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ABSTRACT

Distributed enterprise applications today are increasingly
being built from services available over the web. A unit
of functionality in this framework is a web service, a soft-
ware application that exposes a set of “typed” connections
that can be accessed over the web using standard protocols.
These units can then be composed into a composite web
service. BPEL (Business Process Execution Language) is
a high-level distributed programming language for creating
composite web services.

Although a BPEL program invokes services distributed
over several servers, the orchestration of these services is
typically under centralized control. Because performance
and throughput are major concerns in enterprise applica-
tions, it is important to remove the inefficiencies introduced
by the centralized control. In a distributed, or decentralized
orchestration, the BPEL program is partitioned into inde-
pendent sub-programs that interact with each other without
any centralized control. Decentralization can increase par-
allelism and reduce the amount of network traffic required
for an application.

This paper presents a technique to partition a compos-
ite web service written as a single BPEL program into an
equivalent set of decentralized processes. It gives a new code
partitioning algorithm to partition a BPEL program repre-
sented as a program dependence graph, with the goal of min-
imizing communication costs and maximizing the throughput
of multiple concurrent instances of the input program. In
contrast, much of the past work on dependence-based par-
titioning and scheduling seeks to minimize the completion
time of a single instance of a program running in isolation.
The paper also gives a cost model to estimate the through-
put of a given code partition. Experimental results show
that decentralized execution can substantially increase the
throughput of example composite services, with improve-
ments of approximately 30% under normal system loads and
by a factor of two under high system loads.
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1. INTRODUCTION

The idea of “software as a service” has recently gained
tremendous importance because of standardization of the
way in which software may be delivered as a service over the
network. For example, the Web Services standard [9] pro-
vides primitives for communication, messaging, and naming
of software applications (or services) available over the In-
ternet. Once software applications are available as a service,
a composite service can be created by accessing a set of ser-
vices programmatically using some scripting language. A
composite service expresses a business process, which cap-
tures a particular intra or inter enterprise workflow. This
paper is concerned with efficient execution of such enter-
prise applications.

Business Process Ezecution Language (BPEL)[4, 11] is a
language that is used to specify a composite web service.
The language consists of standard flow constructs for se-
quential, conditional and concurrent execution of activities
such as invoking a service or standard assignment and arith-
metic operations. The language under consideration is sum-
marized in Table 1. BPEL is a standard being developed
jointly by IBM, Microsoft, BEA and other companies, and
is rapidly gaining importance in the enterprise computing
landscape. Note that Web Services and BPEL are particu-
lar instances of generic concepts of software-as-service, ser-
vice composition and a service composition language, and
our techniques apply to other instances as well.

Figure 1(a) illustrates BPEL concepts via a small example
of a composite service. The composite service, FindRoute
is built from two address book services, AddrBook(1) and
AddrBook(2), and a TrainRoute service. The AddrBook ser-
vices take as input a name and return the address of that
individual. The TrainRoute service takes as input two ad-
dresses and returns the train schedules from one address to
the other. The FindRoute service sends, in parallel, namel
as input to service AddrBook(1), and name2 as input to
service AddrBook(2). This parallelism is expressed using



Table 1: Summary of BPEL constructs and notation

BPEL construct | Description | Notation
Control Flow Constructs
sequence sequential flow sequence ... end-sequence
switch conditional flow switch ... end-switch
while iterative flow while ... end-while
pick non-deterministic conditional flow pick ... end-pick
flow concurrent flow similar to cobegin-coend flow ... end-flow
link wait-notify type of synchronization source(linkId), target(linkId)
Data Structures
variable | variables include a set of parts analogous to fields | variableName { partl, part2, ... partn }
Activities
invoke synchronous (blocking) invocation on a partner P, invoke (P, in, out)
sending data from an input variable in and
receiving the response in the output variable out
send! asynchronous (oneway, nonblocking) invocation send (P, in)
on a partner P, sending data using an input
variable in (no response variable)
receive blocking receive of data from a partner P into receive (P, var)
a variable var
reply send response to a partner P from a variable var reply (P, var)
assign assignment. Multiple assignments can be specified varl.pl.gl = var2.pl.g3
in a single assign statement, which executes atomically
compute arithmetic or logical operation

BPEL’s flow construct; the availability of the flow construct
allows a programmer to identify parts of the process that can
run concurrently without depending on the implementation
to extract the parallelism automatically. The two addresses
are returned to the FindRoute service, the city and zip code
of each address is extracted and then sent to the TrainRoute
service which returns the train routes from the first address
to the second. The BPEL code for the FindRoute service
is shown in slightly sugared form (CO0) in Figure 1(a). This
code is interpreted/executed by a BPEL engine (such as
BPWS4J [5]) that acts as a centralized coordinator for all
interactions among the component services. This type of
execution is known as centralized orchestration.

Note that the requests from and replies to the client are
handled by the central server, in this case node C0. Note
also that the invoked services, namely AddrBook(1), Addr-
Book(2) and TrainRoute are available only on specific nodes
A1, A2, and TR respectively. The rest of the code, which
may include some business logic, is really “portable” code
or “glue” code that in principle can be run anywhere, not
necessarily on the central server.

Now consider the same example in Figure 1(b). Here the
original BPEL code (CO0) has been partitioned into four com-
ponents that are executed by four distributed engines (DO,
D1, D2 and D3). Together, the four engines perform the role
of C0. This form of orchestration is termed decentralized or-
chestration. In decentralized orchestration, messages can be
sent directly from a component where the data is produced
to a component where the data is consumed, without using
a centralized coordinator. For example, the addresses gen-

'The correct BPEL syntax for oneway messaging is
invoke (P, in). However, in this paper we use the keyword
“send” to highlight the difference between oneway, non-
blocking, asynchronous invoke and synchronous invoke.

erated at AddrBook(1) and AddrBook(2) can be forwarded
directly to TrainRoute (via D3), as shown in Figure 1(b).
Note that while specific services such as TrainRoute still re-
side on the same nodes as before, the glue code is run on
different nodes, compared to Figure 1(a).

Decentralization may lead to increased parallelism in exe-
cuting glue code and reduced message overhead since fewer
messages are sent. Decentralized orchestration brings per-
formance enhancements, namely better response time and
throughput, to the composite service execution. However,
decentralization does require a BPEL engine at all partici-
pating nodes. This is a reasonable assumption to make in
the context of modern enterprise servers for two reasons.
One reason is that the ability of executing BPEL (or an-
other service specification) has become standard software
infrastructure in application servers such as WebSphere [1].
The second reason is that the application that the server ex-
ports as a web service may itself be implemented as a BPEL
program behind the scenes, requiring a BPEL execution en-
vironment.

Problem Statement. 1t is clearly desirable to run compos-
ite services in a decentralized manner, assuming of course
that the infrastructure supports this execution model. Yet
creating and deploying decentralized versions is burdensome.
Given a BPEL program for centralized orchestration, can
one decentralize it automatically? On the surface, this prob-
lem has many similarities with automatic partitioning of
programs for multiprocessor execution. However, there are
some important differences, as explained in the technical
overview below.

Technical Overview. Figure 2(a) shows the example in
Figure 1(a) as a control-flow graph (CFG). We designate
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receive(DO0, n2{name})

invoke(A2, n2{name}, a2{ph,street,city,zip})
r2.city = a2.city

12.zip = a2.zip

send(D3, r2{city,zip})

AddressBook(2) send(D2, n2{name})
D2 A2 end—flow
receive(D3, dir{routes}) D3
reply(client, dir{routes}) flow
receive(D1, rl{city,zip})
Decentralized receive(D2, r2{city,zip})
Composite D1 end—flow
Service receive(DO0, nl{name}) r.cityl =rl.city

(FindRoute) invoke(Al, nl{name}, al {ph,street,city,zip})  r.zipl =rl.zip

TrainRoute

(b)

rl.city = al.city
rl.zip = al.zip
send(D3, rl{city,zip})

r.city2 = r2.city

r.zip2 = r2.zip

invoke(TR, r{cityl,city2,zipl,zip2}, dir{routes})
send(DO, dir{routes})

Figure 1: Centralized and Decentralized Architecture

receive and reply nodes of the CFG as fized nodes that
must execute at the central server; invoke nodes are also
designated as fixed nodes that must be colocated with the
corresponding web service; all other activities are desig-
nated as portable nodes. We use the convention that the
fixed nodes are represented by rectangular boxes and the
portable nodes by rounded boxes. A program dependence
graph (PDQG) [6] consists of control dependence and data
dependence edges superimposed on the same set of nodes
which denote statements and predicate expressions of the
CFG. The PDG corresponding to Figure 2(a) is shown in
Figure 2(e). Unlike [12], we do not work directly with con-
current PDGs. Instead, a conventional PDG with a few
extra edges can represent all the information we need for
our purposes. We show how to create these extra edges in
Section 2.

In a centralized execution, all portable nodes of a PDG
are mapped to the central server, leaving fixed nodes at
whichever servers they belong. We would like to explore al-
ternative partitioning of the nodes of the PDG in which some
of the portable nodes are assigned to nodes other than the
central servers, corresponding to a decentralized execution.
For the PDG of Figure 2(e), Figure 2(b) gives the partition-
ing in which all portable nodes run on the central server
(centralized execution), and Figures 2(c) and 2(d) give two
possible partitionings in which we have grouped portable
nodes with fixed nodes other than the central server (de-

centralized execution). The data dependence edges in Fig-
ures 2(c) and 2(d) refer to messages between partitions, for
which send/receive pairs need to be generated (see code
in Figure 1(b) which corresponds to Figure 2(d)). We can
see that the number of messages in 2(c) and 2(d) is lower
than in 2(b). The experimental results (Section 5) validate
that the performance of 2(b) is inferior to the decentralized
options (2(c) and 2(d)).

In principle, we could use a PDG-based code partition-
ing algorithm designed for multiprocessor execution. Such
an algorithm creates independently schedulable tasks at the
granularity of partitions of a PDG. To reduce overhead, such
algorithms try to merge several PDG nodes to create a larger
partition, possibly sacrificing parallelism. An example of a
merging algorithm that iteratively merges nodes that have
the same control dependence condition can be found in [16].

However, the problem of partitioning PDGs for composite
services, has an additional constraint that the node merging
algorithm must create partitionings such that each parti-
tion has exactly one fixed node and zero or more portable
nodes. By definition, a fixed node cannot be merged with
another fixed node. Portable nodes cannot form a partition
without a fixed node, because fixed nodes are the ones that
have execution resources. Further, the objective function for
composite web services is to maximize throughput, whereas
the objective function typically used for multiprocessor exe-
cution is to minimize completion time. Due to these differ-
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Figure 2: For the example in Figure 1: (a) the Threaded CFG (TCFG); (b) a partitioning of the PDG
that corresponds to centralized execution; (c¢) and (d) two partitionings of the PDG that correspond to
decentralized execution; (e) the PDG corresponding to the TCFG; (f) a partitioning generated by merging
lexical siblings in the PDG; (g) the desired merging scheme where siblings connected by data dependence
edges are merged; (h) the reordered PDG corresponding to (g); (i) the partitioning generated by merging
neighboring siblings in the reordered PDG in (h). Note that every partition has exactly one fixed node and

zero or more portable nodes.



ences, a node merging algorithm designed for multiprocessor
execution may not perform well in the case of partitioning
for composite web services.

Returning to our example of Figure 2, while the number
of inter-partition edges in both (¢) and (d) is the same, it
can be seen that the data passed on the wire is larger in
Figure 2(c). In Figure 2(d), for example, the city and zip
information is extracted at partition F3 and F> and sent to
F3, whereas in Figure 2(c), the entire address is sent from
F1 and F5 to F3, and the relevant data is then extracted at
F3. The partitioning of Figure 2(c) corresponds to the parti-
tion configuration shown in Figure 2(f) and the partitioning
of Figure 2(d) corresponds to the partition configuration of
Figure 2(g). In Figure 2(f), each partition merges only sib-
lings in the PDG that are also lexical neighbors, however,
Figure 2(g) tries to merge siblings that are not lexical neigh-
bors. A partitioning algorithm that performs only lexical
neighbor sibling merges will miss out on this more efficient
partitioning. As one might expect, in our experiments we
see a noticeable performance difference between (c) and (d)
when the size of the entire address relative to city and zip
is significant.

Our premise is that merging nodes along flow-dependence
edges will result in a more communication-efficient parti-
tioning. Since the source and destination nodes of a flow
dependence may not be lexically adjacent, merging along
flow-dependence edges is equivalent to first reordering the
nodes so that the source and destination become adjacent,
and then merging the nodes. Consider the PDG in Fig-
ure 2(h), in which some of the nodes have been reordered
from Figure 2(e). On this new PDG, it is now possible to
generate the partitioning of Figure 2(d) just by combining
neighboring siblings as shown in Figure 2(i). However, be-
fore we generate this partitioning, we need to validate that
the reordered PDG is isomorphic [10] with the original PDG.

The main contributions of this paper are as follows:

1. We give a heuristic solution to the problem of decen-
tralization of BPEL programs. To the best of our
knowledge, this is the first proposed solution to the
decentralization problem for BPEL programs.

2. We introduce a cost model to guide the decentraliza-
tion algorithm that is based on throughput as the pri-
mary performance metric, for multiple instances of a
program running on a server. In contrast, much of
the past work on dependence-based partitioning and
scheduling seeks to minimize the completion time of a
single instance of a program running in isolation.

3. Our experimental results show significant benefits from
decentralization for four sample composite services.
For the same hardware resource, the decentralized ver-
sions performed better than the centralized version
across a range of parameters for request rates and
message sizes. The results show that decentralized ex-
ecution can substantially increase the throughput of
example composite services, with improvements of ap-
proximately 30% under normal system loads and by a
factor of two under high system loads.

Organization. The rest of the paper is organized as fol-
lows. Section 2 describes how we construct PDGs for our

program model (a subset of BPEL), and how we test for
legality of node reordering. Section 3 describes our parti-
tioning algorithm and Section 4 describes our cost function.
Section 5 contains experimental results for decentralization
of four example composite services. Finally, Section 6 dis-
cusses related work, and Section 7 contains our conclusions.

2. PDGS AND NODE REORDERING

In this section, we describe how we build the program de-
pendence graph (PDG) representation assumed in our work.
We start with a Threaded Control Flow Graph (TCFQG) rep-
resentation as shown in Figure 3(a). (We had also seen an
example of a TCFG earlier in Figure 2(a).) To obtain a
PDG representation of this parallel program representation,
we need to insert extra control and data dependences that
model the parallel constructs. For the control dependence
edges, each sequence node representing a parallel section is
control dependent on its flow node, and each node within a
parallel section is control dependent on its sequence node.
After these control dependence relationships are established,
the sequence and flow nodes are eliminated as follows: let
N, be the node on which the flow node is control dependent.
Then, every node that is control dependent on a sequence
node below the flow is made control dependent on N. and
the sequence and flow nodes are eliminated. In this way, we
obtain a single integrated PDG from the TCFG, unlike (say)
the Threaded PDG (TPDG) approach [12] in which PDGs
for parallel tasks are represented as separate sub-PDGs em-
bedded in the parent PDG. Our motivation for working with
a single integrated PDG is that it enables the partitioning
algorithm to treat statements from within and across paral-
lel tasks uniformly. The PDG for the TCFG in Figure 3(a)
is shown in Figure 3(b).

For the data dependence edges, we must preserve the or-
dering constraints implicit in the TCFG. To accomplish this
task, we first compute all data dependences (flow depen-
dences, output dependences and anti dependences) neces-
sary to preserve correct execution order within each parallel
section. Next, we insert additional dependence edges to cap-
ture the ordering constraints across parallel sections. There
are two cases that require insertion of these extra edges in
the PDG:

1. Dependences with statements outside a flow construct
— these dependences occur between a statement in a
parallel section and a statement outside its flow con-
struct that precedes or succeeds the flow construct con-
taining the parallel section.

2. Dependences among parallel sections — these depen-
dences capture explicit synchronization-based order-
ing between two parallel sections (as specified by the
BPEL 1link construct).

We discuss these two cases in more detail below. These ex-
tra dependence edges are analogous to the constraint edges
introduced by Horwitz et al [10] in the context of merging
variants of PDGs into a single PDG, and to the synchroniza-
tion edges introduced by Sarkar [17] for extending PDGs to
parallel programs. Our code partitioning algorithm (Sec-
tion 3) relies on the correctness of these extra dependence
edges, because it attempts to reorder nodes in a region of a
PDG in search of a more efficient partitioning and it must
ensure that all reorderings considered are legal.
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Figure 3: (a) A Threaded Control Flow Graph
(TCFG), (b) its PDG representation where parallel
sections have been merged into a single PDG with-
out parallel sections, (c) a PDG isomorphic to that
shown in (b).

Dependences with statements outside a flow construct.
Consider a statement S; in a parallel section. If there is a
statement S; outside the flow construct containing the par-
allel section, such that S; precedes the flow construct and S;
and S; perform interfering (write-read, read-write, or write-
write) accesses on the same variable, then a corresponding
(flow, anti or output) dependence edge is inserted in the
PDG from S; to S;. Likewise, if there is a statement Si out-
side the flow construct containing the parallel section, such
that Sy follows the flow construct and S; and S perform
interfering (write-read, read-write, or write-write) accesses
on the same variable, then a corresponding (flow, anti or
output) dependence edge is inserted in the PDG from S; to
Sk. In Figure 3(b), we see an example of four such depen-
dence edges being inserted in the PDG, due to dependences
on variables z, y, and z. Figure 3(c) shows another legal
ordering of nodes of this PDG.

Dependences among parallel sections. By default, par-
allel sections execute independently and there is no need to
insert any dependence edges between two parallel sections
in the same flow construct. However, dependence edges do
need to be inserted to capture explicit synchronization-based
ordering between two parallel sections, as specified by the
BPEL 1link construct. Specifically, if there is an explicit
synchronization link from source in parallel section 6; to
target in parallel section 02, then the semantics imply that
every node that precedes the source node must execute be-
fore any node that follows the target node. There is no
inter-process ordering implication for nodes that follow the
source node or precede the target node. To enforce le-
gal orderings, we first insert a synchronization edge from
source to target. Then, for every definition of = that pre-
cedes source in 0, we create a dependence edge to a use or
definition of x that follows target in 62; and for every use
of x that precedes source in 6 we create a dependence edge
to a definition of = that follows target in 62. For example,
in Figure 4(a) source — target is a synchronization edge.
(Note that in the PDG, we do not differentiate between the

flow ___,control flow

____ . data dependence

-.cce Synchronization
dependence

- AN /,‘/’ **\7\
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Figure 4: (a) Threaded CFG showing Synchroniza-
tion Dependence, (b) and (c¢) Isomorphic PDG vari-
ants produced after merging the parallel sections

different forms of dependence edges for the purpose of deter-
mining legal orderings.) The semantics of synchronization
enforces the following dependence edges across parallel sec-
tions: n1 — ms, n2 — ng, and n2 — n7. In Figure 4(b),
n1 is legally topologically ordered after n2 as this does not
violate any dependence edges. Figure 4(b) and (c) show two
topological orderings where the value of z at n7 is 30 and
40 respectively.

One question that may arise is: what should be done in
cases when two parallel sections have interfering accesses to
a variable that are not ordered by an explicit synchroniza-
tion link? As mentioned earlier, the semantics of parallel
sections does not require us to insert a dependence edge in
this case. This case represents a nondeterministic parallel
program, where the program can exhibit different behaviors
depending on the relative execution order of the interfer-
ing accesses. Note that, since the BPEL specification states
that each assign activity is an atomic activity akin to a syn-
chronized block in Java, this case does not represent a data
race. If an assign activity contains multiple copy state-
ments, the BPEL specification dictates that the entire set
of assignments will be performed atomically.

3. CODE PARTITIONING

In general, there is a bounded but exponential number
of ways to distribute the portable code amongst the par-
titions. Hence, an exhaustive search algorithm that tries
every possible placement of portable nodes is intractable.
In this section we first describe a simple heuristic called the
merge-by-def-use heuristic. The aim of the merge-by-def-use
partitioning algorithm is to determine the best partitions



at which each portable task must be executed in order to
optimize the throughput of the decentralized program.

As mentioned in the introduction, our code partitioning
algorithm is based on the idea of merging tasks along loop-
independent flow dependence edges. This idea is appealing
not only for its performance implications, but also because it
serves as a heuristic to prune the space of possible solutions.
However, merging along flow dependence edges must take
into account several considerations including: (1) not all
combinations of merges will be legal (a legal combination
must not create a dependence cycle among partitions), and
(2) a flow dependence edge between two nodes with different
control dependences cannot be merged (without introducing
guards/predicates).

Starting at the bottom of the control dependence tree we
identify sibling nodes that have the same control dependence
condition and perform a merge on these nodes. Two sibling
nodes in the PDG that have the same control dependence
condition may be merged if there is a def-use dependence re-
lationship between them, provided the following conditions
hold - (1) the reordering along the flow dependence edge
does not violate any other dependences, and (2) each parti-
tion has at most one fixed node. Using a cost function, we
exhaustively evaluate all possible merges along flow depen-
dence edges and compute a local minimum for each region.
Once a region has been evaluated, the algorithm is recur-
sively applied to the parent node and its siblings.

Merging Portable Code. An informal description of the
merging algorithm is as follows:

1. Locate a control node, T. in the PDG whose child
nodes are all leaf nodes. For all nodes that have the
same control dependence condition on T repeat steps
2 through 8. Continue till all control nodes have been
processed.

2. Identify the set of flow dependence edges, F, that per-
tain to a flow dependence between siblings with the
control dependence condition chosen in step 1, such
that at least one of the siblings is a portable task.
Pick an edge in E' and merge the source and destina-
tion tasks of the edge. The resultant dependences of
the merged task is the union of the component tasks.

3. When a portable task gets merged with a fixed task the
combined task is a fixed task. When a portable task
gets merged with another portable task the combined
task is also marked as a portable task.

4. When a node is merged with a sibling that is not its
lexical neighbor, we need to ensure that no dependence
conditions are violated. To determine whether the
merge may violate a dependence condition, we check
if the merge can introduce a dependence cycle.

5. Exhaustively consider all merging configurations of sib-
lings that can be generated by merging some subset of
the flow dependence edges in E. Since the size of F for
a single region is usually small, this exhaustive search
is usually feasible in practice. (Later we describe a
more complex heuristic that further reduces the num-
ber of partitionings evaluated.)

6. Choose the merging configuration from step 5 that is
likely to yield the best overall throughput value, us-
ing the cost model discussed in Section 4. Though
in Section 4, the cost function is defined for a com-
plete partition, it can be adapted for an intermediate
partition in which some portable tasks have yet to be
merged with fixed tasks. This is a greedy heuristic
that gives a locally optimal solution, but does not nec-
essarily guarantee global optimality.

7. Any remaining portable tasks that are not merged with
a fixed task are merged with the parent. At this point,
the parent has only fixed tasks (if any) for children.
The parent node is now marked as a leaf node.

8. Once a region (subgraph) has been merged, we treat
the whole subgraph as a single node for the purpose
of merging at the next higher level. The dependences
of the merge is a union of all dependences in the child
nodes as well as the parent node.

Example. Figure 5(a) gives the CFG for an example Loan-
Approval BPEL service, where the client sends in his profile
and the required loan amount. If the amount is less than
$10,000, the web service sets a risk factor to zero, else it in-
vokes web service F1 to get a risk assessment. Then the web
service sends the risk and amount to two banks F2 and F3
which return the rate of interest. Additionally F2 returns a
document with details about the loan scheme. Finally the
web service returns the lower rate and the loan scheme in-
formation (which may be null) to the client. The PDG for
the example is shown in Figure 5(b). All fixed tasks are
labeled Fi and portable tasks are labeled pi. We follow the
convention that a partition is referred by the label of the
fixed task it contains (if it contains a fixed task) or by the
label of the portable task with the lowest index.

We give here a partial walk-through of the algorithm. The
merging algorithm first merges nodes at the bottom of the
control dependence tree.

e For the nodes control dependent on p1: F1 and p3 have
the same control dependence condition. The algorithm
starts with p3, finds that there is a dependence edge
F1 — p3 and merges F1 and p3. No other merges are
possible. p2 has no siblings and so it gets merged with
the parent node p1.

e For nodes control dependent on p5: p6 and p7 have no
siblings and hence get merged with p5.

The resultant intermediate partitioning is shown in Fig-
ure 5(c). The set of edges in and out of p1 is the union
of edges in and out of p1, p2, F1 and p3, and similarly for
p5.

Next we consider the nodes that are control dependent on
Entry.

e Let the algorithm start with the portable task p5 which
is source or destination in the def-use edges F2 — p5,
F3 — p5, and p5 — F4. Let us merge p5 with F3 as
shown in Figure 5(d1).

e Then the algorithm considers p4 which has the option
of merging with one of F2, p1 or FO. Let us merge p4
with F2 as shown in Figure 5(d2).
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e Finally the algorithm merges p1 with FO as shown in
Figure 5(d3).

Now there are no more portable nodes left and so this is one
of the final partitionings. (We happened to use only lexical
siblings in this partitioning.)

As part of enumerating all the merging configurations out-
lined in step 5, the algorithm backtracks from Figure 5(d1).
We do not show all the steps performed by this recursive
algorithm but show only some interesting combinations gen-
erated.

e Let the algorithm merge p5 with F2 (instead of F3) as
shown in Figure 5(el).

e Even though this partitioning has an edge F3 — F2
which points right-to-left, it is legal because it has not
introduced a dependence cycle. To make the acyclic
structure clearer, we reorder the partitions topolog-
ically, resulting in Figure 5(e2). This partition has
the interesting property that the edge F2 — p5 is in-
ternalized within a partition. Thus the assignment
of res.scheme in task p6 happens (if it does) at the
same node as F2, avoiding a large message. Note that
this partitioning could not have been created by lexical
merges alone. By contrast, in the partitioning shown
in Figure 5(d3), F2 — p5 is an inter-partition edge.

o Next let the algorithm merge pl with FO resulting in
Figure 5(e3). To complete the partitioning, p4 can
be merged with one of FO, F3 or F2 as shown in Fig-
ure 5(ed-a), (e4-b) and (ed-c) respectively. Of these,
(e4-a) and (e4-b) are valid partitionings, but (e4-c)
is not valid as it has generated a dependence cycle.
Hence, the partitioning of Figure 5(e4-c) will be dis-
carded as an infeasible PDG.

The cycle detected in the example in Figure 5(e4-c) can
be broken by the judicious use of code replication. In the
example the cycle arises because p4 needs to be executed
before either F2 or F3 executes. Therefore p4 is replicated at
both F2 and F3, giving the partitioning in Figure 5(e5). This
code may be replicated if it is a pure computation and hence
has no side effects. Note, however, that code replication may
not improve performance.

Complexity and Heuristics. An exhaustive search algo-
rithm that tries every possible placement of portable nodes
would have a complexity of O(f?), where p is the maximum
number of portable nodes that are siblings in the PDG and
have the same control dependence condition; and f is the
corresponding number of fixed nodes. The merge-by-def-use
algorithm described in this section applies a heuristic that
attempts to reduce this search space while trying to reduce
the data on the network. The complexity of the merge-by-
def-use algorithm is O(e?), where e is the maximum number
of def-use edges that enter or exit a portable node, and p
is the maximum number of portable nodes that are siblings
in the PDG and have the same control dependence condi-
tions. For example, in the program in Figure 2, there are 6
portable nodes, each has two def-use edges and so the num-
ber of possible partitionings are 28 which is 64. The program
in Figure 5(c) has portable nodes p1 with 2 edges, p4 with
4 edges, and p5 with 3 edges. Hence the number of possible
partitionings is 2 % 4 x 3 which is 24. Many BPEL programs
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Figure 6: Applying the pooling heuristic to the ex-
ample of Figure 2 - (a) The PDG of Figure 2; (b),
(¢) Two possible poolings; (d) A partitioning gener-
ated from (c¢) by merging the pool (p1, p2) with F1
and the pool (p3, p4, p5, p6) with F2.

are very small and hence they can be analyzed exhaustively.
However, we did sample some BPEL programs that could
not be analyzed in a reasonable amount of time without ap-
plying heuristics. We apply two more heuristics - (1) the
greedy-merge heuristic is a refinement of the merge-by-def-
use heuristic that further tries to minimize the data on the
network and (2) the pooling heuristic tries to minimize the
total number of messages.

In the greedy-merge heuristic we examine every portable
node, p;, that has exactly one incoming def-use edge from pq
and one outgoing def-use edge to p,,. Then p; is merged with
pa if the volume of data between p; and pg is less than the
volume of data between p; and p.,, else it is merged with p,,.
This halves the options for p;. Applying this heuristic to the
example in Figure 2, reduces the number of partitionings to
exactly one and the partitioning generated is the one shown
in Figure 2(i) which we will show experimentally to be the
best. Applying this heuristic to the example in Figure 5,
reduces the number of partitionings to 12.

The pooling heuristic is as follows: if two or more portable
nodes have the same def-use source or if two or more portable
nodes have the same def-use destination, then “pool” them
together first and treat them as a single portable node with
the combined dependencies of the merge. Then apply the
merge-by-def-use algorithm as before along with the greedy-
merge heuristic. The pooling is, of course, subject to the
condition of correctness. This heuristic tends to combine
all data before entering or exiting a node and hence min-
imizes the inter-component messages. Consider the exam-
ple of Figure 2. The PDG is redrawn in Figure 6(a). The
possible first level poolings are shown in Figure 6(b) and
6(c). In Figure 6(b), pl and p2 are pooled as they have a
common source FO; p3 and p5 are pooled as they have a
common source F1; and p4 and p6 are pooled as they have
a common source F2. In Figure 6(c), p1 and p2 are pooled



as they have a common source FO; and p3, p4, p5 and p6
are pooled as they have a common destination F3. These
are the only possible “poolings” of portables for this exam-
ple. The number of initial portable nodes has reduced from
6 in Figure 6(a) to 3 in Figure 6(b) and 2 in Figure 6(c),
thus reducing the overall complexity of the algorithm. The
possible number of merges is 3 x 1 x 1 for Figure 6(b) and
3 x 3 for Figure 6(c), giving 3 + 9 = 12 partitionings, and
a total of 13 partitionings including the partitioning gener-
ated by the greedy-merge heuristic. This is a vast reduction
from the original 64 partitionings. Note the partitioning in
Figure 6(d) which is derived from the initial pooling in Fig-
ure 6(c) and which minimizes the number of communication
edges at the expense of sending extra data. In this case FO
sends both the names to F1. F1 uses the first name to get
the first address and sends the first address along with the
second name to F2. F2 obtains the second address and sends
both the addresses to F3. Thus the input for F2 is pipelined
through F1 and the output of F1 is pipelined through F2. At
low message rates this is quite an efficient method of com-
munication due to the lack of synchronization overheads.

Note, that the set of partitionings generated by the greedy-
merge heuristic is a subset of the partitionings generated by
the merge-by-def-use heuristic, but the partitionings gener-
ated by the pooling heuristic are different from those gener-
ated by the merge-by-def-use heuristic. Neither is a subset of
the other and they may have a non-null intersection. In gen-
eral, the number of partitionings generated by the pooling
heuristic is fewer than the number of partitionings generated
by the merge-by-def-use heuristic.

4. COST MODEL

Much of the past work on partitioning and scheduling
has focused on minimizing the completion time of a sin-
gle instance of a program running in isolation. Application
servers instead use multiple threads to overlap the execution
of multiple instances of one or more programs, and are usu-
ally more concerned with optimizing the throughput perfor-
mance that can be delivered for a given a hardware capacity.
In contrast, completion time is only of interest as a quality
of service threshold, and can be ignored as an optimiza-
tion metric in cases when the request rates on server nodes
can be satisfied by available capacities. Therefore, the cost
model developed in our work is focused on throughput as its
objective function.

As in standard queueing system models, if R is the num-
ber of requests sent to a service per unit time, the over-
all throughput of the service can be modeled as a function
T(R) representing the average number of requests processed
per unit time. Typically, T(R) ramps up with increases
in R until a steady-state plateau is reached when one or
more resources is fully utilized; eventually a “breakdown”
phase is reached when a backlog accumulates and the system
throughput may decline dramatically. Real systems gener-
ally use some form of admission control to avoid the break-
down situation.

Our system model for decentralized execution is a sys-
tem consisting of a set of communicating server nodes, S =
{S1,...,5k}, each of which implements a portion of the
overall service as dictated by the task partition. The through-
put delivered by each individual server node contributes to

an upper bound on the overall throughput as follows,
T(S) < min(T(S1),...,T(Sk))

For convenience, we use the same notation, S; to refer to
both a server node, and the request rate that it receives. It
is therefore important to balance the throughput across the
nodes, because the overall throughput will be bounded by
that of the slowest node. (This is akin to the importance
of balancing stages in a pipelined system.) Consequently,
we need a model to figure the rate at which each participat-
ing server can process (its portion of) client requests. This
rate depends on the “capacity” of the server as well as the
amount of work it is required to carry out per client request.

Notice that in the cost model, we explicitly consider the
fact that multiple instances of the same application, by way
of concurrent requests, are running on the same server. We
factor in the presence of other independent processes by as-
suming a reduction in available “capacity” — which reflects
the fraction of a server dedicated to (all instances of) a given
application. In practice, application servers partition re-
sources statically among independent applications.

Participating servers are assigned work in the following
manner. The receive and reply fixed nodes, generally Fp
and Fmax are mapped to the central server. The invoke
fixed nodes are mapped to their corresponding servers, ex-
cept in the centralized execution in which all the nodes, fixed
or portable, are located on the central server. A portable
node is mapped to the same server as the fixed node in
its partition. Figure 7 gives work assignment to servers as
well as the data dependencies corresponding to three differ-
ent partitioned configurations of the loan approval process
(Figure 5): Figure 7(a) shows the centralized partition con-
figuration and Figures 7(b) and 7(c) show configurations
for two decentralizations, corresponding to Figure 5(e4-a)
and Figure 5(e4-b) respectively. The straight arrows depict
messages across servers while the squiggly arrows show wait
times within the thread that is working on (that node’s por-
tion of) a particular client request. A client request arrives
at Fp on the central server (node CO for the centralized or-
chestration in Figure 7(a) and node D0 or D0’ for the decen-
tralized orchestrations of Figure 7(b) and 7(c)) and works
its way through the servers following inter-partition edges.
It may fork activity along two edges concurrently (shown as
a and  in the figure). The request terminates at Fmax on
the central server, which responds to the client.

In computing the load per request on a server, we do not
need to account for thread waiting time, because it will not
have an impact on throughput — the server would instead
switch to processing its part of another client request, for
which the assigned thread is ready to run. Therefore the
load is simply the aggregation of all activity at each server.
With this reasoning, we can abstract out the wait times from
the pictures in Figure 7, considering each node simply as a
collection of fixed and portable tasks. Only the aggregate
compute and messaging costs at each server are relevant for
the estimation of throughput. Since our cost function is
an upper bound on throughput, we assume both sides of a
conditional are executed when estimating the cost of con-
ditionals. Further refinement of the cost functions to use
execution profile information is a subject for future work.

The cost of computation per client request required at a
server includes the cost of running all the fixed and portable
tasks stationed at the server. (Note that the service itself
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Figure 7: Partition configurations of the Loan-
Approval Example - (a) The centralized orchestra-
tion; (b), (c¢) Decentralized orchestrations corre-
sponding to Figure 5(e4-a) and Figure 5(e4-b) re-
spectively.

accessed by an invoke may not be adding to the cost in
case it is implemented by another “backend” server.) For
each portable task, P;, we assign a cost cp,;. The cost of
the fixed task receive, cgr, includes in addition to the cost
of data handling, the cost of setting up a new process if it
is the first receive or the cost of correlation for every sub-
sequent receive. The cost of a reply, cr, includes only
data handling cost for sending over an existing channel. A
synchronous invoke fixed task needs communication with a
backend server, as shown by double-headed arrows in Fig-
ure 7. The cost of an invoke, cr, involves message setup
in addition to marshalling and unmarshalling data sent and
received.

At places where flow dependence edges have their source
in one partition and destination in another, decentralization
introduces asynchronous communication, which is shown by
single-headed arrows in Figure 7. This communication is
handled by introducing a send at the source partition and
a receive at the destination partition. These tasks have
no direct correspondence with the original code, but are
generated to support decentralization. Thus at the source
of an inter-partition edge we need to add the cost of a send
and at the destination of an inter-partition edge we need to
add the cost of a receive. The cost of a send, cs includes
only the cost of message setup plus marshalling data, and
the cost of a receive, cg, includes the cost of unmarshalling
data plus correlation overheads. The cost of send or receive
is typically less than that of an invoke.

The cost of each task depends on various factors including
the size of data being handled and the complexity of data
being manipulated. For example, the cost of an assign is
independent of the size of the data if it involves moving sim-
ple strings, but the cost of an assign is extremely sensitive
to data size if it involves an XPath expression. The cost of
invokes, sends and receives are dependent on size of data
as well as complexity of data since these tasks involve mar-
shalling and unmarshalling of data. These costs need to be
determined empirically using micro-benchmarking, which is
explained in greater detail in Section 5.

Example. Given the cost of each task, the peak rate at
node CO in Figure 7(a) is

Capacity,
cR+cL+cP1 +cP2 +.4.+CP7+3*CI

As another example, consider the cost of node D3 in Fig-
ure 7(b). In addition to the obvious cost of fixed node F2
(which is an invoke) and the portable tasks p5, p6 and p7,
we need to add the cost of two receives (for the two incom-
ing inter-partition edges) and the cost of one send (for the
outgoing inter-partition edge). Hence the peak rate at D3 is

Capacity,
CpstCpg +CP7+CI+CS+2*CR

Likewise, the peak rates for other nodes in Figure 7(b) and
(c) can be computed. The minimum rate across nodes would
be the upper bound on the throughput that this configura-
tion would sustain. In this example we can see that the
critical node is DO for (b) and node DO’ for (c). Assuming
all portable tasks have the same cost c;:

Capacity,
crtecr+Txcp+3*cy

peak rate(CO0)

Capacity 5,
crtcp+3*cp+3xcg+2*xcr

peak rate(DO)

Capacity o
crtep+2xcp+2+cs+cp

peak rate(D0') =

Assuming C0, DO and D0’ have the same capacity, the peak
rate of the configuration in Figure 7(c) is clearly higher than
that in Figure 7(b). However, the relative peak rate of CO
and DO is not immediately obvious and in Section 5.3 we
show how to determine the values of the individual costs
(cr, cL, etc.) using micro-benchmarking. In this case, the
peak rate of Figure 7(b) turns out to be higher than that
of Figure 7(a). The experimental results are given in Sec-
tion 5.1.

Note that although in our example programs, the portable
tasks seem to be trivial assignments, the assignment state-
ments actually represent extraction of data from contain-
ers in BPEL, because in general messages need to be re-
constituted as they flow between fixed nodes. This can, in
turn, involve complicated operations such as XPath queries.
Thus, they are more expensive than assignment statements
in standard programming languages.

Finally, we outline how our cost function can be extended
to determine the bounds on throughput that occur when a
server is unable to consume the available compute capacity
due to other reasons. These cases can occur if the available
capacity such as the number of threads in a thread pool on
the server node is too low. The cost function discussed thus
far estimates an upper bound of the throughput on a single
server node S; as T'(S;) < Capacity/ Cost, where Capacity is
the raw compute capacity of node S; and Cost is the total
amount of work that needs to be performed on node S; for
a single request. The bound on throughput due to limited
number of threads in the server can be modeled as

T(S:) < Number of Threads/CritPath

where CritPath is the thread occupancy time along the crit-
ical path. Then we can estimate an upper bound of the



throughput, T'(S;) on a single server node S; as follows,

Capacity Number of Threads

i) < mi , -
T(S:) < min( Cost CritPath )

Similarly, there may exist other bounds based on bandwidth
availability or memory usage.

5. EXPERIMENTAL RESULTS
5.1 Runtime Performance

Experimental Setup. Our experimental setup for testing
decentralized orchestration is as follows. We use a cluster of
Intel Pentium based Linux machines (2.2 GHz, 2 GB RAM)
connected by a 100Mb/s LAN. For the results reported in
this paper, two of the machines were used as clients, and up
to four machines were used as servers.

The clients execute multithreaded Java programs that run
a total of 10 to 200 threads generating a steady request
rate of 1 request/second (or 60 requests/minute) to 20 re-
quests/second (1200 requests/minute). The test message
sizes varied from 256 bytes to 24 KB.

In the centralized setup (as shown in Figure 1(a)), the
clients send requests to an HTTP server that hosts a BPWS4J
engine. The requests are synchronous and sent using SOAP
over HTTP. Each component web service is deployed on an
HTTP server running on a separate machine. The BPWS4J
server internally invokes the component web services using
SOAP over HTTP. While the centralized setup uses only
HTTP servers, the decentralized setup uses a combination
of HTTP and EJB servers. EJB servers are necessary as
HTTP servers cannot handle asynchronous messaging.

In the decentralized setup (as shown in Figure 1(b)), the
clients send requests to an EJB server that hosts a BPWS4J
engine. The requests are sent using SOAP over JMS. How-
ever, the component web services continue to run on HTTP
servers, each running on a separate machine. An EJB server
hosting a BPWS4J engine is co-located with each of the web
services.

Test Examples. Since BPEL is a relatively new language,
there are currently no standardized BPEL benchmarks that
we could use in our performance evaluation. However, we
have tested our algorithm on all examples that come with
the BPWS4J distribution as well as several other applica-
tions culled off the web. Although there are many possible
partitionings for each example, for visual clarity we show
only a few illustrative partitionings for each example.

We first present performance results for the LoanApproval
example introduced in Section 3 and the FindRoute example
introduced in Section 1. Then we show results for two more
examples. The TranslateArticle service locates an article
of interest, gets it translated into the required language,
formats both the original and translated article and returns
it to the client. The NearestRestaurant service receives a
restaurant preference from a client along with his mobile
cell number and a radius parameter. The service locates a
restaurant of the specified cuisine, gets the location of the
client using a GPS service, then invokes a map service that
takes the client location, the list of restaurants and shortlists
the restaurants that are within the specified radius of the
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client. This list is returned to the client?.

LoanApproval Example. In Figure 8, we show the through-
put observed for the three partitionings of the Loan Approval
example shown in Figure 7, as a function of the request rate.
This example uses three component web services which were
accessed using the standard SOAP over HTTP protocol. For
Figure 8, the service time for each web service was fixed at
4000 ms, and the message size fixed at 512 bytes. We var-
ied the client request rate from 60 requests/minute to 1200
requests/minute. At lower rates the requests do not ex-
ceed the capacity of the system and hence the throughput
is equal to the request rate. As mentioned in Section 4, the
partitioning in case (a) was the first to reach its capacity
limit, followed by case (b), with case (c) delivering the best
throughput. In each case, the throughput begins to decline
when the request rate exceeds the capacity.

In Figure 9, we show how the throughput for the Loan-
Approval example varies with message sizes of 512B, 4KB,
8KB, 16KB, and 24KB. To highlight the differences among

2All the BPEL examples are available on request from the
authors
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Figure 11: FindRoute - Throughput Variation with
Message Size

the three cases, we set the y-axis origin for Figure 9 to
400 requests/minute instead of zero. In this experiment, we
fixed the client request rate at 600 requests/minute at which
case(a) and case(b) are just within their capacity limits while
case(c) is well within its capacity limits (see Figure 8). The
service time was fixed at 4000 ms as before. Increasing the
message size has a different impact for the three different
partitionings. In case (a), CO has to send/receive six mes-
sages per request, but the relative impact of message size is
low compared to the load imbalance of a centralized parti-
tioning. In case (b), DO has to send/receive five messages
per request, and increasing the message size from 16KB to
24KB causes the throughput to fall due to a decrease in pro-
cessing capacity. In case(c), DO’ has to send/receive three
messages per request, but the request load did not cause
its capacity to fall short within the parameters set by this
experiment.

FindRoute Example. For the FindRoute example Figure 10
shows throughput results for variation in request rate and
Figure 11 shows throughput results for variation with mes-
sage size. We show performance results for the three parti-

tionings labeled (b), (c) and (d) in Figure 2 and also for the
partitioning in Figure 6(d) where the number of intercom-
ponent messages has been minimized but some data gets
pipelined causing excess data to flow in the network. Recall
that partitioning 2(b) corresponds to centralized orchestra-
tion, whereas 2(c) and 2(d) are two decentralized orchestra-
tions. We stated that 2(d) is likely to give better perfor-
mance since it communicates less data on the network. Ex-
perimentally we observe that when the message size is small,
all the decentralized orchestrations (including the pipelined
case) perform equally well (Figure 10), but show variations
when the message size increases (Figure 11). In our exper-
iments we ensure that the fraction of the address required
by the TrainRoute service is very small. Partitioning 2(c)
puts the entire data onto the network and hence shows a
deterioration in performance as the message size increases.
Partitioning 2(d) puts only the required fraction of data on
the network and hence is unaffected by increasing size of ad-
dresses. The pipelined version (which carries the maximum
data) deteriorates the most.

TranslateArticle Example. The BPEL code, the PDG and
two partitionings for the TranslateArticle service are given
in Figure 12. The partitionings have been selected as case
(c¢) that minimizes data on the network (using the greedy-
merge heuristic) and case (d) that minimizes the number of
hops on the network (using the pooling heuristic). Both the
decentralized versions perform well (Figure 13) compared
to the centralized version. The partitioning generated by
the pooling heuristic performs marginally better than the
partitioning generated by the greedy-merge heuristic as the
greedy-merge version has higher synchronization overheads.
Neither orchestration shows deterioration (Figure 14) in per-
formance with increasing message size within the experi-
mented range.

NearestRestaurant Example. The BPEL code, the PDG
and two partitionings for the NearestRestaurant service are
given in Figure 15. Here also the partitionings have been
selected as case (c), a partitioning generated by the greedy-
merge heuristic and case (d), a partitioning generated by the
pooling heuristic. Both the decentralized versions perform
well (Figure 16) compared to the centralized version. The
partitioning in case (¢) minimizes data on the network and
performs marginally better than the partitioning of case (d)
as case (d) has higher data overheads without much benefit
of reduced synchronization overheads. Neither orchestration
shows deterioration (Figure 17) in performance with increas-
ing message size within the experimented range. However
although we do not show the results here, we observed that
the response time in case (c) was substantially better than
that in case (d) due to the higher parallelism.

5.2 Compile-time Performance

We evaluated three different algorithms - one which does
an exhaustive search of the space of all possible merges, one
which uses the merge-by-def-use heuristic of merging along
def-use edges and one which combines the greedy-merge and
pooling heuristics described in Section 3. For the three al-
gorithms we report in Table 2, the total number of config-
urations that each algorithm explores and the number of
configurations that are valid. In Table 3 we report the time
taken to run the algorithms. In these tables, we include one
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f2.]lang=req.lang

fl.item = req.item

invoke(F1, f1{item}, f1Res{article})
f2.article=f1Res.article

invoke(F2, f2{lang,article}, f2Res{translated })
f3.translated=f2Res.translated
f3.article=f1Res.article

invoke(F3, f3{article,translated}, f3Res{output})
res.output = f3Res.output
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Table 2: Number of Configurations Generated.
“Total” is the total number of configurations
explored, “Valid” is the number of valid configura-
tions found. (LA=LoanApproval, FR=FindRoute,
TA=TranslateArticle, NR=NearestRestaurant,
BA=BioAnnotator)

Test Exhaustive Merge Greedy-merge

Case search by def-use + Pooling
Total | Valid | Total | Valid | Total | Valid

LA 64 11 24 11 12 11

FR | 78125 | 736 64 64 13 10

TA | 15625 | 144 64 64 27 12

NR | 15625 | 448 64 64 24 14

BA - - 65536 | 65536 1 1

Table 3: Compute Time in millisec-

onds. (LA=LoanApproval, FR=FindRoute,
TA=TranslateArticle, NR=NearestRestaurant,
BA=BioAnnotator)

Example | Exhaustive Merge Greedy-merge
search by def-use + Pooling
LA 3039 2983 2975
FR 6576 2265 1959
TA 4080 2028 1932
NR 4185 2050 1954
BA - 71880 3554

extra example, the BioAnnotator composite service. BioAn-
notator creates a chain of web services, in which each web
service adds some set of annotations to an input file and
passes the annotated file to the next annotator web service.
This is a fairly large program but with a completely linear
structure.

An exhaustive search is clearly very expensive compared
to the heuristics presented in this paper. For the BioAnno-
tator example, we were unable to run the exhaustive search
algorithm. The merge-by-def-use heuristic generated more
than 65000 partitionings, but the greedy-merge and pooling
heuristics together generated exactly one partitioning which
in fact has the best performance characteristics. The merge-
by-def-use heuristic generates many partitionings that are
similar and hence generates a much larger number of par-
titionings. The time to compute the exhaustive search al-
gorithm is also very large compared to the heuristics. For
smaller programs, the time to run the greedy-merge and pool-
ing heuristic algorithms is comparable with the time to run
the merge-by-def-use heuristic, but as the program size in-
creases as in the case of BioAnnotator, the time to compute
the merge-by-def-use heuristic is much larger.

5.3 Micro-benchmarking

Micro-benchmarking is required to compute the cost of
primitive activities used in BPEL programs. As mentioned
in Section 4 these costs need to be determined empirically
for different data sizes as well as for different operations
on data. For brevity, we show the cost variance with data
size only for the following four activities: receive, reply,
assign and invoke. To compute the cost of these activities
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Figure 18: Micro-benchmarking: CPU Utilization
for each micro-benchmark program at varying re-
quest rates for messages of size 512 Bytes.
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Figure 19: Micro-benchmarking: CPU Utilization
for each micro-benchmark program at varying re-
quest rates for messages of size 24KB.

we ran four micro-benchmark programs - (1) the receive
BPEL program which contains exactly one receive activ-
ity and nothing else; (2) the receive-reply BPEL pro-
gram which receives a string and echoes it back; (3) the
receive-assign-reply BPEL program which receives a str-
ing in one variable, copies it to another variable and sends
it back; and (4) the receive-invoke-reply BPEL program
which receives a string in one variable, invokes a web service
using the same data and returns the response to the client.
The invoked web service is an “echo” service. Figure 18
gives the percentage CPU utilization for each program as
a function of request rate when the data sizes are all 512
bytes and Figure 19 gives the percentage CPU utilization
for each program as a function of request rate when the
data sizes are 24 KB. Since CPU utilization varies linearly
with request rate we can compute the cost of an activity
from the slope of the plot. For the receive-assign-reply
benchmark for 512 byte messages, from the slope of the
corresponding CPU utilization plot we find that the cost
is 0.019 work units — computed as CPU utilization (40%)
divided by request rate (2100). Similarly, the cost of the
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Figure 20: Micro-benchmarking: Costs of different
activities at varying message sizes.

receive-reply BPEL program is 0.012 units. Hence the
cost of an assign is 0.019 — 0.012 = 0.007 units. Similarly,
the cost of each activity can be benchmarked and computed.
The cost of an assign is 0.007 at message sizes of 24KB
showing that simple assigns are not affected by message
size. When the assign contains an XPath expression, the
cost is significantly higher and also sensitive to message size.
The cost of invoke however is 0.025 for 512 bytes and 0.045
for 24KB messages, indicating that invokes are sensitive to
message sizes. The costs have been plotted for message sizes
of 256 bytes, 1KB, 4KB, 8KB, 16KB and 24KB in Figure 20.

Once the micro-benchmark costs have been computed,
they can be used to predict the throughput of a given parti-
tion as follows: The available capacity (e.g., Capacityco in
the example in Section 4) is set to 100 units if 100% CPU is
alloted to the process else appropriately to a smaller value.
Then our cost function computes the request rate at which a
partitioning will deliver peak throughput and beyond which
throughput is expected to deteriorate.

Example. 1f we assume a 90% capacity availability, then
applying the cost values in Figure 20 to the example in Sec-
tion 4, we get the peak rates in Requests/minute as:

_ 90 _
peak rate(C0) = rrgosrr075 s = 396

_ 90 _
peak rate(D0) = rrosTaia0 e omTaroer = 900

peak rate(D0") = = 1267

90
.007+4-0.005+4-2%.20+2%.006+.007

While these values as absolute values are not important,
they are indicative of the relative performance characteris-
tics of different partitions.

Discussion and Limitations. We have benchmarked sev-
eral Linux machines with different CPU, memory and kernel
configurations. The trends in all the machines is the same
though the actual values differ. However, machines with
the same configuration give the same results. Thus it is im-
portant to benchmark only one of each type of machine in
the system. We have not benchmarked machines running

different operating systems.

The cost function works on the assumption that the size
of the data handled by each activity is known a priori. A
WSDL (Web Services Description Language [9]) document
is a signature of a web service, providing input/output de-
tails of the web service. Data size information can some-
times be estimated by the WSDL descriptors of the BPEL
programs and the WSDL descriptors of the invoked web
services. However, in general, this information needs to be
gathered by profiling.

Our micro-benchmarking computes an upper bound based
on CPU and memory utilization. However, as mentioned in
Section 4, there may be other upper bounds: the number of
available threads in the server or network bandwidth. We
have not benchmarked these parameter. For this paper, we
assume that plentiful threads are available, although real
application servers obviously limit the number of threads
that can be configured. We also assume that network band-
width is not a bottleneck which is not unrealistic for LAN
scenarios.

6. RELATED WORK

Much work has been done on automatic parallelization of
sequential programs based on PDGs e.g., [2, 6]. In contrast,
the focus in this paper is on the use of PDGs in partition-
ing of composite web service applications for decentralized
orchestration. There are many references in the literature
that are relevant to partitioning and clustering algorithms
for parallel programs e.g., [3, 15, 16, 7, 23]. Though we
leverage the results from past work on program partition-
ing, we observe that there are some key characteristics that
distinguishes our problem statement from the problem state-
ments considered in past work. Specifically, decentralization
of composite web services presents a partitioning problem
with the additional constraint that tasks can be either fixed
or portable. In addition, most previous work on partition-
ing focused on minimizing the completion time of a single
instance of the program or for parallel tasks. The works by
Graham [8] and Reiter [14] show how to determine bounds
on execution times and throughput in acyclic and cyclic de-
pendence graphs respectively for parallel computation. The
goal of this work is to maximize the throughput for the case
when multiple instances of the parallel program (composite
web service) are executed.

Our work uses and expands on techniques for merging
PDGs [10]. Singhai [19] uses a similar idea in the area
of loop fusion, where two loops are merged subject to the
condition that the merge does not violate dependences. His
algorithm also uses the notion of maximizing dependence
edges within a fused loop to increase reuse of cached vari-
ables. However neither of them consider the dependence
constraints that must be applied when merging two explic-
itly parallel sections of a program.

Work by Subhlok et al [20, 21] merges adjacent tasks in a
task graph and solve the problem of assignment of tasks to
a set of processors. Their problem is different in that they
need to determine the optimal number of processors for an
application based on certain constraints and cost models. In
our case, the number of processors is pre-determined, some
tasks (fixed tasks) are preallocated to specific processors and
the remaining tasks need to be assigned. Their applications
are typically pipelines of tasks where the output of one task
feeds into the input of the next and hence it suffices to merge



only adjacent tasks. Our applications have much more com-
plex communication patterns and hence benefit from task
reordering.

Partitioning problems in distributed computing have been
tackled in many ways. Singh and Pande [18] give a solution
to code migration based on mobile agents. A mobile agent
represents a single flow of control (albeit decentralized) that
determines what code is executed at what location. Our de-
centralized solution may have many parallel threads of exe-
cution that interact and synchronize and hence the problems
we solve are different. Zhou et al [24] give a static analy-
sis solution for method partitioning. However, their solu-
tion lies in partitioning the message handling code between
the sender and receiver. While we do something similar,
we also generate and evaluate different partition configura-
tions, whereas they do not attempt to change the topology
of a given decentralized application.

Tilevich and Smaragdakis [22] give a related partitioning
algorithm that uses the notion of “anchored” and “mobile”
tasks. Certain classes are anchored to fixed locations while
others may be allowed to migrate. Their algorithm gener-
ates proxies to access the migrated classes and determines an
efficient partitioning of the code. However, the final orches-
tration is centralized over RMI calls unlike our orchestration
which is decentralized with asynchronous messaging.

Finally, there exist other techniques for partitioning work-
flows such as state and activity chart-based techniques to
enable distributed execution according to the original se-
mantics [13]. These techniques do not alter the invocation
order of activities, and also do not consider load balanc-
ing issues in mapping activities to workflow servers. Our
work does not have these limitations because we model de-
centralized execution as a general partitioning of a program
dependence graph.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have given a new code partitioning algo-
rithm that is applicable to decentralization of composite web
services. The algorithm depends on a technique for testing
for legality of reordering of PDG nodes, and on a technique
to estimate the throughput of a network of servers executing
a business process. Our experimental results show that de-
centralization can increase the throughput of example com-
posite services substantially, easily doubling it under high
system load.

In the near future we plan to build a feedback control
mechanism that will determine the correct runtime values
to the parameters in the cost function. Depending on the
feedback we will enable switching between different partition
configurations based on runtime conditions.

From an algorithmic standpoint, we plan to enhance our
algorithm in the future to consider merges of fixed nodes i.e.,
when multiple fixed nodes are placed in the same partition.
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