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Abstract. Current workflow management systems fall short of supporting large-scale distributed, enterpris
wide applications. We present a scalable, rigorously founded approach to enterprise-wide workflow managem:
based on the distributed execution of state and activity charts. By exploiting the formal semantics of state and ac
ity charts, we develop an algorithm for transforming a centralized state and activity chart into a provably equivale
partitioned one, suitable for distributed execution. A synchronization scheme is developed that guarantees an
cution equivalent to a non-distributed one. This basic solution is further refined in order to reduce communicati
overhead and exploit parallelism between partitions whenever possible. The developed synchronization sche
are compared in terms of the number and size of synchronization messages.
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1. Introduction

Workflow management is a rapidly growing research and development area of very hi
practical relevance (Georgakopoulos et al., 1995; Mohan, 1994; Vossen and Becker, 19
Workflow Management Coalition, 1995; Sheth, 1996). Typical examples of (semi
automated) workflows are the processing of a credit request in a bank, the editorial handl
and refereeing process for papers in an electronic journal, or the medical treatment of |
tients in a hospital. Presently, virtually no major enterprise executes its mission-critic
business processes under the support of a workflow management system. Because of
monolithic and centralized architecture, most of the systems that are currently on the mar
cannot cope with the requirements that large-scale workflow applications pose (Gawlic
1994). The workloads that are to be anticipated for the future are in the order of sevel
thousands of involved human actors and of ten thousands to more than hundred thouse
of workflow executions in parallel (Kamath et al., 1996).
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1.1. Problem statement

The targets of this paper are large scale workflow applications which involve several busine
units, create a very large number of concurrent workflow instances, and thus impose a h
load on the workflow engine. For mission-critical workflows, high availability and failure-
resilience is required.

The specification of a workflow is usually done via high-level graphical interfaces, e.g
by drawing nodes and arcs. This specification must be mapped into an internal repres
tation that serves as the basis for execution. In many workflow management systems,
underlying internal representation uses an ad hoc model and thus lacks capabilities
formal correctness reasoning. In contrast, general-purpose specification formalisms
dynamic systems such as Petri nets, state charts, temporal logic, or process algebras, w
are pursued in various research projects and a few products, come with arich theory and t
provide an excellent basis for formal proofs. For the work in this paper we have adopted t
method of state and activity charts by Harel et al. (Harel, 1987a, 1987b, 1988; Harel et
1990; Harel and Naamad, 1995), which is perceived by practitioners as more intuitive a
easier to learn than Petri nets yet has an equally rigorous semantics. In particular, state c
specifications are amenable to model checking (McMillan, 1993; Helbig and Kelb, 1994
so that critical workflow properties that are expressible in temporal logic can be formall
verified; an example would be that a credit request must be rejected if it turns out that t
customer has insufficient collaterals.

Formal reasoning about specifications implicitly assumes a centralized execution mod
there is no notion of distribution, interoperating workflow engines, and so on. So tools ft
formal reasoning must have access to the complete workflow specification in a unifor
representation, regardless of whether the workflow may in reality span different autonomo
business units of an enterprise or even different enterprises. In fact, however, distribut
decentralized execution of workflows (Alonso et al., 1995) is a mandatory requirement fi
complex, large-scale applications for two reasons.

e Such applications may involve a very large number of concurrent workflow instance
which impose a high load on the workflow engine. Consequently, scalability and avai
ability considerations dictate that the overall workflow processing must be distribute
across multiple workflow engines that run on different servers, and this workload part
tioning may itself require the partitioning of individual workflows.

e Whenever a workflow spans multiple business units that operate in a largely autonomc
manner, it may be required that those parts of a workflow that are under the responsibil
of acertain unitare managed on a server of that unit. Thus, the partitioning and distributi
of a workflow may fall out naturally from the organizational decentralization.

A distributed workflow execution requires synchronization between the underlying work
flow engines. As large scale workflows will involve several business units, within or acros
enterprises, minimizing communication costs is an important issue. In wide area networl
the latency for establishing a connection is a major performance factor. Therefore, the g
is not only to reduce the overall message size, but also to reduce the number of synchron
tion messages. Failure-resilience and high availability are further requirements of utmc
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importance. In this setting, the integration of standard middleware components (Bernstt
and Newcomer, 1997) such as TP monitors seems to be a well-suited approach (Dayal et
1993).

1.2. Contribution of the paper

Partitioning a centralized workflow specification in order to enable distributed executio
must preserve the original execution semantics. For large scale workflows, this is or
feasible if the original specification is based on a formal model with rigorous semantic
and the partitioning is carried out automatically. For the well known specification metho
of state and activity charts we have developed a partitioning algorithm that transforn
the original state chart intorthogonal component3he semantics of the original and the
orthogonalized state chart is provably equivalent. For distributed execution, the orthogor
components are assigned to a number of workflow servers such that each server execu
partition of the original workflow containing at least one orthogonal component.

There exists an inherent cost in the distributed execution of large scale workflows in
real-life setting, namely, the necessary amount of communication for the correct synchi
nization. This paper combines the distributed execution with a comprehensive model f
the synchronization of a set of more or less autonomous workflow engines. We proceec
three major steps:

(1) Wefirstdevelop a basic solution for the synchronization of distributed workflow engine
where the communication is based on the primitives provided by a TP monitor.

(2) We improve this solution by restricting communication between the workflow engine
to the cases where the progress in one workflow engine potentially influences ott
workflow engines. This scheme guarantees the correct workflow execution and,
addition, exploits the potential parallelism of activities as defined in the workflow
specification.

(3) To evaluate the feasibility of our approaches, we analyze the communication costs &
compare them by means of an example workflow.

The work reported here is embedded in the Mentor project (Weissenfels et al., 1996; Wod
etal., 1996) on “riddleware for ergrprise-wide wdkflow management”. This project uses
a state chart based workflow engine and integrates our own “glueing” software together w
the TP monitor TUXEDO (TUXEDO System 5, 1994; Primatesta, 1994) as the backbor
of the execution environment. The idea of transforming a centralized state chart specific
tion into a behaviorally equivalent partitioned state chart specification that is amenable
distributed execution has been introduced in (Wodtke, 1997; Wodtke and Weikum, 1997
The outline of the paper is as follows. Section 2 discusses related work. Section 3 giv
a brief overview of our system architecture for distributed execution of enterprise-wid
workflows. In Section 4, we describe our specification method of state and activity chatr
and introduce our running example. In Section 5, a transformation method for partitionir
a given state chart based workflow specification into subworkflows is described, and
correctness is shown. In Section 6, different alternatives for synchronizing the distributc
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workflow execution are presented. Finally, in Section 7 we quantify the communicatio
costs for the different synchronization schemes presented in Section 6. Section 8 conclu
the paper.

2. Related work

A wide range of products and research projects offer support for workflow managemel
Some examples of commercial products are FlowMark, Lotus Notes Staffware, etc. (st
Georgakopoulos et al., 1995; Jablonski and Bussler, 1996; Mohan, 1994, for an overvie
The products have been primarily developed for use within an office environment and &
not geared towards department-spanning or even enterprise-wide workflows. Typically,
relevant data on an ongoing workflow is kept on a single central server. The most critic
deficiencies of these products are to be seen in a lack of scalability and fault tolerance;
example, communication between activities is often based on e-mail, which is way behil
the strong guarantees that one would expect in online transaction processing.

There is a plethora of related research on the aspect of workflow specification and bu
ness process modelling. This work ranges from using (and possibly extending) stand:
specification methods such as Petri net variants to specifically designed languages. W
in the first category includes (Kappel and Schrefl, 1991; Ellis and Nutt, 1993; Oberwe
et al., 1994); the language approach is pursued, for example, in (Bernstein et al., 19
Forst et al., 1995) and in the Workflow Process Definition Language (WPDL) of the Work
flow Management Coalition (Workflow Management Coalition, 1995). In addition, some
approaches such as (Kappel et al., 1995; Dayal et al., 1991; Rusinkiewicz and Sheth, 19
are based on Event-Condition-Action rules (ECA rules), as used in active database syste
(Widom et al., 1995), for describing the control flow between activities. We are not awar
of any other project that is based on state transition machines like the state chart metho

Less work exists on the distributed and scalable execution of workflows. One of the fir
and most advanced research projects that are middleware-centered and address espe
reliability issues is the ConTract project @afiter and Reuter, 1992; Schwenkreis, 1993;
Reuter and Schwenkreis, 1995). The focus of this project has been to extend transacti
oriented runtime mechanisms for fault-tolerant workflow execution in a distributed envi
ronment. Specification issues, on the other hand, have been of secondary concern in
project. Other notable research projects with similar objectives are the DOM project (Gec
gakopoulos and Hornick, 1994) which is primarily oriented towards applications in thi
telecommunications industry and views workflows as a set of control flow dependenci
between transactional steps, and the MOBILE project (Jablonski, 1994) which aims
develop a comprehensive and modular architecture of the execution environment. A d
tributed enactment service for workflows is also studied in the METE@Bject (Sheth
et al., 1996; Das et al., 1997). The architecture is based on CORBA (OMG, CORB/
1995b) and intends to use object services like the Object Transaction Service (OTS),
Concurrency Control Service and the Persistence Service once they are available (OM
CORBAservices, 1995a).

Very similar to our approach with respect to availability and scalability issues, is th
Exotica project (Alonso et al., 1995, 1996) which aims to enhance FlowMark by addressir
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these issues. An approach has been discussed where parts of the workflow specificatior
distributed across a set of workflow engines such that the workflow can be executed ir
distributed fashion, based on IBM’s MQ Series (Alonso et al., 1995; Blakeley et al., 1995
However, synchronization issues are not considered at a formal level.

Another approach which aims at the distribution of the workflow specification is based c
“intelligent” information carriers (INCAs) such as smart cards (Barbara et al., 1996). Durin
the workflow execution an INCA which contains the context of a workflow instance is route
from one processing station to the next according to the control flow specification that
stored on the INCA and in the processing stations. Although, similarly to our approacl
no processing station has complete knowledge of all steps that comprise the workflow, 1
INCA approach is different in that it does not allow for parallel processing of activities
since each INCA implicitly serves as an exclusive token that can solely be processed &
single location at each time.

3. System architecture

We now introduce the Mentor architecture for enterprise-wide workflow managemel
(Weissenfels et al., 1996; Wodtke et al., 1996), which is in line with the reference mod
of the Workflow Management Coalition (1995). It is based otlient-server modelas
shown in figure 1. The workflow itself is orchestrated by appropriately configgenars
while the invoked applications of a workflow’s various activities are rucl@nt sites
(where the applications may in turn issue requests to other servers, regardless of whe
an application is invoked within a workflow or not). Therkflow enginesand a set of
key components, i.e.,lag manageraworklist managera history managerand acom-
munication manageare run on the servers. The architecture relies mostlgtandard
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Figure L Components of the Mentor execution environment and their interaction.
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middleware componentsnd conceives additional components only where the standar
components fall short of functionality or scalability. Particularly, a TP monitor (Gray
and Reuter, 1993; Bernstein and Newcomer, 1997), which provides transactional s
vices and persistent message queues, is integrated for fault tolerance reasons. We
the TP monitor TUXEDO (TUXEDO System 5, 1994; Primatesta, 1994). Updates t
the local system configuration of workflow engines are stored in transactional resour
managers, under the control of the TP monitor. An object request broker (ORB) (Mow
bray and Zahavi, 1995; OMG, CORBA, 1995b) is integrated to cope with the poter
tial heterogeneity of the invoked applications that belong to the workflow. Furthermore
the architecture is aopen and modular architectumwhere—if needed—further compo-
nents can be added and components can easily be replaced by alternative implementati
Particularly, the architecture allows the coexistence of workflow servers with different work
flow engines and the coexistence of multiple worklist managers each with its own workli
policy.

We will now describe the flow of control between all system components of the Mentc
execution environment. The following numbers refer to the numbers that are annotated
the arcs in figure 1.

(1) Each workflow engine executes its corresponding partition of a workflow, and can th
invoke a certain subset of activities directly. This is performed by callin@bject
Request BrokefORB. We use Orbix (IONA Technologies, 1995) as our CORBA
compliant ORB (OMG, CORBA, 1995b).

(2) The ORB maps the calling parameters derived by the workflow engine on the actu
calling parameters of the application and invokes the application.

(3) Thelog manageikeeps track of every change of the system configuration of the loca
workflow engine. In the case of a system crash, this allows the workflow engine t
recover to the latest system configuration before the crash happened.

(4) Whenever an activity becomes ready for execution the according information is sent
the worklist manageias a new work item. The worklist manager assigns work items
to one of the actors who are able to fill the corresponding role. The assignment
work items is based on information about role resolution policies, vacation period:
etc. which is stored in the worklist database.

(5) Similarly to the log manager, thestory manageis in charge of bookkeeping of work-
flow executions. However, the objective of the history manager is to store informatio
for monitoring purposes and to allow for both online status inquiries and long-terr
evaluation.

The following operations implement the posting of changes in the system configuration

local workflow engines to other workflow engines if the change is relevant for them. Thi
ensures that the global system configuration consisting of all local system configurations
kept consistent:

(6) Whenever a system configuration in a local workflow engine changes, i.e., the corr
sponding transaction is ready to commit, the update is propagated to the local col
munication manager.
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(7) The communication manager determines the workflow engines that need to receive
update, prepares a synchronization message representing the update, and invoke:
TP monitor. The task ofthe TP monitoris twofold. Atfirst, it storesthe synchronizatior
message together with a list of recipients in a persistent message queue. Secondl
combines the updates of the system configuration of the local workflow engine and tl
insertion of the synchronization message into the message queue into a single atol
transaction. This ensures that each committed update of the system configuratior
eventually propagated to the receiving workflow engines.

(8) The system configuration information is propagated by means of the communicatit
primitives provided by the TP monitor.

(9) Atthe recipientsite, the TP monitor reads the received message from the local mess
queue, which is also stored on stable storage. Reading the message is performed in
the transaction that also tracks the local state progress. This ensures that the messa
processed exactly once. The corresponding system configuration information is th
propagated to the local communication manager.

(10) The communication manager forwards the received system configuration informatit
to its local workflow engine. Based on the received data, the local system configur
tion is updated. The corresponding transaction forms an atomic unit with the tran
action that reads the synchronization message from the queue of incoming messag
This guarantees that the update to the system configuration eventually reaches
local workflow engine.

4. Centralized workflow specification

In this section, we will describe the specification of distributed workflows based on th
formalism of state and activity charts (Harel, 1987a, 1987b; Harel et al., 1990; Harel ar
Naamad, 1995). State charts are well established in software engineering (Harel and G
1997), especially for specifying reactive systems. The benefit of employing a formally bas
specification method is that there exists a precise operational semantics. Consequently,
semantics of our state and activity chart based workflow specification is independent of t
implementation of the workflow engine. This is crucial, for example, for the correctnes
reasoning of workflow specifications since it allows using standard verification tools (e.g
symbolic model checking) to prove that a workflow specification is a correct model of th
corresponding business process (Wodtke, 1997).

Our design procedure for workflow specifications is organized in two steps: In the fir:
step, a centralized workflow specification consisting of at least one state chart and one ac
ity chart is developed. Specifications that are given in another language (e.g., in a scripti
language such as FlowMark’'s FDL (IBM Corp., 1994)) can be converted into state ar
activity charts. Basically, this implies a decoupling of the specification environment fron
the execution environment so that state and activity charts can serve as a canonical inte
workflow representation. In the second step, the workflow specification is partitioned in
a set of subworkflows such that all activities and corresponding states of one business
constitute one partition. The challenge is to guarantee that the partitioning preserves
behavior of the original workflow specification.
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Example workflow—credit processing

Throughout the paper, we will use an example from the area of credit processing in a bal
It considers credit requests from companies, which is a very important and sensitive part
a bank’s business. An application for a credit involves, among other things, the checki
of the company’s current credit balance, the company’s credit rating and a risk evaluatic
The activities that are required for the decision making are thus spread over the differe
divisions and sites. In the sequel, a very simplified version of this workflow will be use
for the description of state and activity charts

Overview of the state chart specification method

State and activity charts were originally developed for reactive systems (e.g., embedc
control systems in automobiles) and have been quite successful in this area. They comp
two dual views of a specification.

Activitiesreflect the functional decomposition of a system and denote the “active” com
ponents of a specification; they correspond directly to the activities of a workflow. At
activity chartspecifies the data flow between activities, in the form of a directed graph witl
data items as arc annotations. An example for an activity chart is given in the left pa
of figure 2. It defines the activitidSNCR CCW, RSK DEC, andERR which constitute
our credit processing workflow, and the data flow between the activities. In adEMGR
(enter credit request) the companys credit request is entered into a credit database.
company informatiorCO_INF constitutes the data flow frolBENCRto activitiesCCW,
RSKandERR Activity CCWchecks the company’s credit worthiness by looking up the
appropriate account and balance sheet data of the company. A&BHKevaluates the
potential risk that is associated with the requested cr&8Ktakes into account the bank’s
overall involvement in the affected branch of industry (e.g., the total of all credits alread
granted to computer companies) and the requested currency. Finally, the decision acti\
DECrecords the decision that is eventually made on the credit request (i.e., approval or
jection); this would typically be an intellectual decision step based on the re&e8E€CW
andRES RSKof the CCWandRSKactivities. These four activities are complemented by

st(CCW); st!(RSK)

CREDIT_AC CREDIT_SC
//st!(ENCR) .
|
| INIT
[ENCR_OK and not (amount<1000) ,

[ENCR_NOK or
CCW_NOK or
RSK_NOK or
DEC_NOKY/
st!(ERR)

CO_INF CO_INF CO_INF EVAL

|ccw| IRSK| —IERR | []

[CCW_OK and RSK_OKYJ/

i
DEC_S [ENCR_OK and amount < 1000]:

C /st!(DEC)
DEC_OK]  /st!( : [ ERR_S ] /

RES_CCW/ RES_RSK

Figure 2  Activity chart and state chart of the workflow “credit processing”.
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a fifth activity ERR which may be invoked as a generic error handler, for example, to sto|
the processing of the workflow when the credit requestor goes out of business.

State chartseflect the behavior of a system in that they specify the control flow betweel
activities. A state chart is essentially a finite state machine with a distinguished initial sta
and transitions driven by Event-Condition-Action rules (ECA rules). Each transition ar
between states is annotated with an ECA triple. A transition from 3tatestateY fires if
the specified everit occurs and the specified conditi@hholds. The effect is that stad
is left, stateY is entered, and the specified acti@rs executed. Conditions and actions are
expressed in terms of variables, for example, those that are specified for the data flow
the corresponding activity chart; conditions and events may also refer to states by mean:
special predicates liki(s) which becomes true if statds currently entered. In addition,
an actionA can explicitly start an activity, expressed &t(activity), and can generate an
eventE or set a conditioil€. ECA rules of this kind are notated in the folgjC]/ A. Each
of the three components may be empty. Every state change in a state chart executio
viewed as a single step; thus, state changes induce a discrete time dimension.

Two important additional features of state chartsragsted stateandorthogonal com-
ponents Nesting of states means that a state can itself contain an entire state chart. T
semantics is that upon entering the higher-level state, the initial state of the embedc
lower-level state chart is automatically entered, and upon leaving the higher-level state
embedded lower-level states are left. The possibility of nesting states is especially use
for the refinement of specifications during the design process and for incorporating existi
(sub)workflows. Orthogonal components denote the parallel execution of two state cha
that are embedded in the same higher-level state (where the entire state chart can be vie
as a single top-level state). Both components enter their initial state simultaneously, a
the transitions in the two components proceed in parallel, subject to the preconditions fo
transition to fire.

An example of a state chart is given in the right part of figure 2 for the credit processin
workflow. For each activity of the activity chart there exists a state with the same nam
extended by the suffixS. Furthermore, the workflow consists of three major sequential
building blocks ENCR S EVAL_S, andDEC_SwhereEVAL Sconsists of two orthogonal
componentsCCW.S and RSK S Hence, the activitie€CW and RSKare executed in
parallel. For each activity, its outcome in terms of an error variable is available. Fc
example, variablENCROK is set totrue after termination of activifENCRIf no error
occured. Otherwise the variadENCR NOK is set totrue and an error handling activity
is started. Initialization and error handling of the workflow are specified in an orthogonz
component.

5. Partitioning of workflow specifications

In this section, we present our method for the partitioning of workflow specifications. Asw
will see, partitioning the state chart is the most challenging part. The partitioning transforn
a state chart into a behaviorally equivalent state chart that is directly amenable to distribu
execution in that each distributable portion of the state chart forms an orthogonal compone
The first step towards a partitioned specification is thus called “orthogonalization”. Th
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outcome of this step is another state chart that can easily be partitioned. The proof that t
transformation is indeed feasible in that it preserves the original state chart's semantic:t
cast into showing that the resulting “orthogonalized” state chart is a homomorphic imac
of the original specification. Note that we do not address the issue of “streamlining” c
optimizing business processes by altering the invocation order of activities. We are sole
concerned with preparing workflow specifications for distributed execution.

Partitioning of state and activity charts

The partitioning of a workflow specification consists of two elementary transformations
the partitioning of the activity chart and of the state chart. We assume that for each activ
of the activity chart there exists an assignment to the corresponding execution role and tl
an assignment to a department or business unit of the enterprise. Therefore, each acti
can be assigned to a workflow server of the corresponding department or business u
Consequently, the partitioning of the activity chart falls out in a natural way in that al
activities with an identical assignment form a partition of the activity chart.

While this is straightforward, the partitioning of the state chart requires more than sim
ply assigning states to partitions. State charts can be state trees of arbitrary depth wr
parent states may have assignments that differ from the assignments of their children sta
Furthermore, transitions may interconnect states at different levels of the state tree anc
with different assignments. In order to partition a state chart without changing its behavic
we pursue an approach which is different from the partitioning of the activity chart and i
organized in three major steps:

(1) Assignment of states to activitiel this step each state is assigned to an activity of
the activity chart. For each state, this assignment allows to derive to which executic
role and department or business unit it belongs. In the case of nested state che
where a state can contain an entire state chart the higher level state will corresponc
a higher-level activity chart with embedded subactivities.

(2) Orthogonalization of the state chaiffor each state of the state chart an orthogonal com-
ponentis generated. Each generated orthogonal component emulates the correspon
original stateS by means of two state)_ Sandout S, which are interconnected by
transitions in both directions. These transitions correspond to the transitions that le
to or originate from stat&. The transition labels of these transitions are extended by
conjunctive terms that refer to the source states of the original transitions. Figure
illustrates the orthogonalization for the state and activity chart of figure 2. For exampl
for the transition that interconnects stalElSCR SandEVAL Sthe following transi-
tions are generated: a transition from ENCR Sto out ENCR S a transition from
outCCW.Sto in_.CCW._S, and a transition fronout RSK Sto in_RSK S The first
transition has the same condition component in its transition label as the original tran:
tion, ENCROK and notamount< 1000). The other two transitions have the condition
ENCROK and notamount< 1000) extended by a conjunctive tetfM(in_ENCR.S)
as their condition components and the start instructions for the corresponding activiti
as action components of their transition labels. This extension of condition componer
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orthogonalized state chart
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Figure 3  Partitioning of the workflow “credit processing”.

guarantees that in any case in the orthogonalized state chart all transitions which ori
nate from an original transition fire at the same time. Consequently, in the example tl
activitiesCCWandRSKare started if and only if statENCR Sis left, and the credit

amountamountis not less than 1000. Note that the partitions of figure 3

have beel

generated by our partitioning algorithm. This is the reason for the two transitions fror
statein_. ENCR Sto stateout ENCR Swhich could be merged into a single one with

justENCROK as condition component.
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(3) Assignment of partitions to workflow servehs.this step, the orthogonal components
that have been generated in step 2 are grouped to state chart partitions. The critel
for grouping a set of orthogonal components to form a state chart partition is th
assignment of their underlying original states to the same department or business
of the enterprise.

Note that this partitioning procedure can cope with nested activities without special tree
ment. For the example of figure 3, we assume that the activit®®/and RSKbelong

to the same partition, whereas the remaining activities belong to different partitions. Tl
data flow between activities belonging to different partitions is indicated by data flow cor
nectors that start or end at the borders of the boxes that represent partitions. If a partit
contains several orthogonal components which have formed a coherent part in the origi
state chart, it is possible to merge these components to rebuild a part of the original st
chart. Consider for example partition P4 in figure 3. StatéNIT andout. ERR Sare left

if one of the activitieEENCR CCW, RSKandDEC fails, i.e., the corresponding NOK”
variable becomestue. The transition fromout ERR Sto in_ERR S contains the term
IN(in_INIT). If we change the source of this transition to the statéNIT, and remove
the now unnecessary statest INIT andout ERR S, we get back a part of the original
state chart, namely the orthogonal component on the right of the state chart in figure 2.
algorithm for this merge is given in (Wodtke, 1997). For the sake of simplicity, we do no
consider such merges in the rest of the paper.

Correctness of the partitioning

The feasibility of the described transformation depends on the assumption that the seman
of the original state chartis preserved. What is needed is a formal correctness proof that t
is indeed the case. We will concentrate on the correctness proof of the orthogonalizati
(step (2)), which is the most critical step with regard to possible changes of the behavior
the state chart.

First, we will refer to a formally defined operational semantics of state charts, which i
a simplified version of the semantics given in (Harel and Naamad, 1995). It is tailored |
our context of workflow specification (see, Wodtke, 1997, for full details). To this end, we
define the seBCof system configurationsThe system configuration describes the set of
currently entered states and the context, i.e., the current values of conditions, events,
variables that are part of the state chart. For the execution of a state chart, we define a
operatorstep which maps a system configuration to its successor system configuration.

Figure 4 illustrates the interdependence between the operational semantics of the origi
state chart and the operational semantics of its orthogonalized representation. We view b

original state chart sci — S8y o $Cit1] algebra 1
A l/hsc '
hogonalized 5 step’ :
orthogona sci SCi+] algebra 2

state chart

Figure 4 Interrelationship between original state chart and orthogonalized state chart.
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state charts as algebras with identical signatures. The carrier sets are the sets of sys
configurations, and the only operator is the step function. In order to distinguish betwe«
both carrier sets and operators, the carrier set and the operator of the algebra of the
thogonalized state chart (i.e., algebra 2) are denotef @yandstep, respectively. The
interdependence between the two algebras is described by the mégpjnghich maps
each system configuration of algebra 1 onto a system configuration of algebra 2. For 1
contexts this mapping is the identity mapping. With regard to the state configuradign,
maps each staté that is currently entered onto the corresponding staté of the orthog-
onalized state chart and each statéhat is currently not entered onto the corresponding
stateout_Z of the orthogonalized state chart.

If the diagram given in figure 4 commutes then algebra 2 of the orthogonalized state ch
is a homomorphic image of algebra 1 of the original state chart (Lang, 1993). In this cas
we say that the orthogonalized state chattebaviorally equivalento the original state
chart, i.e., has the same properties as the original state chart. For example, the activities
started at the same time whenever both state charts are executed under identical exte
input. The following theorem states the above formally:

Theorem1. The mapping bc, which maps each system configuration of an arbitrary state
chart S onto system configurations of the orthogonalized state chiaraBomomorphism.
That is for each step,ii > 0 and for each system configuration € S the following holds

hsc (step(sg)) = step (hsc (sG)),

with step being the step operator afs$ep being the step operator of Sand both step
operators being defined by the operational semantics of state charts.

A detailed presentation of the formal model and the proof can be found in (Wodtke, 199
Wodtke and Weikum, 1997).

6. Synchronization of workflow engines

Inthis section, we discuss how the workflow engines that execute partitions of aworkflow a
synchronized. More specifically, we investigate where the exchange of system configurati
information has to take place, and which part of the system configuration needs to |
communicated. The goal is to minimize synchronization costs in terms of the numbi
of synchronization messages exchanged and in terms of their sizes, while guaranteeir
workflow execution equivalent to a non-distributed one (i.e., equivalent to the executic
of the orthogonalized state chart before partitioning). If the original state chart contair
orthogonal components, it should be possible in a distributed execution to exploit parallelis
between them. This has to be considered in the design of the synchronization mechani
Our synchronization mechanism addresses only the exchange of data between partition
the same workflow instance. We do not consider the concurrency control between differe
workflow instances of the same or different type; this would pose a completely different s
of issues.
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As discussed in Section 4, the execution of state charts is performed in steps. A s
maps the set of states currently reached by the participating partitions and the current ¢
text into the set of states after the step is performed and a new context, depending on
transitions that fire in the step and on the actions performed. The new system configurat
is immediately available to determine all transitions and actions that make up the next st
For the distributed execution of a partitioned state chart, the straightforward solution to tl
synchronization problem is to always communicate the new system configuration of ea
partition to all other partitions after performing a step. The according messages are call
synchronization messagebhe next step can be performed by a partition after synchroniza
tion messages from all other partitions have been received, showing that all other partitic
have also completed the previous step. We denote this sctentesynchronizationWith
strict synchronization, each partition has perfect knowledge about the states reached in of
partitions and the according context. In addition, all partitions perform a step at the san
time. After the execution of a workflow is finished, all partitions have performed the sam
number of steps, just as in the non-distributed execution.

Definition 1 (Strict synchronization)

(i) Two partitionsSandS arestrictly synchronized they exchange their complete system
configurationscof Sandsc of S before performing each step.

(i) The execution of a partitioned state charsigctly synchronized all pairs of partitions
are strictly synchronized.

It is obvious that strict synchronization imposes unnecessary overhead on the commu
cation of partitions. Only a small fraction of the amount of data received by a partitior
is relevant for the next step. Even worse, waiting for all partitions to finish their curren
step before a partition can proceed with the next step limits the potential for exploitin
parallelism. We now discuss how to reduce the number of synchronization messages
their sizes, compared to strict synchronization.

6.1. Reducing the size of synchronization messages

We proceed in two steps. First, for each pair of partitions, it is determined which part
the system configuration is relevant for synchronizing them. Only the relevant informatio
needs to be sent. Secondly, it is sufficient to send only those parts of the relevant syst
configuration that have changed during the last step.

A variable is denotedelevantfor a partition if it is part of a condition in that partition,
or read in an action in that partition. A variable is denotettten by a partition if it is
modified in an action in that partition. We do not consider events here. Events in the speci
sense of state charts are valid for a single step only. Therefore, they have to be immediat
communicated to all partitions where they occur inE§i€]/ A rule. They are not subject
of further optimization. Note that according to our experience, events are rarely used
the specification of workflows. Our credit request example of figure 2 does not contain al
events at all.
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Information about entering or leaving states might also be relevant for other partition
This is the case #tate conditions Ik&) or OUT(s) occur in the condition part of the[C]/ A
rules of a partition.

A static analysis of each partition allows us to derive all variables that are relevant for tt
partition. These are the only variables that need to be received in synchronization messa
The same is done for relevant state conditions. Note that we can not detect the excha
of data accessed by invoked applications if these applications do not notify the workflo
engine about theses accesses. Such data can not be relevant for control flow, as it is
available to the workflow engine, even in the centralized case. In fact, we do not want tl
workflow management system to route the application data through the workflow engil
for performance and possibly also security reasons.

We denote the relevant variables together with relevant state condiéilewsnt system
configurationof a partition. The relevant system configuration of a partition reduced tc
those variables and state conditions that are written by another partition or belong to state
that partition is calledynchronization datéor this pair of partitions. This can be formally
stated as follows:

Definition 2 (Relevant variables and state conditions, relevant system configuration, writte
variables)

(i) A variable v or a state conditiodN(s) or OUT(s) is relevantfor a partitionS if it
occurs in a conditiol€ or if it is read by an actiorA of an E[C]/ A rule assigned to a
transition inS.

(i) The relevant system configuratiaf partition S, RSQYS), is defined as the set of all
relevant variables and state conditionsSin

(iii) Avariable v iswrittenin a partitionSif it is modified in the action parf of anE[C]/ A
rule assigned to a transition & LetWS(S) denote the set of all written variables of
partition S and all state conditioni(s) or OUT(s) of all statess of partition S.

Definition 3 (Synchronization data)
Thesynchronization data S{3, R) from partitionSto partitionR is defined as follows:

SIS, R) = RSGR) NWSQS)

Determining synchronization data can be done statically before the actual workflow exec
tion. In order to send only updated data, we have to determine updates to synchronizat
data after each step that was actually performed. This can easily be done at runtime w
almost no overhead. We thus obtain the following definition for an optimized strict syn
chronization, denoteshcremental synchronization

Definition 4 (Incremental synchronization)

(i) Two partitionsSandS' areincrementally synchronizdafithey exchange their updated
synchronization dat&D(S, S) andSD(S, S) before performing each step. If there are
no updated synchronization data after performing a step, an empty message is sent

(ii) The execution of a partitioned state chartingrementally synchronizeid all of its
partitions are incrementally synchronized.
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It is easy to see that incremental synchronization is equivalent to strict synchronizatic
in terms of the resulting workflow execution. As for all pairs of partitions, all updates
to relevant variables are sent after each step, including information about the curren
entered or non-entered states if relevant, the receiving partition has exactly the same sys
configuration as if strict synchronization were used. By sending empty synchronizatic
messages in case there are no updates to synchronization data, it is guaranteed that :
are performed synchronously in the participating partitions.

6.2. Reducing the number of synchronization messages

In the previous section, only the size of synchronization messages has been reduced. F
partitions, there are stiti(n — 1) synchronization messages that have to be exchanged afte
each step. These messages implement a tight coupling of the execution of all partitions
all partitions perform their steps synchronously. No partition is allowed to do the next ste
until all other partitions have finished the previous one. This limits potential parallelisn
between partitions. In this section, we derive a new synchronization scheme deeated
synchronization It is based on incremental synchronization but sends less messages &
allows partitions to perform multiple steps without synchronizing themselves with othe
partitions. Our scheme is designed such that the synchronization of one pair of partitio
is done independently of other pairs.

We start by giving a framework for the exchange of synchronization data. The framewol
is defined in terms of send points and receiving windows. Synchronization data is sent
send points and received inside of receiving windows. Send points and receiving windo
can be automatically derived from the orthogonalized and partitioned state chart. We th
discuss how the assignment of receiving windows to send points is derived. The assignm
is crucial as it finally determines the execution semantics of weakly synchronized par
tions. A correct assignment guarantees that the execution is equivalent to a non-distribu
execution of the original state chart.

6.2.1. Receiving windows and send pointsThe basic idea of weak synchronization is to
send synchronization data only if the receiving partition makes use of itin the next step. Tt
leads to a state dependent definition of relevant variables, relevant state conditions, and
relevant system configuration.

Definition 5 (Relevant variables and relevant state conditions in a state, relevant syste
configuration in a state)

(i) A variablev or a state conditioiN(t) or OUT(t) is relevantfor a partitionSin a state
sif it occurs in a conditiorC or if it is read by an actiorA of anE[C]/ A rule assigned
to a transition from statgin S.

(i) The relevant system configuratiaf partition Sin states, RSGS, s), is defined as the
set of all relevant variables and state conditionsSan s.

Synchronization data is also state-dependent now.

Definition 6 (Synchronization data)
The synchronization data S[3, R, s) from partition S to partition R in states of R is
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defined as follows:
SD(S, R, s) = RSAR, s) NWSQS)

Without sending synchronization messages after each step, the set of simultaneously ent
states in different partitions need not be the same as in the non-distributed execution. Af
receiving synchronization data, a partition can process several subsequent steps until fur
synchronization data from another partition is required. The synchronization data mu
reach the receiver during the processing of these steps. Ifit is received before, the execu
might be based on the wrong, i.e., ‘future’ synchronization data. Ifitis receivedtoo late, tr
execution might be based on outdated data, which is also wrong. We address this probl
by definingreceiving windows

A receiving window determines the set of states where a receiving partition is ready
receive an update to the relevant system configuration, sent by the sending partition &
particularsend point In both the start and the finish state of a receiving window, there is
synchronization data required from the sending partition. For the intermediate states o
receiving window, the opposite is true, i.e., their relevant system configuration does neitt
contain a variable written by the sending partition nor a state condition containing a state
the sending partition. Hence, the relevant system configuration of the receiving partition
the finish state of the receiving window can be received in one of the intermediate states
at the latest, in the finish state of the receiving window. For successive receiving window
the finish state of the first receiving window is the start state of the second receiving windo
Initial states also qualify as start states of receiving windows.

Definition 7 (Receiving window)

A receiving window RWE (s, IS, S/, S) of partition R with respect to partitiors is defined

by a start state and a finish state' in R, s # s, connected through a set of transitions and
an according set of intermediate stat8sn R, s, s’ ¢ IS. In addition, the following must
hold:

(1) There existsynchronization data S[3, R, s) from partitionSto partitionR at states,
or sis an initial state.

(2) There existsynchronization data S[3, R, ') from partitionSto partitionR at states'.

(3) Forall states” in IS, it holds: There exists ngynchronization data (3, R, s”) from
partition Sto partitionR at states”.

Send points are the counterparts of receiving windows. They define at which state a send
partition sends synchronization data.

Definition 8 (Send point)
A send point SE= (s, R) of partition Swith respect to partitiofR is defined by a stateof
partition S for which one of the following conditions holds:

(1) There exists at least one variableslevant for PartitiorR such thab is modified by an
action A of an E[C]/ A rule assigned to a transition into statm S (v can be updated
immediately before reachirg), or

(2) statesis contained in a state condition in partitiéh
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For a complete specification of weak synchronization, we need an assignment of receivi
windows to send points, i.e., we need a way to specify whether synchronization data s
at a send point has to be received in a synchronization window, or not.

Definition 9 (Assigning receiving windows to send points)
The setRW{SP), with SP= (s, R), denotes the set of receiving windows of partitiBn
assignedo send poinSP.

We are now ready to define the notionwéak synchronizatigrbased on the notion of
receiving windows and send points.

Definition 10 (Weak synchronization)
Two partitionsS and S’ areweakly synchronized all of the following three conditions
hold:

(1) SandS send synchronization data ® andS, respectively, only at send points.

(2) The part of the system configuration sent at a send psi®)or (s, S) contains all
synchronization data from the sending to the receiving partition in state’, respec-
tively, that were updated since they have last been seB8ddoS, respectively.

(3) Synchronization data sent at a send point is made part of the system configuration
the receiver if the receiver is an intermediate state or in the finish state of one of tt
receiving windows assigned to the send point.

(4) If a partition reaches the finish state of a receiving window without receiving synchra
nization data from at least one send point assigned to the receiving window, it does r
perform the next step until it receives synchronization data from at least one send po
assigned to it.

The execution of a partitioned state chamvisakly synchronizeifiall pairs of parti-
tions areweakly synchronized

Multiple receiving windows can be assigned to a single send point. This is the case if tl
part of the system configuration sent at a send point is relevant for the evaluation of mc
than a single condition or read by more than a single action in the receiving partition, and t
according transitions belong to different states. These states might be entered successi
by the receiving partition, or alternatively. As an example, consider figure 5. It shows tw
state charts representing two partitions P1 and P2. Receiving windows are illustrated

/ / /,
b Y

/
rp 2 /C.=false /D:=false

(o1
L.

Figure 5 Assignment of receiving windows to send points.
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Figure 6 Send points sharing a receiving window.

[not C]

ellipses. A receiving window consists of all states inside of an ellipsis. Assignments c
receiving windows of P1 to send points in P2 are indicated by dotted arcs between the st
representing the send point and the ellipses representing receiving window(s) assignes
the send point. The send point at state B2 has two receiving windavits:{A1}, A2, P2)

and (A2,0, A3, P2). The start state of the first receiving window is the initial state of the
state chart of P1 (the default values of varialflemndD are the synchronization data here).
These receiving windows are entered successively, whereas the receiving windows (A3
A4, P2) and (A3, A5, P2) of the send point at state B3 are entered alternatively.

A receiving window can also be assigned to multiple send points. This is the case
the actual send point depends on the execution of the workflow, as shown in figure
Depending on whether state B2 or B3 is entered, the update to vabidbleent at different
send points. In the example, the send points are reached alternatively. Assigning a sin
receiving window to send points that are successively reached is also possible. In t
case, in the finish state of the receiving window the receiving partition will only wait
for the first send point to be reached. If synchronization data from the first send point
received, according to Definition 10, further waiting for subsequent send points will nc
occur. However, if subsequent send points are reached before the receiving partition lea
the synchronization window, the corresponding synchronization data is used to update
system configuration. In the example of figure 6, assume, the receiving wirnrdowA1,

A2}, A3, P2) is also assigned to the send point represented by the initial state of the st
chart in partition P2. In this case, the execution in P1 will not wait in state A3 for the
execution of the state chart in P2 to reach state B4 or B5, because the send point at
initial state of P2 has already been passed. However, according to the state chart semat
there is no need to wait anyway, as P1 and P2 perform a step at the same time, and 1
state A3 in partition P1 is not left before either state B4 or state B5 is entered in partitic
P2. Hence, in weak synchronization mode, the state chart semantics has to be guarantee
a correct assignment of receiving windows to send points. Using the above assignmen
the receiving window to two send points, this is not guaranteed as the execution of P1 th
depends on the time it takes P2 to reach state B4 or B5. If state B4 or B5 is reached af
state A3 is left in partition P1, the update of varialdlein partition P2 is not recognized

in partition P1. We address the problem of determining a valid assignment of receivir
windows to send points with respect to the state chart semantics in the next section.
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6.2.2. Determining the assignment of receiving windows to send poinfghe key problem

for weak synchronization is how to determine the assignment of receiving windows to sel
points. We start by determining tipetentialreceiving windows for each send point. This
can be done by a static analysis of the partitioned state chart. Consider all pairs of se
points and receiving windows. Whenever there is a non-empty intersection between t
synchronization data to be sent at the send point and the relevant system configuratior
the receiving partition at the finish state of the receiving window, the receiving window i
a potential receiving window for the considered send point.

Note that for orthogonal components in the original state chart that do not have contr
flow dependencies, no send point belonging to one component has potential receiv
windows belonging to the other. Hence, there is no need to exchange synchronizati
data. The method of weak synchronization allows to fully exploit parallelism here, as &
execution equivalent to the execution of the original state chart is guaranteed without a st
synchronization of steps.

We continue by distinguishing two cases. In the first case, which we expect to be tl
application standard case, we consider all send points which have all their potential
ceiving windows in the same component of the original state chart (i.e., not in differer
orthogonal components). These send points and their assignment of receiving windows
be determined automatically. In the second, more involved and less application releve
case, at least one of the potential receiving windows of a send point belongs to a compon
in the original state chart that is orthogonal to the component of the send point. We will s
that in this case, an assignment of synchronization windows to send points that results in
execution equivalent to the execution of the original state chart can not be derived autom
ically. A manual assignment by the workflow designer is necessary. If such an assignme
is not provided, we have to resort to incremental synchronization which implements t
original execution semantics of state charts.

We will now discuss the above two cases in detail.

1. Asend point and all its potential receiving windows belong to a single component of tt
original state chart

In this case, the assignment of receiving windows to send points is trivial:
For each send point, assign all its potential receiving windows to it.

This assignment ensures that the distributed execution is equivalent to the execution of
original state chart. Additional specifications by the workflow designer are not required.

Proof sketch. The proof sketchis based onthe observation thatthereis no parallelismintt
execution of partitions that belong to a single component in the original state chart. Thel
only a single state (including its substates) is entered at a time, and the orthogonalizat
algorithm as discussed in Section 5 ensures that this is also the case for the correspon
‘in_’ states in the orthogonalized state chart.

Assume, the distributed execution of a single component in the original state chart h
reached a certain state, and up to this point, the execution was equivalent to a non-distribt
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one. Now assume, in a partiti&involved in this execution a transition form state® state

s takes place, whereas in the corresponding non-distributed execution, the transition is fr
states to states” (For the sake of simplicity, we disregard the mapping of states in the origin
al state chart to corresponding” and “out.” states in the orthogonalized and partitioned
state chart here). The system configuration of both executions insstaist be different.

By Definition 5, the relevant system configuration in s&t®ntains all variables and state
conditions used in at least one condition or read by at least one action of the transitions fre
s to other states. By Definition 8,is the finish state of a receiving window. An erroneous
system configuration used in statis either caused by wrong synchronization data sent at
previous send point, or caused by using an outdated system configuration due to a send p
that was not reached. The latter case is impossible as up to the time the finish state of
receiving window is reached, the execution was equivalent to a non-distributed executic
Receiving wrong synchronization data is also impossible. This could only be the case 1
synchronization data from a send point that was entered too early, and the correspond
updates to the system configuration should not be considered when leavirg) Sthiis

in contradiction to our assumption that up to entering sdatke execution was equivalent
to a non-distributed execution with only a single state entered at a time.

2. Asend point and the finish state of at least one of its potential receiving windows belor
to states in orthogonal components of the original state chart

Inthis case, we are faced with control flow dependencies between orthogonal component
the original state chart, and a correct assignment of receiving windows to send points can
be derived automatically. Only if the structure of the orthogonal components is simple, i.e
they contain no loops, no complex branches etc., a manual assignment seems feasible.
example, this is the case in figure 6, where it can be easily seen that the step semantic
state charts enforces that either states A3 and B4 or states A3 and B5 are entered at the ¢
time. We feel that these cases are the only ones where control flow dependencies betw
orthogonal components can be reasonably used anyway, as this requires knowledge al
concurrently entered states during the execution of orthogonal components. Thereis a
ther reason why control flow dependencies between orthogonal components should be r
As orthogonal components implement parallelism, well designed orthogonal componel
will be independent of each other. Otherwise, the potential parallelism is limited by th
need to exchange data at distinguished time points.

The best way to solve the problem of control flow dependencies between orthogonal co
ponents is to avoid them in the original specification of workflows. Otherwise, we propos
to use incremental synchronization when executing such components. Only in obvious
simple cases a manual assignment of receiving windows to send points should be us
We allow switching between weak synchronization and incremental synchronization d
namically during execution. Whenever two partitions enter orthogonal components of t
original state chart, it is checked whether a manual assignment of send points to receiv
windows for the considered orthogonal components is provided. If not, the system aut
matically uses incremental synchronization until the orthogonal components are left. T
allows a workflow to be executed without any explicit assignment, resulting in an executic
according to the original state chart semantics.
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7. Communication costs

In this section, we will quantify the resulting communication costs by determining the
number as well as the size of the necessary synchronization messages. Our considerz
discriminates between strict, incremental and weak synchronization.

To quantify the communication costs for the execution of a particular workflow, we nee
to analyze the corresponding partitioned state chartnldenote the number of partitions,
andstepthe number steps executed during workflow execution. Notestbpis execution
dependent. The number and size of synchronization messages for strict, incremental
weak synchronization can then be derived as follows:

(1) Strict synchronizationAfter each step, each partition sends messages to allothér
partitions. The total number of synchronization messages send during the execution
the workflow execution can be computed by:

number of_msgs=n(n — 1) % step

The size of synchronization messages sent from partitan be computed by counting
the number of state conditions and variables in partitiohet z be the number of
state conditions of partition v; be the number of variables of partitionTherefore,
the message size is:

size of-msg = z + v

Note that thesize of_ msggives the number of data items rather than the number of
bytes.

(2) Incremental synchronizatiodere, only the part of the system configuration which has
changed during the last step is sent. The number of messages is not reduced since er
messages have to be sent unless updates occurred in the last stgpremesent the
number of state changes andigtrepresent the number of changed variablesin partition
i during stepj. Therefore, the message size is:

SiZ&Of_mng = Zj + vjj

(3) Weak synchronizationThe number of messages sent in weak synchronization mod
depends only on the number of send points passed during the execution of a partition.
s denote this number for partitian Therefore, the number of messages is:

n
number of msgs= Z S
i=1

Let zjx denote the number of state changes and;jetdenote the number of changed
variables in partitiom which are sent from partitiointo partitionk at send poinj. The
size of a synchronization message sent in send gdiaim partitioni to partitionk is:

sizeof_msgjk = Zjjk + Vijk
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We will now determine the communication costs for the partitioned example workflow
of figure 3 for the strict, incremental and weak synchronization. The static analysis
the partitioned specification with partitions P1, P2, P3 and P4 shows that P1 consists
two states, has four local variables (including one state condition for dachstate,
and two variables ‘OK” and “_NOK?” for the outcome of each activity) and reads no
external variables. For partitions P2 (P3 and P4 in parentheses) the according numbers
four (4, 4) states, six (4, 2) local variables, three (7, 4) external variables. As the actL
number of steps performed in each partition is execution dependent, we consider, as a w
case scenario, the longest execution path which is three steps long. When the workfl
is executed in strict synchronization mode, the total number of synchronization messac
is 36 with 144 synchronization data items. The incremental synchronization method al
requires 36 messages but with only 14 data items.

The analysis of the weak synchronization method will now be investigated in mor
detail. Send points, receiving windows and their assignments for partitions P1, P2, a
P3 are shown in Tables 1, 2 and 3. Partition P4 never sends synchronization data to ot
partitions. The first column represents the send points, the second represents the recei

Table 1 Send points of partition P1 and receiving windows.

Send points of P1  Receiving windows of P2, P3, P4 Synchronization data

(in_ENCR S, P2) (nit, ¥, out CCW.S P1), in_ENCR S, ENCROK, amount
(init, ¥, out RSK S, P1)

(in_ENCR S, P3) (nit, ¥, out DEC_S P1) in_ENCR. S ENCROK, amount

(in_ENCR S, P3) (nit, &, in_INIT, P1) ENCR NOK

(init, ¥, out ERR S, P1)

Table 2 Send points of partition P2 and receiving windows.

Send points of P2 Receiving windows of P3, P4 Synchronization data

(in_.RSK S, P3) (nit, ¥, out DEC_S P2) RSKOK, in_RSK S
(in.CCW.S, P3) (nit, », out. DEC_S, P2) CCW.OK, in_.CCW.S
(in_RSK S P4) @nit, @, in_INIT, P2) RSK NOK

(init, ¥, out ERR S P2)
(in.CCW.S, P4) @nit, @, in_INIT, P2), CCW.NOK

(init, ¥, out. ERR S, P2)

Table 3 Send points of partition P3 and receiving windows.

Send points of P3 Receiving windows of P4 Synchronization data

(in_DEC_S, P4) nit, &, in_INIT, P3), DEC_NOK
(init, ¥, out ERR S, P3)
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windows. We assume that the initial values of variables and state conditions of each partiti
need not be communicated, and corresponding send points are not given in the table. S
points are assigned to all receiving windows in the same row. The given assignment rest
in an execution semantics equivalent to the semantics of the original state chart. The th
column of each table shows the synchronization data that is sent at a send point. T
total number of messages sent with weak synchronization equals the total number of rc
in the tables, as in the example, each send point is passed only once. For the same ree
the number of data items sent can be derived by counting the synchronization data item:
the third column of the tables. We obtain a number of 8 synchronization messages witt
total number of 14 data items.

In the example, all start states of all receiving windows are the initial states of th
corresponding partition. This is no longer the case if orthogonal components assigned
the same partition are merged as briefly discussed in Section 5. For the sake of simplic
we have not considered this in our example. Details can be found in (Wodtke, 1997).

8. Conclusions

Enterprise-wide workflows will soon play a crucial role in managing business process
of large institutions. Providing rigorous foundations for the design and implementatio
of distributed workflow management systems has therefore become a major research c
lenge. The verification of mission critical properties of workflows must be possible. Thi
requires a rigorous formal semantics of workflow specifications. We have approached ti
problem by using state and activity charts as our specification method, as this provide
formally founded basis to reason about execution semantics, for example, by means of s
bolic model checking. Since most workflows are specified in a centralized manner witho
considering a distributed execution, a further problem to solve is the partitioning of th
workflow specification, such that the semantics of the original specification is preserve
We have presented a provably correct partitioning method for state and activity charts, tf
enabling a distributed execution according to the original semantics.

A synchronization scheme has been developed which guarantees the correct syncl
nization between the workflow engines executing the partitions of a workflow. The schen
is further improved in terms of the number and size of synchronization messages that h:
to be exchanged between the partitions. Further optimizations are possible by taking ir
account knowledge about typical executions. If some synchronization data is rarely us
in a receiving partition because in most executions, the corresponding receiving window
not entered, it is more efficient to explicitly request the data if necessary instead of sendi
it in each execution. This is a subject of future work.

The distributed execution of enterprise-wide workflows should also consider the isst
of fault tolerance. The state configuration including the current workflow context has t
be maintained persistently in order to allow the continuation of workflows after site fail
ures. Updating the system configuration after each step of the execution and sending
corresponding synchronization messages to other partitions has to be performed as
atomic unit. Anexactly oncesemantics for delivering synchronization messagesis required
in presence of communication or site failures. In our prototype, this is implemented b
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using a TP Monitor for providing reliable messages queues and transactional services,
a database system for maintaining the local system configuration.

We consider our analysis of communication costs for different synchronization schem
to be afirstapproach for reasoning about performance of enterprise-wide workflows. Futt
steps in this direction should include additional resources such as disks and memory. 1
final goal is to come up with analytical results for determining the configuration of ar
enterprise-wide workflow management system and predicting its performance and reliabil
under a given load of concurrently executing workflows.
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