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Abstract. Current workflow management systems fall short of supporting large-scale distributed, enterprise-
wide applications. We present a scalable, rigorously founded approach to enterprise-wide workflow management,
based on the distributed execution of state and activity charts. By exploiting the formal semantics of state and activ-
ity charts, we develop an algorithm for transforming a centralized state and activity chart into a provably equivalent
partitioned one, suitable for distributed execution. A synchronization scheme is developed that guarantees an exe-
cution equivalent to a non-distributed one. This basic solution is further refined in order to reduce communication
overhead and exploit parallelism between partitions whenever possible. The developed synchronization schemes
are compared in terms of the number and size of synchronization messages.
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1. Introduction

Workflow management is a rapidly growing research and development area of very high
practical relevance (Georgakopoulos et al., 1995; Mohan, 1994; Vossen and Becker, 1996;
Workflow Management Coalition, 1995; Sheth, 1996). Typical examples of (semi-
automated) workflows are the processing of a credit request in a bank, the editorial handling
and refereeing process for papers in an electronic journal, or the medical treatment of pa-
tients in a hospital. Presently, virtually no major enterprise executes its mission-critical
business processes under the support of a workflow management system. Because of their
monolithic and centralized architecture, most of the systems that are currently on the market
cannot cope with the requirements that large-scale workflow applications pose (Gawlick,
1994). The workloads that are to be anticipated for the future are in the order of several
thousands of involved human actors and of ten thousands to more than hundred thousands
of workflow executions in parallel (Kamath et al., 1996).
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1.1. Problem statement

The targets of this paper are large scale workflow applications which involve several business
units, create a very large number of concurrent workflow instances, and thus impose a high
load on the workflow engine. For mission-critical workflows, high availability and failure-
resilience is required.

The specification of a workflow is usually done via high-level graphical interfaces, e.g.,
by drawing nodes and arcs. This specification must be mapped into an internal represen-
tation that serves as the basis for execution. In many workflow management systems, the
underlying internal representation uses an ad hoc model and thus lacks capabilities for
formal correctness reasoning. In contrast, general-purpose specification formalisms for
dynamic systems such as Petri nets, state charts, temporal logic, or process algebras, which
are pursued in various research projects and a few products, come with a rich theory and thus
provide an excellent basis for formal proofs. For the work in this paper we have adopted the
method of state and activity charts by Harel et al. (Harel, 1987a, 1987b, 1988; Harel et al.,
1990; Harel and Naamad, 1995), which is perceived by practitioners as more intuitive and
easier to learn than Petri nets yet has an equally rigorous semantics. In particular, state chart
specifications are amenable to model checking (McMillan, 1993; Helbig and Kelb, 1994),
so that critical workflow properties that are expressible in temporal logic can be formally
verified; an example would be that a credit request must be rejected if it turns out that the
customer has insufficient collaterals.

Formal reasoning about specifications implicitly assumes a centralized execution model;
there is no notion of distribution, interoperating workflow engines, and so on. So tools for
formal reasoning must have access to the complete workflow specification in a uniform
representation, regardless of whether the workflow may in reality span different autonomous
business units of an enterprise or even different enterprises. In fact, however, distributed,
decentralized execution of workflows (Alonso et al., 1995) is a mandatory requirement for
complex, large-scale applications for two reasons.

• Such applications may involve a very large number of concurrent workflow instances
which impose a high load on the workflow engine. Consequently, scalability and avail-
ability considerations dictate that the overall workflow processing must be distributed
across multiple workflow engines that run on different servers, and this workload parti-
tioning may itself require the partitioning of individual workflows.

• Whenever a workflow spans multiple business units that operate in a largely autonomous
manner, it may be required that those parts of a workflow that are under the responsibility
of a certain unit are managed on a server of that unit. Thus, the partitioning and distribution
of a workflow may fall out naturally from the organizational decentralization.

A distributed workflow execution requires synchronization between the underlying work-
flow engines. As large scale workflows will involve several business units, within or across
enterprises, minimizing communication costs is an important issue. In wide area networks,
the latency for establishing a connection is a major performance factor. Therefore, the goal
is not only to reduce the overall message size, but also to reduce the number of synchroniza-
tion messages. Failure-resilience and high availability are further requirements of utmost
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importance. In this setting, the integration of standard middleware components (Bernstein
and Newcomer, 1997) such as TP monitors seems to be a well-suited approach (Dayal et al.,
1993).

1.2. Contribution of the paper

Partitioning a centralized workflow specification in order to enable distributed execution
must preserve the original execution semantics. For large scale workflows, this is only
feasible if the original specification is based on a formal model with rigorous semantics,
and the partitioning is carried out automatically. For the well known specification method
of state and activity charts we have developed a partitioning algorithm that transforms
the original state chart intoorthogonal components. The semantics of the original and the
orthogonalized state chart is provably equivalent. For distributed execution, the orthogonal
components are assigned to a number of workflow servers such that each server executes a
partition of the original workflow containing at least one orthogonal component.

There exists an inherent cost in the distributed execution of large scale workflows in a
real-life setting, namely, the necessary amount of communication for the correct synchro-
nization. This paper combines the distributed execution with a comprehensive model for
the synchronization of a set of more or less autonomous workflow engines. We proceed in
three major steps:

(1) We first develop a basic solution for the synchronization of distributed workflow engines
where the communication is based on the primitives provided by a TP monitor.

(2) We improve this solution by restricting communication between the workflow engines
to the cases where the progress in one workflow engine potentially influences other
workflow engines. This scheme guarantees the correct workflow execution and, in
addition, exploits the potential parallelism of activities as defined in the workflow
specification.

(3) To evaluate the feasibility of our approaches, we analyze the communication costs and
compare them by means of an example workflow.

The work reported here is embedded in the Mentor project (Weissenfels et al., 1996; Wodtke
et al., 1996) on “middleware for enterprise-wide workflow management”. This project uses
a state chart based workflow engine and integrates our own “glueing” software together with
the TP monitor TUXEDO (TUXEDO System 5, 1994; Primatesta, 1994) as the backbone
of the execution environment. The idea of transforming a centralized state chart specifica-
tion into a behaviorally equivalent partitioned state chart specification that is amenable to
distributed execution has been introduced in (Wodtke, 1997; Wodtke and Weikum, 1997).

The outline of the paper is as follows. Section 2 discusses related work. Section 3 gives
a brief overview of our system architecture for distributed execution of enterprise-wide
workflows. In Section 4, we describe our specification method of state and activity charts
and introduce our running example. In Section 5, a transformation method for partitioning
a given state chart based workflow specification into subworkflows is described, and its
correctness is shown. In Section 6, different alternatives for synchronizing the distributed
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workflow execution are presented. Finally, in Section 7 we quantify the communication
costs for the different synchronization schemes presented in Section 6. Section 8 concludes
the paper.

2. Related work

A wide range of products and research projects offer support for workflow management.
Some examples of commercial products are FlowMark, Lotus Notes Staffware, etc. (see,
Georgakopoulos et al., 1995; Jablonski and Bussler, 1996; Mohan, 1994, for an overview).
The products have been primarily developed for use within an office environment and are
not geared towards department-spanning or even enterprise-wide workflows. Typically, all
relevant data on an ongoing workflow is kept on a single central server. The most critical
deficiencies of these products are to be seen in a lack of scalability and fault tolerance; for
example, communication between activities is often based on e-mail, which is way behind
the strong guarantees that one would expect in online transaction processing.

There is a plethora of related research on the aspect of workflow specification and busi-
ness process modelling. This work ranges from using (and possibly extending) standard
specification methods such as Petri net variants to specifically designed languages. Work
in the first category includes (Kappel and Schrefl, 1991; Ellis and Nutt, 1993; Oberweis
et al., 1994); the language approach is pursued, for example, in (Bernstein et al., 1995;
Forst et al., 1995) and in the Workflow Process Definition Language (WPDL) of the Work-
flow Management Coalition (Workflow Management Coalition, 1995). In addition, some
approaches such as (Kappel et al., 1995; Dayal et al., 1991; Rusinkiewicz and Sheth, 1994)
are based on Event-Condition-Action rules (ECA rules), as used in active database systems
(Widom et al., 1995), for describing the control flow between activities. We are not aware
of any other project that is based on state transition machines like the state chart method.

Less work exists on the distributed and scalable execution of workflows. One of the first
and most advanced research projects that are middleware-centered and address especially
reliability issues is the ConTract project (W¨achter and Reuter, 1992; Schwenkreis, 1993;
Reuter and Schwenkreis, 1995). The focus of this project has been to extend transaction-
oriented runtime mechanisms for fault-tolerant workflow execution in a distributed envi-
ronment. Specification issues, on the other hand, have been of secondary concern in this
project. Other notable research projects with similar objectives are the DOM project (Geor-
gakopoulos and Hornick, 1994) which is primarily oriented towards applications in the
telecommunications industry and views workflows as a set of control flow dependencies
between transactional steps, and the MOBILE project (Jablonski, 1994) which aims to
develop a comprehensive and modular architecture of the execution environment. A dis-
tributed enactment service for workflows is also studied in the METEOR2 project (Sheth
et al., 1996; Das et al., 1997). The architecture is based on CORBA (OMG, CORBA,
1995b) and intends to use object services like the Object Transaction Service (OTS), the
Concurrency Control Service and the Persistence Service once they are available (OMG,
CORBAservices, 1995a).

Very similar to our approach with respect to availability and scalability issues, is the
Exotica project (Alonso et al., 1995, 1996) which aims to enhance FlowMark by addressing
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these issues. An approach has been discussed where parts of the workflow specification are
distributed across a set of workflow engines such that the workflow can be executed in a
distributed fashion, based on IBM’s MQ Series (Alonso et al., 1995; Blakeley et al., 1995).
However, synchronization issues are not considered at a formal level.

Another approach which aims at the distribution of the workflow specification is based on
“intelligent” information carriers (INCAs) such as smart cards (Barbara et al., 1996). During
the workflow execution an INCA which contains the context of a workflow instance is routed
from one processing station to the next according to the control flow specification that is
stored on the INCA and in the processing stations. Although, similarly to our approach,
no processing station has complete knowledge of all steps that comprise the workflow, the
INCA approach is different in that it does not allow for parallel processing of activities
since each INCA implicitly serves as an exclusive token that can solely be processed at a
single location at each time.

3. System architecture

We now introduce the Mentor architecture for enterprise-wide workflow management
(Weissenfels et al., 1996; Wodtke et al., 1996), which is in line with the reference model
of the Workflow Management Coalition (1995). It is based on aclient-server model, as
shown in figure 1. The workflow itself is orchestrated by appropriately configuredservers,
while the invoked applications of a workflow’s various activities are run atclient sites
(where the applications may in turn issue requests to other servers, regardless of whether
an application is invoked within a workflow or not). Theworkflow enginesand a set of
key components, i.e., alog manager, a worklist manager, a history manager, and acom-
munication managerare run on the servers. The architecture relies mostly onstandard

Figure 1. Components of the Mentor execution environment and their interaction.
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middleware componentsand conceives additional components only where the standard
components fall short of functionality or scalability. Particularly, a TP monitor (Gray
and Reuter, 1993; Bernstein and Newcomer, 1997), which provides transactional ser-
vices and persistent message queues, is integrated for fault tolerance reasons. We use
the TP monitor TUXEDO (TUXEDO System 5, 1994; Primatesta, 1994). Updates to
the local system configuration of workflow engines are stored in transactional resource
managers, under the control of the TP monitor. An object request broker (ORB) (Mow-
bray and Zahavi, 1995; OMG, CORBA, 1995b) is integrated to cope with the poten-
tial heterogeneity of the invoked applications that belong to the workflow. Furthermore,
the architecture is anopen and modular architecturewhere—if needed—further compo-
nents can be added and components can easily be replaced by alternative implementations.
Particularly, the architecture allows the coexistence of workflow servers with different work-
flow engines and the coexistence of multiple worklist managers each with its own worklist
policy.

We will now describe the flow of control between all system components of the Mentor
execution environment. The following numbers refer to the numbers that are annotated to
the arcs in figure 1.

(1) Each workflow engine executes its corresponding partition of a workflow, and can thus
invoke a certain subset of activities directly. This is performed by calling anObject
Request Broker(ORB). We use Orbix (IONA Technologies, 1995) as our CORBA
compliant ORB (OMG, CORBA, 1995b).

(2) The ORB maps the calling parameters derived by the workflow engine on the actual
calling parameters of the application and invokes the application.

(3) Thelog managerkeeps track of every change of the system configuration of the local
workflow engine. In the case of a system crash, this allows the workflow engine to
recover to the latest system configuration before the crash happened.

(4) Whenever an activity becomes ready for execution the according information is sent to
theworklist manageras a new work item. The worklist manager assigns work items
to one of the actors who are able to fill the corresponding role. The assignment of
work items is based on information about role resolution policies, vacation periods,
etc. which is stored in the worklist database.

(5) Similarly to the log manager, thehistory manageris in charge of bookkeeping of work-
flow executions. However, the objective of the history manager is to store information
for monitoring purposes and to allow for both online status inquiries and long-term
evaluation.

The following operations implement the posting of changes in the system configuration of
local workflow engines to other workflow engines if the change is relevant for them. This
ensures that the global system configuration consisting of all local system configurations is
kept consistent:

(6) Whenever a system configuration in a local workflow engine changes, i.e., the corre-
sponding transaction is ready to commit, the update is propagated to the local com-
munication manager.
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(7) The communication manager determines the workflow engines that need to receive the
update, prepares a synchronization message representing the update, and invokes the
TP monitor. The task of the TP monitor is twofold. At first, it stores the synchronization
message together with a list of recipients in a persistent message queue. Secondly, it
combines the updates of the system configuration of the local workflow engine and the
insertion of the synchronization message into the message queue into a single atomic
transaction. This ensures that each committed update of the system configuration is
eventually propagated to the receiving workflow engines.

(8) The system configuration information is propagated by means of the communication
primitives provided by the TP monitor.

(9) At the recipient site, the TP monitor reads the received message from the local message
queue, which is also stored on stable storage. Reading the message is performed inside
the transaction that also tracks the local state progress. This ensures that the message is
processed exactly once. The corresponding system configuration information is then
propagated to the local communication manager.

(10) The communication manager forwards the received system configuration information
to its local workflow engine. Based on the received data, the local system configura-
tion is updated. The corresponding transaction forms an atomic unit with the trans-
action that reads the synchronization message from the queue of incoming messages.
This guarantees that the update to the system configuration eventually reaches the
local workflow engine.

4. Centralized workflow specification

In this section, we will describe the specification of distributed workflows based on the
formalism of state and activity charts (Harel, 1987a, 1987b; Harel et al., 1990; Harel and
Naamad, 1995). State charts are well established in software engineering (Harel and Gery,
1997), especially for specifying reactive systems. The benefit of employing a formally based
specification method is that there exists a precise operational semantics. Consequently, the
semantics of our state and activity chart based workflow specification is independent of the
implementation of the workflow engine. This is crucial, for example, for the correctness
reasoning of workflow specifications since it allows using standard verification tools (e.g.,
symbolic model checking) to prove that a workflow specification is a correct model of the
corresponding business process (Wodtke, 1997).

Our design procedure for workflow specifications is organized in two steps: In the first
step, a centralized workflow specification consisting of at least one state chart and one activ-
ity chart is developed. Specifications that are given in another language (e.g., in a scripting
language such as FlowMark’s FDL (IBM Corp., 1994)) can be converted into state and
activity charts. Basically, this implies a decoupling of the specification environment from
the execution environment so that state and activity charts can serve as a canonical internal
workflow representation. In the second step, the workflow specification is partitioned into
a set of subworkflows such that all activities and corresponding states of one business unit
constitute one partition. The challenge is to guarantee that the partitioning preserves the
behavior of the original workflow specification.
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Example workflow—credit processing

Throughout the paper, we will use an example from the area of credit processing in a bank.
It considers credit requests from companies, which is a very important and sensitive part of
a bank’s business. An application for a credit involves, among other things, the checking
of the company’s current credit balance, the company’s credit rating and a risk evaluation.
The activities that are required for the decision making are thus spread over the different
divisions and sites. In the sequel, a very simplified version of this workflow will be used
for the description of state and activity charts

Overview of the state chart specification method

State and activity charts were originally developed for reactive systems (e.g., embedded
control systems in automobiles) and have been quite successful in this area. They comprise
two dual views of a specification.

Activitiesreflect the functional decomposition of a system and denote the “active” com-
ponents of a specification; they correspond directly to the activities of a workflow. An
activity chartspecifies the data flow between activities, in the form of a directed graph with
data items as arc annotations. An example for an activity chart is given in the left part
of figure 2. It defines the activitiesENCR, CCW, RSK, DEC, andERR, which constitute
our credit processing workflow, and the data flow between the activities. In activityENCR
(enter credit request) the companys credit request is entered into a credit database. The
company informationCO INF constitutes the data flow fromENCRto activitiesCCW,

RSKandERR. Activity CCWchecks the company’s credit worthiness by looking up the
appropriate account and balance sheet data of the company. ActivityRSKevaluates the
potential risk that is associated with the requested credit.RSKtakes into account the bank’s
overall involvement in the affected branch of industry (e.g., the total of all credits already
granted to computer companies) and the requested currency. Finally, the decision activity
DEC records the decision that is eventually made on the credit request (i.e., approval or re-
jection); this would typically be an intellectual decision step based on the resultsRESCCW
andRES RSKof theCCWandRSKactivities. These four activities are complemented by

Figure 2. Activity chart and state chart of the workflow “credit processing”.
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a fifth activityERR, which may be invoked as a generic error handler, for example, to stop
the processing of the workflow when the credit requestor goes out of business.

State chartsreflect the behavior of a system in that they specify the control flow between
activities. A state chart is essentially a finite state machine with a distinguished initial state
and transitions driven by Event-Condition-Action rules (ECA rules). Each transition arc
between states is annotated with an ECA triple. A transition from stateX to stateY fires if
the specified eventE occurs and the specified conditionC holds. The effect is that stateX
is left, stateY is entered, and the specified actionA is executed. Conditions and actions are
expressed in terms of variables, for example, those that are specified for the data flow in
the corresponding activity chart; conditions and events may also refer to states by means of
special predicates likeIN(s) which becomes true if states is currently entered. In addition,
an actionA can explicitly start an activity, expressed byst!(activity), and can generate an
eventE or set a conditionC. ECA rules of this kind are notated in the formE[C]/ A. Each
of the three components may be empty. Every state change in a state chart execution is
viewed as a single step; thus, state changes induce a discrete time dimension.

Two important additional features of state charts arenested statesandorthogonal com-
ponents. Nesting of states means that a state can itself contain an entire state chart. The
semantics is that upon entering the higher-level state, the initial state of the embedded
lower-level state chart is automatically entered, and upon leaving the higher-level state all
embedded lower-level states are left. The possibility of nesting states is especially useful
for the refinement of specifications during the design process and for incorporating existing
(sub)workflows. Orthogonal components denote the parallel execution of two state charts
that are embedded in the same higher-level state (where the entire state chart can be viewed
as a single top-level state). Both components enter their initial state simultaneously, and
the transitions in the two components proceed in parallel, subject to the preconditions for a
transition to fire.

An example of a state chart is given in the right part of figure 2 for the credit processing
workflow. For each activity of the activity chart there exists a state with the same name,
extended by the suffixS. Furthermore, the workflow consists of three major sequential
building blocks,ENCR S, EVAL S, andDEC SwhereEVAL Sconsists of two orthogonal
components,CCW S and RSK S. Hence, the activitiesCCW and RSKare executed in
parallel. For each activity, its outcome in terms of an error variable is available. For
example, variableENCROK is set totrue after termination of activityENCRif no error
occured. Otherwise the variableENCR NOK is set totrue and an error handling activity
is started. Initialization and error handling of the workflow are specified in an orthogonal
component.

5. Partitioning of workflow specifications

In this section, we present our method for the partitioning of workflow specifications. As we
will see, partitioning the state chart is the most challenging part. The partitioning transforms
a state chart into a behaviorally equivalent state chart that is directly amenable to distributed
execution in that each distributable portion of the state chart forms an orthogonal component.
The first step towards a partitioned specification is thus called “orthogonalization”. The
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outcome of this step is another state chart that can easily be partitioned. The proof that this
transformation is indeed feasible in that it preserves the original state chart’s semantics is
cast into showing that the resulting “orthogonalized” state chart is a homomorphic image
of the original specification. Note that we do not address the issue of “streamlining” or
optimizing business processes by altering the invocation order of activities. We are solely
concerned with preparing workflow specifications for distributed execution.

Partitioning of state and activity charts

The partitioning of a workflow specification consists of two elementary transformations:
the partitioning of the activity chart and of the state chart. We assume that for each activity
of the activity chart there exists an assignment to the corresponding execution role and thus
an assignment to a department or business unit of the enterprise. Therefore, each activity
can be assigned to a workflow server of the corresponding department or business unit.
Consequently, the partitioning of the activity chart falls out in a natural way in that all
activities with an identical assignment form a partition of the activity chart.

While this is straightforward, the partitioning of the state chart requires more than sim-
ply assigning states to partitions. State charts can be state trees of arbitrary depth where
parent states may have assignments that differ from the assignments of their children states.
Furthermore, transitions may interconnect states at different levels of the state tree and/or
with different assignments. In order to partition a state chart without changing its behavior,
we pursue an approach which is different from the partitioning of the activity chart and is
organized in three major steps:

(1) Assignment of states to activities.In this step each state is assigned to an activity of
the activity chart. For each state, this assignment allows to derive to which execution
role and department or business unit it belongs. In the case of nested state charts
where a state can contain an entire state chart the higher level state will correspond to
a higher-level activity chart with embedded subactivities.

(2) Orthogonalization of the state chart.For each state of the state chart an orthogonal com-
ponent is generated. Each generated orthogonal component emulates the corresponding
original stateS by means of two states,in Sandout S, which are interconnected by
transitions in both directions. These transitions correspond to the transitions that lead
to or originate from stateS. The transition labels of these transitions are extended by
conjunctive terms that refer to the source states of the original transitions. Figure 3
illustrates the orthogonalization for the state and activity chart of figure 2. For example,
for the transition that interconnects statesENCR SandEVAL S the following transi-
tions are generated: a transition fromin ENCR S to out ENCR S, a transition from
out CCW S to in CCW S, and a transition fromout RSK S to in RSK S. The first
transition has the same condition component in its transition label as the original transi-
tion,ENCROK and not(amount< 1000). The other two transitions have the condition
ENCROK and not(amount< 1000) extended by a conjunctive termIN(in ENCR S)
as their condition components and the start instructions for the corresponding activities
as action components of their transition labels. This extension of condition components
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Figure 3. Partitioning of the workflow “credit processing”.

guarantees that in any case in the orthogonalized state chart all transitions which origi-
nate from an original transition fire at the same time. Consequently, in the example the
activitiesCCWandRSKare started if and only if stateENCR S is left, and the credit
amountamountis not less than 1000. Note that the partitions of figure 3 have been
generated by our partitioning algorithm. This is the reason for the two transitions from
statein ENCR S to stateout ENCR Swhich could be merged into a single one with
justENCROK as condition component.
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(3) Assignment of partitions to workflow servers.In this step, the orthogonal components
that have been generated in step 2 are grouped to state chart partitions. The criterion
for grouping a set of orthogonal components to form a state chart partition is the
assignment of their underlying original states to the same department or business unit
of the enterprise.

Note that this partitioning procedure can cope with nested activities without special treat-
ment. For the example of figure 3, we assume that the activitiesCCWandRSKbelong
to the same partition, whereas the remaining activities belong to different partitions. The
data flow between activities belonging to different partitions is indicated by data flow con-
nectors that start or end at the borders of the boxes that represent partitions. If a partition
contains several orthogonal components which have formed a coherent part in the original
state chart, it is possible to merge these components to rebuild a part of the original state
chart. Consider for example partition P4 in figure 3. Statein INIT andout ERR Sare left
if one of the activitiesENCR, CCW, RSKandDEC fails, i.e., the corresponding “NOK”
variable becomestrue. The transition fromout ERR S to in ERR S contains the term
IN(in INIT). If we change the source of this transition to the statein INIT, and remove
the now unnecessary statesout INIT andout ERR S, we get back a part of the original
state chart, namely the orthogonal component on the right of the state chart in figure 2. An
algorithm for this merge is given in (Wodtke, 1997). For the sake of simplicity, we do not
consider such merges in the rest of the paper.

Correctness of the partitioning

The feasibility of the described transformation depends on the assumption that the semantics
of the original state chart is preserved. What is needed is a formal correctness proof that this
is indeed the case. We will concentrate on the correctness proof of the orthogonalization
(step (2)), which is the most critical step with regard to possible changes of the behavior of
the state chart.

First, we will refer to a formally defined operational semantics of state charts, which is
a simplified version of the semantics given in (Harel and Naamad, 1995). It is tailored to
our context of workflow specification (see, Wodtke, 1997, for full details). To this end, we
define the setSCof system configurations. The system configuration describes the set of
currently entered states and the context, i.e., the current values of conditions, events, and
variables that are part of the state chart. For the execution of a state chart, we define a step
operator,step, which maps a system configuration to its successor system configuration.

Figure 4 illustrates the interdependence between the operational semantics of the original
state chart and the operational semantics of its orthogonalized representation. We view both

Figure 4. Interrelationship between original state chart and orthogonalized state chart.
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state charts as algebras with identical signatures. The carrier sets are the sets of system
configurations, and the only operator is the step function. In order to distinguish between
both carrier sets and operators, the carrier set and the operator of the algebra of the or-
thogonalized state chart (i.e., algebra 2) are denoted bySC′ andstep′, respectively. The
interdependence between the two algebras is described by the mappinghSC, which maps
each system configuration of algebra 1 onto a system configuration of algebra 2. For the
contexts this mapping is the identity mapping. With regard to the state configuration,hSC

maps each stateZ that is currently entered onto the corresponding statein Z of the orthog-
onalized state chart and each stateZ that is currently not entered onto the corresponding
stateout Z of the orthogonalized state chart.

If the diagram given in figure 4 commutes then algebra 2 of the orthogonalized state chart
is a homomorphic image of algebra 1 of the original state chart (Lang, 1993). In this case,
we say that the orthogonalized state chart isbehaviorally equivalentto the original state
chart, i.e., has the same properties as the original state chart. For example, the activities are
started at the same time whenever both state charts are executed under identical external
input. The following theorem states the above formally:

Theorem 1. The mapping hSC,which maps each system configuration of an arbitrary state
chart S onto system configurations of the orthogonalized state chart S′ is a homomorphism.
That is, for each step i, i ≥ 0 and for each system configuration sci of S the following holds:

hSC (step(sci )) = step′ (hSC (sci )),

with step being the step operator of S, step′ being the step operator of S′, and both step
operators being defined by the operational semantics of state charts.

A detailed presentation of the formal model and the proof can be found in (Wodtke, 1997;
Wodtke and Weikum, 1997).

6. Synchronization of workflow engines

In this section, we discuss how the workflow engines that execute partitions of a workflow are
synchronized. More specifically, we investigate where the exchange of system configuration
information has to take place, and which part of the system configuration needs to be
communicated. The goal is to minimize synchronization costs in terms of the number
of synchronization messages exchanged and in terms of their sizes, while guaranteeing a
workflow execution equivalent to a non-distributed one (i.e., equivalent to the execution
of the orthogonalized state chart before partitioning). If the original state chart contains
orthogonal components, it should be possible in a distributed execution to exploit parallelism
between them. This has to be considered in the design of the synchronization mechanism.
Our synchronization mechanism addresses only the exchange of data between partitions of
the same workflow instance. We do not consider the concurrency control between different
workflow instances of the same or different type; this would pose a completely different set
of issues.
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As discussed in Section 4, the execution of state charts is performed in steps. A step
maps the set of states currently reached by the participating partitions and the current con-
text into the set of states after the step is performed and a new context, depending on the
transitions that fire in the step and on the actions performed. The new system configuration
is immediately available to determine all transitions and actions that make up the next step.
For the distributed execution of a partitioned state chart, the straightforward solution to the
synchronization problem is to always communicate the new system configuration of each
partition to all other partitions after performing a step. The according messages are called
synchronization messages. The next step can be performed by a partition after synchroniza-
tion messages from all other partitions have been received, showing that all other partitions
have also completed the previous step. We denote this schemestrict synchronization. With
strict synchronization, each partition has perfect knowledge about the states reached in other
partitions and the according context. In addition, all partitions perform a step at the same
time. After the execution of a workflow is finished, all partitions have performed the same
number of steps, just as in the non-distributed execution.

Definition 1 (Strict synchronization).

(i) Two partitionsSandS′ arestrictly synchronizedif they exchange their complete system
configurationscof Sandsc′ of S′ before performing each step.

(ii) The execution of a partitioned state chart isstrictly synchronizedif all pairs of partitions
are strictly synchronized.

It is obvious that strict synchronization imposes unnecessary overhead on the communi-
cation of partitions. Only a small fraction of the amount of data received by a partition
is relevant for the next step. Even worse, waiting for all partitions to finish their current
step before a partition can proceed with the next step limits the potential for exploiting
parallelism. We now discuss how to reduce the number of synchronization messages and
their sizes, compared to strict synchronization.

6.1. Reducing the size of synchronization messages

We proceed in two steps. First, for each pair of partitions, it is determined which part of
the system configuration is relevant for synchronizing them. Only the relevant information
needs to be sent. Secondly, it is sufficient to send only those parts of the relevant system
configuration that have changed during the last step.

A variable is denotedrelevantfor a partition if it is part of a condition in that partition,
or read in an action in that partition. A variable is denotedwritten by a partition if it is
modified in an action in that partition. We do not consider events here. Events in the specific
sense of state charts are valid for a single step only. Therefore, they have to be immediately
communicated to all partitions where they occur in anE[C]/A rule. They are not subject
of further optimization. Note that according to our experience, events are rarely used in
the specification of workflows. Our credit request example of figure 2 does not contain any
events at all.
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Information about entering or leaving states might also be relevant for other partitions.
This is the case ifstate conditions IN(s) orOUT(s) occur in the condition part of theE[C]/A
rules of a partition.

A static analysis of each partition allows us to derive all variables that are relevant for the
partition. These are the only variables that need to be received in synchronization messages.
The same is done for relevant state conditions. Note that we can not detect the exchange
of data accessed by invoked applications if these applications do not notify the workflow
engine about theses accesses. Such data can not be relevant for control flow, as it is not
available to the workflow engine, even in the centralized case. In fact, we do not want the
workflow management system to route the application data through the workflow engine
for performance and possibly also security reasons.

We denote the relevant variables together with relevant state conditionsrelevant system
configurationof a partition. The relevant system configuration of a partition reduced to
those variables and state conditions that are written by another partition or belong to states of
that partition is calledsynchronization datafor this pair of partitions. This can be formally
stated as follows:

Definition 2 (Relevant variables and state conditions, relevant system configuration, written
variables).

(i) A variable v or a state conditionIN(s) or OUT(s) is relevantfor a partitionS if it
occurs in a conditionC or if it is read by an actionA of an E[C]/A rule assigned to a
transition inS.

(ii) The relevant system configurationof partition S, RSC(S), is defined as the set of all
relevant variables and state conditions inS.

(iii) A variablev iswritten in a partitionSif it is modified in the action partA of anE[C]/A
rule assigned to a transition inS. Let WSC(S) denote the set of all written variables of
partitionSand all state conditionsIN(s) or OUT(s) of all statess of partitionS.

Definition 3 (Synchronization data).
Thesynchronization data SD(S, R) from partitionS to partitionR is defined as follows:

SD(S, R) = RSC(R) ∩ WSC(S)

Determining synchronization data can be done statically before the actual workflow execu-
tion. In order to send only updated data, we have to determine updates to synchronization
data after each step that was actually performed. This can easily be done at runtime with
almost no overhead. We thus obtain the following definition for an optimized strict syn-
chronization, denotedincremental synchronization.

Definition 4 (Incremental synchronization).

(i) Two partitionsSandS′ areincrementally synchronizedif they exchange their updated
synchronization dataSD(S, S′) andSD(S′, S) before performing each step. If there are
no updated synchronization data after performing a step, an empty message is sent.

(ii) The execution of a partitioned state chart isincrementally synchronizedif all of its
partitions are incrementally synchronized.
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It is easy to see that incremental synchronization is equivalent to strict synchronization
in terms of the resulting workflow execution. As for all pairs of partitions, all updates
to relevant variables are sent after each step, including information about the currently
entered or non-entered states if relevant, the receiving partition has exactly the same system
configuration as if strict synchronization were used. By sending empty synchronization
messages in case there are no updates to synchronization data, it is guaranteed that steps
are performed synchronously in the participating partitions.

6.2. Reducing the number of synchronization messages

In the previous section, only the size of synchronization messages has been reduced. Forn
partitions, there are stilln(n−1) synchronization messages that have to be exchanged after
each step. These messages implement a tight coupling of the execution of all partitions, as
all partitions perform their steps synchronously. No partition is allowed to do the next step
until all other partitions have finished the previous one. This limits potential parallelism
between partitions. In this section, we derive a new synchronization scheme denotedweak
synchronization. It is based on incremental synchronization but sends less messages and
allows partitions to perform multiple steps without synchronizing themselves with other
partitions. Our scheme is designed such that the synchronization of one pair of partitions
is done independently of other pairs.

We start by giving a framework for the exchange of synchronization data. The framework
is defined in terms of send points and receiving windows. Synchronization data is sent at
send points and received inside of receiving windows. Send points and receiving windows
can be automatically derived from the orthogonalized and partitioned state chart. We then
discuss how the assignment of receiving windows to send points is derived. The assignment
is crucial as it finally determines the execution semantics of weakly synchronized parti-
tions. A correct assignment guarantees that the execution is equivalent to a non-distributed
execution of the original state chart.

6.2.1. Receiving windows and send points.The basic idea of weak synchronization is to
send synchronization data only if the receiving partition makes use of it in the next step. This
leads to a state dependent definition of relevant variables, relevant state conditions, and the
relevant system configuration.

Definition 5 (Relevant variables and relevant state conditions in a state, relevant system
configuration in a state).

(i) A variablev or a state conditionIN(t) or OUT(t) is relevantfor a partitionS in a state
s if it occurs in a conditionC or if it is read by an actionA of anE[C]/A rule assigned
to a transition from states in S.

(ii) The relevant system configurationof partitionS in states, RSC(S, s), is defined as the
set of all relevant variables and state conditions forS in s.

Synchronization data is also state-dependent now.

Definition 6 (Synchronization data).
The synchronization data SD(S, R, s) from partition S to partition R in states of R is
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defined as follows:

SD(S, R, s) = RSC(R, s) ∩ WSC(S)

Without sending synchronization messages after each step, the set of simultaneously entered
states in different partitions need not be the same as in the non-distributed execution. After
receiving synchronization data, a partition can process several subsequent steps until further
synchronization data from another partition is required. The synchronization data must
reach the receiver during the processing of these steps. If it is received before, the execution
might be based on the wrong, i.e., ‘future’ synchronization data. If it is received too late, the
execution might be based on outdated data, which is also wrong. We address this problem
by definingreceiving windows.

A receiving window determines the set of states where a receiving partition is ready to
receive an update to the relevant system configuration, sent by the sending partition at a
particularsend point. In both the start and the finish state of a receiving window, there is
synchronization data required from the sending partition. For the intermediate states of a
receiving window, the opposite is true, i.e., their relevant system configuration does neither
contain a variable written by the sending partition nor a state condition containing a state of
the sending partition. Hence, the relevant system configuration of the receiving partition in
the finish state of the receiving window can be received in one of the intermediate states or,
at the latest, in the finish state of the receiving window. For successive receiving windows,
the finish state of the first receiving window is the start state of the second receiving window.
Initial states also qualify as start states of receiving windows.

Definition 7 (Receiving window).
A receiving window RW= (s, IS, s′, S) of partition R with respect to partitionS is defined
by a start states and a finish states′ in R, s 6= s′, connected through a set of transitions and
an according set of intermediate statesIS in R, s, s′ /∈ IS. In addition, the following must
hold:

(1) There existssynchronization data SD(S, R, s) from partitionS to partitionR at states,
or s is an initial state.

(2) There existssynchronization data SD(S, R, s′) from partitionSto partitionRat states′.
(3) For all statess′′ in IS, it holds: There exists nosynchronization data SD(S, R, s′′) from

partitionS to partitionR at states′′.

Send points are the counterparts of receiving windows. They define at which state a sending
partition sends synchronization data.

Definition 8 (Send point).
A send point SP= (s, R) of partitionSwith respect to partitionR is defined by a states of
partitionS for which one of the following conditions holds:

(1) There exists at least one variablev relevant for PartitionR such thatv is modified by an
actionA of an E[C]/A rule assigned to a transition into states in S (v can be updated
immediately before reachings), or

(2) states is contained in a state condition in partitionR.
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For a complete specification of weak synchronization, we need an assignment of receiving
windows to send points, i.e., we need a way to specify whether synchronization data sent
at a send point has to be received in a synchronization window, or not.

Definition 9 (Assigning receiving windows to send points).
The setRWS(SP), with SP= (s, R), denotes the set of receiving windows of partitionR
assignedto send pointSP.

We are now ready to define the notion ofweak synchronization, based on the notion of
receiving windows and send points.

Definition 10 (Weak synchronization).
Two partitionsS and S′ areweakly synchronizedif all of the following three conditions
hold:

(1) SandS′ send synchronization data toS′ andS, respectively, only at send points.
(2) The part of the system configuration sent at a send point (s, S′) or (s′, S) contains all

synchronization data from the sending to the receiving partition in states or s′, respec-
tively, that were updated since they have last been send toS′ or S, respectively.

(3) Synchronization data sent at a send point is made part of the system configuration of
the receiver if the receiver is an intermediate state or in the finish state of one of the
receiving windows assigned to the send point.

(4) If a partition reaches the finish state of a receiving window without receiving synchro-
nization data from at least one send point assigned to the receiving window, it does not
perform the next step until it receives synchronization data from at least one send point
assigned to it.

The execution of a partitioned state chart isweakly synchronizedif all pairs of parti-
tions areweakly synchronized.

Multiple receiving windows can be assigned to a single send point. This is the case if the
part of the system configuration sent at a send point is relevant for the evaluation of more
than a single condition or read by more than a single action in the receiving partition, and the
according transitions belong to different states. These states might be entered successively
by the receiving partition, or alternatively. As an example, consider figure 5. It shows two
state charts representing two partitions P1 and P2. Receiving windows are illustrated by

Figure 5. Assignment of receiving windows to send points.
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Figure 6. Send points sharing a receiving window.

ellipses. A receiving window consists of all states inside of an ellipsis. Assignments of
receiving windows of P1 to send points in P2 are indicated by dotted arcs between the state
representing the send point and the ellipses representing receiving window(s) assigned to
the send point. The send point at state B2 has two receiving windows: (init, {A1}, A2, P2)
and (A2,∅, A3, P2). The start state of the first receiving window is the initial state of the
state chart of P1 (the default values of variablesC andD are the synchronization data here).
These receiving windows are entered successively, whereas the receiving windows (A3,∅,
A4, P2) and (A3,∅, A5, P2) of the send point at state B3 are entered alternatively.

A receiving window can also be assigned to multiple send points. This is the case if
the actual send point depends on the execution of the workflow, as shown in figure 6.
Depending on whether state B2 or B3 is entered, the update to variableD is sent at different
send points. In the example, the send points are reached alternatively. Assigning a single
receiving window to send points that are successively reached is also possible. In this
case, in the finish state of the receiving window the receiving partition will only wait
for the first send point to be reached. If synchronization data from the first send point is
received, according to Definition 10, further waiting for subsequent send points will not
occur. However, if subsequent send points are reached before the receiving partition leaves
the synchronization window, the corresponding synchronization data is used to update the
system configuration. In the example of figure 6, assume, the receiving window (init, {A1,
A2}, A3, P2) is also assigned to the send point represented by the initial state of the state
chart in partition P2. In this case, the execution in P1 will not wait in state A3 for the
execution of the state chart in P2 to reach state B4 or B5, because the send point at the
initial state of P2 has already been passed. However, according to the state chart semantics
there is no need to wait anyway, as P1 and P2 perform a step at the same time, and thus
state A3 in partition P1 is not left before either state B4 or state B5 is entered in partition
P2. Hence, in weak synchronization mode, the state chart semantics has to be guaranteed by
a correct assignment of receiving windows to send points. Using the above assignment of
the receiving window to two send points, this is not guaranteed as the execution of P1 then
depends on the time it takes P2 to reach state B4 or B5. If state B4 or B5 is reached after
state A3 is left in partition P1, the update of variableD in partition P2 is not recognized
in partition P1. We address the problem of determining a valid assignment of receiving
windows to send points with respect to the state chart semantics in the next section.
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6.2.2. Determining the assignment of receiving windows to send points.The key problem
for weak synchronization is how to determine the assignment of receiving windows to send
points. We start by determining thepotentialreceiving windows for each send point. This
can be done by a static analysis of the partitioned state chart. Consider all pairs of send
points and receiving windows. Whenever there is a non-empty intersection between the
synchronization data to be sent at the send point and the relevant system configuration of
the receiving partition at the finish state of the receiving window, the receiving window is
a potential receiving window for the considered send point.

Note that for orthogonal components in the original state chart that do not have control
flow dependencies, no send point belonging to one component has potential receiving
windows belonging to the other. Hence, there is no need to exchange synchronization
data. The method of weak synchronization allows to fully exploit parallelism here, as an
execution equivalent to the execution of the original state chart is guaranteed without a strict
synchronization of steps.

We continue by distinguishing two cases. In the first case, which we expect to be the
application standard case, we consider all send points which have all their potential re-
ceiving windows in the same component of the original state chart (i.e., not in different
orthogonal components). These send points and their assignment of receiving windows can
be determined automatically. In the second, more involved and less application relevant
case, at least one of the potential receiving windows of a send point belongs to a component
in the original state chart that is orthogonal to the component of the send point. We will see
that in this case, an assignment of synchronization windows to send points that results in an
execution equivalent to the execution of the original state chart can not be derived automat-
ically. A manual assignment by the workflow designer is necessary. If such an assignment
is not provided, we have to resort to incremental synchronization which implements the
original execution semantics of state charts.

We will now discuss the above two cases in detail.

1. A send point and all its potential receiving windows belong to a single component of the
original state chart

In this case, the assignment of receiving windows to send points is trivial:

For each send point, assign all its potential receiving windows to it.

This assignment ensures that the distributed execution is equivalent to the execution of the
original state chart. Additional specifications by the workflow designer are not required.

Proof sketch. The proof sketch is based on the observation that there is no parallelism in the
execution of partitions that belong to a single component in the original state chart. There,
only a single state (including its substates) is entered at a time, and the orthogonalization
algorithm as discussed in Section 5 ensures that this is also the case for the corresponding
‘ in ’ states in the orthogonalized state chart.

Assume, the distributed execution of a single component in the original state chart has
reached a certain state, and up to this point, the execution was equivalent to a non-distributed
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one. Now assume, in a partitionS involved in this execution a transition form states to state
s′ takes place, whereas in the corresponding non-distributed execution, the transition is from
states to states′′ (For the sake of simplicity, we disregard the mapping of states in the origin-
al state chart to corresponding “in ” and “out ” states in the orthogonalized and partitioned
state chart here). The system configuration of both executions in states must be different.
By Definition 5, the relevant system configuration in states contains all variables and state
conditions used in at least one condition or read by at least one action of the transitions from
s to other states. By Definition 7,s is the finish state of a receiving window. An erroneous
system configuration used in states is either caused by wrong synchronization data sent at a
previous send point, or caused by using an outdated system configuration due to a send point
that was not reached. The latter case is impossible as up to the time the finish state of the
receiving window is reached, the execution was equivalent to a non-distributed execution.
Receiving wrong synchronization data is also impossible. This could only be the case for
synchronization data from a send point that was entered too early, and the corresponding
updates to the system configuration should not be considered when leaving states. This is
in contradiction to our assumption that up to entering states, the execution was equivalent
to a non-distributed execution with only a single state entered at a time.

2. A send point and the finish state of at least one of its potential receiving windows belong
to states in orthogonal components of the original state chart

In this case, we are faced with control flow dependencies between orthogonal components in
the original state chart, and a correct assignment of receiving windows to send points cannot
be derived automatically. Only if the structure of the orthogonal components is simple, i.e.,
they contain no loops, no complex branches etc., a manual assignment seems feasible. For
example, this is the case in figure 6, where it can be easily seen that the step semantics of
state charts enforces that either states A3 and B4 or states A3 and B5 are entered at the same
time. We feel that these cases are the only ones where control flow dependencies between
orthogonal components can be reasonably used anyway, as this requires knowledge about
concurrently entered states during the execution of orthogonal components. There is a fur-
ther reason why control flow dependencies between orthogonal components should be rare.
As orthogonal components implement parallelism, well designed orthogonal components
will be independent of each other. Otherwise, the potential parallelism is limited by the
need to exchange data at distinguished time points.

The best way to solve the problem of control flow dependencies between orthogonal com-
ponents is to avoid them in the original specification of workflows. Otherwise, we propose
to use incremental synchronization when executing such components. Only in obviously
simple cases a manual assignment of receiving windows to send points should be used.
We allow switching between weak synchronization and incremental synchronization dy-
namically during execution. Whenever two partitions enter orthogonal components of the
original state chart, it is checked whether a manual assignment of send points to receiving
windows for the considered orthogonal components is provided. If not, the system auto-
matically uses incremental synchronization until the orthogonal components are left. This
allows a workflow to be executed without any explicit assignment, resulting in an execution
according to the original state chart semantics.
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7. Communication costs

In this section, we will quantify the resulting communication costs by determining the
number as well as the size of the necessary synchronization messages. Our consideration
discriminates between strict, incremental and weak synchronization.

To quantify the communication costs for the execution of a particular workflow, we need
to analyze the corresponding partitioned state chart. Letn denote the number of partitions,
andstepthe number steps executed during workflow execution. Note thatstepis execution
dependent. The number and size of synchronization messages for strict, incremental and
weak synchronization can then be derived as follows:

(1) Strict synchronization.After each step, each partition sends messages to all othern−1
partitions. The total number of synchronization messages send during the execution of
the workflow execution can be computed by:

number of msgs= n(n − 1) ∗ step

The size of synchronization messages sent from partitioni can be computed by counting
the number of state conditions and variables in partitioni . Let zi be the number of
state conditions of partitioni , vi be the number of variables of partitioni . Therefore,
the message size is:

size of msgi = zi + vi

Note that thesize of msggives the number of data items rather than the number of
bytes.

(2) Incremental synchronization.Here, only the part of the system configuration which has
changed during the last step is sent. The number of messages is not reduced since empty
messages have to be sent unless updates occurred in the last step. Letzi j represent the
number of state changes and letvi j represent the number of changed variables in partition
i during stepj . Therefore, the message size is:

size of msgi j = zi j + vi j

(3) Weak synchronization.The number of messages sent in weak synchronization mode
depends only on the number of send points passed during the execution of a partition. Let
si denote this number for partitioni . Therefore, the number of messages is:

number of msgs=
n∑

i =1

si

Let zi jk denote the number of state changes and letvi jk denote the number of changed
variables in partitioni which are sent from partitioni to partitionk at send pointj . The
size of a synchronization message sent in send pointj from partitioni to partitionk is:

size of msgi jk = zi jk + vi jk



P1: SMA

Journal of Intelligent Information Systems KL558-02-Muth February 9, 1998 13:35

FROM CENTRALIZED WORKFLOW SPECIFICATION 181

We will now determine the communication costs for the partitioned example workflow
of figure 3 for the strict, incremental and weak synchronization. The static analysis of
the partitioned specification with partitions P1, P2, P3 and P4 shows that P1 consists of
two states, has four local variables (including one state condition for each “in ” state,
and two variables “OK ” and “ NOK” for the outcome of each activity) and reads no
external variables. For partitions P2 (P3 and P4 in parentheses) the according numbers are
four (4, 4) states, six (4, 2) local variables, three (7, 4) external variables. As the actual
number of steps performed in each partition is execution dependent, we consider, as a worst
case scenario, the longest execution path which is three steps long. When the workflow
is executed in strict synchronization mode, the total number of synchronization messages
is 36 with 144 synchronization data items. The incremental synchronization method also
requires 36 messages but with only 14 data items.

The analysis of the weak synchronization method will now be investigated in more
detail. Send points, receiving windows and their assignments for partitions P1, P2, and
P3 are shown in Tables 1, 2 and 3. Partition P4 never sends synchronization data to other
partitions. The first column represents the send points, the second represents the receiving

Table 1. Send points of partition P1 and receiving windows.

Send points of P1 Receiving windows of P2, P3, P4 Synchronization data

(in ENCR S, P2) (init, ∅, out CCW S, P1), in ENCR S, ENCROK, amount

(init, ∅, out RSK S, P1)

(in ENCR S, P3) (init, ∅, out DEC S, P1) in ENCR S, ENCROK, amount

(in ENCR S, P3) (init, ∅, in INIT, P1) ENCR NOK

(init, ∅, out ERR S, P1)

Table 2. Send points of partition P2 and receiving windows.

Send points of P2 Receiving windows of P3, P4 Synchronization data

(in RSK S, P3) (init, ∅, out DEC S, P2) RSKOK, in RSK S

(in CCW S, P3) (init, ∅, out DEC S, P2) CCW OK, in CCW S

(in RSK S, P4) (init, ∅, in INIT, P2) RSK NOK

(init, ∅, out ERR S, P2)

(in CCW S, P4) (init, ∅, in INIT, P2), CCW NOK

(init, ∅, out ERR S, P2)

Table 3. Send points of partition P3 and receiving windows.

Send points of P3 Receiving windows of P4 Synchronization data

(in DEC S, P4) (init, ∅, in INIT, P3), DEC NOK

(init, ∅, out ERR S, P3)
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windows. We assume that the initial values of variables and state conditions of each partition
need not be communicated, and corresponding send points are not given in the table. Send
points are assigned to all receiving windows in the same row. The given assignment results
in an execution semantics equivalent to the semantics of the original state chart. The third
column of each table shows the synchronization data that is sent at a send point. The
total number of messages sent with weak synchronization equals the total number of rows
in the tables, as in the example, each send point is passed only once. For the same reason,
the number of data items sent can be derived by counting the synchronization data items in
the third column of the tables. We obtain a number of 8 synchronization messages with a
total number of 14 data items.

In the example, all start states of all receiving windows are the initial states of the
corresponding partition. This is no longer the case if orthogonal components assigned to
the same partition are merged as briefly discussed in Section 5. For the sake of simplicity,
we have not considered this in our example. Details can be found in (Wodtke, 1997).

8. Conclusions

Enterprise-wide workflows will soon play a crucial role in managing business processes
of large institutions. Providing rigorous foundations for the design and implementation
of distributed workflow management systems has therefore become a major research chal-
lenge. The verification of mission critical properties of workflows must be possible. This
requires a rigorous formal semantics of workflow specifications. We have approached this
problem by using state and activity charts as our specification method, as this provides a
formally founded basis to reason about execution semantics, for example, by means of sym-
bolic model checking. Since most workflows are specified in a centralized manner without
considering a distributed execution, a further problem to solve is the partitioning of the
workflow specification, such that the semantics of the original specification is preserved.
We have presented a provably correct partitioning method for state and activity charts, thus
enabling a distributed execution according to the original semantics.

A synchronization scheme has been developed which guarantees the correct synchro-
nization between the workflow engines executing the partitions of a workflow. The scheme
is further improved in terms of the number and size of synchronization messages that have
to be exchanged between the partitions. Further optimizations are possible by taking into
account knowledge about typical executions. If some synchronization data is rarely used
in a receiving partition because in most executions, the corresponding receiving window is
not entered, it is more efficient to explicitly request the data if necessary instead of sending
it in each execution. This is a subject of future work.

The distributed execution of enterprise-wide workflows should also consider the issue
of fault tolerance. The state configuration including the current workflow context has to
be maintained persistently in order to allow the continuation of workflows after site fail-
ures. Updating the system configuration after each step of the execution and sending the
corresponding synchronization messages to other partitions has to be performed as an
atomic unit. Anexactly oncesemantics for delivering synchronization messages is required,
in presence of communication or site failures. In our prototype, this is implemented by



P1: SMA

Journal of Intelligent Information Systems KL558-02-Muth February 9, 1998 13:35

FROM CENTRALIZED WORKFLOW SPECIFICATION 183

using a TP Monitor for providing reliable messages queues and transactional services, and
a database system for maintaining the local system configuration.

We consider our analysis of communication costs for different synchronization schemes
to be a first approach for reasoning about performance of enterprise-wide workflows. Future
steps in this direction should include additional resources such as disks and memory. The
final goal is to come up with analytical results for determining the configuration of an
enterprise-wide workflow management system and predicting its performance and reliability
under a given load of concurrently executing workflows.
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