentralized swarm of simple
agents. The protocols employed by these agents are presented, as well as var-
ious analytic results for their performance and for the problems in general.
The problems examined are the problem of finding patterns within physical
graphs (e.g. k-cliques), the dynamic cooperative cleaners problem, and a prob-
lem concerning a swarm of UAVs (unmanned air vehicles), hunting an evading
target (or targets). In addition, the work contains a discussion regarding open
questions and ongoing and future research in this field.

5.1 Introduction

Significant research effort has been invested during the last few years in design
and simulation of intelligent swarm systems. Such systems can generally be
defined as decentralized systems, comprising relatively simple agents which
are equipped with limited communication, computations and sensing abilities,
designed to accomplish a given task ([8, 9, 10, 11]).

However, much work is yet to be done for such systems to achieve sufficient
efficiency. This is caused, among others, by the fact that the geometrical
theory of such multi agent systems (which is used to tie geometric features
of the environments to the systems’ behaviors) is far from being satisfactory,
as pointed out in [12] and many others. Furthermore, while strong analysis
� This research was partly supported by the Ministry of Science Infrastructural

Grant No. 3-942
�� This research was partly supported by the Devorah fund

Y. Altshuler et al.: Swarm Intelligence — Searchers, Cleaners and Hunters, Studies in

Computational Intelligence (SCI) 26, 93–132 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

94 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

of a swarm protocol and its performance is crucial for the development of
stronger protocols and for overcoming the resource allocation problem users
of multi agent system often face, most of the works in the field present merely
a superficial analysis of the protocols, often in the sole form of experimental
results.

This work introduces three complex problems which are to be solved by
such intelligent swarms, utilizing specially designed protocols. The protocols
and their performance are analyzed, and experimental results concerning the
actual performance of the protocols are presented.

A more elaborated overview of previous work which concerns swarm in-
telligence is presented in Section 5.1.1 while details regarding the motivation
behind this research appears in Section 5.1.2. A key element in design and
analysis of swarm based systems and of swarm algorithms is the simplicity of
the agents (in means on sensing and computation capabilities, communication,
etc.). A discussion concerning this issue appears in Section 5.1.3.

Several works considered multi agents robotics in static environments.
Such works can be found in [1], [2], [7] and elsewhere. These works present,
among other results, protocols that assume the only changes taking place in
the environment to be caused through the activity of the agents. The first
problem presented in this work is a problem in which the agents must work
in dynamic environments — an environment in which changes may take place
regardless of the agents’ activity. This problem is a dynamic variant of the
known Cooperative Cleaners problem (described and analyzed in [1]). This
problem assumes a grid, part of which is ‘dirty’, where the ‘dirty’ part is a
connected region of the grid. On this dirty grid region several agents move,
each having the ability to ‘clean’ the place (‘tile’, ‘pixel’ or ‘square’) it is
located in, while the goal of the agents is to clean all the dirty tiles (in the
shortest time possible). The dynamic variant of the problem (described in Sec-
tion 5.2.1) involves a deterministic evolution of the environment, simulating
a spreading contamination (or spreading fire).

The Dynamic Cooperative Cleaners problem was first introduced in [3],
which also included a cleaning protocol for the problem, as well as several
analytic bounds for the time it takes agents which use this protocol to clean
the entire grid. A summary of those results appears in Section 5.2.4, while
Section 5.2.5 describes a method of using a prior knowledge concerning the
initial shape in order to improve its cleaning time.

The second problem presented is the Cooperative Hunters problem. This
problem examines a scenario in which one or more smart targets (i.e. a platoon
of T-72 tanks, a squad of soldiers, etc’) are moving in a predefined area, trying
to avoid detection by a swarm of UAVs (unmanned air vehicles). The UAV
swarm’s goal is to find the target (or targets) in the shortest time possible,
meaning, we must guarantee that there exists time t in which all the escaping
targets are detected, and that this t is minimal. While the swarm comprises
relatively simple UAVs, which lack prior knowledge of the initial positions

5 Swarm Intelligence — Searchers, Cleaners and Hunters 95

of the targets, the targets possess full knowledge of the whereabout of the
swarm’s agents, and are capable of intelligent evasive behavior.

A basic protocol for this problem and its analysis appears in [15]. However,
this protocol assumes that the area in which the targets can move is known
to the UAVs. Furthermore, although trying to minimize the communication
between the swarm’s agents, the work in [15] still requires a relatively high
amount of explicit cooperation between the agents, which can be obtained
through the use of a relatively high amount of communication.

This work contains a protocol for the requested task, which assumes no
previous knowledge considering the area to be searched, and uses only a lim-
ited communication between the agents. The problem, the protocol and an
analysis of its performance are presented in Section 5.3.

The third problem presented in this work is the Physical k-Clique problem,
where a swarm comprising n mobile agents travels along the vertices of a
physical graph G, searching for a clique of size k. A physical graph refers to a
graph whose edges require a certain amount of time (or resources) for traveling
along. Furthermore, information regarding the graph is available to the mobile
agents only locally (meaning that the agents gather information only regarding
the vertices they travel through). Thus, the complexity of the problem is
measured in the number of edges traveled along, and not in the computational
resources used by the agents. The work presents a search protocol for the
agents, as well as experimental results for its performance (Section 5.4).

Section 5.5 contains a discussion regarding the problems, and details about
extended research, which is currently being performed by the authors.

5.1.1 Swarm Intelligence — Overview

The area of multi agents and multi robotics distributed systems has become
increasingly popular during the last two decades. Many applications, mainly
in the contexts of computer networks, distributed computing and robotics,
are nowadays being designed using techniques and schemes which are based
on concepts derived from multi agents, or swarms, research.

The basic paradigm behind multi agents based system is that many tasks
can be more efficiently completed by using multiple simple autonomous agents
(robot, software agents, etc.) instead of a single sophisticated one. Regardless
of the improvement in performance, such systems are usually much more
adaptive, scalable and robust than those based on a single, highly capable,
agent.

A multi agent system, or a swarm, can generally be defined as a decen-
tralized group of multiple autonomous agents, either homogenous or heteroge-
nous, such that those agents are simple and possess limited capabilities. Sec-
tion 5.1.3 discusses the various limitations expected from such agents, while
a commonly used taxonomy for multi agent robotics can be found in [47].

The inherent complexity of distributed multi agent systems, which is de-
rived from the multitude of free variables involved in the operation and the

96 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

decision process of such systems, makes their analysis extremely difficult. This
may explain the relatively small number of theoretical results in this field, and
the fact that most works in this field are justified through experimental re-
sults, or by analysis of simple cases only. Further hardness is derived from
the fact that distributed multi agent systems are complex systems by nature,
with all the classical features of such systems. Thus, the field of multi agent
systems becomes an exciting and largely unexplored field for research and
development.

Furthermore, while many works have been done considering multi agents
in static environments (such as [1, 2, 7]), only a few works examined multi
agent systems that operate in environments that change not only through the
activity of the agents. As a results, the field of multi agent systems in dynamic
environments is an exceptionally fascinating aspect of multi agents research.

Many research efforts have examined distributed systems models inspired
by biology (see [55] or for behavior based control model — [64, 59], flocking
and dispersing models — [78, 67, 69] and predator-prey approach — [61, 73]),
physics [56], and economics [48, 49, 50, 51, 52, 53, 54].

Capabilities that have been of particular emphasis include task planning
[57], fault tolerance [82], swarm control [79], human design of mission plans
[77], role assignment [88, 65, 80], multi-robot path planning [89, 76, 70, 93],
traffic control [84], formation generation [58, 96, 97], formation keeping [60,
91], target tracking [83] and target search [75].

Another interesting field of research is that of the biology inspired ACO
metaheuristic for solving problems in dynamic environments. In [112], pheromones
are treated as a desirability feature and are placed by the agents on the graph’s
edges. The information stored in these pheromones is essentially an implicit
measurement of the probability of the edges to belong to the optimal solution
for the problem (TSP, in that case). Other applications are -

• Sequential ordering problem [113].
• Quadratic assignment problem [114].
• Vehicle routing problem [115].
• Scheduling problem [116].
• Graph colouring problem [117].
• Partitioning problems [118].
• Problems in telecommunications networks [119], [120].

5.1.2 Swarm Intelligence — Motivation

The experience gained due to the growing demand for robotics solutions to
increasingly complex and varied challenges has dictated that a single robot is
no longer the best solution for many application domains. Instead, teams of
robots must coordinate intelligently for successful task execution.

[99] presents a detailed description of multi robots application domains,
and demonstrates how multi robots systems are more effective than a single

5 Swarm Intelligence — Searchers, Cleaners and Hunters 97

robot in many of these domains. However, when designing such systems it
should be notice that simply increasing the number of robots assigned to a
task does not necessarily improve the system’s performance — multiple robots
must cooperate intelligently to achieve efficiency.

Following are the main inherent advantages of a multi agent robotics (note
that much of them hold for other multi agent systems, such as a distributed
anti-virus mechanism, for example) :

• The benefit of parallelism — in task-decomposable application domains,
robot teams can accomplish a given task more quickly than a single robot
by dividing the task into sub-tasks and executing them concurrently. In
certain domains, a single robot may simple no be able to accomplish the
task on its own (e.g. carrying a large and heavy object).

• Robustness — generally speaking, a team of robots provides a more robust
solution by introducing redundancy, and by eliminating any single point
of failure. While considering the alternative of using a single sophisticated
robot, we should note that even the most complex and reliable robot may
suffer an unexpected malfunction, which will prevent it from completing
its task. When using a multi agent system, on the other hand, even if a
large number of the agents stop working from some reason, the entire group
will often still be able to complete its task, albeit slower. For example, for
exploring a hazardous region (such as a minefield or the surface of Mars),
the benefit of redundancy and robustness offered by a multi agent system
is highly noticeable.

• Adaptivity and Locality — the unit of a multi agents based systems has the
ability of dynamically reallocating sub-tasks between the group of agents,
thus adapting to unexpected changes in the environment. Furthermore,
since the system is decentralized, it can respond relatively quickly to such
changes, due to the benefit of locality, meaning — the ability to perform
changes in the operation of a sub group of agents without the need to
notify or request approval from any centralized “leader”. Note that as the
system comprises more agents, this advantage becomes more and more
noticeable.

• Scalability — as in the previous section, as a multi agent system becomes
larger, its relative performance in comparison to a centralized system be-
comes better. The scalability of multi agent systems is derived from the low
overhead (both in communication and computation) such system possess.
As the tasks assigned nowadays to multi agents based systems become
increasingly complex, so does the importance of the high scalability of the
systems.

• Heterogeneousness — since a group of agents may be heterogenous, it can
utilize “specialists” — agents whose physical properties enable them to
perform efficiently certain well defined tasks.

• Flexibility — as multi agent systems possess a great deal of internal com-
plexity, such systems are capable of presenting a wide variety of behavior

98 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

patterns. As a result, many kinds of tasks can be carried out by the same
multi agent system. For example, a group of simple mobile robots can form
a rigid line in order to scan an area for evading target, traverse an area in
order to implement a “peeling” mechanism (such as [1] or [3]), or patrol
an area in order to minimize the longest time between two visits in a cer-
tain point. This flexibility allows designers of such systems to use generic
components and thus design fast and cheap systems for a given problem,
whereas using a single robot requires designers to produce a special robot
for each task.

Following are several examples for typical applications for which multi
robotics system may fit successfully :

• Covering — in order to explore an enemy terrain, or clean a pre-defined
minefield. May also be used for virtual spaces, such as a distributed search
engine in a computer network [1, 3].

• Patrolling — for example, guarding a museum against thieves [121, 122].
• Cooperative attack, which require the cooperative and synchronized efforts

of a large number of autonomous robots [15].
• Construction of complex structures and self-assembling (for example, see

work on reconfigurable robots in [63, 62, 66, 86, 94, 72, 90, 95]).
• Missions which by nature require an extremely large number of extremely

small units. For example, nano-robots performing medical procedures in-
side a human body [123, 124].

• Mapping and localizing — one example of this work is given in [71], which
takes advantage of multiple robots to improve positioning accuracy beyond
what is possible with single robots. Another example for a heterogenous
localization system appears in [98].

• Environment manipulation — like a distributed system of transporting
heavy payloads (see [85, 87, 68, 74, 92]).

5.1.3 Swarm Intelligence — Simplicity

A key principal in the notion of swarms, or multi agent robotics is the sim-
plicity of the agents. Since “simplicity” is a relative description by its nature,
the meaning is that the agents should be “much simpler” than a “single so-
phisticated agent” which can be constructed.

For example, cheap unmanned air vehicles which can fly at the speed of
200 MPH and detect targets at radius of 2 miles, and are able to broadcast
to a range of 1 mile are “much simpler” than an F-16 airplane which can
fly at a top speed of 1500 MPH, equipped with a radar which can detect
targets at a range of 50 miles and use satellite based communication system.
As technology advances, the criteria for future “simple agents” may of course
be changed.

As a result, the resources of such simple agents are assumed to be limited,
with respect to the following aspects :

5 Swarm Intelligence — Searchers, Cleaners and Hunters 99

• Memory resources — basic agents should be assumed to contain only O(1)
memory resources. This usually impose many interesting limitation on the
agents. For example, agents can remember the history of their operation
to only a certain extent. Thus, protocols designed for agents with such
limited memory resources are usually very simple and try to solve the given
problem by defining some (necessarily local) basic patterns. The task is
completed by repetition of this patterns by a large number of agents.
In several cases, stronger agents may be assumed, whose memory size is
proportional to the size on the problem (i.e. O(n)). Such models may be
used for example for problems when assuming that the agents are UAVs.

• Sensing capabilities — defined according to the specific nature of the prob-
lem. For example, for agents moving along a 100 × 100 grid, the sensing
radius of the agents may be assumed to be 3, but not 40.

• Computational resources — although agents are assumed to employ only
limited computational resources, a formal definition of such resources is
hard to define. In general, most of the polynomial algorithms may be used.

Another aspect of swarms’ and swarm algorithms’ simplicity is the use of
communication. The issue of communication in multi agent systems has been
extensively studied in recent years. Distinctions between implicit and explicit
communication are usually made, in which implicit communication occurs as
a side effect of other actions, or “through the world” (see, for example [81]),
whereas explicit communication is a specific act designed solely to convey
information to other robots on the team.

Explicit communication can be performed in several ways, such as a short
range point to point communication, a global broadcast, or by using some
sort of distributed shared memory. Such memory is often treated to as a
pheromone, used to convey small amounts of information between the agents
[100, 101, 102]. This approach is inspired from the coordination and communi-
cation methods used by many social insects — studies on ants (e.g. [103, 104])
show that the pheromone based search strategies used by ants in foraging for
food in unknown terrains tend to be very efficient.

Generally, we aspire that the agents will have as little communication ca-
pabilities as possible. Although a certain amount of implicit communication
can hardly be avoided (due to the simple fact that by changing the envi-
ronment, the agents are constantly generating some kind of implicit informa-
tion), explicit communication should be strongly limited or avoided altogether.
However, in several cases it can be shown that by adding a limited amount
of communication to the agents’ capabilities, much stronger systems can be
produced.

100 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

5.2 The Dynamic Cooperative Cleaners (DCC) Problem

5.2.1 The Problem’s Definition

Let us assume that the time is discrete. Let G be a two dimensional grid,
whose vertices have a binary property of ‘contamination’. Let contt(v) state
the contamination state of the vertex v in time t, taking either the value
“on” or “off ”. Let Ft be the dirty sub-graph of G at time t, i.e. Ft = {v ∈
G | contt(v) = on}. We assume that F0 is a single connected component. Our
algorithm will preserve this property along its evolution.

Let a group of k agents that can move across the grid G (moving from
a vertex to one of its 4-Connected neighbors in one time step) be arbitrarily
placed in time t0 on the boundary of F0 (we focus on the cleaning problem,
and not on the discovery problem). 4-Connected vertices are a pair of vertices
who share a common border while 8-Connected vertices are vertices which
share either common border or a common corner.

Each agent is equipped with a sensor capable of telling the condition of
the square it is currently located in, as well as the condition of the squares
in the 8−Neighbors group of this square. An agent is also aware of other
agents which are located in its square, and all the agents agree on a common
“north”. Each square can contain any number of agents simultaneously.

When an agent moves to a vertex v, it has the possibility of causing cont(v)
to become off. The agents do not have any prior knowledge of the shape or
size of the sub-graph F0 except that it is a single connected component.

Every d time steps the contamination spreads. That is, if t = nd for some
positive integer n, then (∀v ∈ Ft , ∀u ∈ 4−Neighbors(v) : contt+1(u) = on).

The agents’ goal is to clean G by eliminating the contamination entirely,
so that (∃tsuccess : Ftsuccess

= ∅). In addition, it is desired that this tsuccess

will be minimal.
In this work we demand that there is no central control and that the

system is fully ‘de-centralized’ (i.e. all agents are identical and no explicit
communication is allowed).

5.2.2 Solving the Problem — Cleaning Protocol

For solving the Dynamic Cooperative Cleaners problem the SWEEP clean-
ing protocol was suggested [3]. This protocol can be described as follows.
Generalizing an idea from computer graphics (which is presented in [14]), the
connectivity of the contaminated region is preserved by preventing the agents
from cleaning what is called critical points — points which disconnect the
graph of contaminated grid points. This ensures that the agents stop only
upon completing their mission. An important advantage of this approach, in
addition to the simplicity of the agents, is fault-tolerance — even if almost all
the agents cease to work before completion, the remaining ones will eventually
complete the mission, if possible. The protocol appears in Figure 5.2.

5 Swarm Intelligence — Searchers, Cleaners and Hunters 101

In the spirit of [13] we consider simple robots with only a bounded amount
of memory (i.e. a finite-state-machine). At each time step, each agent cleans
its current location (assuming this is not a critical point), and moves to its
rightmost neighbor (starting from the agent’s previous location — a local
movement rule, creating the effect of a clockwise traversal of the contaminated
shape). As a result, the agents “peel” layers from the shape, while preserving
its connectivity, until the shape is cleaned entirely.

Since we only allow agents to clean boundary points, we guarantee that
no new “holes” are created. The simple-connectivity of F , if such exists, is
thus kept. This however, does not hold for a certain family of initial shapes.
A complete discussion regarding a criteria for F0 which guarantees that new
holes will not be created can be found in [4] and a comprehensive work discus-
sion this issue is currently under preparation by the authors. In general, the
preservation of the simple-connectivity is rather easily guaranteed for digitally
convex shapes lacking areas which may turn into holes once F spreads. An
example of a shape in which the preservation of the simple-connectivity of the
shape cannot be guaranteed appears in Figure 5.1.

�
�

Fig. 5.1. A creation of a new hole around an agent. Notice that when the contami-
nation spreads, it might trap one or more agents (denoted by stars) inside a “hole”
that is created. In this case, the agents will continue cleaning the interior area of
the hole.

5.2.3 Cleaning Protocol - Definitions and Requirements

Let r(t) = (τ1(t), τ2(t), . . . , τk(t)) denote the locations of the k agents at
time t. The requested cleaning protocol is therefore a rule f such that for
every agent i, f(τi(t), Neighborhood(τi(t)),Mi(t)) ∈ D, where for a square v,
Neighborhood(v) denotes the contamination states of v and its 8−Neighbors,
Mi is a finite amount of memory for agent i, containing information needed
for the protocol (e.g. the last move) and D = {‘left′, ‘right′, ‘up′, ‘down′}.

Let ∂Ft denote the boundary of Ft. A square is on the boundary if and only
if at least one of its 8−Neighbors is not in Ft, meaning ∂F = {(x, y) | (x, y) ∈
F ∧ 8−Neighbors(x, y) ∩ (G \ F) �= ∅}.

102 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

The requested rule f should meet the following goals :

• Full Cleanness : (∃tsuccess : Ftsuccess
= ∅). Notice that this demand

is limited to cases where this is possible. Since we cannot know whether
completing the mission is possible, we can only demand that when d → ∞
the agents should achieve this goal.

• Agreement on Completion : within a finite time after completing the
mission, all the agents must halt.

• Efficiency : in time and in agents’ memory resources.

The requested rule should also be fault tolerant.

5.2.4 Dynamic Cooperative Cleaners — Results

Notice that analyzing the performance of the protocol is quite difficult. First,
due to the preservation of the critical points, such points can be visited many
times by the agents without being cleaned. Second, due to the dynamic nature
of the problem the shape of the contaminated region can dramatically change
during the cleaning process.

Another difficulty which arises is that of guaranteeing the completion of
the cleaning by the agents. We must show that the agents are cleaning the
contaminated region faster than the spreading of the last. Since given an
instance of the problem, we know no easy way of knowing the minimal time
it takes k agents to clean it, we cannot always foretell whether these k agents
will be able to complete the mission successfully.

Let d denote the number of time steps between two contamination spreads.
Then, for example, for any pair of values of d and k, let F0 be a straight
line of length � 1

8d2k2 + dk + 1
2�. Then, by applying the lower bound for the

cleaning time (which was shown in [3]), we can see that the size of the shape
is continually growing.

Thus, producing bounds for the proposed cleaning protocol is important
for estimating its efficiency. Following is a summery of the bounds which were
shown and proven in [3].

i. Given a contaminated shape F0 with initial area of S0, and k agents
employing any cleaning protocol, following is a lower bound for St (the
area of F in time t), and thus for the cleaning time of the agents :

St+d ≥ St − d · k +
√

8 · (St − d · k) − 4

where d is the number of time steps between spreads. Note that if S0 � d·k
then the sequence may be increasing and the agents cannot cease the
fire. In addition, note that the bound is generic and applies regardless
of the cleaning protocol used by the agents. The bound is based on the
calculation of the maximal area which can be cleaned by k agents in d
time steps, combined the minimal number of new contaminated squares
which can be created ones F spreads. Additional details can be obtained
in [3].

5 Swarm Intelligence — Searchers, Cleaners and Hunters 103

Protocol SWEEP(x, y) :
If (not is-critical(x, y)) and ((x, y) ∈ ∂F) and (there are no other agents in (x, y))
then

Set cont(x, y) to off ; /*Clean current position*/
If (x, y) has no contaminated neighbors then STOP;
If (there are no other agents in (x, y)) or (the agent has the highest priority among
agents in (x, y)) then

If ¬((x, y) ∈ ∂F) and in the previous time step the
agent’s square was in ∂F then

/* Spread had occurred. Search for ∂F */
Move in 90◦ counterclockwise to the previous
movement and skip the rest of the protocol;

If ¬((x, y) ∈ ∂F) and in the previous time step the
agent’s square was not in ∂F then

/* Keep seeking ∂F */
Move on the same direction as in the previous
movement and skip the rest of the protocol;

If (x, y) ∈ ∂F then
Go to the rightmost neighbor of (x, y);

End SWEEP;

Function is-critical(x, y) :
If (x, y) has two contaminated squares in its 4−Neighbors which are not connected
via a sequence of contaminated squares from its 8−Neighbors then

Return TRUE
Else

Return FALSE;
End is-critical;

Function priority(i) :
(x0, y0) = τi(t − 1);
(x1, y1) = τi(t);
Return (2 · (x0 − x1) + (y0 − y1));
End priority;

Procedure INITIALIZE() :
Choose a starting point on ∂F , p0;
Put all the agents in p0;
For (i = 1; i ≤ k; i + +) do

Start agent i according to the SWEEP protocol;
Wait 2 time steps;

End INITIALIZE;

Fig. 5.2. The SWEEP cleaning protocol. The protocol is used by agent i which is
located in square(x, y). The term rightmost is defined as “starting from the previous
boundary point scan the neighbors of (x, y) in a clockwise order until you find
another boundary point”

104 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

ii. Following is an upper bound for tSUCCESS , the cleaning time of k agents,
using the SWEEP cleaning protocol, for a given contaminated shape F0 :

tquick clean � 8(|∂F0| − 1) · (W (F0) + k)
k

+ 2k

If tquick clean ≤ d then tSUCCESS = �tquick clean�. Otherwise (t > d) :
If F0 is convex���, find the minimal t for which :

t∑

i=d+1

1
S0 − 1 + 2� i

d�2 + (c0 + 2)� i
d�

≥ γ +
8
k
·
⌊ t

d

⌋

where

γ � 8(k + W (F0))
k

− d − 2k

|∂F0| − 1

Otherwise (t > d, F0 is not convex), find the minimal t for which :

t∑

i=d+1

1
S0 − 1 + 2� i

d�2 + (c0 + 2)� i
d�

≥

≥ α +
8
2k

√

β + 4
(⌊ t

d

⌋2
+
⌊ t

d

⌋)

where
α � 8 +

8
2k

− d − 2k

|∂F0| − 1
and β � 2S0 + 2c0 − 1

In both cases tSUCCESS = t.
In the above, d is the number of time steps between contamination spreads,
c0 is the circumference of F0, S0 is the area of F0 and W (F0) denotes the
maximal of the shortest distances between an internal square of F0 and a
non-critical square of ∂F0.
This bound is produced by defining a “depth” of a shape as the maximal
shortest path between an internal point of F and a non-critical point on
the boundary of F . By showing that once an agent traverses F using the
SWEEP protocol the depth of F is decreased, and by limiting the increase
the the depth of F due to contamination spreads, an upper bound over
the cleaning time is produced. Additional details can be obtained in [3].

iii. For a given contaminated shape F0, an upper bound for the number of
agents needed to apply the SWEEP protocol, for a successful cleaning of
the shape, is derived from the cleaning time bound above.

A computer simulation, implementing the SWEEP cleaning protocol, was
constructed. The simulation examined shapes of various geometric features,

��� Meaning that for every two squares in F0 there is a 4−Neighbors “shortest path”
between them, which is entirely in F0.

5 Swarm Intelligence — Searchers, Cleaners and Hunters 105

and tracked the cleaning time of k agents (k ∈ [1, 100]) which used the
SWEEP protocol. Following is a sample of the results, including the pre-
dictions of the lower and upper bounds. The sample includes a “cross” of size
2960, “rooms” of size 3959, and a random, semi-convex, shape of size 5000,
where d = 1000 :

The lower curves represent the results predicted by the lower bound, while
the upper curves represent the actual cleaning time, produced by the simu-
lations performed (the graphs present the cleaning time as a function of the
number of agents). The left graph presents the results that were produced by
the “cross”, etc’.

�

�

1000

2000

3000

4000

10 20 30

�

�

�

�

�

� �
� �
�

� �

�

3000

6000

9000

12000

10 20 30

�

�

�

�

�

�

� �
� � � � �

� � � � � � � � � � � �
� � � � � � � � � � �

�

2000

4000

6000

8000

10 20 30

� �

�

�

�
�

� �

The following graph contains the upper bound for the “cross”. Notice that
the lower, tighter, curve was produced when taking into account that the
“cross” shape is “convex”:

�

�

10000

20000

30000

40000

10 20 30 40 50 60

5.2.5 Dynamic Cooperative Cleaners — Convex Transformation

While [3] presented analytic upper bounds for the cleaning time of agents
using the SWEEP protocol, assuming no prior knowledge concerning F0 by
the agents, in many cases such agents may indeed possess such information.
Should this information be available to the agents, a method of employing it
in order to improve the cleaning time should be devised.

While examining the simulation results, it can easily be seen that since
the circumference of F0 is rarely convex, valuable time is lost on cleaning

106 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

the concave parts of it. Since our goal should be to minimize the size of
the bounding sphere of the contaminated shape rather than the size of the
contaminated shape itself, had the agents been aware of the existence of such
parts, they shouldn’t have bothered cleaning them. In order to satisfy this
goal, when given information about F0 the agents can calculate its convex hull
(for example, using Graham scan) C0 � ConvexHull(F0). Then, by using the
SWEEP protocol over C0 (instead of F0) the agents are able to speed up the
cleaning (since when C0 is clean, so must be F0). Using the upper bound of
[3] allows us to predict this improvement.

Fig. 5.3 contains the results of the proposed transformation, for the rooms
shape (size = 3959, circumference = 716) and the random semi convex shape
(size = 5000, circumference = 654) of [3]. Since the cross which is presented
in [3] is convex, the transformation will not change its cleaning time. The
value of d for both shapes was chosen to be 1000. As can be seen, the use of
convex transformation improved the performance of the agents by an average
of approximately 35%.

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Dynamic Cooperative Cleaners
Convex Transformation

Rooms

Number of Agents

T
im

e−
st

ep
s

Original shape

Convex Hull

Lower bound

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Dynamic Cooperative Cleaners
Convex Transformation
Random Semi−Convex

Number of Agents

T
im

e−
st

ep
s

Original shape

Convex Hull

Lower bound

Fig. 5.3. Improvement in cleaning time of Convex-hull.

5.3 Cooperative Hunters

Significant research effort has been invested during the last few years in de-
sign, analysis and simulation of multi-agent systems design for searching areas
(either known or unknown) [107, 108, 109, 110, 111]. While in most works the
targets are assumed to be idle, recent works consider dynamic targets, mean-
ing — target which by detecting the searching agents from a long distance,
try to avoid detection by evading the agents.

Such problem is presented in [15], where a swarm of UAVs (unmanned
aerial vehicles) is used for searching after one or more evading “smart targets”.
The UAVs swarm’s goal is to guarantee that there exists time t in which all
the escaping targets are detected, and that this t is minimal. In the current

5 Swarm Intelligence — Searchers, Cleaners and Hunters 107

work, the problem described above will be denoted as the Cooperative Hunters
problem.

5.3.1 Problem

Let us assume the time is discrete, while every time step lasts ctime seconds.
Let G be a two dimensional grid, such that every vertex corresponds to an
area in the map of size csize × csize square meters. Let us assume that each
UAV moves at speed 1 · csize meters per time step. Let us assume that the
targets move at speed vtarget · csize meters per time step (thus, ctime can be
adjusted accordingly).

We assume that each UAV is equipped with sensors able of detecting
the targets within its current vertex of G. The targets however, can spot
the searcher from a great distance (considered to be infinite, and beyond
the searcher’s sensors range) and subsequently, manoeuver in order to evade
detection. Once the searcher detects the target, it intercepts it.

Each UAV is aware of its current location (using a GPS receiver) and while
flying over vertex v, can identify whether or not vertex v and its 8−Neighbors
are part of the area to be searched. There is no limitation over the shape of
the area to be searched, although it is assumed to be simply connected.

The UAV’s communicate by using a wireless channel, while the information
transmitted over this channel should be kept to a minimum.

The number of hiding targets can be either known to the swarms, or al-
ternatively, the UAVs might not know the exact number of hiding targets (in
which case the swarm will continue searching until guaranteeing that there is
no longer a place in which the targets can hide). The goal of the swarm is to
detect all hiding targets, in a minimal amount of time.

5.3.2 Motivation

The search strategy suggested in [15] for solving this problem defines flying
patterns that the UAVs follow, which are designed for scanning the (rectan-
gular) area in such a way that the targets cannot re-enter sub-areas which
were already scanned by the swarm, without being detected by some UAV.
Note that this protocol assumes that the area in which the targets can move
is known to the UAVs in advance, and must be rectangular in shape.

However, this may not always be the case — a swarm of UAVs may be
launched into an area whose shape and size is unknown to the UAVs prior to
the beginning of the operation. For example, a swarm of UAVs might be used
in order to hunt guerrilla forces, hiding in a city. These forces can be identified
by the UAVs, since they use certain vehicles, or carrying certain electronic
equipment or weapons, which can be identified by the UAVs’ sensors. In this
example, the targets can move only in the boundaries of the city, but the
operators of the system may lack information regarding the exact boundaries
of the city (since they may have only old and outdated satellite images of the

108 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

area, or since large portions of the area was destroyed during recent fights).
Thus, a method for searching without relying on previous knowledge of the
searched area must be obtained.

The searching protocol presented in this work uses no prior knowledge of
the area. The only assumption made is that the swarm’s agents are capable of
identifying the boundaries of the searched area, as they pass over them. In the
previous example this means that once a UAV passes over the boundary of the
city it can detect it. Therefore, a swarm whose agents contains no knowledge
regarding the area to be searched, can still perform the searching task, by
employing this protocol.

Furthermore, the presented protocol is very efficient in means of the sim-
plicity of the agents, and the low communication between them. This makes
the use of a simple protocol a notable advantage. While the protocol of [15]
requires a relatively high amount of explicit cooperation between the UAVs
(which can be obtained through the use of a relatively high amount of com-
munication), the communication between the agents which is needed for a
swarm using the presented protocol is extremely limited, and is bounded by
6 · k bits per time step (k being the number of agents). Another advantage of
the presented protocol is its fault tolerance, meaning — even if many UAVs
malfunction or be shot down, the swarm will still be able to complete the
task, albeit slower.

5.3.3 General Principle

Although the initial problem is that of searching for hiding targets within a
given area, we shall consider an alternative, yet equivalent problem — the
dynamic cooperative cleaners problem, presented in section 5.2.1.

Notice that from a cleaning protocol which is used by agents in order to
solve the DCC problem, a protocol for the cooperative hunters problem can be
derived. This is done by defining the entire area G as ‘contaminated’. A ‘clean’
square (either a square which has not been contaminated yet, or a square
which was cleaned by the UAVs) represents an area which is guaranteed not to
contain any targets. By using the fact that the contamination is spreading, we
simulate the fact that the targets may manoeuver around the UAVs, in order
to avoid detection — if vertex v is contaminated then it may contain a target,
thus, after 1

vtarget
seconds, this target could have moved from v to one of its

neighbors, had it been in v. As result, after 1
vtarget

seconds all the neighbors of v

become contaminated. In other words, the spreading contaminated simulates
a danger diffusion that represents the capability of a square to contain a
target.

The agents’ goal is to eliminate the contaminated area — eliminate the
places which the targets may be hiding in. Once there are no longer squares
in which the targets may be hiding, the swarm is guaranteed to have detected
all evading targets. Note that our demands regarding no prior knowledge of

5 Swarm Intelligence — Searchers, Cleaners and Hunters 109

the search area are met, since the cooperative cleaners problem do not assume
such knowledge.

5.3.4 Search Protocol

Let each UAV i hold Gi — a bitmap of G. Let every Gi be initialized to zeros
(e.g. “clean”). Let each UAV i contain a hash table of vertices — fi which
for every vertex can return on or off . The default for all the vertices is off .
The list fi represents the vertices which are known to be within the area to
be searched.

Every time a UAV flying over vertex v identifies v or one of its neighbors
to be a part of the area to be searched, if fi(v) = off it sets the corresponding
vertices of Gi to 1, sets fi(v) to be on, and broadcasts this information to the
other UAVs. Once a UAV receives a transmission that vertex v is part of the
area to be searched, it sets fi(v) to on and sets the corresponding vertex in
Gi to 1. Every time a UAV moves it broadcasts the direction of its movement
to the rest of the UAVs (north, south, west or east).

Notice that every time step each UAV broadcasts the new squares which
are parts of G (which are set to 1 in Gi), and the squares it “cleaned” by
flying over them (which are set to 0). Thus, the Gi and fi of all UAVs are
kept synchronized. Since vtarget is known to the UAVs, they can simulate the
spreading contamination, by performing (∀v ∈ Gi , ∀u ∈ Neighbors(v) :
state(u) = 1) every 1

vtarget
time steps. Thus, the bitmaps Gi always represent

the correct representation of the area still to be cleaned.
The direction of movement and the decision whether or not to clean a ver-

tex are determined using some cleaning protocol (for example, the SWEEP
protocol of [3]). Notice that all the analytic bounds over the cleaning time
of a cleaning protocol are immediately applicable for our hunting protocol.
Whenever a UAV cleans a certain vertex, it sets this vertex in Gi to be 0, and
broadcasts this information. Once a UAV receives such a transmission, it sets
the vertex corresponding to the new location of the transmitting UAV to 0.

The UAVs are assume to be placed on the boundary of the area to be
searched. Thus, each Gi immediately contains at least one vertex whose value
is 1. As a result, for Gi to contains only zeros, the UAVs must have visited all
the vertices of G and had made sure that no target could have escaped and
“re-contaminated” a clean square. When Gi becomes all zeros UAV i knows
that the targets have been found, and stops searching.

Since each time step, each UAV can move in at most 4 directions (i.e. 2
bits of information), clean at most a single vertex (i.e. 1 bit of information),
and broadcast the status of 8 neighbor vertices (i.e. 3 bits of information), the
communication is limited to 6 bits of information per UAV per time step.

110 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

5.3.5 Results

As mentioned in previous sections, by showing that any “cleaning protocol”
may be used as the core component of a “hunting protocol” for the prob-
lem, all the analytic results concerning this cleaning protocol are immediately
applicable. Specifically, by using the SWEEP cleaning protocol, all of the an-
alytic bounds for its cleaning time (i.e. those mentioned in section 5.2.4 or in
[3]) be utilized.

5.4 Physical k-Clique

5.4.1 Physical Graphs

The term physical graph denotes a graph G(V,E) in which information re-
garding its vertices and edges is extracted using I/O heads, or mobile agents,
instead of the “random access I/O” usually assumed in graph theory. These
agents can physically move between the vertices of V along the edges of E,
according to a predefined, or an on-line algorithm or protocol.

Moving along an edge e however, requires a certain amount of travel efforts
(which may represent time, fuel, etc’). Thus, the complexity of algorithms
which work on physical graphs is measured by the total travel efforts required,
which equals the number of edges traveled by the agents. We assume that each
edge requires exactly one unit of travel effort.

Physical graphs are conveniently used in order to represent many “real
world problems”, in which the most efficient algorithm is not necessarily the
one whose computational complexity is the minimal, but rather one in which
the agents travel along the minimal number edges. For example, the Virtual
Path Layout problem, concerning the finding of a virtual graph of a given
diameter, and its embedding in the physical graph such that the maximum
load is minimized (see [36] and [37]).

Problems in physical graphs are thus variants of “regular” graph problems,
such as finding a k-clique in a graph (description and algorithms can be found
in [29]), graph and subgraph isomorphism (description and algorithms can be
found in [17, 18, 19, 20, 21]), exploration problems (solved for example by
Breadth First Search (BFS) and Depth First Search (DFS) algorithms [34]),
etc., whose input graph is a physical graph. Thus, the complexity of these
problems is measured as the number of edges an agent (or agents) solving the
problem will travel along.

There is a special type of graph problems which can also be ideally de-
scribed as physical graph problems. Such problems are those in which a prob-
abilistic, or real time algorithm is used to return a solution which is not
necessarily optimal. While a probabilistic algorithm returns a solution which
is correct in a probability of (1− ε) (for as small ε as we require), a real time
algorithm can be asked at any stage to return a solution, whereas the quality

5 Swarm Intelligence — Searchers, Cleaners and Hunters 111

of the solutions provided by the algorithm improves as time passes. Using
such probabilistic or real time algorithms, the computational complexity of
many problems can often be reduced from exponential to polynomial (albeit
we are not guaranteed of finding the optimal solution). Such algorithms can
be found for example in [22, 23, 24] (graph isomorphism) and [25, 31, 26]
(distributed search algorithms such as RTA*, PBA*, WS PBA*, SSC PBA*
and BSA*). The physical variants of such problems can be thought of as a
swarm of mobile agents, traveling the graph and collecting new information
during this process. As time advances, more information is gathered by the
agents, causing the quality of the solutions provided by the agents to improve.

Notice that while an algorithm which assumes a random access I/O model
(from now on be referred to as random access algorithm) may read and write
to the vertices of G at any order, an algorithm which assumes a physical data
extraction (referred to as a physical algorithm) must take into account the
distance between two sequential operations. The reason for this is that the use
of a random access algorithm is performed using a processing unit and random
access memory, whereas the use of a physical algorithm is actually done in the
physical environment (or a simulated physical environment, which maintains
the information access paradigm). Thus, a random access algorithm can access
any vertex of the graph in O(1), while a physical algorithm is confined to the
distances imposed by the physical metric.

For example, for u, v ∈ V , let us assume that the distance between v and u
in G is 5. Then if after a ‘read’ request from u, the algorithm orders a ‘write’
request to v, this process will take at least 5 time steps, and will therefore
consume at least 5 fuel units. Furthermore, depending on the model assumed
for the mobile agents knowledge base, this operation may take even longer, if,
for example, the agents are not familiar with the shortest path from u to v,
but rather know of a much longer path connecting the two vertices.

As can easily be seen from the previous example, while designing physical
swarm algorithms, one must take into account an entire set of considerations
which are often disregarded, while designing random access swarm algorithms.

5.4.2 The Problem — Pattern Matching by a Swarm of Mobile
Agents

Pattern matching in graphs is the following problem: Given a graph G on n
vertices and a graph H on h vertices, find whether G has an induced subgraph
isomorphic to H. Many applications of pattern matching can be found in
theory and practice of computer science, see e.g. [38] for more details. It is
well known that this problem is computationally hard whenever H (and also
h) is not constant, but rather a part of the input (a subgraph isomorphism
problem), while it has a trivial solution of polynomial complexity if H is a
constant graph. Note that the subgraph isomorphism problem is reducible to
the Max-Clique problem.

112 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

This work considers dense physical graphs (graphs which contain many
subgraphs isomorphic to the desired pattern) while the goal is to find one
of them within as minimal moves on the graph as possible. A graph G on
n vertices is called dense if the average degree of a vertex in G is Ω(n2).
Alternatively, we can slightly weaken this condition by requiring that the
number of edges in G is Ω(n), as long as the existence of a large number of
the requested patterns can be ensured. The vertices of G are indexed from 1
to n, and the edges of G are indexed from 1 to m, where m ≤

(
n
2

)
.

We assume that whenever a vertex v ∈ V (G) is visited, all edges incident
with v are revealed (i.e. their indices are revealed), and naturally v’s index is
also revealed. Hence, if an edge e = (u, v) exists in G, and some agent visited
u and v (in any order), then it can deduce that v is a neighbor of u, even if
the agent did not travel on e. If there is a communication between the agents,
it is enough that one of the agents visited u and some other agent visited v
for this information to be deduced.

One of the artificial examples of a similar model might be an unknown
terrain with indexed cities and roads, where the roads are signed with their
indices (say with road signs), but their end points’ indices are not mentioned.
However, we do not assume that the graph is planar (i.e. there might be roads,
bridges and tunnels, crossing each other in any way).

Similar to ordinary navigation tasks (for example [30, 31, 32, 33]), the
purpose of each agent employing the search protocol is to reach the “goal
vertex” as soon as possible. However, since the goal of the agents is to detect
a k-clique, the goal vertex is in fact the vertex which when discovered com-
pletes a k-clique in the agent’s knowledge base. Thus, there is no specific goal
vertex, but rather several floating goal vertices, whose identities depends on
the following elements :

• The structure of G (namely, V and E).
• The information the agent had collected thus far.
• The information sharing model of the problem (be it a distributed memory,

centralized memory, etc’).

Note also that this problem is not an ordinary exploration problem (see
[16]), where the entire graph should be explored in order for it to be mapped
out. Once a requested k-clique is found by one of the agents, the problem is
terminated successfully. This often occurs while only a small portion of the
graph’s vertices have been visited.

Another distinction should be made between the problem that is pre-
sented in this work and those examined in the field of multi agents routing
(see [39, 40]). While multi agents routing mainly deals with the problem of
finding paths in dynamic networks where the structure of the environment
is dynamically changing due to load balancing and congestion, the physical
k-clique problem considers a stable physical environment (somewhat similar
to the work of [7] and [2]).

5 Swarm Intelligence — Searchers, Cleaners and Hunters 113

5.4.3 Motivation

It is our belief that work on swarm protocols for physical graphs is strongly
required since physical graphs and networks, which have an essential role in
nowadays research and industry application, are becoming more and more
complex, and thus new techniques for such graphs must be composed. Several
examples for such networks are the world wide web [35, 28, 27], the physical
and logical infrastructure of the internet [28], power grids, electronic circuits
[28] — all of which are complex physical environments.

The physical k-clique problem has several “real world” applications. For
example, tracking the connectivity of a computer or telephone network, which
can be utilized in order to improve routing schemes within this network. An-
other example may be a distributed mechanism which searches many data-
bases containing transactions and email correspondences, in order to identify a
group of people who maintain tight connections between the group’s members
(a possible indicator of a potential terrorists group).

Another reason the physical k-clique problem was selected for this research
is that the k-clique problem, on which the physical k-clique problem is based, is
known to be a significantly hard problem. While most of known NP-complete
problems can be approximated quite well in polynomial (and sometimes even
linear) time (as shown in [125]), this is not the case for the k-clique problem.
An explanation of why there are no “semi-efficient” algorithms for the k-
clique problem (and thus, that the best solution for it is an exhaustive search)
and why the k-clique problem can not be approximated in any way, unless
P = NP , can be found in [126]. Additional details regarding NP-Complete
problems can be found in [127].

Since the physical k-Clique problem is in fact an instance of the physical
pattern matching problem, solving it can serve as a first step towards a general
pattern matching swarm algorithm. In future works we intend to show that
the algorithm presented in this work can be applied to any pattern with few
modifications.

5.4.4 Physical Clique Finding Protocol

Let r(t) = (τ1(t), τ2(t), . . . , τn(t)) denote the locations of the n agents at time
t. The requested search protocol is therefore a movement rule f such that for
every agent i, f(τi(t), N(τi(t)),Mi(t)) ∈ N(τi(t)), where for a vertex v, N(v)
denotes the neighbors of v, (e.g. N(v) � {u ∈ V | (v, u) ∈ E}).

Mi is the memory for agent i, containing information gathered by it
through movement along G and by reading information from the shared mem-
ory. The requested rule f should meet the following goals :

• Finding a k-Clique : (∃tsuccess | k−clique ∈ Mi(tsuccess)) such that this
tsuccess is minimal.

114 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

• Agreement on Completion : within a finite time after the completion
of the mission, all the mobile agents must be aware that the mission was
completed, and come to a halt.

• Efficiency : in time, agents’ memory and the size of the shared memory.

The requested rule should also be fault tolerant, meaning that even if some
of the agents malfunction, the remaining ones will eventually find the target
clique, albeit somewhat slower.

For solving the Physical k-Clique problem a search protocol named PCF
is suggested. This protocol can be described as follows: each agent holds a
knowledge base which contains some information regarding G. Every time
an agent enters a vertex v, it performs a data merge process, in which the
knowledge base of the agent updates and is updated by the central knowledge
base.

The main idea of the search protocol is exploring the graph in directions
that have the highest potential for discovering the desired pattern. Considering
only cliques simplifies the arguments because of the clique’s perfect symmetry.

All potential sets of vertices are sorted according to the largest clique
which is contained in the set. Sets containing the same size of maximal clique
are sorted according to the total number of unexplored edges which touch the
vertices of the set (unexplored edges are edges e(v, u) whereas at least one the
identities of v and u is yet unknown) . As large the number of such edges is,
the more likely it is for the set to be expandable to a k-clique. In addition, if a
k-clique was found, the sort criteria places it on the top of the list, hence the
agents are immediately aware of it. The algorithm uses a job list, containing
the sets described above.

Generally, when looking for a pattern H of size h in graph G, every set
of m,m < h visited vertices in G that might be completed to a subgraph of
G isomorphic to H (i.e. there are enough unexplored edges for every vertex)
forms a potential sub-H of size m. While considering cliques as the patterns,
we only need to verify that the m vertices of the set form a clique and that
every vertex in the set has at least h− (m+1) unexplored edges (which is the
minimal requirement in order for this set to be expendable to an h − clique.
Sets which do not meet this demand are deleted from the job list. The job list
is updated (if needed) after every move of the agents.

If there are α available agents in a turn, the algorithm assigns the top α
jobs in the sorted job list to the agents, where the assignments are made in
a way that minimizes the total travel distance in L∞ norm. This is done in
order to minimize the travel efforts of the agents. This is an example of a
difference between physical problems and “regular” problems — whereas in
conventional complexity scheme all the ways of dispersing the jobs among the
agents are identical, in the complexity scheme of physical problems we would
like to assign jobs to the nearest agents.

Once an agent reaches its goal (the closest vertex of the job assigned to
the agent), it writes the new discovered information in the adjacency matrix

5 Swarm Intelligence — Searchers, Cleaners and Hunters 115

and becomes available. At the beginning of each turn, if the first job in the
list is associated to a list of k vertices the algorithm declares that a clique has
been found, and terminates. Notice that all the agents use a common job list.
In addition, the agents are assumed to broadcast every new information they
encounter, creating a common shared memory.

We assume that all distances (i.e. graph edges) are equal to one unit,
and that the agents have sufficient memory and computational power. In
addition, we assume that that there are many cliques of the required size in
G (otherwise, if the number of cliques is too small (e.g. o

(
n
k

)
), the optimal

algorithm for discovering them would be the exhaustive exploration of G).
The algorithm, used by each agent i appears in Figure 5.4.

Algorithm PCF :
While the first job in the common job list is not associated to a set of
k vertices

Assign top job in jobs list to the agent;
Perform the job;
Update the agent’s data structures;
Update the agent’s jobs list (or the common list);
Update the list of available agents;
If (all vertices explored) then

STOP;
End PCF;

Procedure CREATE DATA STRUCTURES(i) :
Create an n × n matrix with entries of type integer;
// Represents edge indices according to vertex adjacency of G,
// as discovered by the agents.
Create a sorted list of jobs;
// Each job is associated with one potential clique.
// The job list is sorted according to the following criteria :
// (a) Size of the potential sub clique
// (b) Number of still unexplored edges
// (c) The distance of the job from the agents
// The distance is computed according to L∞ norm, that is the
// min—max on the travel distance.
End CREATE DATA STRUCTURES;

Procedure INITIALIZE() :
Initialize the agents’ jobs lists;
// Note that the common job list may contain large potential
// sub-cliques, immediately upon initialization.
CREATE DATA STRUCTURES(i);
Choose random starting points on G for the agents;
Place the agents in these starting points;
Start the agents according to the PCF algorithm;
End INITIALIZE;

Fig. 5.4. The PCF search algorithm for the centralized shared memory model.

116 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

5.4.5 Results

The algorithm was tested on Erdös-Renyi random graphs G ∼ G(n, p) where
G has n vertices, and each pair of vertices forms an edge in G with proba-
bility p independently of each other. In order to ensure that G has enough
clique sub-graphs of size k, the value of p should be chosen wisely. Formally,
the probability that k vertices of G form a clique is pk, thus by linearity of
expectation and the second moment, G will have at least 1

4

(
n
k

)
pk cliques of

size k with probability 1− o(1) (for further background on probabilistic argu-
ments see e.g. [46]). Since we require that G will contain a sufficient number
of k-clique (namely, O(

√
n) k-cliques), we choose the value of p with respect

to the formula above, and specifically :

p =

(√
16n · k!
∏k−1

i=0 n − i

) 1
k

Fig. 5.5 contains experimental results of the search algorithm for cliques
of size 10 in graphs of sizes 500 and 2000. The number of agents searching
the graphs is 5 through 50 agents. It can be seen that while adding more
agents dramatically improves the search time, the system reach a state of
saturation, after which adding more agents yields only mild contribution to
the performance of the swarm, if any. This can be best observed in the smaller
graph, where enlarging the number of agents from 15 to 50 decreases the search
time by less than 30%, where as increasing the number of agents from 5 to 15
decreases the search time by 70%.

5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

Physical 10−Clique Search

Number of mobile agents

Ti
m

e−
st

ep
s

 Graph size = 500

Graph size = 2000

Fig. 5.5. Results of the Physical 10-Clique problem. Notice how the performance of
the swarm increases while adding more agents, until it reaches a state of saturation.

Fig. 5.7 examines the increase in the swarm’s search time for larger graphs.
Notice that unlike the regular k-clique problem, in which the search time

5 Swarm Intelligence — Searchers, Cleaners and Hunters 117

5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

Number of mobile agents
Ti

m
es

te
ps

Fig. 5.6. A comparison between the results of the Physical 10-Clique problem in
a graph of 500 vertices as a function of the number of agents, and the behavior
of the y = 1

x
function. The dotted curve presents the y = 1

x
function where y(5)

equals the experimental solving time of 5 agents. The red dashed curve presents
the instance of y = 1

x
function which obtains the minimal distance from the entire

set of experimental results, in L2 norm. The proximity of the curves indicates that
the system operates as expected. Observe how the later points of the experimental
results are located above the y = 1

x
curve, which can be expected since the utilization

of the system is likely to be smaller than 100%.

equals O(nk), the results are almost linear in n. This demonstrates the basic
claim that once computation resources are disregarded in comparison of travel
effort, the complexity of many central problems in computer science change
dramatically.

In addition, note that the search time for 20 agents is consistently smaller
than for 10 agents. However, while in smaller graphs the difference is ap-
proximately 50%, for larger graphs it shrinks down to 25% for a graph of
4500 vertices. Interestingly, when increasing the number of agents to 30, the
performance almost does not improve at all (meaning that the system had
reached a state of saturation).

5.4.6 Exploration in Physical Environments

While considering the physical k-clique problem, an interesting discussion can
take place considering the comparison between this problem and the prob-
lem of physical exploration by a swarm of mobile agents. The exploration
problem for a decentralized group of mobile agents is merely the problem of
achieving a complete knowledge of the graph under investigation by one of
the agents. This comparison is indeed interesting since under the assumptions
of a physical environment (namely, that computation resources can be disre-
garded in comparison to travel efforts) once an exploration of the environment

118 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

500 1000 1500 2000 2500 3000 3500 4000 4500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Physical 10−Clique Search

Graph size

Ti
m

e−
st

ep
s

10 agents
20 agents
30 agents

Fig. 5.7. Results of the Physical 10-Clique problem. Notice how the performance of
the swarm increases while increasing the number of agents from 20 to 30, whereas
this number is increased to 30, the performance almost never changed. In addition,
observe the linearity of the graph, whereas the complexity of the problem in orthodox
graph theory scheme is O(nk).

is completed, all cliques contained in the world are revealed. As a result, up-
per bounds for the exploration problem serve also as upper bounds for the
physical k-clique problem.

Let G be a physical graph over n vertices. We assume that our physical
environments are Erdös-Renyi random graphs G ∼ G(n, p) where G has n
vertices, and each pair of vertices form an edge in G with probability p inde-
pendently of each other. The edge density parameter of G, p may be either
a constant or a function of n. We also assume that the agents are spread
uniformly at random over the nodes of G. We shall assume without loss of
generality, that the agents move according to the random walk algorithm.
This type of behavior simulates the weakest model of agents, and hence time
bounds here may impose similar time bounds for other essential behaviors of
agents (since an agent can always act according to the random walk algorithm,
and achieve its exploration time).

Under the above settings, we are interested in examining the number of
required steps on the physical graph G, after which the whole graph G is
known to some agent (or similarly, the complete information regarding the
graph G is stored in one of its nodes). Let m denote the number of agents.

In order to obtain an upper bound for the exploration time of a random
walkers swarm in G let us use the following bound of [129] :

E(exG) = O
(|E|2log3(|V |)

m2

)

Results of this bound for graphs used by the k-clique search protocol ap-
pears in Figures 5.8 and 5.9.

5 Swarm Intelligence — Searchers, Cleaners and Hunters 119

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
4

10
6

10
8

10
10

10
12

10
14

Number of mobile agents (random walkers)

Ex
pl

or
at

io
n

tim
e

2000 vertices, p = 0.5

500 vertices, p = 0.5

Exploration using a swarm of random walkers

Fig. 5.8. Results predicted by the bound of [129] regarding exploration of general
graphs using a swarm of mobile agents which use the random walk algorithm. The
graph shows the mission completion time as a function of the number of agents.

5.4.7 Swarm Intelligence for Physical Environments — Related
Work

Hitherto, there have been various works which examine problems in physical
graphs, as well as the use of swarm based systems for such problems. For
example, [40, 41] use mobile agents in order to find shortest paths in (dy-
namically changing) telecom networks, where the load balancing on the edges
of the graph is unstable. Similarly, several widely used Internet routing algo-
rithms (such as BGP [42], RIP [43] etc’) propagate shortest path information
around the network and cache it at local vertices by storing routing tables
with information about the next hop. Another known routing system which
uses “ants” and “pheromonoes” is the AntNet system [39]. In AntNet, ants
randomly move around the network and modify the routing tables to be as
accurate as possible.

While these approaches seem similar, there is a great difference between
these works and one presented here, both concerning the environment in which
the agent operate, the data that is stored at each vertex and the problem to
be solved.

First, most of the works mentioned above which concern routing problems,
assume that the environment is a telecom network of some sort, which changes
dynamically over time. In this work, we assume the graph to be fixed and
corresponds to a real physical environment (with Euclidean distances or some
other metric), while the difficulty is derived from fact that the graph is not
known to the agents.

120 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7
x 10

11

Graph size

Ex
pl

or
at

io
n

tim
e

Exploration using mobile agents (random walkers)

Swarm of 100 mobile agents, p = 0.01

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

Graph size

Ex
pl

or
at

io
n

tim
e

Exploration using mobile agents (random walkers)

Swarm of 100 mobile agents, p = 0.01

Fig. 5.9. Results predicted by the bound of [129] regarding exploration of general
graphs using a swarm of mobile agents which uses the random walk algorithm. The
graphs show the mission completion time as a function of the size of the graph.

Another difference is that these algorithms try to help a mobile agent
(which for example, represents a phone conversation) to navigate to a certain
goal. In other words, given the destination vertex (which could be any vertex
of the environment) and the knowledge written in the current vertex, these
algorithms try to locally decide where should the agent go to next, while the
goal of each agent is merely to minimize the time it takes this particular agent
to reach its destination. In the physical k-clique problem, on the other hand,
the agents’ goal is to find k vertices which form a k-clique, while the goal of

5 Swarm Intelligence — Searchers, Cleaners and Hunters 121

the agent is to minimize the time it takes the entire swarm to find such a
clique.

Essentially, the approach presented in this work can be seen as a general-
ization of the next hop lookup tables mentioned earlier, since according to the
partial knowledge of the graph, an agent decides on its next move, when this
process is continually advancing, until a clique is found.

Similar to this approach, the works of [44] and [45] present a mechanism
which find the shortest path within a physical graph, while assuming several
communication mechanism.

5.5 Discussion and Conclusion

In this work three problems in the field of swarm intelligence were presented.
These problems have several “real world” applications. While the Cooperative
Hunters problem is already formulated in the form of such a problem, the
Cooperative Cleaners problem may be used, for example, for a coordinating
fire-fighting units, or an implementation of a distributed anti-virus system for
computer networks. Additional applications are distributed search engines,
and various military applications (such as a basis for UAV swarm systems,
as offered in Section 5.3.3). Regarding the physical k-Clique problem, many
of its applications were discussed in Section 5.4.3. Protocols for the problems
were presented and analyzed, and several results were shown.

In addition, one of the major principles considering works in physical en-
vironments was shown (in Figure 5.6 of Section 5.4.5), in which a problem
whose time complexity (according to orthodox complexity principles) equals
O(nk) presented a physical complexity of only O(n), demonstrating a basic
difference between the two complexity schemes.

While examining these problems, new interesting opportunities for an ex-
tended research have emerged. We have already started investigating some of
the above, producing more valuable results. Following are various aspects of
this ongoing and future research :

5.5.1 Cooperative Cleaners

One of the important features of the SWEEP cleaning protocol is its simplicity.
As mentioned in great length in Section 5.1.3, our paradigm assumes the use
of highly simple agents, and thus derives designs of highly simple protocols.
While examining the performance of this protocol, one may wonder what is the
price which we pay by adopting such simple protocols instead of other more
complex and resource demanding protocols. In order to answer this question,
the authors have been experiencing with an A∗ based mechanism (see [106])
which (after much centralized and highly computation demanding exhaustive
processes) is able of producing optimal solutions for cleaning problems (mean-
ing, solutions which are guaranteed to produce cleaning within the shortest

122 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

time possible). Surprisingly, the results of these experiments have shown that
the performance of the SWEEP protocol are only roughly 30%–50% slower
than the optimal solutions. These amazing results successfully demonstrate
that a fully decentralized simple swarm protocol, assuming no communication
or global knowledge, can produce results which are extremely close to the op-
timal solutions of the problem under investigation. This is possible thanks
to the swarm behavior which emerges through the use of such protocol. The
results of these experiments were published in [6] and an example appears in
Figures 5.10 and 5.11.

30 40 50
10

15

20

25

30

35

40

Size of contaminated shape

T
im

e
st

ep
s

4 agents
6 agents

8 agents

Convex Shapes

30 40 50
10

15

20

25

30

35

40

Size of contaminated shape

T
im

e
st

ep
s

4 agents
6 agents

8 agents

Semi−Convex Shapes

30 40 50
20

30

40

50

60

70

80

Size of contaminated shape

T
im

e
st

ep
s

4 agents
6 agents

8 agents

Concave Shapes

30 40 50
0

5

10

15

20

25

30

35

40

45

50

Size of contaminated shape

T
im

e
st

ep
s

4 agents
6 agents

8 agents

Average

Fig. 5.10. Comparison of sub optimal and optimal algorithms. The lower and ticker
three lines represent the cleaning time of the optimal algorithm whereas the upper
lines represents the SWEEP cleaning protocol. In the right chart on the bottom,
the lower three lines represent the lower bound of the optimal solution, as appears
in Section 5.2.4.

Another interesting aspect is the feasibility question, i.e. foretelling the
minimal number of agents required to clean a given shape (regardless of the
cleaning time). In addition, developing new cleaning protocols for the prob-
lem and producing tighter bounds are also of interest to us. The authors

5 Swarm Intelligence — Searchers, Cleaners and Hunters 123

30 40 50
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Size of contaminated shape

O
pt

im
al

 /
Su

b−
O

pt
im

al
Convex Shapes

Concave Shapes

Semi Convex Shapes

Optimality Ratio
 (8 Agents)

Fig. 5.11. Comparison of sub optimal and optimal algorithms. The Y -axes repre-

sents the
performanceoptimal

performancesub−optimal
ratio for various sizes. Note that sa the problem is

getting bigger, the sub-optimal performance of the SWEEP cleaning protocol get
closer to those of the optimal algorithm.

are currently in the stages of developing improved cleaning protocols for the
problem.

An explicit upper bound for the cleaning time of agents using the SWEEP
protocol has been derived by the authors, using the Ψ function (see for example
[105]). Another important result is the discovery of new geometric features,
which are invariants with respect to the agents’ activity and the spreading
contamination. Their relevance to the problem was demonstrated by devel-
oping an improved upper bound for the cleaning time of the agents. Both
results, including several other analytic results for the problem are presented
in a paper which is currently under preparation.

Since many of the interesting “real world” applications take place in envi-
ronments not easily reduced to lattices (for example, a distributed anti-virus
mechanism for computer networks), additional analytic work should be per-
formed concerning the dynamic cooperative cleaners problem in non-planar
graphs. Although some of the existing work can immediately be applicable
for such environments (for example, the generic lower bound, mentioned in
Section 5.2.4), while trying to reconstruct other elements, one may face inter-
esting new challenges.

5.5.2 Cooperative Hunters

While a flexible and fault-tolerant protocol for solving the problem, based on
the dynamic cleaning problem was presented, there is still room for protocols,
which will present enhanced performances. The authors are currently con-
structing hunting protocols which are not “cleaning protocols based” in hope
of demonstrating improved results. One such protocol, which was shown to
produce near-optimal results was recently constructed, and can be seen in [5].

124 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

In addition, there arises the question of robustness, meaning — given a
swarm comprised of UAVs which are slightly slower than the minimal speed
required by various hunting protocols, what is the average decrease in hunting
performance of such swarm ? Thus, the quality of a hunting protocol is derived
not only by the minimal speed limit it enforces on the UAVs or by the number
of UAVs required, but also by its sensitivity to deviation from these values.
A paper discussing the above is currently under preparation by the authors.

5.5.3 Physical k-Clique

While this work had assumed a centralized shared memory for the agents’ com-
munication, a second variant of the protocol, assuming a distributed shared
memory model, in which the mobile agents can store and extract information
using the graph’s vertices is described by the authors in in[128]. This version
is also much more similar to other common models of “real world” problems,
since assuming storage of small portion of data in the graph nodes is con-
sidered much more easy assumption than assuming that the agents has the
ability of broadcasting throughout the entire swarm. Surprisingly, our experi-
mental results show that the performance of the special swarm search protocol
designed for this problem is very close to the performance of the decentralized
protocol. Again, this is a successful demonstration that the power of swarm
intelligence may often compensate for shortage of sensing or communication
capabilities.

In addition, since the protocol was designed to be employed by a swarm
of mobile agents, it is highly dependent on the information gathered by the
agents. In order to increase robustness, a special kind of exploratory agents
were introduced to the system. A paper discussing the distributed swarm
model as well as various enhancements (such as exploratory agents) and a
many experimental results is currently under preparation.

As mentioned earlier, although the protocol described in this work was
designed for the physical k-clique problem, we believe that by minor adjust-
ments a generic protocol for finding a given pattern in a physical graph may be
composed. The main difference between cliques and graph patterns in general
is that cliques (or alternatively independent sets) have a perfect symmetry
between their vertices. In other words, every pair of vertices in a clique has
equivalent elements under some automorphism. The notion of “potential” is
also naturally extensible to the general case. For example, given a pattern H
on h vertices and a subset C of c vertices from the graph G, we say that C is
potentially expandable to H if :

i. c < h.
ii. There exists an assignment π to the unknown pairs of vertices.
iii. There exists a set C ′ of (h − c) vertices such that the induced subgraph

on C ∪ C ′ under the assignment π is isomorphic to H.

5 Swarm Intelligence — Searchers, Cleaners and Hunters 125

To scale the potential of a certain subset C, a good estimation of the amount
of possible assignments under which C is expandable to a set of vertices that
induce a subgraph isomorphic to H must be produced.

In addition, it is our intention to devise such a protocol, as well as a
protocol for the pattern matching problem in dynamic physical graphs, a
problem which also bears a great deal of interest.

References

1. I.A. Wagner, A.M. Bruckstein: “Cooperative Cleaners: A Case of Distrib-
uted Ant-Robotics”, in “Communications, Computation, Control, and Signal
Processing: A Tribute to Thomas Kailath”, Kluwer Academic Publishers, The
Netherlands (1997), pp. 289–308

2. I.A. Wagner, M. Lindenbaum, A.M. Bruckstein: “Efficiently Searching a Graph
by a Smell-Oriented Vertex Process”, Annals of Mathematics and Artificial
Intelligence, Issue 24 (1998), pp. 211–223

3. Y. Altshuler, A.M. Bruckstein, I.A. Wagner: “Swarm Robotics for a Dy-
namic Cleaning Problem”, in “IEEE Swarm Intelligence Symposium” (SIS05),
Pasadena, USA, (2005)

4. Y. Altshuler, V. Yanovski: “Dynamic Cooperative Cleaners — Various Re-
marks”, Technical report, CS-2005-12, Technion - Israel Institute of Technol-
ogy, (2005).

5. Y.Altshuler, V.Yanovsky, I.A.Wagner, A.M. Bruckstein: “The Cooperative
Hunters – Efficient Cooperative Search For Smart Targets Using UAV
Swarms”, Second International Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO), the First International Workshop on Multi-Agent
Robotic Systems (MARS), Barcelona, Spain, (2005).

6. Y.Altshuler, I.A.Wagner, A.M. Bruckstein: “On Swarm Optimality In Dynamic
And Symmetric Environments”, Second International Conference on Informat-
ics in Control, Automation and Robotics (ICINCO), the First International
Workshop on Multi-Agent Robotic Systems (MARS), Barcelona, Spain, (2005).

7. R.C. Arkin, T. Balch: “Cooperative Multi Agent Robotic Systems”, Artificial
Intelligence and Mobile Robots, MIT/AAAI Press, Cambridge, MA, (1998)

8. R.A. Brooks: “Elephants Don’t Play Chess”, Designing Autonomous Agents,
P. Maes (ed.), pp. 3–15, MIT press / Elsevier, (1990)

9. S.Levi: “Artificial Life - the Quest for a New Creation”, Penguin, (1992)
10. S.Sen, M. Sekaran, J. Hale: “Learning to Coordinate Without Sharing Infor-

mation”, Proceedings of AAAI-94, pp. 426–431
11. L.Steels: “Cooperation Between Distributed Agents Through Self-

Organization”, Decentralized A.I. — Proc. of the first European Workshop
on Modeling Autonomous Agents in Multi-Agents world, Y.DeMazeau,
J.P.Muller (Eds.), pp. 175–196, Elsevier, (1990)

12. G.Beni, J.Wang: “Theoretical Problems for the Realization of Distributed Ro-
botic Systems”, Proc. of 1991 IEEE Internal Conference on Robotics and Au-
tomation, pp. 1914–1920, Sacramento, California April (1991)

13. V.Breitenberg: Vehicles, MIT Press (1984)
14. D.Henrich: “Space Efficient Region Filling in Raster Graphics”, The Visual

Computer, pp. 10:205–215, Springer-Verlag, (1994)

126 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

15. P.Vincent, I.Rubin: “A Framework and Analysis for Cooperative Search Using
UAV Swarms”, ACM Simposium on applied computing, 2004

16. M.A. Bender, A. Fernandez, D. Ron, A. Sahai, S.P. Vadhan: “The power of
a pebble: Exploring and mapping directed graphs”, In the proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computating, pp. 269–
278, Dallas, Texas, May (1998).

17. L.P. Cordella, P. Foggia, C. Sansone, M. Vento: “Evaluating Performance of the
VF Graph Matching Algorithm”, Proc. of the 10th International Conference on
Image Analysis and Processing, IEEE Computer Society Press, pp. 1172–1177,
(1999).

18. J.R. Ullmann: “An Algorithm for Subgraph Isomorphism”, Journal of the As-
sociation for Computing Machinery, vol. 23, pp. 31–42, (1976).

19. M.R. Garey, D.S. Johnson: “Computers and Intractability: A Guide to the
Theory of NPCompleteness”, Freeman & co., New York, (1979).

20. B.D. McKay: “Practical Graph Isomorphism”, Congressus Numerantium, 30,
pp. 45–87, (1981).

21. D.G. Corneil, C.C. Gotlieb: “An efficient algorithm for graph isomorphism”,
Journal of the Association for Computing Machinery, 17, pp. 51–64, (1970).

22. W.J. Christmas, J. Kittler, M. Petrou: “Structural Matching in Computer
Vision Using Probabilistic Relaxation”, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 8, pp. 749–764, (1995).

23. P. Kuner, B. Ueberreiter: “Pattern recognition by graph matching — combina-
torial versus continuous optimization”, Int. J. Pattern Recognition and Artif.
Intell., vol. 2, no. 3, pp. 527–542, (1988).

24. K.A. De Jong, W.M. Spears: “Using genetic algorithms to solve NP-complete
problems”, in Genetic Algorithms, (J.D. Schaffer, ed.), Morgan Kaufmann, Los
Altus, CA., pp. 124–132, (1989).

25. A.A. Toptsis, P.C. Nelson: “Unidirectional and Bidirectional Search Algo-
rithms”, IEEE Software, 9(2), (1992).

26. J.B.H. Kwa: “BS*: An Admissible Bidirectional Staged Heuristic Search Algo-
rithm”, Artificial Intelligence, pp. 95–109, Mar., (1989).

27. D.J. Watts: “Small Worlds”, Princeton University Press, Princeton NJ, (1999).
28. S.N. Dorogovtsev, J.F.F. Mendes: “Evolution of networks”, Adv. Phys. 51,

1079, (2002).
29. D.S. Hochbaum, O. Goldschmidt, C. Hurken, G. Yu: “Approximation algo-

rithms for the k-Clique Covering Problem”, SIAM J. of Discrete Math, Vol
9:3, pp. 492–509, August, (1996).

30. P. Cucka, N.S. Netanyahu, A. Rosenfeld: “Learning in navigation: Goal finding
in graphs”, International journal of pattern recognition and artificial intelli-
gence, 10(5):429–446, (1996).

31. R.E. Korf: “Real time heuristic search”, Artificial intelligence, 42(3):189–211,
(1990).

32. L. Shmoulian, E. Rimon: “Roadmap A*: an algoritm for minimizing travel
effort in sensor based mobile robot navigation”, In the proceedings of the IEEE
International Conference on Robotics and Automation, pp. 356–362, Leuven,
Belgium, May (1998).

33. A. Stentz: “Optimal and efficient path planning for partially known environ-
ments.”, In the proceedings of the IEEE International Conference on Robotics
and Automation, pp. 3310–3317, San Diego, CA, May (1994).

5 Swarm Intelligence — Searchers, Cleaners and Hunters 127

34. R.J. Wilson: “Introduction to Graph Theory”, Longman, London, 2nd ed.,
(1979).

35. R. Albert, A.L. .Barabasi,: “Statistical Mechanics of Complex Networks”, Re-
views of Modern Physics, vol. 74, January, (2002).

36. O. Gerstel, S. Zaks: “The Virtual Path Layout problem in fast networks”,
In Proceedings of the Thirteenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 235–243, Los Angeles, California, August, (1994).

37. S. Zaks: “Path Layout in ATM networks”, Lecture Notes in Computer Science,
1338:pp. 144–177, (1997).

38. A. Apostolico, Z. Galil: “Pattern Matching Algorithms”, Oxford University
Press, Oxford, UK.

39. G. Di Caro, M. Dorigo: “AntNet:Distributed stigmergetic control for com-
muniction networks”, Journal of Artificial Intelligence Research, 9:317–365,
(1998).

40. S. Appleby, S. Steward: “Mobile software agents for control in telecommunica-
tion networks”, British Telecom Technology Journal, 12, pp. 104–113, (1994).

41. R. Schnooderwoerd, O. Holland, J. Bruten, L. Rothkrantz: “Ant-based load
balancing in telecommunication networks”, Adaptive Behavior 5(2), (1996).

42. Y. Rekhter, T. Li: “A Border Gateway Protocol”, Request for Comments 1771,
T.J Watson Research Center IBM Corporation & cisco Systems, March (1995).

43. G. Malkin: “RIPng Protocol Applicability Statement”, RFC 2081, IETF Net-
work Working Group, January, (1997).

44. A. Felner, R. Stern, A. Ben-Yair, S. Kraus, N. Netanyahu: “PHA*: Finding
the Shortest Path with A* in Unknown Physical Environments”, Journal of
Artificial Intelligence Research, vol. 21, pp. 631–679, (2004)

45. A. Felner, Y. Shoshani, I.A.Wagner, A.M. Bruckstein: “Large Pheromones: A
Case Study with Multi-agent Physical A*”, Forth International Workshop on
Ant Colony Optimization and Swarm Intelligence, (2004)

46. N. Alon, J. H. Spencer: “The probabilistic method”, Wiley-Interscience (John
Wiley & Sons), New York, (1992) (1st edition) and (2000) (2nd edition).

47. G. Dudek, M. Jenkin, E. Milios, D. Wilkes: “A Taxonomy for Multiagent Ro-
botics”. Autonomous Robots, 3:375397, (1996).

48. B.P.Gerkey, M.J.Mataric: “Sold! Market Methods for Multi-Robot Control”,
IEEE Transactions on Robotics and Automation, Special Issue on Multi-robot
Systems, (2002).

49. M.Golfarelli, D.Maio, S. Rizzi: “A Task-Swap Negotiation Protocol Based on
the Contract Net Paradigm”, Technical Report, 005-97, CSITE (Research Cen-
ter For Informatics And Telecommunication Systems, associated with the Uni-
versity of Bologna, Italy), (1997).

50. G.Rabideau, T.Estlin, T.Chien, A.Barrett: “A Comparison of Coordinated
Planning Methods for Cooperating Rovers”, Proceedings of the American In-
stitute of Aeronautics and Astronautics (AIAA) Space Technology Conference,
(1999).

51. R.Smith: “The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver”, IEEE Transactions on Computers C-29 (12),
(1980).

52. S.M.Thayer, M.B.Dias, B.L.Digney, A.Stentz, B.Nabbe, M.Hebert: “Distrib-
uted Robotic Mapping of Extreme Environments”, Proceedings of SPIE, Vol.
4195, Mobile Robots XV and Telemanipulator and Telepresence Technologies
VII, (2000).

128 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

53. M.P.Wellman, P.R.Wurman: “Market-Aware Agents for a Multiagent World”,
Robotics and Autonomous Systems, Vol. 24, pp.115–125, (1998).

54. R.Zlot, A.Stentz, M.B.Dias, S.Thayer: “Multi-Robot Exploration Controlled
By A Market Economy”, Proceedings of the IEEE International Conference
on Robotics and Automation, (2002).

55. R.C.Arkin, T.Balch: “AuRA: Principles and Practice in Review”, Journal of
Experimental and Theoretical Artificial Intelligence, Vol. 9, No. 2/3, pp.175–
188, (1997).

56. D.Chevallier, S.Payandeh: “On Kinematic Geometry of Multi-Agent Manipu-
lating System Based on the Contact Force Information”, The 6th International
Conference on Intelligent Autonomous Systems (IAS-6), pp.188–195, (2000).

57. R.Alami, S.Fleury, M.Herrb, F.Ingrand, F.Robert: “Multi-Robot Cooperation
in the Martha Project”, IEEE Robotics and Automation Magazine, (1997).

58. T.Arai, H.Ogata, T.Suzuki: “Collision Avoidance Among Multiple Robots Us-
ing Virtual Impedance”, In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 479-485, (1989).

59. R.C.Arkin: “Integrating Behavioral, Perceptual, and World Knowledge in Re-
active Navigation”, Robotics and Autonomous Systems, 6:pp.105-122, (1990).

60. T.Balch, R.Arkin: “Behavior-Based Formation Control for Multi-Robot
Teams”, IEEE Transactions on Robotics and Automation, December (1998).

61. M.Benda, V.Jagannathan, R.Dodhiawalla: “On Optimal Cooperation of
Knowledge Sources”, Technical Report BCS-G2010-28, Boeing AI Center, Au-
gust (1985).

62. G.Beni: “The Concept of Cellular Robot”, In Proceedings of Third IEEE Sym-
posium on Intelligent Control”, pp.57-61, Arlington, Virginia, (1988).

63. H.Bojinov, A.Casal, T.Hogg: “Emergent Structures in Moduluar Self-
Reconfigurable Robots”, In Proceedings of the IEEE International Conference
on Robotics and Automation, pp.1734-1741, (2000).

64. R.A.Brooks: “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal of Robotics and Automation, RA-2(1):14-23, March (1986).

65. C.Candea, H.Hu, L.Iocchi, D.Nardi, M.Piaggio: “Coordinating in Multi-Agent
RoboCup Teams”, Robotics and Autonomous Systems, 36(2- 3):67-86, August
(2001).

66. A.Castano, R.Chokkalingam, P.Will: “Autonomous and Self-Sufficient
CONRO Modules for Reconfigurable Robots”, In Proceedings of the Fifth In-
ternational Symposium on Distributed Autonomous Robotic Systems (DARS
2000), pp. 155-164, (2000).

67. J.Deneubourg, S.Goss, G.Sandini, F.Ferrari, P.Dario: “Self-Organizing Collec-
tion and Transport of Objects in Unpredictable Environments”, In Japan-
U.S.A. Symposium on Flexible Automation, pp.1093-1098, Kyoto, Japan,
(1990).

68. B.Donald, L.Gariepy, D.Rus: “Distributed Manipulation of Multiple Objects
Using Ropes”, In Proceedings of IEEE International Conference on Robotics
and Automation, pp.450=457, (2000).

69. A.Drogoul J.Ferber: “From Tom Thumb to the Dockers: Some Experiments
With Foraging Robots”, In Proceedings of the Second International Conference
on Simulation of Adaptive Behavior, pp.451-459, Honolulu, Hawaii, (1992).

70. C.Ferrari, E.Pagello, J.Ota, T.Arai: “Multirobot Motion Coordination in Space
and Time”, Robotics and Autonomous Systems, 25:219-229, (1998).

5 Swarm Intelligence — Searchers, Cleaners and Hunters 129

71. D.Fox, W.Burgard, H.Kruppa, S.Thrun: “Collaborative Multi-Robot Explo-
ration”, Autonomous Robots, 8(3):325-344, (2000).

72. T.Fukuda, S.Nakagawa: “A Dynamically Reconfigurable Robotic System (Con-
cept of a System and Optimal Configurations)”, In Proceedings of IECON,
pp.588-595, (1987).

73. T.Haynes, S.Sen: “Evolving Behavioral Strategies in Predators and Prey”, In
Gerard Weiss and Sandip Sen, editors, Adaptation and Learning in Multi-
Agent Systems, pp.113-126. Springer, (1986).

74. O.Khatib, K.Yokoi, K.Chang, D.Ruspini, R.Holmberg, A.Casal: “Vehi-
cle/Arm Coordination and Mobile Manipulator Decentralized Cooperation”,
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp.546-553, (1996).

75. S.M.LaValle, D.Lin, L.J.Guibas, J.C.Latombe, R.Motwani: “Finding an Un-
predictable Target in a Workspace with Obstacles”, In Proceedings of the
1997 IEEE International Conference on Robotics and Automation (ICRA-97),
pp.737-742, (1997).

76. V.J.Lumelsky, K.R.Harinarayan: “Decentralized Motion Planning for Multiple
Mobile Robots: The Cocktail Party Model”, Autonomous Robots, 4(1):121-
136, (1997).

77. D.MacKenzie, R.Arkin, J.Cameron: “Multiagent Mission Specification and Ex-
ecution”, Autonomous Robots, 4(1):29-52, (1997).

78. M.J.Mataric: “Designing Emergent Behaviors: From Local Interactions to Col-
lective Intelligence”, In J.Meyer, H.Roitblat, and S.Wilson, editors, Proceed-
ings of the Second International Conference on Simulation of Adaptive Behav-
ior, pp.432-441, Honolulu, Hawaii, MIT Press, (1992).

79. M.J.Mataric: “Interaction and Intelligent Behavior”, PhD Thesis, Massa-
chusetts Institute of Technology, (1994).

80. E.Pagello, A.DAngelo, C.Ferrari, R.Polesel, R.Rosati, A.Speranzon: “Emer-
gent Behaviors of a Robot Team Performing Cooperative Tasks”, Advanced
Robotics, 2002.

81. E.Pagello, A.DAngelo, F.Montesello, F.Garelli, C.Ferrari: “Cooperative Behav-
iors in Multi-Robot Systems Through Implicit Communication”, Robotics and
Autonomous Systems, 29(1):65-77, (1999).

82. L.E.Parker: “ALLIANCE: An Architecture for Fault-Tolerant Multi-Robot Co-
operation”, IEEE Transactions on Robotics and Automation, 14(2):220-240,
(1998).

83. L.E.Parker, C.Touzet: “Multi-Robot Learning in a Cooperative Observation
Task”, In Distributed Autonomous Robotic Systems 4, pp.391-401. Springer,
(2000).

84. S.Premvuti, S.Yuta: “Consideration on the Cooperation of Multiple Au-
tonomous Mobile Robots”, In Proceedings of the IEEE International Workshop
of Intelligent Robots and Systems, pp.59-63, Tsuchiura, Japan, (1990).

85. D.Rus, B.Donald, J.Jennings: “Moving Furniture with Teams of Autonomous
Robots”, In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.235-242, (1995).

86. D.Rus M.Vona: “A Physical Implementation of the Self-Reconfiguring Crys-
talline Robot”, In Proceedings of the IEEE International Conference on Ro-
botics and Automation, pp.1726-1733, (2000).

130 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

87. D.Stilwell, J.Bay: “Toward the Development of a Material Transport System
Using Swarms of Ant-Like Robots”, In Proceedings of IEEE International Con-
ference on Robotics and Automation, pp.766-771, Atlanta, GA, (1993).

88. P.Stone, M.Veloso: “Task Decomposition, Dynamic Role Assignment, and Low-
Bandwidth Communication for Real-Time Strategic Teamwork”, Artificial In-
telligence, 110(2):241-273, June (1999).

89. P.Svestka, M.H.Overmars: “Coordinated Path Planning for Multiple Robots”,
Robotics and Autonomous Systems, 23(3):125-152, (1998).

90. C.Unsal, P.K.Khosla: “Mechatronic Design of a Modular self-Reconfiguring
Robotic System”, In Proceedings of the IEEE International Conference on
Robotics and Automation, pp.1742-1747, (2000).

91. P.K.C.Wang: “Navigation Strategies for Multiple Autonomous Mobile Ro-
bots”, In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp.486-493, (1989).

92. Z.Wang, Y.Kimura, T.Takahashi, E.Nakano: “A Control Method of a Mul-
tiple Non-Holonomic Robot System for Cooperative Object Transportation”,
In Proceedings of Fifth International Symposium on Distributed Autonomous
Robotic Systems (DARS 2000), pp.447-456, (2000).

93. A.Yamashita, M.Fukuchi, J.Ota, T.Arai, H.Asama: “Motion Planning for Co-
operative Transportation of a Large Object by Multiple Mobile Robots in a 3D
Environment”, In Proceedings of IEEE International Conference on Robotics
and Automation, pp.3144-3151, (2000).

94. M.Yim, D.G.Duff, K.D.Roufas: “Polybot: a Modular Reconfigurable Robot”,
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pp.514-520, (2000).

95. E.Yoshida, S.Murata, S.Kokaji, K.Tomita, H.Kurokawa: “Micro Self-
Reconfigurable Robotic System Using Shape Memory Alloy”, In Proceedings
of the Fifth International Symposium on Distributed Autonomous Robotic
Systems (DARS 2000), pp.145-154, (2000).

96. J.Fredslund, M.J.Mataric: “ Robot Formations Using Only Local Sensing and
Control”, In the proceedings of the International Symposium on Computa-
tional Intelligence in Robotics and Automation (IEEE CIRA 2001), pp.308–
313, Banff, Alberta, Canada, (2001).

97. N.Gordon, I.A.Wagner, A.M.Bruckstein: “Discrete Bee Dance Algorithms for
Pattern Formation on a Grid”, In the proceedings of IEEE International Con-
ference on Intelligent Agent Technology (IAT03), pp.545–549, October, (2003).

98. R.Madhavan, K.Fregene, L.E.Parker: “Distributed Heterogenous Outdoor
Multi-Robot Localization”, In the proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), pp.374–381, (2002).

99. M.B.Dias, A.Stentz: “A Market Approach to Multirobot Coordination”: Tech-
nical Report, CMU-RI - TR-01-26, Robotics Institute, Carnegie Mellon Uni-
versity, (2001).

100. V. Yanovski, I.A. Wagner, A.M. Bruckstein: “A distributed ant algorithm for
efficiently patrolling a network”, Algorithmica, 37:165–186, (2003).

101. I.A. Wagner, A.M. Bruckstein: “ANTS: agents, networks, trees and sub-
graphs”, Future Generation Computer Computer Systems Journal, 16(8):915–
926, 2000.

102. V. Yanovski, I.A. Wagner, A.M. Bruckstein: “Vertex-ants-walk: a robust
method for efficient exploration of faulty graphs. Annals of Mathematics and
Artificial Intelligence, 31(1–4):99–112, (2001).

5 Swarm Intelligence — Searchers, Cleaners and Hunters 131

103. F.R. Adler, D.M. Gordon: “Information collection and spread by networks of
partolling agents”, The American Naturalist, 140(3):373–400, (1992).

104. D.M. Gordon: “The expandable network of ant exploration”, Animal Behav-
iour, 50:372–378, (1995).

105. M. Abramowitz, I.A. Stegun: “Handbook of Mathematical Functions”, Na-
tional Bureau of Standards Applied Mathematics Series 55, (1964)

106. Hart, P.E., Nilsson, N.J., Raphael, B.: “A formal basis for the heuristic deter-
mination of minimum cost paths”, IEEE Transactions on Systems Science and
Cybernetics 4(2): 100–107, (1968).

107. Passino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint,
M. and Baum, M.: “Cooperative Control for Autonomous Air Vehicles”, In
Cooperative Control and Optimization, R. Murphey and P. Pardalos, editors.
Kluwer Academic Publishers, Boston, (2002).

108. Polycarpou, M., Yang, Y. and Passino, K.: “A Cooperative Search Framework
for Distributed Agents”, In Proceedings of the 2001 IEEE International Sym-
posium on Intelligent Control (Mexico City, Mexico, September 5–7). IEEE,
New Jersey, 1–6, (2001).

109. Stone, L.D: “Theory of Optimal Search”, Academic Press, New York, (1975).
110. Koopman, B.O: “The Theory of Search II, Target Detection”, Operations Re-

search 4, 5, 503–531, October, (1956).
111. Koenig, S., Liu, Y.: “Terrain Coverage with Ant Robots: A Simulation Study”,

AGENTS’01, May 28–June 1, Montreal, Quebec, Canada, (2001).
112. Dorigo M., L.M. Gambardella: “Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem”, IEEE Transactions on Evolu-
tionary Computation, 1(1):53-66 (1997).

113. Gambardella L. M. and M. Dorigo: “HAS-SOP: An Hybrid Ant System for the
Sequential Ordering Problem”, Tech. Rep. No. IDSIA 97-11, IDSIA, Lugano,
Switzerland, (1997).

114. Gambardella L. M., E. Taillard and M. Dorigo: “Ant Colonies for the Quadratic
Assignment Problem”. Journal of the Operational Research Society, 50:167-176
(1999).

115. Bullnheimer B., R.F. Hartl and C. Strauss: “An Improved Ant system Algo-
rithm for the Vehicle Routing Problem”, Paper presented at the Sixth Vien-
nese workshop on Optimal Control, Dynamic Games, Nonlinear Dynamics and
Adaptive Systems, Vienna (Austria), May 21-23, (1997), appears in: Annals of
Operations Research (Dawid, Feichtinger and Hartl (eds.): Nonlinear Economic
Dynamics and Control, (1999)

116. Colorni A., M. Dorigo, V. Maniezzo and M. Trubian: “Ant system for Job-shop
Scheduling”, JORBEL - Belgian Journal of Operations Research, Statistics and
Computer Science, 34(1):39-53 (1994).

117. Costa D. and A. Hertz: “Ants Can Colour Graphs”, Journal of the Operational
Research Society, 48, 295-305 (1997).

118. Kuntz P., P. Layzell and D. Snyers: “A Colony of Ant-like Agents for Partition-
ing in VLSI Technology”, Proceedings of the Fourth European Conference on
Artificial Life, P. Husbands and I. Harvey, (Eds.), 417-424, MIT Press (1997).

119. Schoonderwoerd R., O. Holland, J. Bruten and L. Rothkrantz: “Ant-
based Load Balancing in Telecommunications Networks”, Adaptive Behavior,
5(2):169–207 (1997).

132 Y.Altshuler, V.Yanovsky, I.A.Wagner and A.M.Bruckstein

120. Navarro Varela G. and M.C. Sinclair: “Ant Colony Optimisation for Virtual-
Wavelength-Path Routing and Wavelength Allocation”, Proceedings of the
Congress on Evolutionary Computation (CEC’99), Washington DC, USA, July
(1999).

121. Yanowski, V. Wagner I.A., and Bruckstein A.M., “A Distributed Ant Algo-
rithm for Efficiently Patrolling a Network”, Workshop on Interdisciplinary Ap-
plications of Graph Theory and Algorithms, Haifa, Israel, April 17-18, (2001).

122. Machado A., Ramalho G., Zucker J.D., Drogoul A.: “Multi-Agent Patrolling:
an Empirical Analysis of Alternative Architectures”, Proceedings of MABS’02
(Multi-Agent Based Simulation, Bologna, Italy, July 2002), LNCS, Springer-
Verlag (2002).

123. Rouff C., Hinchey M., Truszkowski W., Rash J.: “Verifying large numbers of
cooperating adaptive agents”, Parallel and Distributed Systems, Proceedings
of the 11th International Conference on Volume 1, 20-22 July 2005 Page(s):391
- 397 Vol. 1 (2005).

124. P. Scerri, E. Liao, Yang. Xu, M. Lewis, G. Lai, and K. Sycara: “Coordinating
very large groups of wide area search munitions”, Theory and Al gorithms for
Cooperative Systems, chapter. World Scientific Publishing, (2004).

125. V. Vazirani: “Approximation Algorithms”, Springer-Verlag, (2001).
126. S. Arora, S. Safra: “Probabilistic checking of proofs: A new characterization of

NP”, Journal of the ACM, (1998).
127. M. Garey, D. Johnson: “Computers and Intractability: A Guide to the Theory

of NP-Completeness”, San Francisco, CA: W. H. Freeman, (1979).
128. Y. Altshuler, A. Matsliah, A. Felner: “On the Complexity of Physical Problems

and a Swarm Algorithm for k-Clique Search in Physical Graphs”, European
Conference on Complex Systems (ECCS-05), Paris, France, November (2005).

129. A.Z. Broder, A.R. Karlin, P. Raghavan, E. Upfal: “Trading Space for Time in
Undirected s − t Connectivity”, ACM Symposium on Theory of Computing
(STOC), pp. 543–549, (1989).

6

Ant Colony Optimisation for Fast Modular
Exponentiation using the Sliding Window
Method

Nadia Nedjah1 and Luiza de Macedo Mourelle2

1 Department of Electronics Engineering and Telecommunications,
Faculty of Engineering, State University of Rio de Janeiro.
nadia@eng.uerj.br, http://www.eng.uerj.br/~nadia/english.html

2 Department of Systems Engineering and Computation,
Faculty of Engineering, State University of Rio de Janeiro.
ldmm@eng.uerj.br, http://www.eng.uerj.br/~ldmm

Modular exponentiation is the main operation to RSA-based public-key cryp-
tosystems. It is performed using successive modular multiplications. This op-
eration is time consuming for large operands, which is always the case in
cryptography. For software or hardware fast cryptosystems, one needs thus
reducing the total number of modular multiplications required. Existing meth-
ods attempt to reduce this number by partitioning the exponent in constant
or variable size windows. However, these window-based methods require some
pre-computations, which themselves consist of modular exponentiations. It is
clear that pre-processing needs to be performed efficiently also. In this chap-
ter, we exploit the ant colony strategy to finding an optimal addition sequence
that allows one to perform the pre-computations in window-based methods
with a minimal number of modular multiplications. Hence we improve the effi-
ciency of modular exponentiation. We compare the yielded addition sequences
with those obtained using Brun’s algorithm.

6.1 Introduction

Public-key cryptographic systems (such as the RSA encryption scheme [6],
[12]) often involve raising large elements of some groups fields (such as GF(2n)
or elliptic curves [9]) to large powers. The performance and practicality of such
cryptosystems is primarily determined by the implementation efficiency of the
modular exponentiation. As the operands (the plain text of a message or the
cipher (possibly a partially ciphered) are usually large (i.e. 1024 bits or more),

N. Nedjah and Luiza de Macedo Mourelle: Ant Colony Optimisation for Fast Modular

Exponentiation using the Sliding Window Method, Studies in Computational Intelligence (SCI)

26, 133–147 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

134 Nadia Nedjah and Luiza de Macedo Mourelle

and in order to improve time requirements of the encryption/decryption op-
erations, it is essential to attempt to minimise the number of modular multi-
plications performed.

A simple procedure to compute C = TE mod M based on the paper-and-
pencil method is described in Algorithm 1. This method requires E-1 modular
multiplications. It computes all powers of T : T → T 2 → · · · → TE−1 → TE .

Algorithm 1. simpleExponentiationMethod(T,M,E)
1. C := T ;
2. for i := 1 to E − 1 do C := (C × T) mod M ;
3. return C;
end algorithm.

The computation of exponentiations using Algorithm 1 is very inefficient.
The problem of yielding the power of a number using a minimal number
of multiplications is NP -hard [5], [10]. There are several efficient algorithms
that perform exponentiation with a nearly minimal number of modular mul-
tiplications, such that the window-based methods. However, these methods
need some pre-computations that if not performed efficiently can deteriorate
the algorithm overall performance. The pre-computations are themselves an
ensemble of exponentiations and so it is also NP -hard to perform them opti-
mally.

In this chapter, we concentrate on this problem and engineer a new way
to do the necessary pre-computations very efficiently. We do so using the ant
colony methodology. We compare our results with those obtained using the
Brun’s algorithm [1].

Ant systems [2-1] are distributed multi-agent systems [3-1] that simulate
real ant colony. Each agent behaves as an ant within its colony. Despite the
fact that ants have very bad vision, they always are capable to find the short-
est path from their nest to wherever the food is. To do so, ants deposit a trail
of a chemical substance called pheromone on the path they use to reach the
food. On intersection points, ants tend to choose a path with high amount of
pheromone. Clearly, the ants that travel through the shorter path are capa-
ble to return quicker and so the pheremone deposited on that path increases
relatively faster than that deposited on much longer alternative paths. Con-
sequently, all the ants of the colony end using the shorter way.

In this chapter, we exploit the ant colony methodology to obtain an optimal
solution to AS-chain minimisation NP-complete problem. In order to clearly
report the research work performed, we subdivide the rest of this chapter
into five important sections. In Section 6.2, we present the window methods;
In Section 6.3, we present the concepts of addition chains and sequence and
they can be used to improve the pre-computations of the window methods; In
Section 6.4, we give an overview on the concepts of ant colony optimisation
; In Section 6.5, we explain how these concepts can be used to compute a

6 Ant Colony Optimisation for Fast Modular Exponentiation 135

minimal addition chain to perform efficiently necessary pre-computations in
the window methods. In Section 6.6, we present some useful results.

6.2 Window-Based Methods

Generally speaking, the window methods for exponentiation [5] may be
thought of as a three major step procedure:

i. partitioning in k-bits windows the binary representation of the exponent
E;

ii. pre-computing the powers in each window one by one;
iii. iterating the squaring of the partial result k times to shift it over, and

then multiplying it by the power in the next window when if window is
not 0.

There are several partitioning strategies. The window size may be constant
or variable. For the m-ary methods, the window size is constant and the win-
dows are next to each other. On the other hand, for the sliding window meth-
ods the window size may be of variable length. It is clear that zero-windows,
i.e. those that contain only zeros, do not introduce any extra computation.
So a good strategy for the sliding window methods is one that attempts to
maximise the number of zero-windows. The details of m-ary methods are
exposed in Section 6.2.1 while those related to sliding constant-size window
methods are given in Section 6.2.2. In Section 6.2.3, we introduce the adaptive
variable-size window methods.

6.2.1 M-ary Methods

The m-ary methods [3] scans the digits of E form the less significant to the
most significant digit and groups them into partitions of equal length log2 m,
where m is a power of two. Note that 1-ary methods coincides with the square-
and- multiply well-known binary exponentiation method.

In general, the exponent E is partitioned into p partitions, each one con-
taining l = log2 m successive digits. The ordered set of the partition of E will
be denoted by P(E). If the last partition has less digits than log2 m, then the
exponent is expanded to the left with at most log2m − 1 zeros. The m-ary
algorithm is described in Algorithm 2, wherein Vi denotes the decimal value
of partition Pi.

Algorithm 2. m-aryMethod(T,M,E)
1. Partition E into p l-digits partitions;
2. for i := 2 to m Compute T i mod M ;
3. C := TVp mod M ;
4. for i := p − 2 downto 0

136 Nadia Nedjah and Luiza de Macedo Mourelle

5. C := C2l mod M ;
6. if Vi �= 0 then C := C× mod M ;
7. return C;
end algorithm.

6.2.2 Sliding Window Methods

For the sliding window methods the window size may be of variable length and
hence the partitioning may be performed so that the number of zero-windows
is as large as possible, thus reducing the number of modular multiplication nec-
essary in the squaring and multiplication phases. Furthermore, as all possible
partitions have to start (i.e. in the right side) with digit 1, the pre-processing
step needs to be performed for odd values only. The sliding method algorithm
is presented in Algorithm 3, wherein d denotes the number of digits in the
largest possible partition and Li the length of partition Pi.

Algorithm 3. slidingWindowMethod(T,M,E)
1. Partition E using the given strategy;
2. for i := 2 to 2d − 1 step 2 do Compute T i mod M ;
3. C := TVp−1 mod M ;
4. for i := p − 2 downto 0 do
5. C := CLi mod M ;
6. if Vi �= 0 then C := C × TVi mod M ;
7. return C;
end algorithm.

In adaptive methods [7] the computation depends on the input data, such
as the exponent E. M -ary methods and window methods pre-compute powers
of all possible partitions, not taking into account that the partitions of the
actual exponent may or may not include all possible partitions. Thus, the
number of modular multiplications in the pre-processing step can be reduced
if partitions of E do not contain all possible ones.

Let ℘(E) be the list of partitions obtained from the binary representation
of E. Assume that the list of partition is non-redundant and ordered according
to the ascending decimal value of the partitions contained in the expansion
of E. Recall that Vi and Li are the decimal value and the number of digits
of partition Pi. The generic algorithm for describing the computation of TE

mod M using the window methods is given in Algorithm 4.

Algorithm 4. AdaptiveWindowMethod(T,M,E)
1. Partition E using the given strategy;
2. for each partition Pi ∈ ℘ do Compute TVi mod M ;
3. C := TVp−1 mod M ;
4. for i := p − 2 downto 0 do
5. C := CLi mod M ;

6 Ant Colony Optimisation for Fast Modular Exponentiation 137

6. if Vi �= 0 then C := C × TVi mod M ;
7. return C;
end algorithm.

In Algorithm 2 and Algorithm 3, it is clear how to perform the pre-
computation indicated in Line 2. For instance, let E = 1011001101111000.
The pre-processing step of the 4-ary method needs 14 modular multiplica-
tions (T → T ×T = T 2 → T ×T 2 = T 3 → → T ×T 14 = T 15) and that of the
maximum 4-digit sliding window method needs only 8 modular multiplica-
tions (T → T ×T = T 2 → T ×T 2 = T 3 → T 3 ×T 2 = T 5 → T 5 ×T 2 = T 7 →
→ T 13 × T 2 = T 15). However the adaptive 4-ary method would partition the
exponent as E = 1011‖0011‖0111‖1000 and hence needs to pre-compute the
powers T 3, T 7, T 8 and T 11 while the method maximum 4-digit sliding window
method would partition the exponent as E = 1‖0‖11‖00‖11‖0‖1111‖000 and
therefore needs to pre-compute the powers T 3 and T 15. The pre-computation
of the powers needed by the adaptive 4-digit sliding window method may be
done using 6 modular multiplications T → T × T = T 2 → T × T 2 = T 3 →
T 2 × T 2 = T 4 → T 3 × T 4 = T 7 → T 7 × T = T 8 → T 8 × T 3 = T 11 while
the pre-computation of those powers necessary to apply the adaptive sliding
window may be accomplished using 5 modular multiplications T → T × T =
T 2 → T × T 2 = T 3 → T 2 × T 3 = T 5 → T 5 × T 5 = T 10 → T 5 × T 10 = T 15.
Note that Algorithm 4 does not suggest how to compute the powers (Line 2)
needed to use the adaptive window methods. Finding the best way to compute
them is a NP -hard problem [4], [7].

6.3 Addition Chains and Addition Sequences

An addition chain of length l for an positive integer N is a list of positive
integers (E1, E2, . . . , El) such that E1 = 1, El = N and Ek = Ei + Ej ,
0 ≤ i ≤ j < k ≤ l. Finding a minimal addition chain for a given positive
integer is an NP -hard problem. It is clear that a short addition chain for
exponent E gives a fast algorithm to compute TE mod M as we have if
Ek = Ei+Ej then TEk = TEi×TEj . The adaptive window methods described
earlier use a near optimal addition chain to compute TE mod M . However
these methods do not prescribe how to perform the pre-processing step (Line
3 of Algorithm 4). In the following we show how to perform this step with
minimal number of modular multiplications.

6.3.1 Addition Sequences

There is a generalisation of the concept of addition chains, which can be used
to formalise the problem of finding a minimal sequence of powers that should
be computed in the pre-processing step of the adaptive window method.

138 Nadia Nedjah and Luiza de Macedo Mourelle

An addition sequence for the list of positive integers V1, V2, . . . , Vp such
that V1 < V2 < · · · < Vp is an addition chain for integer Vp that includes all
the integers V1, V2, . . . , Vp. The length of an addition sequence is the numbers
of integers that constitute the chain. An addition sequence for a list of positive
integers V1, V2, . . . , Vp will be denoted by ξ(V1, V2, . . . , Vp).

Hence, to optimise the number of modular required multiplications in the
pre-processing step of the adaptive window methods for computing TE mod
M , we need to find an addition sequence of minimal length (or simply min-
imal addition sequence) for the values of the partitions included in the non-
redundant ordered list ℘(E). This is an NP -hard problem and we use genetic
algorithm to solve it. Our method showed to be very effective for large win-
dow size. General principles of genetic algorithms are explained in the next
section.

6.3.2 Brun’s Algorithm

Now we describe briefly, Brun’s algorithm [1] to compute addition sequences.
The algorithm is a generalisation of the continued fraction algorithm [1]. As-
sume that we need to compute the addition sequence ξ(V1, V2, . . . , Vp). Let
Q = � Vp

Vp−1
� and let χ(Q) be the addition chain for Q using the binary method

(i.e. that used in Algorithm 2 with l = 1). Let R = Vp −Q× Vp−1. By induc-
tion we can construct an addition sequence ξ(V1, V2, . . . , R, . . . , Vp−1), then
obtain:

ξ(V1, V2, . . . , Vp) = ξ(V1, V2, . . . , R, . . . , Vp−1)∪
Vp−1 × χ(Q) \ {1} ∪ {Vp}

(6.1)

6.4 Ant Systems and Algorithms

Ant systems can be viewed as multi-agent systems [3] that use a shared mem-
ory through which they communicate and a local memory to bookkeep the
locally reached problem solution. Fig. 6.1. depicts the overall structure of
an system, wherein Ai and LMi represent the ith. agent of the ant system
and its local memory respectively. Mainly, the shared memory (SM) holds
the pheromone information while the local memory LMi keeps the solution
(possibly partial) that agent Ai reached so far.

The behaviour of an artificial ant colony is summarised in Algorithm 4,
wherein N,C, SM are the number of of artificial ant that form the colony,
the characteristics of the expected solution and the shared memory used by
the artificial ants to store pheromone information repsectively. The first step
consists of activating N distinct artificial ants that should work in simultane-
ously. Every time an ant conclude its search, the shared memory is updated
with an amount of pheromone, which should be proportional to the quality of
the reached solution. This called global pheromone update. When the solution

6 Ant Colony Optimisation for Fast Modular Exponentiation 139

Fig. 6.1. Multi-agent system architecture

yield by an ant’s work is suitable (i.e. fits characteristc C) then all the active
ants are stopped. Otherwise, the process is iterated until an adequate solution
is encountered.

Algorithm 4. ArtificialAntColony(N,C)
1: Initialise SM with initial pheromone;
2: do
3: for i := 1 to N
4: Start ArtificialAnt(Ai, LMi);
5: Active := Active ∪ {Ai};
6: do
7: Update SM w.r.t. pheromone evaporation;
8: when an ant (say Ai) halts do
9: Active := Active \ {Ai};
10: Φ := Pheromone(LMi);
11: Update SM with global pheromone Ψ ;
12: S := ExtractSolution(LMi);
13: until Characteristics(S) = C or Active = ∅;
14: while Active �= ∅ do
15: Stop ant Ai | Ai ∈ Active;
16: Active := Active \ {Ai};
17: until Characteristics(S) = C;
18: return S;
end.

The behaviour of an artificial ant is described in Algorithm 5, wherein Ai

and LMi represent the ant identifier and the ant local memory, in which it
stores the solution computed so far. First, the ant computes the probabilities

140 Nadia Nedjah and Luiza de Macedo Mourelle

that it uses to select the next state to move to. The computation depends on
the solution built so far, the problem constraints as well as some heuristics
[2], [6]. Thereafter, the ant updates the solution stored in its local memory,
deposits some local pheromone into the shared memory then moves to the cho-
sen state. This process is iterated until complete problem solution is yielded.

Algorithm 5. ArtificialAnt(Ai, LMi)
1: Initialise LMi;
2: do
3: P := TransitionProbabilities(LMi);
4: NextState := StateDecision(LMi, P);
5: Update LMi; Update SM with local pheromone;
6: CurrentState := NextState);
7: until CurrentState := TargetState;
8: Halt Ai;
end.

6.5 Chain Sequence Minimisation Using Ant System

In this section, we concentrate on the specialisation of the ant system of Algo-
rithm 4 and Algorithm 5 to the addition sequence minimisation problem. For
this purpose, we describe how the shared and local memories are represented.
We then detail the function that yields the solution (possibly partial) char-
acteristics. Thereafter, we define the amount of pheromone to be deposited
with respect to the solution obtained so far. Finally, we show how to compute
the necessary probabilities and make the adequate decision towards a shorter
addition sequence for the considered the sequence (V1, V2, . . . , Vp).

6.5.1 The Ant System Shared Memory

The ant system shared memory is a two-dimension array. If the last exponent
in the sequence is Vp then the array should Vp rows. The number of columns
depends on the row. It can be computed as in (6.2), wherein NCi denotes the
number of columns in row i.

NCi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2i−1 − i + 1 if 2i−1 < Vp

1 if i = Vp

Vp − i + 3 otherwise

(6.2)

An entry SMi,j of the shared memory holds the pheromone deposited by ants
that used exponent i + j as the i th. member in the built addition sequence.
Note that 1 ≤ i ≤ Vp and for row i, 0 ≤ j ≤ NCi. Fig. 6.2 gives an example

6 Ant Colony Optimisation for Fast Modular Exponentiation 141

of the shared memory for exponent 17. In this example, a table entry is set to
show the exponent corresponding to it. The exponent Ei,j corresponding to
entry SMi,j should be obtainable from exponents of previous rows. Equation
(6.3) formalises such a requirement.

Ei,j = Ek1,l1 + Ek2,k2 | 1 ≤ k1, k2 < i, 0 ≤ l1, l2 ≤ j,
k1 = k2 ⇐⇒ l1 = l2

(6.3)

Fig. 6.2. Example of shared memory content for Vp = 17

Note that, in Fig. 6.2, the exponents in the shaded entries are not valid
exponents as for instance exponent 7 of row 4 can is not obtainable from the
sum of two previous different stages, as described in (6.3). The computational
process that allows us to avoid these exponents is of very high cost. In order
to avoid using these few exponents, we will penalise those ants that use them
and hopefully, the solutions built by the ants will be almost all valid addition
chains. Furthermore, note that for a valid solution need also to contain all the
exponents of the sequence i.e., V1, V2, . . . , Vp−1, Vp.

6.5.2 The Ant Local Memory

In an ant system, each ant is endowed a local memory that allows it to store
the solution or the part of it that was built so far. This local memory is divided

142 Nadia Nedjah and Luiza de Macedo Mourelle

into two parts: the first part represents the (partial) addition sequence found
by the ant so far and consists of a one-dimension array of Vp entries; the second
part holds the characteristic of the solution. It represents the solution fitness
i.e., its length. The details of how to compute the fitness of a possibly partial
addition sequence are given in the next section. Fig. 6.3 shows six different
examples of an ant local memory for sequence (5, 7, 11). Fig. 6.3(a) represents
addition sequence (1, 2, 4, 5, 7, 11), which is a valid and complete solution of
fitness 5. Fig. 6.3(b) depicts addition sequence (1, 2, 3, 5, 7, 10, 11), which is
also a valid and complete solution but of fitness 6. Fig. 6.3(c) represents partial
addition sequence (1, 2, 4, 5), which is a valid and but incomplete solution as it
does not include exponent 7 and 11 and the last exponent is smaller than both
7 and 11. The corresponding fitness is 8.8. Fig. 6.3(d) consists of non-valid
addition sequence (1, 2, 4, 5, 10, 11) as 7 is not included. The corresponding
fitness is 15. Fig. 6.3(e) represents also non-valid addition sequence (1, 2, 3,
5, 7, 11) as 11 is not a sum two previous exponents in the sequence. Its fitness
is also 15. Finally, Fig. 6.3(f) represents also non-valid addition sequence (1,
2, 5, 10, 11) as 5 is not a sum two previous and mandatory exponent 7 is not
in the addition sequence. exponents in the sequence. Its fitness is also 25. In
next section, we explain how the fitness of a solution is computed.

6.5.3 Addition Sequence Characteristics

The fitness evaluation of an addition sequence is performed with respect to
three aspects: (a) how much it adheres to the definition (see Section 6.3),
i.e. how many of its members cannot be obtained summing up two previ-
ous members of the sequence; (b) how far the it is reduced, i.e. what is the
length of the chain; (c) how many of the mandatory exponents do not ap-
pear in the sequence. (6.4) shows how to compute the fitness f of solution
(E1, E2, . . . , En, 0, . . . , 0) regarding mandatory exponents V1, V2, . . . , Vp.

f(V1, V2, . . . , Vp, E1, E2, . . . , En) = Vp×(n−1)
En

+
(η1 + η2) × penalty

(6.4)

wherein η1 represents the number of Ei, 3 ≤ i ≤ n in the addition sequence
that verify the predicate below:

∀j, k | 1 ≤ j, k < i,Ei �= Ej + Ek (6.5)

and η2 represents the number of mandatory exponents Vi, 1 ≤ i ≤ p that
verify the predicate below:

Vi ≤ En =⇒ ∀j | 1 ≤ j ≤ n,Ej �= Vi (6.6)

For a valid complete addition sequence, the fitness coincides with its
length, which is the number of multiplications that are required to compute
the exponentiation using the sequence. For a valid but incomplete addition

6 Ant Colony Optimisation for Fast Modular Exponentiation 143

5 1 2 4 5 7 11 0 0 0 0 0

(a)

6 1 2 3 5 7 10 11 0 0 0 0

(b)

8.8 1 2 4 5 0 0 0 0 0 0 0

(c)

15 1 2 4 5 10 11 0 0 0 0 0

(d)

15 1 2 3 5 7 11 0 0 0 0 0

(e)

25 1 2 5 10 11 0 0 0 0 0 0

(f)

Fig. 6.3. Examples of an ant local memory: (a) complete valid addition sequence
of fitness 5; (b) complete valid addition sequence of fitness 6; (c) incomplete valid
addition sequence of fitness 8.8; (d), (e) complete non-valid solution of fitness 15;
(f) complete non-valid addition sequence of fitness 25

sequence, the fitness consists of its relative length. It takes into account the
distance between last mandatory exponent Vp and the last exponent in the
partial addition sequence. Furthermore, for every mandatory exponent that is
smaller than the last member of the sequence which is not part of it, a penalty
is added to the sequence fitness. Note that valid incomplete sequences may
have the same fitness of some other valid and complete ones. For instance,
addition sequence (1, 2, 3, 6, 8) and (1, 2, 3, 6) for exponent mandatory
exponents (3, 6, 8) have the same fitness 4.

For an invalid addition sequences, a penaly, which should be larger than
Vp, is introduced into the fitness value for each exponent for which one cannot
find two (may be equal) members of the sequence whose sum is equal to the
exponent in question or two distincts previous members of the chain whose
difference is equal to the considered exponent. Furthermore, a penalty is added
to the fitness of a addition sequence whenever the a mandatory exponent is
not part of it. The penalty used in the examples of Fig. 6.3 is 10.

144 Nadia Nedjah and Luiza de Macedo Mourelle

6.5.4 Pheromone Trail and State Transition Function

There are three situations wherein the pheromone trail is updated: (a) when
an ant chooses to use exponent F = i + j as the ith. member in its so-
lution, the shared momory cell SMi,j is incremented with a constant value
of pheromone ∆φ, as in (6.7); (b) when an ant halts because it reached a
complete solution, say α = (E1, E2, . . . , En) for madatory exponent sequence
σ, all the shared memory cells SMi,j such that i + j = Ei are incremented
with pheromone value of 1/F itness(σ, α), as in (6.8). Note that the better
is the reached solution, the higher is the amount of pheromone deposited in
the shared memory cells that correspond to the addition sequence members.
(iii) The pheromone deposited should evaporate. Priodically, the pheromone
amount stored in SMi,j is decremented in an exponential manner [6] as in
(6.9).

SMi,j := SMi,j + ∆φ, every time Ei = i + j is chosen (6.7)

SMi,j := SMi,j + 1/F itness(σ, α), ∀i, j | i + j = Ei (6.8)

SMi,j := (1 − ρ)SMi,j | ρ ∈ (0, 1], periodically (6.9)

An ant, say A that has constructed partial addition sequence (E1, E2, . . . , Ei, 0, . . . ,
0) for exponent sequence (V1, V2, . . . , Vp), is said to be in step i. In step
i + 1, it may choose exponent Ei+1 Ei + 1, Ei + 2, . . . , 2Ei, if 2Ei ≤ Vp.
That is, ant A may choose one of the exponents that are associated with the
shared memory cells SMi+1,Ei−i, SMi+1,Ei−i+1, . . . , SMi+1,2Ei−i−1. Other-
wise (i.e. if 2Ei > Vp), it may only select from exponents Ei + 1, Ei + 2, . . . ,
E + 2. In this case, ant A may choose one of the exponent associated with
SMi+1,Ei−i, SMi+1,Ei−i+1, . . . , SMi+1,E−i+1. Furthermore, ant A chooses the
new exponent Ei+1 with the probability expressed through (6.10).

Pi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SMi+1,j

max
2Ei−i−1
k=Ei−i

SMi+1,k

if 2Ei ≤ E &

j ∈ [Ei − i, 2Ei − i − 1]

SMi+1,j

maxE−i−1
k=Ei−i

SMi+1,k
if 2Ei > E &

j ∈ [Ei − i, E − i − 1]

0 otherwise

(6.10)

6.6 Performance Comparison

The ant system described in Algorithm 3 was implemented using Java as a
multi-threaded ant system. Each ant was simulated by a thread that imple-
ments the artificial ant computation of Algorithm 4. A Pentium IV-HTTM of

6 Ant Colony Optimisation for Fast Modular Exponentiation 145

a operation frequency of 1GH and RAM size of 2GB was used to run the ant
system and obtain the performance results.

We compared the performance of m-ary methods, the Brun’s algorithm, ge-
netic algorithms and ant system-based methods. The obtained addition chains
are given in Table 6.1 The average lengths of the addition sequences for differ-
ent exponent sequences obtained using these methods are given in Table 6.2.
The exponent size is that of its binary representation (i.e. number of bits).
The ant system-based method always outperforms all the others, including the
genetic algorithm-based method [7]. The chart of Fig. 6.4 shows the relation
between the average length of the obtained addition sequences.

Table 6.1. The addition sequences yield for S(5, 9, 23), S(9, 27, 55) and S(5, 7, 95)
respectively

Method Addition sequence #×
5-ary (1,2,3,4,5,6,7,8,9,. . . ,22,23,. . . ,30,31) 30
5-window (1,2,3,5,7,9,11,. . . ,31) 16
Brun’s (1,2,4,5,9,18,23) 6
GAs (1,2,4,5,9,18,23) 6
Ant system (1,2,4,5,9,14,23) 6

6-ary (1,2,3,. . . ,8,9,. . . ,26,27,. . . ,54,55,. . . ,63) 62
6-window (1,2,3,. . . ,7,9,. . . ,25,27,. . . ,53,55,. . . ,63) 31
Brun’s (1,2,3,6,9,18,27,54,55) 8
GAs (1,2,4,8,9,18,27,28,55) 8
Ant system (1,2,4,5,9,18,27,54,55) 8

7-ary (1,2,3,4,5,6,7,. . . ,95) 94
7-window (1,2,3,5,7,. . . ,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9

7-ary (1,2,3,4,5,6,7,. . . ,95) 94
7-window (1,2,3,5,7,. . . ,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9

6.7 Summary

In this chapter we applied the methodology of ant colony to the addition
chain minimisation problem. Namely, we described how the shared and local
memories are represented. We detailed the function that computes the solution
fitness. We defined the amount of pheromone to be deposited with respect to
the solution obtained by an ant. We showed how to compute the necessary

146 Nadia Nedjah and Luiza de Macedo Mourelle

Table 6.2. Average length of addition sequence for Brun’s algorithm, genetic algo-
rithms (GA) and ant system (AS) based methods

size of Vp m-ary Brun’s GA AS

32 41 42 45
64 84 85 86
128 169 170 168
256 340 341 331
512 681 682 658
1024 1364 1365 1313

Fig. 6.4. Comparison of the average length of the addition chains for the binary,
quaternary and octal methods vs. genetic algorithms and ant system-based methods

probabilities and make the adequate decision towards a good addition chain
for the considered exponent. We implemented the ant system described using
muti-threading (each ant of the system was implemented by a thread). We
compared the results obtained by the ant system to those of m-ary methods
(binary, quaternary and octal methods). Taking advantage of the a previous
work on evolving minimal addition chains with genetic algorithm, we also
compared the obtained results to those obtained by the genetic algorithm.
The ant system always finds a shorter addition chain and gain increases with
the size of the exponents.

6 Ant Colony Optimisation for Fast Modular Exponentiation 147

References

1. Rivest, R., Shamir, A. and Adleman, L., A method for Obtaining Digital Signa-
ture and Public-Key Cryptosystems, Communications of the ACM, 21:120-126,
1978.

2. Dorigo, M. and Gambardella, L.M., Ant Colony: a Cooperative Learning Ap-
proach to the Travelling Salesman Problem, IEEE Transaction on Evolutionary
Computation, Vol. 1, No. 1, pp. 53-66, 1997.

3. Feber, J., Multi-Agent Systems: an Introduction to Distributed Artificial Intelli-
gence, Addison-Wesley, 1995.

4. Downing, P. Leong B. and Sthi, R., Computing Sequences with Addition Chains,
SIAM Journal on Computing, vol. 10, No. 3, pp. 638-646, 1981.

5. Nedjah, N., Mourelle, L.M., Efficient Parallel Modular Exponentiation Algo-
rithm, Second International Conference on Information systems, ADVIS’2002,
Izmir, Turkey, Lecture Notes in Computer Science, Springer-Verlag, vol. 2457,
pp. 405-414, 2002.

6. Stutzle, T. and Dorigo, M., ACO Algorithms for the Travelling Salesman Prob-
lems, Evolutionary Algorithms in Engineering and Computer Science, John-
Wiley & Sons, 1999.

7. Nedjah, N. and Mourelle, L.M., Minimal addition-subtraction chains using ge-
netic algorithms, Proceedings of the Second International Conference on Informa-
tion Systems, Izmir, Turkey, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2457, pp. 303-313, 2002.

7

Particle Swarm for Fuzzy Models Identification

Arun Khosla1, Shakti Kumar2, K.K. Aggarwal3, and Jagatpreet Singh4

1 National Institute of Technology, Jalandhar – 144011, India.
khoslaak@nitj.ac.in

2 Haryana Engineering College, Jagadhari – 135003, India.
3 GGS Indraprastha University, Delhi – 110006, India. kka@ipu.edu
4 Infosys Technologies Limited, Chennai – 600019, India. jagatpreet@yahoo.com

Fuzzy systems and evolutionary algorithms are two main constituents of com-
putational intelligence paradigm and have their genesis in the nature-inspired
extensions to the traditional techniques meant to solve problems of classifi-
cation, control, prediction, modeling and optimization etc. Fuzzy systems are
known for their capabilities to handle ambiguous or vague concepts of hu-
man perception for complex systems problems, where it is extremely difficult
to describe the system models mathematically. On the other hand, the evo-
lutionary algorithms have emerged as robust techniques for many complex
optimization, identification, learning and adaptation problems. The objective
of this chapter is to present the use of Particle Swarm Optimization (PSO)
algorithm for building optimal fuzzy models from the available data. PSO,
which is a robust stochastic evolutionary computation engine, belongs to the
broad category of Swarm Intelligence (SI) techniques. SI paradigm has been
inspired by the social behavior of ants, bees, wasps, birds, fishes and other
biological creatures and is emerging as an innovative and powerful computa-
tional metaphor for solving complex problems in design, optimization, con-
trol, management, business and finance. SI may be defined as any attempt to
design distributed problem-solving algorithms that emerges from the social
interaction. The chapter also presents the results based on selection based
PSO variant with lifetime parameter that has been used for identification of
fuzzy models. The fuzzy model identification procedure using PSO as an op-
timization engine has been implemented as a Matlab toolbox viz. PSO Fuzzy
Modeler for Matlab and is presented in the next chapter. The simulation re-
sults presented in this chapter have been obtained through this toolbox. The
toolbox has been hosted on SourceForge.net, which is the world’s largest de-
velopment and download repository of open-source code and applications.

A. Khosla et al.: Particle Swarm for Fuzzy Models Identification, Studies in Computational

Intelligence (SCI) 26, 149–173 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

150 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

7.1 Introduction

Developing models of complex real-systems is an important topic in many dis-
ciplines of engineering. Models are generally used for simulation, identifying
the system’s behavior and design of controllers etc. Last few years have wit-
nessed a drastic growth of sub-disciplines in science and engineering that have
adopted the concepts of fuzzy set theory. This development can be attributed
to successful applications in consumer electronics, robotics, signal processing,
image processing, finance, management etc.

Design of fuzzy models or fuzzy model identification is the task of finding
the parameters of fuzzy model so as to get the desired behavior. Two princi-
pally different approaches are used for the design of fuzzy models: heuristic-
based design and model-based design. In the first approach, the design is
constructed from the knowledge acquired from the expert, while in the sec-
ond, the input-output data is used for building model. It is also possible to
integrate both the approaches. In this chapter, we have presented the use of
PSO algorithm for the identification of fuzzy models from the available data.

This chapter is organized into seven sections. In Section 7.2, a brief intro-
duction to PSO algorithm is presented. Overview of fuzzy models alongwith
various issues about fuzzy model identification problem are presented in Sec-
tion 7.3. A methodology for fuzzy model identification using PSO algorithm is
described in Section 7.4. This methodology has been implemented as a Matlab
toolbox and the simulation results generated from this toolbox are reported
in Section 7.5. In Section 7.6, a selection-based variant of PSO algorithm with
a new defined parameter called lifetime is described briefly. This section also
presents the simulation results based on this selection based new PSO variant
that has been used for fuzzy models identification alongwith their analysis.
Concluding remarks and some possible directions for future work are made in
Section 7.7.

7.2 PSO Algorithm

The origin of PSO is best described as sociologically inspired, since it was ini-
tially developed as a tool by Reynolds [1][2] for simulating the flight patterns
of birds, which was mainly governed by three major concerns: collision avoid-
ance, velocity matching and flock centering. On the other hand, the reasons
presented for the flocking behaviour observed in nature are: protection from
predator and gaining from a large effective search with respect to food. The
last reason assumes a great importance, when the food is unevenly distributed
over a large region. It was realized by Kennedy and Eberhart that the bird
flocking behavior can be adapted to be used as an optimizer and resulted in the
first simple version of PSO [3] that has been recognized as one of the compu-
tational intelligence techniques intimately related to evolutionary algorithms.
Like evolutionary computation techniques, it uses a population of potential

7 Particle Swarm for Fuzzy Models Identification 151

solutions called particles that are flown through the hyperspace/search-space.
In PSO, the particles have an adaptable velocity that determines their move-
ment in the search-space. Each particle also has a memory and hence it is
capable of remembering the best position in the search-space ever visited by
it. The position corresponding to the best fitness is known as pbest and the
overall best out of all the particles in the population is called gbest.

Consider that the search space is d-dimensional and i-th particle in the
swarm can be represented by Xi = (xi1, xi2, . . . , xid) and its velocity can
be represented by another d-dimensional vector Vi = (vi1, vi2, . . . , vid). Let
the best previously visited position of this particle be denoted by Pi =
(pi1, pi2, . . . , pid). If g-th particle is the best particle and the iteration number
is denoted by the superscripts, then the swarm is modified according to (7.1)
and (7.2) suggested by Shi and Eberhart [4]:

vn+1
id = χ(wvn

id + c1r
n
1 (pn

id − xn
id) + c2r

n
2 (pn

gd − xn
id)) (7.1)

xn+1
id = xn

id + vn+1
id (7.2)

where,

χ– constriction factor
w– inertia weight
c1– cognitive acceleration parameter
c2– social acceleration parameter
r1, r2– random numbers uniformly distributed in the range (0,1)

These parameters viz. inertia weight (w), cognitive acceleration (c1), so-
cial acceleration (c2), alongwith Vmax [5] are known as the strategy/operating
parameters of PSO algorithm. These parameters are defined by the user be-
fore the PSO run. The parameter Vmax is the maximum velocity along any
dimension, which implies that, if the velocity along any dimension exceeds
Vmax, it shall be clamped to this value. The inertia weight governs how much
of the velocity should be retained from the previous time step. Generally the
inertia weight is not kept fixed and is varied as the algorithm progresses so as
to improve performance [4][5]. This setting allows the PSO to explore a large
area at the start of simulation run and to refine the search later by a smaller
inertia weight. The parameters c1 and c2 determine the relative pull of pbest
and gbest. Random numbers r1 and r2 help in stochastically varying these
pulls, that also account for slight unpredictable natural swarm behavior. Fig.
7.1 depicts the position update of a particle for a two-dimensional parameter
space. Infact, this update is carried out as per (7.1) and (7.2) for each particle
of swarm for each of the M dimensions in an M-dimensional optimization.

152 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

Current motion
influence

xn

gbest

v

pbest

xn+1

Fig. 7.1. Depiction of position updates in particle swarm optimization for 2-D
parameter space

7.3 Fuzzy Models

This section reviews the fuzzy model structures and the various issues asso-
ciated with the fuzzy model identification. Basic knowledge about the fuzzy
logic, fuzzy sets and fuzzy inference system is assumed.

7.3.1 Overview of Fuzzy Models

Three commonly used types of fuzzy models are [6]:

• Mamdani-type fuzzy models
• Takagi-Sugeno fuzzy models
• Singleton fuzzy models

In Mamdani models, each fuzzy rule is of the form:
Ri: If x1 is Ai1 and . . . and xn is Ain then y is B

In Takagi-Sugeno models, each fuzzy rule is of the form:
Ri: If x1 is Ai1 and . . . and xn is Ain then y is

∑n
i=1 aixi + C

whereas for Singleton model, each fuzzy rule is of the form:
Ri: If x1 is Ai1 and . . . and xn is Ain then y is C

where, x1, . . . , xn are the input variables and y is the output variable,
Ai1, . . . , Ain, B are the linguistic values of the input and output variables
in the i-th fuzzy rule and C is a constant. Infact Singleton fuzzy model can
seen as a special case of Takagi-Sugeno model, when ai = 0. The input and

7 Particle Swarm for Fuzzy Models Identification 153

output variables take their values in their respective universes of discourse
or domains. Identification of Mamdani and Singleton fuzzy models has been
considered in this chapter.

7.3.2 Fuzzy Model Identification Problem

Fuzzy modeling or fuzzy model identification is the task of identifying the
parameters of fuzzy inference system so that a desired behaviour is achieved.
Generally, the problem of fuzzy model identification includes the following
issues [6][7]:

• Selecting the type of fuzzy model
• Selecting the input and output variables for the model
• Identifying the structure of the fuzzy model, which includes the determi-

nation of number and types of membership functions for the input and
output variables and the number of fuzzy rules

• Identifying the parameters of antecedent and consequent membership func-
tions

• Identifying the consequent parameters of the fuzzy rulebase

Some commonly used techniques for creating fuzzy models from the avail-
able input-output data are Genetic Algorithms [8][9][10][11][12], Fuzzy c-
means (FCM) clustering algorithm [13][14], Neural Networks [6] and Adaptive
Neuro Fuzzy Inference System model (ANFIS)[15][16].

7.4 A Methodology for Fuzzy Models Identification
through PSO

Fuzzy model identification can be considered as an optimization process where
part or all of the parameters of a fuzzy model constitute the search space. Each
point in the search space corresponds to a fuzzy system i.e. represents mem-
bership functions, rule-base and hence the corresponding system behaviour.
Given some objective/fitness function, the system performance forms a hy-
persurface and designing the optimal fuzzy system is equivalent to finding the
optimal location on this hypersurface. The hypersurface is generally found to
be infinitely large, nondifferentiable, complex, noisy, multimodal and decep-
tive [12], which make evolutionary algorithms very suitable for searching the
hypersurface than the traditional gradient-based methods. PSO algorithms
like GAs have the capability to find optimal or near optimal solution in a
given complex search-space and can be used to modify/learn the parameters
of fuzzy model. The methodology to identify the optimal fuzzy models using
PSO as an optimization engine is shown in Fig. 7.2.

An optimization problem can be represented as a tuple of three compo-
nents as represented in Fig. 7.3 and explained below:

154 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

NoYes

Objective
Optimal Fuzzy Model

Identification from the
available data

Optimization engine
PSO searches

for the fuzzy model
parameters

Defining
Fitness/Objective
function and the

constraints

Fitness
Evaluation

Termination Criteria
met?

END6

1 2 3

45

Fig. 7.2. Optimal fuzzy model identification using PSO as an optimization engine

• Solution Space – The first step in the optimization step is to pick up the
variables to be optimized and define the domain/range in which to search
for the optimal solutions.

• Constraints – It is required to define a set of constraints which must be
followed by the solutions. Solutions not satisfying constraints are invalid
solutions.

• Fitness/Objective Function – The fitness/objective function represents
the quality of each solution and also provides a link between the optimiza-
tion algorithm and the problem under consideration.

Optimization
Process

Variables and their
domains

Constraints
Fitness/Objective

Function

Fig. 7.3. Representation of optimization process

The objective of optimization problem is to look for the values of the vari-
ables being optimized, that satisfy the defined constraints, which maximizes
or minimizes the fitness function. Hence, it is required to define the solution
space, constraints and the fitness function when using PSO for the identifica-
tion of optimal fuzzy models.

7 Particle Swarm for Fuzzy Models Identification 155

In this chapter, we have used Mean Square Error (MSE) defined in (7.3)
as fitness/objective function for rating the fuzzy models.

MSE =
1
N

N∑

k=1

[y(k) − ȳ(k)]2 (7.3)

where,

y(k)– desired output
ȳ(k)– actual output of the model
N– number of data points taken for model validation

A very important consideration is to completely represent a fuzzy system
by a particle, and for this, all the needed information about the rule-base
and membership functions is required to be specified through some encoding
mechanism. It is also suggested to modify the membership functions and rule-
base simultaneously, since they are codependent in a fuzzy system [12]. In this
chapter, the methodology for identification of fuzzy models through PSO has
been presented for three different cases, the details of which are provided in
Table 7.1.

For the purpose of fuzzy model encoding, consider a multi-input single-
output (MISO) system with n number of inputs. The number of fuzzy sets
for the inputs are m1, m2, m3,. . . , mn respectively. In this chapter, we have
considered only MISO fuzzy models, as multi-input multi-output (MIMO)
models can be constructed by the parallel connection of several MISO models.

Table 7.1. Different Cases for Fuzzy Models Identification

Parameters modified MF parameters MF type Rule consequents Rule-set
through PSO

Case I Yes No Yes No
Case II Yes Yes Yes No
Case III Yes Yes Yes Yes

7.4.1 Case I - Parameters Modified: MF parameters, rules
consequents. Parameters not Modified: MF type, rule-set

Following assumptions have been made for encoding:

• Fixed numbers of triangular membership functions were used for both in-
put and output variables with their centres fixed and placed symmetrically
over corresponding universes of discourse.

• First and last membership functions of each input and output variable
were represented with left- and right-skewed triangles respectively.

156 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

• Complete rule-base was considered, where all possible combinations of
input membership functions of all the input variables were considered for
rule formulation.

• Overlapping between the adjacent membership functions for all the vari-
ables was ensured through some defined constraints.

Encoding Mechanism (Membership functions)

Consider a triangular membership function and let parameters xl
k, xc

k and
xr

k represents the coordinates of left anchor, cortex and right anchor of kth

linguistic variable as shown in the Fig. 7.4.

xk
c

1

0
xk

rxk
l

Fig. 7.4. Characteristics of a triangular membership function

A straightforward way to characterize this membership function is by
means of 3-tuple (xl

k, xc
k, xr

k). Therefore, particle carrying details about the
parameters of the membership functions of all the input and output variables
can be represented as follows:

(xl
1, xc

1, xr
1, xl

2, xc
2, xr

2 , xl
n, xc

n, xr
n, xl

n+1, xc
n+1, xr

n+1)

The index n+1 is associated with the membership functions of the output
variable.

It was ensured that following constraints are followed by every member-
ship function of input and output variables.

xl
k < xc

k < xr
k

7 Particle Swarm for Fuzzy Models Identification 157

At the same time, the overlapping between the adjacent membership func-
tions was also ensured by defining some additional constraints. Let’s assume
that a variable is represented by three fuzzy sets as in Fig. 7.5, then those ad-
ditional constraints to ensure overlapping can be represented by the following
inequality.

xmin ≤ xl
2 < xr

1 < xl
3 < xr

2 ≤ xmax

where, xmin and xmax are the minimum and maximum values of the vari-
able respectively.

1

0

Parameters to be modified

Fixed

xmin xmax

Fig. 7.5. Representation of a variable with 3 membership functions with centre of
each membership function fixed and overlapping between the adjacent membership
functions

The dimensions of the particle representing Mamdani fuzzy model can
be worked out from Fig. 7.5, which represents the membership functions for
any one of the input/output variables with three membership functions. Thus,
four dimensions are required for each variable, which are to be modified during
PSO run. The representation can be generalized to (7.4).

Particle Size = 2mi − 2 (7.4)

Thus the particle size for representing the membership functions of input
and output variables for a Mamdani model is given by (7.5).

158 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

Particle Size (for membership functions) =
n+1∑

i=1

(2mi − 2) (7.5)

where,

n– number of input variables
mi– number of fuzzy sets for i-th input and the index n+1 corresponds to the

membership functions of the output variable.

Encoding Mechanism (Fuzzy Rules)

Considering the complete rule base, the particle size required for its represen-
tation is given by (7.6).

Particle Size (for rule base) =
n∏

i=1

mi (7.6)

Thus, the particle size required for representing the complete Mamdani
fuzzy model can be calculated through (7.7), obtained by adding (7.5) and
(7.6).

Particle Size (Mamdani Model) =
n+1∑

i=1

(2mi − 2) +
n∏

i=1

mi (7.7)

If Singleton fuzzy model is considered with possible t number of consequent
singleton values, then the particle dimensions required for representing this
model can be obtained from (7.7) after a little modification and is represented
by (7.8).

Particle Size (Sugeno Model) =
n∑

i=1

(2mi − 2) + t +
n∏

i=1

mi (7.8)

A particle representing a fuzzy model whose membership function parame-
ters of input/output variables and rule consequents can be modified through
PSO algorithm is shown in Fig. 7.6.

7.4.2 Case II - Parameters Modified: MF parameters, MFs type,
rules consequents. Parameters not Modified: rule-set

The suggested methodology can be extended to increase the flexibility of
search by incorporating additional parameters so as to execute the search
for optimal solutions in terms of types of membership functions for each vari-
able. Particle representing fuzzy model and implementing this approach is
shown in Fig. 7.7.

7 Particle Swarm for Fuzzy Models Identification 159

Fig. 7.6. Representation of a fuzzy model by a particle

Fig. 7.7. Particle representing Mamdani fuzzy model corresponding to Case II,
where MF parameters, MF types and rule consequents can be modified through
PSO Algorithm

For such an implementation, the expression for particle size for encoding
Mamdani fuzzy model would be as in (7.9).

Particle Size (Mamdani Model) = 3
n+1∑

i=1

mi +
n∏

i=1

mi (7.9)

The corresponding expression for the particle size to encode Singleton
fuzzy model would be as given in (7.10).

Particle Size (Sugeno Model) = 3
n∑

i=1

2mi + t +
n∏

i=1

mi (7.10)

In Fig. 7.7, each membership function is represented by three dimensions
representing the start value, end value and the type of membership function
like sigmodial, triangular etc. Like Case 1, complete rule-base has been con-
sidered here.

160 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

7.4.3 Case III - Parameters Modified: MF parameters, MFs type,
rules consequents, rule-set

The methodology can be further extended so as to modify the rule-base also.
For this implementation, the particle size for encoding Mamdani fuzzy model
and Singleton fuzzy models would be as in (7.11) and (7.12).

Particle Size (Mamdani Model) = 3
n+1∑

i=1

mi + 2
n∏

i=1

mi (7.11)

Particle Size (Sugeno Model) = 3
n∑

i=1

2mi + t + 2
n∏

i=1

mi (7.12)

Particle representing fuzzy model, where the MF parameters, MF type and
rule-base can be modified through PSO is shown in Fig. 7.8. Two dimensions
have been reserved for each rule, one representing the consequent value and
other a flag. If the rule flag is ’1’, the rule is included, and for ’0’, it won’t be
part of the rule-base.

Fig. 7.8. Particle representing Mamdani fuzzy model corresponding to Case III,
where MF parameters, MF types, rule consequents and rule-set can be modified
through PSO Algorithm

Let’s consider a system with two-inputs and single output. If we further
consider that each input and output variable for this system is represented by
three fuzzy sets, and five possible consequent values for the Singleton model,
then the particle size for Mamdani and Singleton fuzzy models corresponding
to Case II has been worked out as in (7.13) and (7.14) obtained from (7.9)
and (7.10) respectively as below.

7 Particle Swarm for Fuzzy Models Identification 161

Particle Size (Mamdani Model) = 3
n+1∑

i=1

mi+
n∏

i=1

mi = 3∗[3+3+3]+3∗3 = 36

(7.13)

Particle Size (Sugeno Model) = 3
n∑

i=1

2mi+t+
n∏

i=1

mi = 3∗[3+3]+5+3∗3 = 32

(7.14)
Similarly, the particle dimensions for the three cases considered can be

calculated from the corresponding equations developed and are listed in Table
7.2.

Table 7.2. Particle size for three different cases defined in Table 7.1

Case/Model Mamdani Singleton

Case I 21 22
Equation(7.7) Equation(7.8)

Case II 36 32
Equation(7.9) Equation(7.10)

Case III 45 41
Equation(7.11) Equation(7.12)

The methodology for the identification of fuzzy model through PSO algo-
rithm is represented as a flowchart in Figure 7.9.

7.5 Simulation Results

The proposed methodology has been applied for identification of fuzzy mod-
els for the rapid Nickel-Cadmium (Ni-Cd) battery charger, developed by the
authors [17]. Based on the rigorous experimentation with the Ni-Cd batteries,
it was observed that the two input variables used to control the charging rate
(Ct) are absolute temperature of the batteries (T) and its temperature gradi-
ent (dT/dt). Charging rates are expressed as multiple of rated capacity of the
battery, e.g. C/10 charging rate for a battery of C=500 mAh is 50 mA [18].
From the experiments performed, input-output data was tabulated and that
data set consisting of 561 points is available at http://research.4t.com. The
input and output variables identified for rapid Ni-Cd battery charger along
with their universes of discourse are listed in Table 7.3.

The toolbox viz. PSO Fuzzy Modeler for Matlab introduced in this chap-
ter, the details and implementation of which are presented in the next chapter
has been used for the identification of Mamdani and Singleton fuzzy models

162 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

N

Y

Get Vstep for the
Swarm

[Equations (1) & (2)]

Get new position of
Swarm,

Iteration=Iteration+1

Optimized
Fuzzy Model

Max
Iteration

?

Create Initial
Population

Start

Initialize Strategy
Parameters,
Iteration=0

Apply Constraints to
every Particle

Evaluate and
Calculate MSE

Stop

Build Fuzzy System
from each Particle

Fig. 7.9. Methodology for fuzzy models identification through PSO

7 Particle Swarm for Fuzzy Models Identification 163

Table 7.3. Input and output variables alongwith their universes of discourse

Input Variables Universe of Discourse

Temperature (T) 0 − 50oC
Temperature Gradient (dT/dt) 0 − 1(oC/sec)

Output Variable Universe of Discourse

Charging Rate (Ct) 0 − 8C

from the data. The strategy parameters of PSO algorithm used for the iden-
tification of both the models are listed in Table 7.5 and the simulation results
obtained are presented in Table 7.5. Centre of Gravity and Weighted Average
defuzzification techniques[7] were selected for Mamdani and Singleton fuzzy
models respectively.

Simulation results presented in Table 7.5 clearly depict the effectiveness of
the proposed methodology and its implementation, as considerable improve-
ment in the performance of fuzzy models was achieved after the complete run
of PSO algorithm. More simulation time for Mamdani fuzzy model can be
attributed to more complicated, time-consuming defuzzification process.

Table 7.4. Strategy parameters of PSO algorithm for fuzzy models identification

Swarm Size 30
Iterations 2500
c1 2
c2 2
wstart(Inertia weight at the start of algorithm) 0.9
wend(Inertia weight at the end of algorithm) 0.3
Vmax 75

Table 7.5. Simulation Results

Experiment Model MSE of Fuzzy System Corresponding Simulation time
to Swarm’s gbest

After 1st Iteration After 2500 Iterations

E1 Mamdani 12.10 0.0488 19.424 hours

E2 Singleton 46.95 0.1118 16.633 hours

164 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

7.6 Selection-based PSO with Lifetime Parameter

A new selection-based variant of PSO algorithm, where a new parameter called
lifetime is introduced, has been proposed by the authors[19]. Lifetime can
be considered analogous to the time-frame generally provided to inefficient
workers to improve their performance. In most organizations, non-performing
workers are given sufficient opportunities before they are removed from their
positions. Then the vacant positions are filled by new incumbents with the
hope that they will perform better than their predecessors. In many cases such
poor performing workers are able to show performance improvements within
the allocated time-frame. In PSO also, a particle with poor fitness value may
be able to improve its performance after a few iterations and emerge better
than other particles. Angeline, in his work [20] suggested that after every
iteration, worst half of the swarm be eliminated and the remaining half be
duplicated, with the pbests of the destroyed particles retained. Angeline’s
approach kills diversity and can lead to premature convergence of PSO. If
some particles are able to locate a reasonable minimum, the other half of the
swarm would be pulled into the basin of same local minimum and this is going
to jeopardize the ability of the algorithm to explore large regions of search
space, thus preventing it from finding the global minimum. Moreover, since
the poor performing particles are destroyed after every iteration, they do not
get an opportunity to improve their performance. In the suggested approach,
the decision of destroying the worst particle is taken only after fixed number
of iterations, defined by lifetime.

The suggested approach is illustrated in Fig. 7.10, where for the purpose of
illustration, a two-dimensional system with swarm size of 5 is taken. Fig. 7.10
depicts the situation when the condition defined in (7.15) is satisfied, which
implies that the particles have lived their lives and are ready for scrutiny.
Assume that at that instance, particle #5 is having the worst fitness value
and hence shall be destroyed and new particle is generated in the vicinity
of one of the remaining particles chosen through some selection method. In
our work, we have used Roulette Wheel Selection [21]. Again it is assumed
that particle #2 was chosen. A new particle is generated with co-ordinates of
particle #2 and pbest of particle #5. This particle is then pushed to place it
in the vicinity of the chosen particle by some random push.

rem(
Iteration − number

lifetime
) = 0 (7.15)

The proposed variant was tested on three benchmark functions viz. Rosen-
brock, Rastrigrin and Griewank. All these three functions have known global
minimum equal to zero. The parameters of the PSO were chosen to match
the experimental setup adopted by Eberhart and Kennedy in [22]. The val-
ues of cognitive and social acceleration parameters, c1 and c2, were kept at
2 for all the experiments. The weight factor was linearly decreased from 0.9
down to 0.4 as the PSO progressed [22]. The velocity-limiting factor, Vmax,

7 Particle Swarm for Fuzzy Models Identification 165

Particle 5 to be
destroyed

1 3

4 5

1 3

4

2525

Fig. 7.10. Illustration of the Proposed Approach

was also applied and the values corresponding to each of the functions are
shown in Table 7.6 along with the various parameters specific to the proposed
model.The particles were initialized asymmetrically [22] and the initialization
ranges for the three functions are given in Table 7.7. The three test functions
were tested with swarm sizes of 20, 40, and 80. For each of these cases, the
dimensions were kept at 10, 20, and 30.

Table 7.6. Parameters for Experiments

Function Vmax = Xmax Lifetime

Rosenbrock 100 5
Rastrigrin 10 5
Griewank 600 5

Table 7.7. Asymmetric Initialization Ranges

Function Initialization

Rosenbrock 15-30
Rastrigrin 2.56-5.12
Griewank 300-600

Table 7.8, Table 7.9 and Table 7.10 present the results of these experiments
that have been reproduced from [19]. Each of the value is the arithmetic mean
of the results of fifty experimental runs. The performance of proposed selec-
tion based PSO with respect to weighted-PSO as defined by (7.1) and (7.2)
is compared by defining performance index, which is the ratio of fitness value

166 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

with the weighed-PSO to the fitness value obtained with the new variant. Per-
formance index with value >1 reflects improvement and with value <1 implies
deterioration. The comparison of the proposed model with the weighted-PSO
reveals that the proposed model performs better for 19 out of 27 instances
(slightly more than 70%). The results were especially encouraging for the Ras-
trigrin function.

Table 7.8. Mean Fitness Values for the Rosenbrock function

Population Size Dimension Generations weighted-PSO New variant Performance Index

20 10 1000 96.1715 23.1781 4.14924
20 1500 214.6764 163.77442 1.3108054
30 2000 316.4468 708.39632 0.4467087

40 10 1000 70.2139 11.97317 5.8642699
20 1500 180.9671 95.27461 1.8994263
30 2000 299.7061 208.98225 1.4341223

80 10 1000 36.2945 6.47493 5.6053888
20 1500 87.2802 112.49097 0.7758863
30 2000 205.5596 4110.1555 0.0500126

Table 7.9. Mean Fitness Values for the Rastrigrin function

Population Size Dimension Generations weighted-PSO New variant Performance Index

20 10 1000 5.5572 3.93286 1.4130175
20 1500 22.8892 15.91088 1.4385879
30 2000 47.2941 37.00899 1.2779084

40 10 1000 3.5623 3.04654 1.1692937
20 1500 16.3504 10.75156 1.5207468
30 2000 38.525 24.48231 1.5735852

80 10 1000 2.5379 3.10427 0.8175513
20 1500 13.4263 9.47426 1.4171344
30 2000 24.0864 19.39997 1.2415689

The methodology for the fuzzy models identification through PSO that
was proposed in Section 7.4 was extended to identify Mamdani fuzzy model
by following Angeline approach [20] represented in the form of flowchart in
Fig. 7.11. Angeline suggested destroying 50% of the worst performing particles
after every iteration. Same set of strategy parameters as listed in Table 7.5
were used for this approach. Some simulations were carried out by slightly
modifying Angeline approach, where the number of particles to be destroyed

7 Particle Swarm for Fuzzy Models Identification 167

Table 7.10. Mean Fitness Values for the Griewank function

Population Size Dimension Generations weighted-PSO New variant Performance Index

20 10 1000 0.0919 0.0213 4.314554
20 1500 0.0303 0.04918 0.6161041
30 2000 0.0182 0.42825 0.0424985

40 10 1000 0.0862 0.01483 5.8125421
20 1500 0.0286 0.02122 1.3477851
30 2000 0.0127 0.0328 0.3871951

80 10 1000 0.076 0.01724 4.4083527
20 1500 0.0288 0.02237 1.2874385
30 2000 0.0128 0.01352 0.9467456

after every iteration was varied. The experiment details and results are listed
in Table 7.11.

Table 7.11. Experiment details and results (E3-E6)

Experiment Number of Particles to be MSE of Fuzzy Model corresponding to
No. destroyed after every iteration Swarm’s gbest after 2500 iterations

E3 15 (Angeline approach) 0.1219
E4 10 0.047357
E5 5 0.047296
E6 2 0.041834

The convergence plots for these experiments (E1, E3-E6) for identifying
Mamdani models are as shown in the Fig. 7.12.

The methodology for the fuzzy models identification through PSO was fur-
ther extended through incorporating lifetime parameter which is represented
as a flowchart in Fig. 7.13. The details of these experiments and simulation
results are provided in Table 7.12 and the convergence plots for these experi-
ments are shown in Figure 7.14.

Table 7.12. Experiment details and results (E7-E9)

Experiment Lifetime MSE of Fuzzy Model
No. (Worst performing particle corresponding to Swarm’s

to be destroyed after lifetime) gbest after 2500 iterations

E7 5 0.041825
E8 10 0.042363
E9 25 0.042395

168 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

N

Y

Get Vstep for the
Swarm

Optimized
Fuzzy Model

Create Initial
Population

Start

Initialize Strategy
Parameters,
Iteration=0

Apply Constraints to
every Particle

Evaluate and
Calculate MSE

Stop

Build Fuzzy System
from each Particle

Rank Particles on the basis
of fitness

Select the bottom half of
particles

Max
Iteration?

Copy the current positions
of top half particles on to the
positions of bottom half
particles, while preserving
the pbest values

Get new position of
Swarm,

Iteration=Iteration+1

Fig. 7.11. Methodology for fuzzy models identification through PSO with Angeline
approach

7 Particle Swarm for Fuzzy Models Identification 169

0 500 1000 1500 2000 2500
0

5

10

15

Iterations

M
S

E
0 500 1000 1500 2000 2500

0

5

10

15

Iterations

M
S

E

0 500 1000 1500 2000 2500
0

5

10

15

Iterations

M
S

E

0 500 1000 1500 2000 2500
0

5

10

15

Iterations

M
S

E

0 500 1000 1500 2000 2500
0

5

10

15

Iterations

M
S

E

 E3

 E4 E5

 E6

E1

Fig. 7.12. Convergence Plots for experiments E1 and E3-E6

6.1 Analysis of Simulation results

When weighed-PSO was used, as in E1, the end solution quality was good,
where a MSE of 0.0488 was obtained after 2500 iterations, but the rate of
convergence was very poor. The swarm was able to locate the promising basin
(region) only after 2200 iterations.

Followong Angeline approach, as in E3, where 15 (50%) of the particles
were destroyed, a very fast convergence was achieved, but the end quality
solution was poor. After the complete PSO run, MSE of 0.1219 was reached.
Thus, the approach verifies the viewpoint that Angeline approach reduces the
diversity and converges quickly to some local minima.

When the number of particles that were destroyed after every iteration
was reduced, as in E4-E6, the end results obtained were quite comparable.
But for experiments E4 and E5, the convergence rate was good, where the
number of particles destroyed after every iteration was 10 (33.33%) and 5
(16.67%) respectively. For E6, where only 2 (6.67%) particles were destroyed
after every iteration, the convergence suffered. The results suggest that in
order to achieve both good accuracy and convergence simultaneously, less
than 50% of particles should be destroyed and this number should not be
close to the two extremes: 0%, which represents that no particle is destroyed
(experiment E1: poor convergence, good accuracy) and 50%, that represents
Angeline approach (experiment E3: good convergence, poor accuracy).

Experiments E7-E9 was carried out after incorporating the lifetime para-
meter as discussed in this chapter earlier, where after the lifetime only the
worst performing particle is destroyed. For these experiments, for all values of
lifetime, the end results were comparable. In E7, for a lifetime of 5, the end

170 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

YN

Y

Get Vstep for the
Swarm

Optimized
Fuzzy Model

Create Initial
Population

Start

Initialize Strategy
Parameters,
Iteration=0

Apply Constraints to
every Particle

Evaluate and
Calculate MSE

Stop

Build Fuzzy System
from each Particle

Get new position of
Swarm,

Iteration=Iteration+1

Y
N

N

Rank Particles on the
basis of fitness

Destroy the worst
performing particle

Generate one particle
in the vicinity of
another particle

selected from the
remaining particles

rem (Iteration,
Lifetime)=0

Max
Iteration

?

Fig. 7.13. Methodology for fuzzy models identification through PSO with Lifetime
parameter

7 Particle Swarm for Fuzzy Models Identification 171

0 500 1000 1500 2000 2500
0

5

10

15

Iterations

M
S

E

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Iterations

M
S

E
0 500 1000 1500 2000 2500

0

2

4

6

8

10

12

Iterations

M
S

E

E7 E8

E9E9

Fig. 7.14. Convergence Plots for experiments E7-E9

solution was not only superior to all the earlier experiments, but a reasonably
good convergence was obtained. Another point to note here is that the con-
vergence for E7 was quite superior to E8 and E9, where lifetime values of 10
and 20 respectively was used. Therefore, selection of suitable value of lifetime
can help in achieving both; good convergence and accuracy.

7.7 Conclusions and Future Work

In this chapter, the use of PSO algorithm for identification of optimized fuzzy
model from the available input-output data is presented. The suggested ap-
proach has been implemented as a Matlab toolbox viz. PSO Fuzzy Modeler
for Matlab that has been presented in the next chapter. All the simulation
results reported in this chapter have been obtained using this toolbox and
that clearly demonstrates the ability of PSO algorithm for fuzzy models iden-
tification. The data from the rapid Ni-Cd battery charger developed by the
authors was used for the presentation and validation of the approach.

Simulation results were also reported based on the selection based PSO-
variant with lifetime parameter which suggests that the accuracy and conver-

172 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

gence can be improved by selecting appropriate values of lifetime parameter
and the number of particles to be destroyed.

For all the experiments carried out in this chapter, the swarm size and
the number of iterations were kept fixed and it would be worthwhile to in-
vestigate the influence of these parameters and trying other PSO variants
suggested by different researchers with an objective to achieve good accuracy
and convergence. Some of the representative PSO variants are [23][24][25].

Two broad variants of PSO algorithm viz. gbest and lbest have been devel-
oped. The gbest model maintains only a single best solution and each particle
moves towards its previous best position and towards the best particle in the
entire swarm. On the other hand, in the lbest model, each particle moves
towards its previous best position and also towards the best particle in its
restricted neighborhood. It is important to note that the gbest model is ac-
tually a special case of lbest model, when the neighborhood size becomes
equal to swarm size. In this chapter, we have used the gbest model for fuzzy
model identification. The future work would be to incorporate lbest model in
the methodology used for fuzzy models identification and also to try various
neighborhood topologies in lbest model.

One of the important future trends is going to focus on augmenting fuzzy
modeling with learning and adaptation methodologies based on integration of
PSO and other techniques into a hybrid framework.

Another direction for the future work could be applying this methodology
for other fields and applications.

References

1. Reynolds CW (1987) Flocks, herds and schools: A distributed behavioral model.
Computer Graphics. pp. 25-34.

2. Kennedy J, Eberhart R (2001) Swarm Intelligence. Morgan Kaufmann.
3. Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of

IEEE Conference on Neural Networks. Perth, Australia. pp. 1942-1948.
4. Eberhart RC, Shi Y (2001) Particle Swarm Optimization: Developments, Ap-

plications and Resources. Proceedings of the Congress on Evolutionary Compu-
tation, Seoul, Korea. pp. 81-86.

5. Parsopoulos KE, Vrahatis MN (2002) Recent Approaches to Global Opti-
mization Problems through Particle Swarm Optimization. Natural Computing,
Kluwer Academic Publishers. pp.235–306.

6. Hellendoorn H, Driankov D (Eds.) (1997) Fuzzy Model Identification - Selected
Approaches. Springer-Verlag.

7. Yen J, Langari R (2003) Fuzzy Logic - Intelligence, Control and Information.
Pearson Education, Delhi.

8. Bastian A (1996) A Genetic Algorithm for Tuning Membership Functions.
Fourth European Congress on Fuzzy and Intelligent Technologies EUFIT(96).
Aachen, Germany. pp. 494-498.

9. Carse B, Fogarty TC, Munro A (1996) Evolving Fuzzy Rule-based Controllers
using GA. Fuzzy Sets and Systems. pp.273-294.

7 Particle Swarm for Fuzzy Models Identification 173

10. Nelles O (1996) FUREGA–Fuzzy Rule Extraction by GA. Fourth European
Congress on Fuzzy and Intelligent Technologies EUFIT(96). Aachen, Germany.
pp. 489-493.

11. Nozaki K, Morisawa T, Ishibuchi H (1995) Adjusting Membership Functions in
Fuzzy Rule-based Classification Systems. Third European Congress on Fuzzy
and Intelligent Technologies, EUFIT(95). Aachen, Germanyvo. pp. 615-619.

12. Shi Y, Eberhart RC, Chen Y (1999) Implementation of Evolutionary Fuzzy
Systems. IEEE Transactions on Fuzzy Systems. pp. 109-119.

13. Setnes M, Roubos JA (1999) Transparent Fuzzy Modelling using Clustering
and GAs. North American Fuzzy Information Processing Society (NAFIPS)
Conference. New York, USA. pp.198-202.

14. Khosla A, Kumar S, Aggarwal KK (2003) Identification of Fuzzy Controller
for Rapid Nickel-Cadmium Batteries Charger through Fuzzy c-means Cluster-
ing Algorithm. Proceedings of North American Fuzzy Information Processing
Society (NAFIPS) Conference. Chicago, USA. pp. 536-539.

15. Melin P, Castillo O (2005) Intelligent Control of a Stepping Motor Drive using
an Adaptive Neuro-Fuzzy Inference System. Information Sciences. pp 133-151.

16. Khosla A, Kumar S, Aggarwal KK (2003) Fuzzy Controller for Rapid Nickel-
Cadmium Batteries Charger through Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) Architecture. Proceedings of North American Fuzzy Information
Processing Society (NAFIPS) Conference. Chicago, USA. pp. 540-544.

17. Khosla A, Kumar S, Aggarwal KK (2002) Design and Development of RFC-
10: A Fuzzy Logic Based Rapid Battery Charger for Nickel-Cadmium Batteries.
HiPC (High Performance Computing) Workshop on Soft Computing. Bangalore,
India. pp. 9-14.

18. Linden D (Editor-in-Chief)(1995) Handbook of Batteries, McGraw Hill Inc.
19. Aggarwal KK, Kumar S, Khosla A, Singh J (2003) Introducing Lifetime Parame-

ter in Selection Based Particle Swarm Optimization for Improved Performance.
First Indian International Conference on Artificial Intelligence (IICAI-03). Hy-
derabad, India. pp. 1175-1181.

20. Angeline PJ (1998) Using selection to Improve Particle Swarm Optimization.
Proceedings of IEEE International Congress on Evolutionary Computation. pp.
84-89.

21. Man KF, Tang KS, Kwong S (1999) Genetic Algorithms – Concepts and Designs.
Springer-Verlag, London.

22. Shi Y, Eberhart RC (1999) Empirical Study of Particle Swarm Optimization.
Proceedings of Congress on Evolutionary Computation. pp. 1945-1950.

23. Eberhart RC, Kennedy J (1995) A New Optimizer Using Particle Swarm Theory.
Proceedings of Sixth Symposium on Micro Machine and Human Science. IEEE
Service Centre, Piscataway, NJ. pp 39-43.

24. Shi Y, Eberhart RC (2001) Fuzzy Adaptive Particle Swarm Optimization. IEEE
International Conference on Evolutionary Computation. pp. 101-106.

25. Xie X-F, Zhang W-J, Yang Z-L (2002) Adaptive Particle Swarm Optimiza-
tion on Individual Level. 6th International Conference on Signal Processing. pp.
1215-1218.

8

A Matlab Implementation of Swarm
Intelligence based Methodology for
Identification of Optimized Fuzzy Models

Arun Khosla1, Shakti Kumar2, K.K. Aggarwal3, and Jagatpreet Singh4

1 National Institute of Technology, Jalandhar – 144011, India.
khoslaak@nitj.ac.in

2 Haryana Engineering College, Jagadhari – 135003, India.
3 GGS Indraprastha University, Delhi – 110006, India. kka@ipu.edu
4 Infosys Technologies Limited, Chennai – 600019, India. jagatpreet@yahoo.com

This chapter presents a Matlab toolbox viz. PSO Fuzzy Modeler for Matlab.
The toolbox implements the fuzzy model identification procedure using PSO
as an optimization engine, which was presented in the previous chapter. This
toolbox provides the features to generate Mamdani and Singleton fuzzy mod-
els from the available data. The simulation results presented in the previous
chapter have been obtained through this toolbox, which is freely distributed
on SourceForge.net. SourceForge.net is the world’s largest development and
download repository of open-source code and applications. This toolbox can
serve as a valuable reference to the swarm intelligence community and oth-
ers and help them in designing fuzzy models for their respective applications
quickly.

8.1 Introduction

During the last decade, several scientific languages like Matlab, Mathematica
and Modelica have become very popular for both research and educational
purposes, but out of these, Matlab is the most popular choice. Matlab is a
high-level technical computing language and environment for computation,
visualization and programming [1] and is equally popular in academia and
industry. Matlab toolbox, which is a collection of Matlab functions, helps in
extending its capabilities to solve problems related to some specific domain.
Some of the areas in which toolboxes are available include signal processing,
image processing, control systems, neural networks, fuzzy logic, wavelets and
many others [2]. In this chapter, we present PSO Fuzzy Modeler for Matlab, a

A. Khosla et al.: A Matlab Implementation of Swarm Intelligence based Methodology for

Identification of Optimized Fuzzy Models, Studies in Computational Intelligence (SCI) 26,

175–184 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

176 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

toolbox that implements the swarm intelligence based methodology presented
in the previous chapter [3] for the identification of optimized fuzzy models by
using PSO algorithm.

This chapter is organized as follows. All the Matlab functions that consti-
tute the toolbox presented in this chapter are introduced in Section 8.2. The
role of each of the implemented functions has been described in this section.
Section 8.3 presents conclusions and future work directions for enhancing the
performance and capabilities of this toolbox.

8.2 PSO Fuzzy Modeler for Matlab

All functions for this toolbox have been developed using Matlab with the
Fuzzy Logic toolbox [4] and are listed in Table 8.1. The role of each of the
implemented function is explained below in the context of methodology that
was presented in the previous chapter to identify fuzzy models using PSO
algorithm as an optimization engine [3]. Fig. 8.1 shows the organization of
different modules of the Matlab functions that implements the methodology.

Table 8.1. List of Matlab functions

(i) RandomParticle

(ii) limitSwarm

(iii) limitParticle

(iv) limitMembershipFunctions

(v) limitRules

(vi) GetFIS

(vii) calculateMSE

(i) RandomParticle – To begin searching for the optimal solution in the
search-space, each particle begins from some random location with a ve-
locity that is random both in magnitude and direction. The role of this
function is to generate such random particles representing the fuzzy mod-
els in the search-space. The particle dimensions equal the search-space
dimensions and the number of particles is as defined by the swarm size.

(ii) limitSwarm – This function calls another function limitParticle for each
particle of the swarm.

(iii) limitParticle – It is important to always ensure that the particles are
confined to the search-space and represent feasible solutions. There are
possibilities that during the movement of the swarm, some particles may

8 A Matlab Implementation of Swarm Intelligence for Fuzzy Models 177

limitSwarm, limitParticle, limitMFs, limitRules GetFIS

Limit Particle #1

Limit Particle #2

………

Limit Particle #N

Particle #1

Particle #2

………

Particle #N

randomParticle

Experimental
Data

Calculate
MSE

Fuzzy
Model

#2

Fuzzy
Model

#1

Fuzzy
Model

#N

Limit MFs

Limit Rules

Calculate
MSE

PSO Algorithm

Optimized
Fuzzy Model

Particle
#1

Particle
#N

Particle
#2

Build Fuzzy Model for each
Particle of the Swarm

N – Swarm Size
MF – Membership Function
MSE – Mean Square Error

Calculate
MSE

Fig. 8.1. Matlab toolbox modules

move out of the bounds defined by the system constraints. It is therefore
necessary to constrain the exploration to remain inside the valid search-
space. Thus, all the particles in the swarm are scrutinized after every
iteration to ensure that they represent only valid solutions. To illustrate
this, consider that the search-space is three-dimensional represented by
a cube as shown in Fig. 8.2(a). During exploration, some particle may
move out of the search-space as shown in Fig. 8.2(b). All such particles
are required to be brought back to the valid search-space by applying

178 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

some limiting mechanism shown in Fig. 8.2(c). The function limitParticle
is further made up of two functions viz. limitMembershipFunctions and
limitRules.

(a)

(b)

(c)

Fig. 8.2. Limiting Mechanism

(iv) limitMembershipFunctions – The role of this function is to ensure
that membership function parameters for every input and output vari-
able are confined within the respective universe of discourse and at the
same time satisfy the constraint defined to ensure overlapping between
the adjacent membership functions. Inequality defining these constraints
as represented in Fig. 7.5 from the previous chapter [3].
Inequality : xmin ≤ xl

2 < xr
1 < xl

3 < xr
2 ≤ xmax

(v) limitRules – For Mamdani and Singlegon fuzzy models, a fuzzy rule
consequent can only refer to one of the membership functions of the output
variable. In other words, it can have possible values equal to the number of
membership functions of output variable. This limiting can be achieved by
using the modulus operator. For example, if there are three membership
functions for the output, mod3 of the consequent values for each fuzzy
rule is calculated. The rule consequent can be represented as (x+R)mod3,
where x=2 and R is a random number and an integer defined as 1 ≤ R ≤ 3.

8 A Matlab Implementation of Swarm Intelligence for Fuzzy Models 179

Since (x+R) can have three possible values of 3, 4 and 5, hence (x+R)mod3
can have three possible values of 0, 1 and 2 that corresponds to the first,
second and third membership function of the output variable respectively.

(vi) GetFIS – Every particle in the search-space is basically representing a
fuzzy model and after every iteration the performance of each fuzzy model
is to be worked out to determine the movement of all the particles in the
swarm. The role of this function is to generate fuzzy inference system (FIS)
from each particle. The Fuzzy Logic Toolbox for Matlab [4] has a structure
that can be easily modified. This flexibility has been used for modifying
the parameters of fuzzy models through PSO. The FIS structure is the
Matlab object that contains all the information about the fuzzy inference
system viz. variables names, membership function definitions, rule base
etc. [4]. The structure is basically a hierarchy of structures as shown in
Fig. 8.3, which can be easily modified by editing its .fis text file. For
example, the parameters of fuzzy model that are being modified by PSO
are represented by the shaded blocks in Fig. 8.3.

Consequent
Parameters

Antecedent
Parameters

Rules Mapping

Inputs

Fuzzy Inference System
(FIS)

Rules

Input #1 Input #2

MF
Parameters

Output

MF
Type

MF
Parameters

MF Type MF
Parameters

Antecedent

Rule
Consequents

… … …

MF
Type

Fig. 8.3. The FIS Structure

(vii) calculateMSE – As discussed earlier in the previous chapter, it is im-
perative to define the fitness/objective function to rate the quality of
solutions during the optimization process. This function calculates after

180 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

every iteration the mean square error (MSE) for each of the fuzzy model
represented by each particle of swarm.

It was mentioned earlier in the chapter that PSO Fuzzy Modeler for Matlab
is hosted on SourceForge.net and is available at [5]. Another toolbox developed
by the authors is PSO Toolbox (for Matlab), which is also hosted on Source-
Forge.net [6]. This toolbox is also a part of PSO Fuzzy Modeler for Matlab
and implements the PSO algorithm. The organization of various modules of
PSO Fuzzy Modeler for Matlab is shown in Fig. 8.4.

PSO Fuzzy Modeler for Matlab

MATLAB functions
Implementing methodology

for
Identifying Fuzzy Models

Data Path

PSO parameters

Optimized fuzzy model
(fis file)

Data

Fuzzy Model Type

PSO Toolbox for Matlab

Graphical User Interface

PSO Fuzzy Modeler for Matlab

Fig. 8.4. Organization of toolbox modules

A graphical user interface (GUI) has also been designed for the user con-
venience and is shown in Fig. 8.5. Authors have also proposed a variant of
PSO algorithm, by introducing another parameter viz. lifetime[7] and in the
previous chapter, we have also presented some simulations results, where this
PSO variant has been used for identification of fuzzy models. The GUI for
the toolbox, where the proposed variant of PSO algorithm has been used is
shown in the Fig. 8.6.

Simulation results can be found Table 7.5 in the previous chapter.
The graphical representation of the input-output battery charger data and

surface plots of the corresponding Mamdani and Singleton fuzzy models iden-
tified through PSO algorithm are shown in the Fig. 8.7. The plots in Fig.
8.7(b) and Fig. 8.7(c) have been obtained by generating the surface views in

8 A Matlab Implementation of Swarm Intelligence for Fuzzy Models 181

Fig. 8.5. PSO Fuzzy Modeler for Matlab GUI

Fuzzy Logic Toolbox for Matlab [4] from the fis files created through PSO
Fuzzy Modeler for Matlab.

8.3 Conclusions and Future Work Directions

In this chapter, a Matlab toolbox viz. PSO Fuzzy Modeler for MATLAB is
presented. The toolbox implements the methodology based on PSO algorithm
for the identification of optimized fuzzy models from the available input-
output data. This GUI based toolbox, which is hosted on SourceForge.net
as an open source initiative, has the capabilities to generate Mamdani and
Singleton fuzzy models from the available data and is going to help the de-
signers build fuzzy systems from their data quickly. The data from the rapid
Ni-Cd battery charger developed by the authors was used for the presentation
and validation of the approach. Simulation results presented in the previous
chapter have been generated through this toolbox and is clearly indicative
of the suggested methodology abilities and its implementation as a Matlab
toolbox.

The parallel nature of evolutionary algorithms requires lot of computa-
tional efforts, which is evident from the simulation time reported in Table

182 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

Fig. 8.6. PSO Fuzzy Modeler for Matlab GUI implementing PSO with lifetime
parameter

YYYY.5 of the previous chapter for the given data. The computer time is
directly proportional to the complexity of the problem under consideration
and for a practical system, the simulation time may run into many days or
even months. Thus, the use of high performance computing resources becomes
a key to obtaining useful answers in acceptable amounts of time. This can be
achieved through cluster computing by employing off-the-shelf hardware and
software systems. A cluster is a group of independent computers working as a
single, integrated computing resource. The cluster computing has become the
paradigm of choice for executing large-scale science, engineering and commer-
cial applications. One of the possible approaches for building such a solution
is through the use of Cornell Multitask Toolbox (CMTM) [8][9], developed by
Cornell Theory Centre to enable Matlab for parallel processing through MPI
(message passing interface) paradigm. Another alternative is to use propri-
etary Matlab toolboxes viz. Distributed Computing Toolbox [10] and Matlab
Distributed Computing Engine [11] recently released by Mathworks. These
toolboxes helps in developing distributed applications in Matlab that can run
on a computer cluster. For both these implementations the toolbox presented
in this paper shall be required to be modified so as to run on the cluster.

8 A Matlab Implementation of Swarm Intelligence for Fuzzy Models 183

(a) Surface plot generated from the input-output data

(b) Surface plot for the identified Mamdani fuzzy model

(c) Surface plot for the identified Singleton fuzzy model

Fig. 8.7. Graphical representation

Two broad variants of PSO algorithm were developed: one with a global
neighborhood called gbest model and the other with local neighborhood known
as lbest model [12]. The gbest model maintains only a single best solution and
each particle moves towards its previous best position and towards the best
particle in the whole swarm. The best particle acts as an attractor, pulling all
the particles towards it. In the lbest model, each particle moves towards its
previous best position and also towards the best particle in its restricted neigh-
borhood and thus maintains multiple attractors. Although the gbest model is

184 Arun Khosla, Shakti Kumar, K.K. Aggarwal, and Jagatpreet Singh

most commonly used, it is vulnerable to premature convergence. The toolbox
presented in this paper is created around the gbest model. One of the future
directions could be to incorporate in the toolbox the lbest model and other
PSO variants suggested [13][14][15].

The toolbox in true sense can be called an open-source only if both the
toolbox and the platform on which the toolbox runs should be free. Since the
Matlab environment is commercial, this may become a hindrance in exchang-
ing ideas and further improvements in the toolbox design from people who
doesn’t use Matlab. One of the important tasks for future would be to develop
such tools/applications in Java or other high level languages so as to make
them platform independent for wider usage, exchange and improvements.

References

1. http://www.mathworks.com
2. http://www.mathworks.com/products/product_listing/index.html
3. Khosla A, Kumar S, Aggarwal KK, Singh J (2006) Particle Swarm for Fuzzy

Models Identification. In: Nadia Nedjah, Luiza Mourelle (Eds.) Swarm Intelli-
gent Systems. Springer-Verlag, Berlin. this book.

4. Jang JSR, Gulley N (1995) Fuzzy Logic Toolbox User’s Guide. The Mathworks
Inc., USA.

5. PSO Fuzzy Modeler for Matlab
http://sourceforge.net/projects/fuzzymodeler

6. PSO Toolbox (for Matlab)
http://sourceforge.net/projects/psotoolbox

7. Aggarwal KK, Kumar S, Khosla A, Singh J (2003) Introducing Lifetime Parame-
ter in Selection based Particle Swarm Optimization for Improved Performance.
First Indian International Conference on Artificial Intelligence, Hyderabad, In-
dia. pp. 1175–1181.

8. www.tc.cornell.edu/Services/Software/CMTM
9. Bekas C, Kokiopoulou E, Gallopoulos E (2005) The design of a distributed

MATLAB-based environment for computing pseusospectra. Future Generation
Computer Systems 21:930–941.

10. http://www.mathworks.com/products/distribtb
11. http://www.mathworks.com/products/distriben
12. Parsopoulos KE, Vrahatis MN (2002) Recent Approaches to Global Opti-

mization Problems through Particle Swarm Optimization. Natural Computing,
Kluwer Academic Publishers. pp.235–306.

13. Eberhart RC, Kennedy J (1995) A New Optimizer Using Particle Swarm Theory.
Proceedings Sixth Symposium on Micro Machine and Human Science. pp. 39–
43.

14. Shi Y, Eberhart RC (2001) Fuzzy Adaptive Particle Swarm Optimization. IEEE
International Conference on Evolutionary Computation. pp. 101–106.

15. Xiao-Feng Xie, Wen-Jun Zhang, Zhi-Lian Yang (2002) Adaptive Particle Swarm
Optimization on Individual Level. International Conference on Signal Processing
(ICSP 2002). pp. 1215–1218.

Author Index

Ajith Abraham, 3
Alfred M. Bruckstein, 93
Anthony Brabazon, 59
Arun Khosla, 148, 174

Derek Messie, 75

Finbar Leahy, 59

He Guo, 3
Hongbo Liu, 3

Israel A. Wagner, 93

Jae C. Oh, 75
Jagatpreet Singh, 148, 174

K.K. Aggarwal, 148, 174

Luiza de Macedo Mourelle, 133

Michael O’Neill, 59

Nadia Nedjah, 133

Shakti Kumar, 148, 174

Tim Hendtlass , 26

Vladimir Yanovsky, 93

Yaniv Altshuler, 93

	front-matter.pdf
	fulltext.pdf
	fulltext1.pdf
	fulltext2.pdf
	fulltext3.pdf
	fulltext4.pdf
	fulltext5.pdf
	fulltext6.pdf
	fulltext7.pdf
	back-matter.pdf

